www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Validation of musculoskeletal
segmentation model with
uncertainty estimation for bone
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Deep learning-based image segmentation has allowed for the fully automated, accurate, and rapid
analysis of musculoskeletal (MSK) structures from medical images. However, current approaches

were either applied only to 2D cross-sectional images, addressed few structures, or were validated

on small datasets, which limit the application in large-scale databases. This study aimed to validate

an improved deep learning model for volumetric MSK segmentation of the hip and thigh with
uncertainty estimation from clinical computed tomography (CT) images. Databases of CT images

from multiple manufacturers/scanners, disease status, and patient positioning were used. The
segmentation accuracy, and accuracy in estimating the structures volume and density, i.e., mean HU,
were evaluated. An approach for segmentation failure detection based on predictive uncertainty was
also investigated. The model has improved all segmentation accuracy and structure volume/density
evaluation metrics compared to a shallower baseline model with a smaller training database (N =20).
The predictive uncertainty yielded large areas under the receiver operating characteristic (AUROC)
curves (AUROCs >.95) in detecting inaccurate and failed segmentations. Furthermore, the study has
shown an impact of the disease severity status on the model’s predictive uncertainties when applied to
alarge-scale database. The high segmentation and muscle volume/density estimation accuracy and the
high accuracy in failure detection based on the predictive uncertainty exhibited the model’s reliability
for analyzing individual MSK structures in large-scale CT databases.

The advent of deep learning (DL)-based image segmentation has allowed for the fully automated, accurate,
and rapid analysis of MSK structures from medical images'~'°. These models assist in extracting the structure’s
shape and estimating diagnostic image biomarkers, such as volume and muscle density, for assessing muscle
atrophy and fatty degeneration''2. These biomarkers can be used for the diagnosis of muscle pathologies, such
as muscular dystrophy'?, cachexia!®, and sarcopenia'®. The models were tested on the rotator cuff®, chest?, hip
and thigh’, and abdominal muscles">*%1%1617 However, multiple issues exist in those studies that limit the
reliable application in large-scale databases.
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o Several studies addressed the segmentation of the muscles in only a single or a few two-dimensional (2D)
CT slices™!81%, which do not reflect the three-dimensional (3D) properties of the muscles and depend on the
subjective selection of the slices®.

« The 3D muscle segmentation has also been attempted®!'%2!; however, only a few muscles were addressed. A
recent study?? addressed the 3D segmentation of 27 hip and thigh muscles in CT images; however, the model
was tested on a small database consisting of 12 cases, and the average accuracy was lower than that reported
in a previous study targeting similar muscles’.

« Current muscle segmentation approaches assess the model’s accuracy only in cross-sectional area or volume
estimation. However, muscle density, which can be quantified based on the mean Hounsfield units (HU) in
the CT image?’, has shown higher correlations with muscle strength and functions!!?%. This necessitates the
accuracy assessment of muscle density estimation, as well.

« Even though some studies attempted the analysis of large-scale databases*"*, no rigid criteria were applied
for segmentation failure detection. In other words, it is not clear how to determine whether the automatic
predictions can be safely adopted, possibly corrected with moderate efforts, or better excluded for a reliable
downstream analysis.

21,25

Our group has developed a segmentation tool, i.e., Bayesian UNet with Monte-Carlo dropout sampling (MCDS),
that outputs the model’s uncertainty, a.k.a predictive uncertainty in addition to the target segmentations using
multiple predictions from random dropouts of the model weights (i.e. dropout samples) at the inference time’.
The model was validated on a database of 20 cases of hip osteoarthritis (hip OA) patients. It has shown high
accuracy in segmenting 19 hip and thigh muscles as well as the possibility of predicting the segmentation
accuracy in unannotated CT images based on the predictive uncertainty. In the future, we want to leverage this
tool to segment large-scale databases of CT images collected from many health centers?®, and analyze the impact
of the demographic and disease factors in the Japanese population. These databases include large variations from
the training data, such as manufacturer/scanner, imaging conditions, and disease variations, which may lead to
segmentation failure due to the domain shift problem?”-*°. Furthermore, even though the number of dropout
samples was found to affect the accuracy of MCDS-based approaches?!, the impact of this parameter on the
MSK segmentation was not investigated. Fitzpatrick et al. reported the automated volumetric and demographic
analysis of the iliopsoas muscle segmented from magnetic resonance (MR) images of 5,000 subjects®. Their
database was collected from the UK Biobank database??, which, in contrast to ours, has a unified imaging
scanner and protocol that mitigates the domain shift problem. The predictive uncertainty was also addressed in
previous studies to predict the segmentation accuracy in unannotated images”'>3-3%; however, the analysis was
limited to small databases, and no quantitative criteria were applied for the detection of the segmentation failures
for the down-stream analysis.

In this study, we report the preparations conducted to employ the model for muscle segmentation in the
large-scale database. In particular, a larger fully annotated database consisting of 50 cases of hip OA patients
acquired by two CT scanners has been prepared. In addition, the model’s capacity has been increased to account
for the enlarged training database. The major contributions of this work are as follows:

« Investigating the segmentation accuracy and volume/intensity prediction in 22 MSK structures from four
databases of CT images acquired from multiple manufacturers/scanners with various disease conditions, and
patient positioning, i.e., standing and supine positions.

o Assessing the accuracy of the predictive uncertainty as a predictor of the segmentation accuracy under vari-
ous imaging conditions and disease variations and suggesting quantitative criteria for detecting segmentation
failures.

o Showecasing the capability of the predictive uncertainty and suggested criteria in detecting segmentation fail-
ures at a large database of > 2,500 volumetric CT images of hip OA patients, and investigating the impact of
the disease status on the predictive uncertainty.

