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OPEN A study on Pufferfish privacy

algorithm based on Gaussian
mixture models

Weisan Wu

In real-world scenarios, mixture models are frequently employed to fit complex data, demonstrating
remarkable flexibility and efficacy. This paper introduces an innovative Pufferfish privacy algorithm
based on Gaussian priors, specifically designed for Gaussian mixture models. By leveraging a
sophisticated masking mechanism, the algorithm effectively safeguards data privacy. We derive the
asymptotic expressions for the Kullback-Leibler (KL) divergence and mutual information between
the original and noise-added private data, thereby providing a solid theoretical foundation for the
privacy guarantees of the algorithm. Furthermore, we conduct a detailed analysis of the algorithm’s
computational complexity, ensuring its efficiency in practical applications. This research not only
enriches the privacy protection strategies for mixture models but also offers new insights into the
secure handling of complex data.
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The concept of mixture models originated in statistics, with its earliest application tracing back to Karl Pearson’s
study of biological data in 1894!. Pearson employed a mixture of Gaussian distributions to describe a complex
biological dataset that could not be adequately modeled by a single normal distribution. The core idea behind
mixture models is the assumption that data is generated from multiple distinct statistical distributions, and the
combination of these distributions can better capture the complexity of the data.

Mixture models have seen widespread application in statistics and have gradually evolved into more
sophisticated forms. The theory behind mixture models has further developed, encompassing more complex
structures such as Bayesian mixture models and Hidden Markov Models. In recent years, mixture models have
become a key tool in machine learning and artificial intelligence, with wide applications in clustering analysis,
pattern recognition, natural language processing, anomaly detection, and more.

Using mixture models in differential privacy protection algorithms offers several advantages:

1. Flexibility and accuracy: In the processing of multimodal data, using mixture models, particularly Gaussian
Mixture Models (GMM), can effectively handle multimodal data, where the data distribution may consist of
multiple different sub-distributions. The combination of differential privacy techniques and mixture models
can accurately describe the diversity and complexity of the data while maintaining data privacy?.

2. Improved privacy protection: For example, in the effectiveness of noise addition, a common method in dif-
ferential privacy is to add noise to data or query results. The application of mixture models can make noise
addition more intelligent and targeted, thereby reducing its impact on data analysis results. For instance,
adding noise independently to each sub-distribution can effectively prevent excessive noise from interfering
with the useful information in the data’.

3. Enhanced data utility: Mixture models can maximize the retention of statistical properties of the data while
maintaining privacy. This capability allows algorithms that use differential privacy to protect privacy while
still providing highly practical and accurate analysis results*.

4. Adaptation to different data structures: Mixture models can flexibly adapt to the complex structures of data-
sets. This characteristic allows mixture models to be combined with differential privacy techniques to pro-
vide effective privacy protection in complex data scenarios without significantly compromising data utility>.

5. Reduced overfitting risk: By introducing multiple sub-distributions to model the data, mixture models can
avoid the overfitting issues that may arise from using a single model. When combined with differential pri-
vacy techniques, this approach can further reduce the risk of overfitting when dealing with sensitive data,
ensuring the robustness of the generated model or analysis results.Overall, using mixture models to address
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data privacy protection issues can maintain high accuracy and utility in data analysis while protecting data
privacy. This combination is particularly effective in handling complex, multimodal, and high-dimensional
data and provides an effective and flexible solution for protecting sensitive data.

While differential privacy is often used for its mathematical rigor, it has several limitations in practice, primarily
reflected in the following aspects:

Differential privacy mainly focuses on a single type of secret, i.e., protecting the information of individual
data points. In differential privacy, all data points are protected by the same mechanism, making it difficult to
differentiate which information needs stronger protection or to apply different protection strategies to various
types of information. When faced with complex data structures, such as multiple correlated attributes or multi-
level data distributions, the application of differential privacy can become less flexible as it relies on a global
privacy protection mechanism. differential privacy’s protection mechanism usually does not consider domain
knowledge, treating all data points equally in terms of privacy protection. This could lead to over-protection in
some cases, thus affecting the utility of the data. differential privacy is typically designed as a general privacy
protection mechanism suitable for a wide range of scenarios, which means it may not perform optimally in
certain specific scenarios.

To address these challenges, we adopt a more flexible Pufferfish privacy approach. Compared to differential
privacy, it offers the following advantages:

1. Flexibility and customizability: Pufferfish privacy allows users to customize protection strategies based on
specific application needs. It can specify which information is considered secret and which assumptions
should be applied to protect those secrets. This makes Pufferfish privacy capable of handling more diverse
threat models, especially in situations where multiple types of secret information need protection.