Materials and methods
CT images and annotations
In this study, databases of CT images from multiple manufacturers/scanners, disease status, and patient
positioning were used. Table 1 summarizes the characteristics of the databases (DBs) used in this study. DB#1
included pre-operational images from 50 unilateral hip OA patients (mean age: 61.4 & 13.0 yrs, min: 30 yrs,
max: 86 yrs; 44 females, 6 males) acquired by two scanners from different generations by the same manufacturer
(HiSpeed "old” (N=20) and Optima CT660 "new” (N=30), GE Healthcare, Milwaukee, WI). The images were
resampled so the slice interval became 1.0 mm throughout the entire volume. The disease severity was assessed
using Crowe®® and Kellgren and Lawrence (KL)* grading, in which higher grades indicate higher disease
severity. The affected sides were those with KL,Crowe>1. This database was used for the internal validation of
the model accuracy, for investigating the impact of the training and inference settings, and for disease status.
The three databases DB#2-4 were for subjects without hip OA from institutions different from that of DB#1,
and were used for external validation of the model accuracy. DB#2 was collected from a public database,
including 18 cases (age anonymized; 13 females, 5 males) with soft tissue sarcoma acquired by a scanner from
the same manufacturer as DB#1 but a different model (Discovery ST, GE Healthcare, Milwaukee, WI). DB#3
included images for 10 subjects (mean age: 50.1 7.6 yrs, min: 41 yrs, max: 64 yrs; 10 males) who were scanned
for the diagnosis of colorectal cancer using a scanner from a different manufacturer (Supria, Hitachi Medical,
Tokyo, Japan). DB#4 included images of 20 healthy volunteers (mean age: 65.1 + 6.3 yrs, min: 55 yrs, max:
76). The images were acquired for the volunteers in the supine and standing positions. The supine images were
acquired with a 320-row detector CT scanner (Aquilion ONE, Canon Medical Systems Corporation, Otawara,

Scientific Reports | (2025) 15:125 | https://doi.org/10.1038/s41598-024-83793-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

In-plane | Slice
Patient No. of Matrix | resolution | interval
Database | Inst. Diagnosis | positioning | cases | Modality size [mm] [mm]
Internal training and testing (fivefold cross-validation)
2_
Osaka 20 |HiSpeed, GE |5122 | 0793 1.0-6.0*
. Unilateral . 0.742
DB#1 Univ hip OA Supine - 3
Hosp. P 30 Optima 5122 0.7032— 125
CT660, GE 0.820? ’
External validation (small-scale, with ground-truth labels of the GMED muscle)
Soft tissue . Discovery ) 2
DB#2 TCIA sarcoma Supine 18 ST, GE 512 0.977 3.75
Hitachi
DB#3 lged‘“al Colorectal Supine 10 Supria, Hitachi | 5122 | 0.6852 0.63
are cancer
Center
Aquilion ONE,
Supine 20 Canon Medical | 5122 0.6832 0.5
Systems
Keio
DB#4 Univ Normal prototype
Hosp. TSX-401R,
Standing 20 Canon 5122 0.6832 0.5
Medical
Systems
Large-scale predictive uncertainty analysis (without ground-truth labels)
2_
Osaka | Uni/ 460 | HiSpeed, GE | 5122 | 079, 1.0-6.0%
DB#5 Univ bilateral Supine Ot § 3
Hosp. hip OA ptima 2 0.703°— 0.675-
HY I creso,GE |12 |o0s200  [375

Table 1. CT image characteristics. *pelvis and proximal femur: 2.0 mm, femoral shaft region: 6.0 mm, distal
femur region: 1.0 mm.

Japan), while the standing images were acquired with an upright 320-row detector CT (prototype TSX-401R,
Canon Medical Systems Corporation, Otawara, Japan).

DB#5 included pre-operational images for uni/bilateral hip OA patients collected from the same institution
as DB#1. This database was used to showcase the usability of the predictive uncertainty in failure detection and
the impact of disease status in a large-scale setting. The original database contained 9,260 CT images, acquired
with hip-to-knee and whole lower limb imaging protocols for total hip arthroplasty (THA) surgery. Digitally
reconstructed radiographs (DRRs) were constructed from each CT volume. The DRR was used to visually
confirm the presence of metal implants from hip-to-knee, and truncate the original volume below the knee level
if the image covered the whole limb. The process ended up with 2,579 CT volumes (mean age: 61.8 + 15.2 yrs,
min: 13 yrs, max: 98 yrs; 2,062 females, 497 males). The affected and unaffected sides in each CT image were
assigned based on an automatic grading model*’. Particularly, a cubic region of interest (ROI) centered at the
hip center on each side was extracted using a CNN-based landmark detection tool. A DRR was constructed
for each side, and was input to a 7-class disease severity classification model with a vision transformer (ViT)
architecture?!. A pre-trained model with a classification accuracy of .962 was used to predict the disease severity,
and the sides with KL,Crowe>1 were considered affected, and unaffected otherwise.

Figure 1 shows an example of the target structures including 19 muscles and three bones, whereas Table 2 lists
the structures names, abbreviations used in text, and the visualization colors. A collaborative group consisting
of a health science researcher with a medical physics background, computer science researchers, and orthopedic
surgeons specializing in musculoskeletal imaging created and validated the ground-truth (GT) labels of all
the target structures in DB#1 and the GMED muscle in DBs#2-4. The annotations of the 50 cases in DB#1
passed through multiple annotation and validation cycles. The annotations were first created using a pre-trained
model’, and the automated segmentations were corrected using 3D Slicer*2.

Overall scheme

Figure 2 shows the overall scheme of validating the segmentation model for the automated assessment of bones
and muscles in CT images. The CT image was input to the model, where each axial slice was processed to
segment the bones and muscles. Each bone and muscle were extracted from the concatenated volume of all
slices for qualitative, i.e., muscle density visualization, and quantitative, i.e., volume and mean HU assessments.
Besides the bone/muscle labels, the structure-wise predictive uncertainty was computed based on MCDS.”*! The
databases and proposed scheme were used to tackle the following research questions:

o DB#1: What is the models performance (i.e., segmentation and muscle/bone assessment accuracy) under
variations the training settings (i.e., number of UNet encoder/decoder layers and number of training cases),
and inference settings (number of dropout samples and estimation method of predictive uncertainty)?

o DB#2-4: How would the model performance change if applied to external databases of CT images from mul-
tiple manufacturers/scanners, with various disease conditions and patient positioning (standing and supine
positions)?
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Fig. 1. Segmentation labels of the bones and muscles

o DB#5: Can the predictive uncertainty be used for segmentation failure detection in large-scale unannotated
databases?
o DB#1,5: What is the impact of the disease status on the model performance and predictive uncertainty?

Figure 3 summarizes the research questions in this study with the corresponding databases.

Image segmentation

In this study, a cascaded 2D Bayesian U-Net model, which outputs the predicted structure labels with pixel-
wise predictive uncertainty maps, was used’. The baseline model architecture consisted of an encoder and
decoder composed of multiple down/upsampling layers (hereinafter called layers for simplicity). Each encoder
layer consisted of two basic blocks each consisting of padding-convolution-activation blocks, followed by a
dropout block. The decoder layer consisted of an upconvolution block, whose output was concatenated with
the corresponding encoder layer’s output, followed by a basic block. The model’s output feature map was input
to a softmax layer to obtain the voxel-wise class probabilities. Two modifications were made to the baseline
architecture: 1) increasing the depth of the model (i.e., using six encoder/five decoder layers instead of five
encoder/four decoder layers), and 2) adding a batch normalization layer*® to the basic convolutional blocks,
which stabilizes the training of large neural network models and improves the overall performance®®. Similar
to’, at the inference time, the mean and the variance of 10 MC dropout samples were used to obtain the output
label and voxel-wise uncertainty map, respectively. The structure-wise predictive uncertainty was computed as
the average of the voxel-wise uncertainty map within the segmented label.

To investigate the impact of the modified model and larger annotated database, including 50 cases,
the performance was compared with the baseline model consisting of five encoder/four decoder layers and
validated on 20 or 50 cases. For simplicity, the aforementioned models were termed (5layers,20), (5layers,50),
and (6layers,50). The parameters were ~10 M and ~44 M for the 5layers and 6layers models, respectively.

Muscle/bone assessment

The labels predicted by the segmentation model were used to assess each structure’s volume and muscle density.
The volume was computed as a multiplication of the number of voxels by the size of each voxel in centimeter
cubes (cc) normalized by the subject’s height. The muscle density was computed as the mean of the intensity
or CT values in HU within the segmented label. Structures on the right and left sides of the patient’s body
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Structure Abbreviation  Label color
Bones

Pelvis PELVIS o
Femur FEMUR O
Sacrum SACRUM [ |
Hip muscles

Gluteus maximus GMAX

Gluteus medius GMED

Gluteus minimus GMIN

Iliacus ILl [
Obtuator externus OE [
Obtuator internus Ol [
Pectineus PE [ |
Piriformis Pl

Psoas major PSOAS

Thigh muscles

Adductor muscles AD

Biceps femoris BF

Gracilis GRAC

Rectus femoris RF [
Sartorius SART
Semimembranosus SM
Semitendinosus ST [ ]
Tensor fasciae latae TFL [
Vastus lateralis and vastus intermedius VLVI [
Vastus medialis VM

Table 2. Target structures.

were assessed separately based on a postprocessing using connected component analysis (CCA). An additional
watershed algorithm and CCA were used to separate the right and left sides when connected (e.g., the connection
of right and left hemi-pelvises at the pubic symphysis).

A transfer function was used to comprehensively convert the HU values into scalar muscle density to visualize
lean muscle and intramuscular fat. HU values less than -30 HU were considered fat, values within the range
[_30,30] were considered muscle/fat composite, and values larger than 30 HU were considered lean muscle?3.
Color and opacity transfer functions were used to visualize the transformed image (see Fig. 2, right).

Evaluation metrics
The segmentation accuracy, and accuracy in estimating the structures volume and density, i.e., mean HU, were
evaluated. The segmentation accuracy was evaluated using the Dice coefficient (DC) and average symmetric
surface distance (ASD). DC assesses the overlap between the GT and predicted labels. ASD assesses the surface
distance, i.e., surface error, to assess the presence of small yet distant false positive structures. The predicted
volume and mean HU accuracy were evaluated using the absolute difference between the quantities measured
at the GT and predicted labels. The volume error (average volume error [AVE]) was computed as a percentage
relative to the GT volume. The intensity error (average intensity error [AIE]) was reported as the average of
absolute differences between the mean HUs of the GT and predicted labels.

The accuracy of the predictive uncertainty for detecting inaccurate (correctable with moderate human effort)
or failed (correctable with notable efforts) segmentations was investigated. For each structure, a threshold based
on the standard deviation of DC was determined to consider the segmentation inaccurate or failed. To make
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Fig. 2. Overall scheme for validation of musculoskeletal segmentation model for automated assessment of
bones and muscles in CT images with uncertainty estimation
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Fig. 3. Summary of the research questions tackled in the study with the corresponding databases and
methodologies used in the experiments. Sect: section numbers in the paper, ROI: region-of-interest, Hip OA:
hip osteoarthritis, GT: ground-truth (annotation), DB: database, N: number of cases

the threshold setting more statistically robust against outliers, the median absolute deviation (MAD) was used.
Particularly, a threshold of MedianDC+1.4826*k”MADDC was used, where k was set as -2 or -3 for inaccurate
or failed segmentations, respectively. The area under the receiver operating characteristic (AUROC) curves of
the predictive uncertainty based on the DC threshold was used to assess the detection accuracy. The AUROCs
of the predictive uncertainty from both 5layers,20 and 6layers,50 were computed. Linear regression lines were
computed between DC (dependent) and the predictive uncertainty (independent) for each structure and the
averages of all structures combined.

Statistical analysis

The concordance correlation coefficient (CCC)** was used to assess the agreement between the GT and
predicted volume and mean HU. The Pearson correlation coeflicient (p) assessed the linear relationship between
the predictive uncertainty and DC. To investigate the statistical significance of the differences between paired
measurements, the Shapiro test was first used to assess the normality of the different distributions. Student’s
t-test was used when normality was found. Otherwise, the Wilcoxon signed-rank test was used. A probability
of p=0.05 was considered significant in all tests. Bonferroni correction was used when multiple comparisons
between the models or databases were made.
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Implementation details

The proposed approach was developed and validated in Python and Keras*>*. The segmentation models
(5layers,20), (5layers,50), and (6layers,50) were trained and validated on DB#1 based on 5-fold cross-validation.
For a matched comparison among the models, the remaining 30 out of the 50 cases used in training the
(5layers,20) model were used in the inference phase. Models with 5 and 6 layers were retrained on all the images
in DB#1 and were used to predict the labels in DBs#2-5. The quantitative validation of DBs#2-4 was limited to
the GMED muscle, whereas the average of the predictive uncertainty in all structures was used in DB#5. The
predictive uncertainty thresholds used for failure detection in DB#5 were derived based on the linear regression
lines computed in DB#1.

The segmentation model training and inference were performed on a Linux-based cluster of servers with
graphical processing units (GPUs; Nvidia Corporation, Santa Clara, CA, USA). Similar to the previous study’,
the (5layers,20) model was trained for 150Kk iterations with a batch size of 3, whereas the models 5layers,50 and
6layers,50 were trained for 200k iterations due to the increased training data and model capacity. The inference
time per volume (approximately 500 CT slices) was approximately 3 minutes.

Results

Segmentation accuracy and predictive uncertainty

The improved model 6layers,50 has shown overall improvements with respect to all evaluation metrics. Figure 4
shows the segmentation accuracy, predictive uncertainty, and volume/mean HU accuracy of the three models.
Each point represents the average metric value of all structures in a single subject. The accuracy of the 6layers,50
model was significantly higher than that of the 5layers,20 in terms of all metrics. The average DC of the 6layers,50
model was .945+.015, with an average increase of 1.2% at all structures compared with 5layers,20 (p<.017). An
average improvement of approximately 0.4 mm was observed in ASD (p<.017). The improvement by 6layers,50
model was statistically significant in most MSK structures, as shown in Supplementary Figs. A.1 (DC), A.2
(ASD).

The box plots in Fig. 4(b) show that the uncertainty proportionally decreased with the improved segmentation
accuracy in Fig. 4(a) regarding the number of training cases and model depth. Scatter plots of DC versus the
predictive uncertainty for each model are depicted in Supplementary Fig. A.6(a). Linear relationships with
strong correlations were obtained between the segmentation accuracy and the predictive uncertainty by all the
models. A strong correlation of p=-.79 was obtained in the 6layers,50 model. This emphasizes the usability of the
predictive uncertainty as a predictor of the segmentation accuracy, which supports the findings by the previous
studies”.

Figure 5 shows the relationship between the average DC and average predictive uncertainty of all structures in
each patient in DB#1 and the corresponding ROC curve for failure detection. The predictive uncertainty of both
models (5layers,20 and 6layers,50) yielded high AUROCs (>.95) in detecting inaccurate and failed segmentations.
Table 3 shows the AUROC: of each structure. The median AUROC: of all structures by 6layers,50 for detecting
inaccurate and failed segmentations were .979 and .959, respectively. The OE and OI muscles had the lowest
accuracy. Supplementary Fig. A.9 shows the detailed results of each structure. Supplementary Figure A.11 shows
scatter plots of the predictive uncertainty by the two models in DB#5. Based on the thresholds computed in
DB#1 (Fig. 5), three representative cases were visualized. The improved segmentation by the 6layers,50 model
can be observed in the three cases and the scatter plot. The representative case of the failed segmentation exhibits
unusual positioning of the hip, possibly due to the patient’s discomfort as a result of the disease.

Relationship between segmentation accuracy/predictive uncertainty and disease stage

Figure 6 shows the distributions of the evaluation metrics and predictive uncertainty at the internal DB#1 (a)
and predictive uncertainty in the large-scale database DB#5 (b) in terms of the hip OA disease status (unaffected
vs. affected) in each body side. The model 6layers,50 showed statistically significant improvement (p<.01) in all
the structure groups in DB#1. The proportional relationship between the accuracy and predictive uncertainty
can also be observed in all structure groups, where smaller uncertainty was accompanied by increasing accuracy.
The unaffected sides significantly showed higher accuracy in the bones than the affected ones in DB#1. All
groups had a similar tendency in DB#5, where the affected sides had higher predictive uncertainty. In addition
to the sensitivity to the variations in the positioning, as shown in Fig. A.11, this shows a possible impact of the
disease status on the performance of the segmentation model in large-scale databases.

Validation on a multi-manufacturer/scanner database

Figure 7 shows the evaluation metrics and predictive uncertainty of GMED muscle segmented at the databases
DB#1-4 from multiple manufacturers/scanners and disease variations (see Table. 1). Representative cases (5
(blue filled triangle) and 95™ (red filled upside down triangle) quantiles of the predictive uncertainty visualized
in Supplementary Figs.A.7 and A.8) are depicted. Statistically significant improvements in the DC, ASD, and
AIE were observed in the four databases using the model 6layers,50. The predictive uncertainty was obviously
related to the accuracy metrics, where low uncertainty cases mostly had high accuracy metric values and vice
versa.

Table 4 summarizes the means and SDs of the evaluation metrics in the four databases. Using the 6layers,50
model, the segmentation accuracy at a predictive uncertainty of 5X 10~ was> 0.90 (DC) and approximately
less than 2.00 mm (ASD) in all the databases. Notably, a sub-HU accuracy was obtained in predicting the mean
HU in the four databases. Overall improvements were observed in all the muscles by the 6layers,50 model (see
Supplementary Fig. A.7). At the GMED muscle, the 5layers,20 model failed to capture the boundaries with
the GMAX muscle, which reduced its segmentation accuracy, whereas the errors were less in the 6layers,50
model results. The PSOAS muscle’s lower part was undersegmented in multiple instances by the 5layers,20
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Fig. 4. Distributions of the segmentation accuracy (a), predictive uncertainty (b), and volume/mean HU
accuracy (c) of the bones and muscles (averaged on all structures) by each model applied to DB#1 (N =50).

Horizontal lines in the boxes represent the medians, while blue boxes represent the means. Detailed values are
depicted in Supplementary Figs. A.1-A.5. DC: Dice coeflicient, ASD: average symmetric surface distance, AVE:
average volume error, AIE: average intensity error, n.s.: not significant, *: p <0.017, Student’s t-test or Wilcoxon
signed rank sum test with Bonferroni correction

model. Noteworthy, only a slight degradation in accuracy was observed at standing compared with the supine
positioning in DB#4.

Table 5 summarizes the predictive uncertainty and its correlations with the segmentation accuracy (DC)
of the GMED muscle in the four databases. With the four databases combined, both models yielded strong
correlations, where the average PCCs for the 5layers,20 and 6layers,50 models were -.85 and -.60, respectively.
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Fig. 5. Receiver operating characteristic (ROC) curves of the inaccurate and failed segmentation detection in
DB#1 (N =50) using the predictive uncertainty. Thresholds were determined based on the median absolute
deviations (o) of the DC

Table 6 shows the AUROC: of failure detection at the four databases. The median AUROCs by the 6layers,50
were .963 and .995 for inaccurate (-20) and failed (-30) segmentation detection, respectively.

Muscle/bone assessment

Table 7 compares the volume and mean HU prediction applied to the GT and auto segmentations in DB#1
obtained from the 6layers,50 model. The measurements of the unaffected and affected hip OA sides were
reported separately. Most structures exhibited substantial agreement between the GT and auto measurements
on both sides (p > .95). The PI muscle showed weak agreement in the volume and HU measurements, whereas
the TFL muscle showed weak agreement only in mean HU. In both the volume and mean HU predictions, the
unaffected side has shown a slightly larger MAE than the affected side. MAE of the predicted volumes at the bones
and muscles for the affected and unaffected sides was 1.77+1.06 cc/m? and 1.89+1.17 cc/m?, respectively. The
MAE of the mean HU for the affected and unaffected sides was 1.46+0.95 HU and 1.38+0.89 HU, respectively.
Notably, a sub-HU MAE was obtained at the GMAX, GMED, AD, BE RE, SM, VLVI, VM muscles on the affected
and unaffected sides.

Figure 8 shows representative case (median DC) segmentations with muscle histograms and 3D volume
rendering of muscle density of the GMAX and GMED muscles. High reproducibility of the GT-based
histograms and muscle density visualizations could be observed. In particular, the auto segmentations could
comprehensively reproduce lean muscle (red) and fat (yellow) portions.

Impact of the training and inference settings

Number of training images

Table 8 shows the impact of the number of training images on the segmentation accuracy (DC, ASD) of
the 6layers model applied to DB#1. The highest accuracy was obtained when 40 cases were used. However,
no statistically significant differences were observed in comparison to 30 cases. Compared with cases fewer
than 30 cases, statistically significant differences were observed. In addition, strong correlations between DC
and the predictive uncertainty were obtained in all numbers of training cases (see Supplementary Fig.A.6,b).
This emphasizes the generalizability of the predictive uncertainty as a predictor of the segmentation accuracy
regardless of the number of training images.

Number of dropout samples.

Table 9 shows the impact of the number of training samples on the segmentation accuracy by the 6layers model
applied to DB#1. No improvement was observed by increasing the samples to larger than 10 samples. This
indicates that 10 samples are sufficient to obtain a stable performance by the model.

Estimation method of the predictive uncertainty.

Table 10 shows the correlation between the uncertainty, estimated using entropy and MCDS-based variance, and
the segmentation accuracy (DC). Both uncertainties were estimated using the 6layers model applied to DB#1.
The entropy was computed from the probability maps of a single sample (deterministic setting) following the
previous studies'>** whereas the MCDS was computed from the variance of 10 dropout samples. The entropy
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AUROC?T
5layers,20 6layers,50
Group Structure | -26 |-30 |-20 |-30
GMAX 0.935 | 0.970 | 0.874 | 0.958
GMED 0.989 | 0.990 | 1.000 | 0.990
GMIN 0.864 | 0.802 | 0.959 | 0.959
ILI 0.943 | - 0.865 | 0.837
Hip muscles OE 0.696 | 0.592 | 0.534 | 0.413
Ol 0.552 | - 0.693 | -
PE 0.962 | 0.990 | 0.965 | 0.980
PI 0.987 | 1.000 | 1.000 | 1.000
PSOAS 0.991 | 0.979 | 0.963 | 0.916
AD 0.936 | 1.000 | 0.894 | 0.990
BF 0.977 | 0.967 | 0.898 | 0.898
GRAC 1.000 | 1.000 | 0.913 | 0.996
RF 0.981 | 0.996 | 0.965 | 0.970
Thigh muscles SART 0.973 | 0.996 | 0.876 | 0.978
SM 0.924 | 0.969 | 0.938 | 1.000
ST 0.875 | 0.867 | 0.894 | 1.000
TFL 0.964 | 0.908 | 0.819 | 0.682
VLVI 0.920 | 0.911 | 0.951 | 0.940
VM 0.896 | 0.984 | 0.853 | 0.986
PELVIS 0.917 | 0.939 | 0.891 | 0.765
Bones FEMUR | 0.995 | 0.995 | 0.904 | 0.948
SACRUM | 0.920 | 0.958 | 0.750 | 0.791
All structures average 0.964 | 1.000 | 0.967 | 0.950
Median 0.943 | 0.979 | 0.898 | 0.965

Table 3. Accuracy (area under receiver operator curve (AUROC)) of the segmentation failure detection
based on the predictive uncertainty and segmentation accuracy (Dice coeflicient; DC) of all structures DB#1
(N'=50). o indicates the threshold computed based on the median absolute deviation of DC and used for

the detection of inaccurate (-20) and failed (-30) segmentations. “All structures average” indicates using the
average of predictive uncertainties of all structures for failure detection. The structures” abbreviations are listed
in Table 2.

produces stronger correlations with the segmentation accuracy (mean: -.71 vs. -.69); however, the usage of a
single sample led to a decreased segmentation accuracy (DC: .941+.014 vs. .947+.013; as shown in Table 9).

Discussion

This study validated a DL model for the segmentation of MSK structures with uncertainty estimation in clinical
CT images. The novelty of this work is that it showed the usability of the predictive uncertainty for predicting
the MSK segmentation accuracy and detecting segmentation failures in databases of CT images from multi-
manufacturers/scanners and with disease and positioning variations, such as supine and standing, and with
different scales, including a large-database with 2,579 CTs. This showed the possibility of using the predictive
uncertainty as a tool for detecting the failed segmentation in unannotated CT images. The study also exhibited
the potential of the 6layers,50 model in producing accurate segmentations for assessing the muscle/bone volume
and mean intensity, with DC>0.90 in almost all the muscles and > 0.95 in the bones (see Supplementary Fig.
A.1). The validation on the external databases has shown high generalizability of the model’s performance,
where a DC>0.95 and an AIE < 1 HU were obtained in evaluating the GMED segmentations, and the predictive
uncertainty could detect the cases with segmentation failures.

Systematic improvements were observed using the 6layers,50 model at all the structure groups, regardless
of the disease status. However, the PI muscle showed the smallest DC of 0.845+0.091, with the largest ASD,
AIE, and AVE (see Supplementary Figs. A.1, A.2, A4, A.5). The degraded accuracy could be interpreted by
the location of this muscle among various bony, abdominal, and vascular structures, making it challenging for
automated segmentation. 3D segmentation models?’ might improve the segmentation accuracy of this muscle
as they better involve the volumetric relationships with the surrounding structures.

The predictive uncertainty was investigated in several studies to predict the segmentation accuracy in medical
images.”!>33-3, Nowak et al. investigated the predictive uncertainty (entropy) in segmenting skeletal muscles
in lumbar-level CT slices from dual centers with CT scanners from multiple manufacturers. Their study showed
the applicability of the predictive uncertainty on the data from both centers; however, it was only applied to 2D
CT slices, with the muscles combined into a single label. Mehtrash et al. investigated the predictive uncertainty
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(b) Large-scale predictive uncertainty analysis (DB#5; N=2,579)

Fig. 6. Distributions of the accuracy evaluation metrics and predictive uncertainty of the three MSK structure
groups, i.e., thigh (left) and hip (middle) muscles and bones (right), in terms of the disease status of body sides
in hip OA patients in internal validation DB#1 (a) and large-scale predictive uncertainty analysis in DB#5) (b).
N: number of cases. n.s.: not significant, *: p <0.004. (Based on Shapiros normality test, the hypothesis test was
performed using either the Wilcoxon signed-rank test or the Student’s t-test. Bonferroni correction was used
for the multiple comparisons.)
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Fig. 7. Comparison between segmentation model accuracy (a, c) and predictive uncertainty (b) of the

GMED muscle in the multi-manufacturer/scanner databases DB#1(N =50), DB2(N =18), DB#3(N=10)

and DB#4(N =20). DC: Dice coefficient, ASD: Average symmetric surface distance, AVE: Average volume
error, AIE: Average intensity error, su: supine, st: standing, n.s.: not significant, *: p <0.01. (Based on Shapiro’s
normality test, the hypothesis tests were performed using either the Wilcoxon signed-rank test or the Student’s
t-test with Bonferroni correction). The triangles indicate the cases corresponding to the 5th (blue filled
triangle) and 95th (red filled upside down triangle) quantiles of the predictive uncertainty visualized in A.7 and
A8.

DCt ASD [mm]} AVE [%]] AIE [HU]|

5layers,20 6layers,50 5layers,20 6layers,50 5layers,20 6layers,50 p | 5layers,20 6layers,50 P

<
<

DB#1 (N=50) 0.951+0.015 | 0.961+0.011 | * | 0.910+2.436 | 0.432+0.132 | * 4.426+3.303 | 2.355+2.038 | * 1.132+0.906 | 0.811+£0.663 | n.s
DB#2 (N=18) 0.915+0.018 | 0.924+0.015 | * | 2.195+3.359 | 1.811+2.029 | n.s | 3.681+3.971 | 2.869+2.048 | n.s | 1.915+1.685 | 0.959+0.665 | *
DB#3 (N=10) 0.879+0.049 | 0.938+0.012 | * | 2.090+0.807 | 0.985+0.255 | * 8.500+9.491 | 3.033+1.950 | n..s | 0.452+0.324 | 0.603+0.253 | n.s

DB#4su (N =20)

0.955+0.017 | 0.974+0.005 | * | 0.762+0.543 | 0.288+0.057 | * 4.304+£6.074 | 1.520+0.794 | * 0.767£0.409 | 0.216+0.109 | *

DB#4st (N=20)

0.922+0.048 | 0.969+0.005 | * | 0.985+0.667 | 0.314+0.058 | * 6.195+7.852 | 1.347+0.842 | * 0.640+0.364 | 0.198+0.102 | *

Table 4. Comparison between evaluation metrics of the GMED muscle segmentation in four databases.

DC: Dice coefficient, ASD: average symmetric surface distance, AIE: average intensity error, AVE: average
volume error, p: p-value of the difference between 5 and 6layers models (Student’s t-test if normal distribution,
Wilcoxon signed rank test otherwise, with Bonferroni correction), n.s.: not significant.

Predictive uncertainty |

5layers,20 6layers,50
Model Mean +std (x107) | p Mean +std (x107%) | p
DB#1 (N=50) | 4.601+1.458 -0.78 | 2.678+0.593 -0.72
DB#2 (N=18) | 5.703+1.703 -0.77 | 3.367 +1.367 -0.88
DB#3 (N=10) | 14.142+5.294 -0.82 | 2.710+0.523 0.12
DB#4su
(N=20) 5.225+2.675 -0.93 | 2.603+0.539 -0.88
DB#4st
(N=20) 8.774+5.142 -0.97 | 3.102+0.851 -0.88

Table 5. Predictive uncertainty (mean =+ standard deviation “std”) and correlation (Pearson correlation
coefficient, p) with Dice coefficient of the GMED muscle in four databases.
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AUROC 1
5layers,20 6layers,50
Model 26 |-36 |-20 |-30

DB#1 (N=50) | 0.989 | 0.990 | 1.000 | 0.990
DB#2 (N=18) | 0.889 | 0.882 | 1.000 | -
DB#3 (N=10) | 0.813 | 0.813 | - -

DB#4su
(N=20) 1.000 | 1.000 | 1.000 | 1.000
DB#4st
(N=20) 1.000 | 1.000 | 1.000 | 1.000
Median 0.989 | 0.990 | 1.000 | 1.000

Table 6. Accuracy (area under receiver operator curve (AUROC)) of the segmentation failure detection based
on the predictive uncertainty and segmentation accuracy (Dice coefficient; DC) of the GMED muscle in the
four databases. o indicates the threshold computed based on the median absolute deviation of DC and used for
the detection of inaccurate (-20) and failed (-30) segmentations.

Normalized Volume [cc/m?] Mean HU [HU]
Affected Unaffected Affected Unaffected
Group Structure | GT Auto | MAE] GT Auto | MAE] CCCt | GT Auto | MAE| GT Auto | MAE| CCC?t
GMAX 230.27 | 230.90 | 3.65 255.38 | 255.56 | 4.05 1.00 19.33 19.33 | 0.52 25.03 | 25.04 |0.53 1.00
GMED 9492 | 9581 |2.01 104.32 | 105.99 | 2.83 0.99 29.22 |29.56 |0.85 3475 |35.08 |0.84 1.00
GMIN 21.72 | 21.98 | 1.70 22,52 | 2232 |1.53 1.69 32.74 | 32.86 |1.67 38.11 |38.05 |1.54 0.99
ILI 34.14 | 33.99 1.19 37.95 3791 1.24 0.99 50.99 |52.43 1.69 53.45 | 54.51 1.37 0.97
Hip muscles OE 1295 |12.79 |0.81 13.37 | 13.22 | 0.90 0.96 30.11 | 31.06 |2.29 3498 |3593 |230 0.97
(O) 13.82 | 1322 |0.73 1472 | 1423 |0.61 0.97 39.65 |40.31 | 148 43.53 |44.19 |1.40 0.99
PE 11.07 |10.95 |0.58 1147 |11.34 |0.48 0.98 36.86 |38.03 | 1.64 39.57 | 40.37 |1.37 0.97
PI 8.25 7.75 1.24 9.16 8.82 1.17 0.90 28.06 |31.36 |4.70 3235 | 3493 |4.26 0.81
PSOAS 19.35 | 18.56 | 1.43 2196 |2093 |1.67 0.97 42.08 |43.46 |1.55 44.03 | 4536 |1.50 0.98
AD 188.02 | 189.11 | 3.82 210.85 | 211.59 | 4.31 1.00 36.63 |36.82 |0.61 39.67 |39.81 |0.49 1.00
BF 7130 | 71.31 1.85 76.28 | 76.60 |2.64 0.99 3423 | 3440 |0.78 36.26 |36.39 |0.80 1.00
GRAC 19.66 | 19.70 |0.77 20.44 | 20.37 |0.96 0.98 27.37 |28.40 | 142 28.52 |29.56 | 1.42 0.99
RF 49.35 |49.10 | 1.50 5433 |53.94 |1.59 0.99 45.66 |46.15 |0.57 45.62 |46.01 |0.51 0.99
Thigh muscles SART 3897 |38.76 | 1.04 39.28 |39.17 |1.25 0.99 30.20 |31.15 |1.16 30.76 | 31.71 |1.23 0.99
SM 50.26 | 50.63 |2.39 5453 |54.90 |2.71 0.97 29.69 |30.06 |0.86 3350 |33.74 |0.70 1.00
ST 41.66 |41.78 |1.83 44.03 | 44.41 |2.23 0.98 3419 |34.80 | 1.46 36.59 |37.16 |1.44 0.98
TFL 19.80 19.85 | 0.95 19.89 19.94 |0.97 0.98 23.85 |24.83 1.31 25.86 |27.01 1.40 0.99
VLVI 237.39 | 238.48 | 4.50 253.34 | 253.95 | 3.82 1.00 47.84 |48.12 |0.65 4993 |50.17 |0.59 1.00
VM 104.64 | 105.33 | 3.06 113.61 | 115.50 |2.96 0.98 45.65 |45.55 |0.63 46.67 |46.58 |0.61 0.99
PELVIS 122.26 | 122.47 | 0.85 121.49 | 121.63 | 0.77 1.00 320.95 | 321.56 | 1.51 334.44 | 335.14 | 1.31 1.00
Bones FEMUR 169.62 | 170.27 | 1.27 169.65 | 170.23 | 1.07 1.00 447.29 | 447.35 | 1.51 464.81 | 464.79 | 1.40 1.00
SACRUM | 94.22 |94.00 |1.74 - - - 0.97 190.39 | 192.60 | 3.34 - - - 0.99
Mean+ SD 1.77 + 1.06 1.89+ 1.17 1.46+ 0.95 1.38+ 0.89

Table 7. Comparison between affected and unaffected sides of the muscles and bones in DB#1 in terms
of normalized volume and mean HU using ground truth (GT) and auto (Auto) segmented labels. CCC:
Concordance correlation coefficient between GT and predicted measurements, MAE: mean absolute
error between GT and predicted measurements. The structures’ abbreviations are listed in Table 2. % The
measurements on the whole sacrum were reported since it was not separated into right/left.

(entropy) based on ensemble models. The method was validated on multiple structures at MRIs, and strong
correlations between the predictive uncertainty and segmentation accuracy were reported. However, both studies
did not address the segmentation of individual muscles or bones and did not investigate the impact of practically
important factors, such as disease condition or numbers of training data on the segmentation accuracy'>**. In
our experiments, we attempted to use the entropy of single samples and observed slightly improved correlations
with the segmentation accuracy. However, the segmentation accuracy has decreased. Indeed, larger numbers of
10 samples seem to improve the overall accuracy (See Table 9). Compared with the ensemble approach™®, the
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Fig. 8. Ground-truth (GT) and predicted (Auto) segmentations of the unaffected (Un.) and affected (Aff.)
sides of a representative hip OA case (median DC in Fig. 4) with diagnostic biomarkers, histograms, and
muscle density visualizations of the gluteus maximus (GMAX) and gluteus medius (GMED) muscles.

No. training cases | DC1 ASD [mm]|

10 0.931+0.034 | 0.699+0.533
})(»x(» }*

20 0.941+0.019 | 0.549+0.209
})('* })('

30 0.945+0.014 | 0.504+0.174
}ns }n.s

40 0.947+0.013 | 0.488+0.162

Table 8. Impact of the number of training cases on the segmentation accuracy of the 6-layers model. DC: Dice
coeflicient, ASD: Average symmetric surface distance, n.s.: not significant, *: p <0.05, **: p<0.01.

No. dropout samples | DCt ASD [mm]|
1 0.941+0.014 | 0.548+0.210
5 0.946+0.013 | 0.526+0.189
10 0.947+0.013 | 0.524+0.185
15 0.947+0.013 | 0.525+0.186
20 0.947+0.013 | 0.521+0.183
50 0.947+0.013 | 0.524+0.185

Table 9. Impact of the number of dropout samples on the segmentation accuracy.

MCDS approach showed a good balance between the segmentation accuracy, computation time, and accuracy
of the predictive uncertainty.

Compared with the baseline model’, this study showed a potential improvement when increasing the depth
of the segmentation model and the number of training data. Increasing the training data to larger than 20 cases
improved overall, as shown in Fig. 4. Other studies have also investigated the segmentation of thigh muscles
from CT images*®~>". However, the number of cases was smaller, making the comparison invalid. Recently, Kim
et al. attempted a 3D UNETR? for the segmentation of the full thigh muscles??. The model was trained on a
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pl
Group Structure | Entropy | MCDS (variance)
GMAX -0.81 -0.77
GMED -0.73 -0.72
GMIN -0.67 -0.46
ILI -0.56 -0.59
Hip muscles | OE -0.33 0.07
Ol -0.50 -0.39
PE -0.80 -0.78
PI -0.90 -0.86
PSOAS -0.91 -0.79
AD -0.80 -0.83
BF -0.92 -0.96
GRAC -0.80 -0.78
RF -0.89 -0.95
Thigh muscles SART 072 078
SM -0.87 -0.90
ST -0.76 -0.92
TFL -0.57 -0.55
VLVI -0.73 -0.77
VM -0.87 -0.81
PELVIS -0.55 -0.39
Bones FEMUR -0.62 -0.61
SACRUM | -0.34 -0.68
Mean -0.71 -0.69

Table 10. Comparison between predictive uncertainty and segmentation accuracy (Dice coefficient) using
Monte Carlo Dropout Sampling (MCDS, 10 dropout samples) and entropy. p: Pearson correlation coefficient.

larger dataset (60 cases) and tested on 12 cases; however, the dataset included only patients with hip fractures,
and it showed lower accuracy (DC=0.84; ASSD=1.419+0.91 mm). These comparisons collectively emphasize
the higher accuracy of the improved model and the uniqueness of our fully annotated database (DB#1) and
validation of external databases (DB#2-4) regarding the number of cases and the diversity of disease, patient
positioning, and imaging conditions.

The assessment of the volume and intensity of the muscles and bones are among the ultimate goals of
automated MSK image segmentation. In particular, the mean HU measured at abdominal muscles has shown
a higher potential to predict age-related adverse outcomes compared with the muscle area’. To our knowledge,
this is the first study to investigate the accuracy of these measurements in automatically segmented hip and thigh
MSK structures in CT images. High accuracy of the volumes and mean HU of most muscles and bones in HOA
patients was obtained. Furthermore, the validation experiment on the four databases showed the robustness of
the improved model in the segmentation of the GMED muscle with respect to the multi-manufacturer/scanners
and disease variations. These findings indicate the potential usability of the segmentation model for hip-to-knee
MSK assessments in clinical routines. The rapid inference time (~3 min) of the entire CT volume adds to the
model’s practicality for adoption in surgical planning or musculoskeletal simulation platforms. Furthermore, the
muscle-wise density visualization depicted in Fig. 7 would help in the rapid and comprehensive assessment of
muscle quality under several conditions, such as hip OA, cancer, sarcopenia, and obesity?’.

On the other hand, MSK segmentation approaches in magnetic resonance images (MRIs) are attracting
attention due to patient safety and high soft tissue contrast®*2, and the possibility of quantifying the muscle/
fat composition using special sequences, such as Dixon>?. However, MRIs usually require a long scanning time,
represent various characteristics based on the acquisition sequence, and cover limited fields of view (FOVs).
This necessitates integrating multiple acquisitions and registration processing to assess the whole knee-to-hip2,
which could be limited to a few research-purposed databases?.

This study has the following limitations. The 2D segmentation model, even though it has a rapid inference
time, does not capture the 3D information of neighboring structures, which affects the segmentation of small
structures, such as the PI muscle. State-of-the-art 3D models, such as nnUNet™ or swin UNETR®?, may
potentially improve the segmentation of the small muscles; however, those models are known for their higher
computational cost and longer inference time than their 2D counterparts®. This study did not investigate those
models because it aimed to explore the potential improvements in the baseline 2D model and its predictive
uncertainty, leveraging its fast inference time for large-scale analysis. Nevertheless, future studies should
investigate the potential of 3D models to improve the segmentation accuracy of small structures. Furthermore,
the small hip muscles (OI and OE muscles) showed low AUROC in failure detection based on the predictive
uncertainty. The usage of the auto segmentations of those muscles requires attention in unannotated databases.
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The failure detection approach and improved model (6layers,50) create a basis for several future directions
in our research. The model’s potential in analyzing the disease progression of individual bones and muscles in
large-scale databases of unannotated CTs will be investigated. Cases with segmentation failures could be detected
based on the predictive uncertainty and excluded or refined by human annotators for downstream MSK analyses.
Furthermore, the extension of the segmentation model to predict the MSK structures in other regions, such as
the abdomen and back muscles, is currently under development. Furthermore, a few muscles in the hip, such as
the quadratus femoris and Gemelli muscles, were not addressed, besides combining several muscles, such as the
adductors, into a single label due to the challenging boundary definition. These structures will be addressed in
our future work by involving higher-resolution images, such as from photon-counting CTs. This study focused
on hip OA as a target MSK pathology. As the model has shown possible dependency on the disease severity
in the large-scale analysis, we plan to further investigate its performance on other muscle pathologies, such as
muscular dystrophy'?, cachexia'%, and sarcopenia®.

Conclusions

This study validated a DL model for MSK segmentation with uncertainty estimation in clinical CT images.
The improved model (6layers,50) allowed for the automated, rapid, and accurate assessment of the volume and
density of the hip and thigh bones and muscles from clinical CT images. The study has shown an impact of
the disease severity on the model’s performance, and the usability of the predictive uncertainty as a tool for
predicting the segmentation accuracy and failure detection in individual MSK structures at unannotated CT
image databases. The high segmentation and muscle volume/density estimation accuracy, along with the high
accuracy in failure detection, exhibited the model’s reliability for the analysis of individual MSK structures in
large-scale CT databases.

Data availability
The datasets and the pre-trained models used and analyzed in the current study are available from the corre-
sponding author upon reasonable request.
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