2. Handling complex data structures: Pufferfish privacy can flexibly protect specific secrets within complex data
structures without needing to homogenize the entire data structure. It can assign different protection meas-
ures to different secrets, thereby increasing the effectiveness and efficiency of protection.

3. Encoding domain knowledge: Pufferfish privacy allows domain knowledge to be encoded into the privacy
protection strategy. Users can customize protection strategies based on the characteristics of the data and the
specific application context, achieving more precise privacy protection. This capability is particularly useful
in applications where a balance between privacy protection and data utility is necessary.

4. Adaptation to specific application scenarios: Pufferfish privacy can be adjusted according to specific applica-
tion scenarios and protection needs, making it more adaptable in certain situations. For instance, in appli-
cations involving multiple data sources or multi-level data, Pufferfish privacy can offer more flexible privacy
protection.

5. Better privacy-utility trade-off: Since Pufferfish privacy can employ different protection strategies for different
secrets, it can maintain high levels of privacy protection while maximizing data utility. This allows Pufferfish
privacy to provide a better privacy-utility trade-off in some cases.In this paper, we address the challenges of
differential privacy by designing a Pufferfish privacy algorithm based on mixture models. Within the mask-
ing mechanism of the GMM, we provide a polynomial approximation algorithm to measure the distance
between the original and the noise-added data, and we prove that it satisfies Pufferfish privacy guarantees.

The structure of this paper is as follows: first, Sect. 2 presents the theory of mixture models and related privacy
concepts. Next, Sect. 3 provides the asymptotic expression for the information entropy of the mixture model
masking algorithm. Section 4 then presents the asymptotic formula for the mutual information. Finally, we
conclude with a discussion and outlook on future research directions.

Preliminaries

Finite Gaussian mixture models

Finite mixture models can achieve high accuracy when modeling complex data. Researchers can construct
mixture models with arbitrary component distributions based on the structure of the data. However, Gaussian
distributions are a focal point of research as components in mixture models due to their symmetry, rotational
invariance, and other elegant mathematical properties. Below, we present the definition of a Gaussian mixture
model.

Definition 1 © We called x is a M order Gaussian mixture models if the probability density function of x follows
that

M
p(@) = wiN (@, %), (1)
i=1

where w; is mixing weight satisfying w; > 0, Zil w; =1; pi € R? and ¥; € R**% are the mean and

covariance parameter of the i-th component, i.e. N (x|us, 3;). For conveniently, we write the parameters of i-th
component as 0; = (wj, j1i, 3;), the parameter vector as 6 = (01, -+ ,0r).
We adopt a more general notation,

D; D;
i=1 i=1
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where d is the dimension of data set, D; is the number of the components. We employ the following distance
measure to quantify the difference between two distinct mixture distributions”.

distamm (g(dv Dl)vg(dv DJ)) = min max] {|w2 - w;r(z) |v drv (N(/‘L’H E’L)a N(/'L;r(z)a Efrr(z)))} . (3)

T i€[D;

The foundations of differential privacy
Definition 2 ((€,0) — DP?) A mechanism ./ satisfied (e, §) differential privacy for some €, d > 0, if for any
neighboring data set z, 2’ i.e. only different 1 element between x and z’, for any event & C % we have

P((x) € o) < eP((z') € o)+ 6. (4)
Specially, if § = 0, we called the (¢, 0)-DP as a pure DP.

Definition 3 ((e, §)-indistinguishbale®) A mechanism ./ satisfied (¢, §)-indistinguishbale for some €, > 0, if
for any neighboring data set z, =’

P(A(x) € &) < eP(M(x') € )+, (5)
and

P(A(z') € ) < eP(M (7) € &) + 0. (6)

Definition 4 (e-MIDP?®) A mechanism ./ satisfied e-Mutual information differential privacy (MIDP), if
sup L (g(@) (@) | w(@)) < e )

Ppe0,9e9,weW g~w

Definition 5 (Pufferfish privacy®) Fix €, > 0. A random mechanism .7 : 2 ™** — % is (e, §)-private in
the pufferfish framework (., 2, ©) iffor all f(z) € ©,(%,.7) € 2 with f(z|%), f(z|7) > 0and &/ C ¥
measurable, we have

P(A(x)e o |R) <eP(Mx)ed|T)+0. (8)

Definition 6 (Rényi Pufferfish privacy, RPP?). Let & > 1 and € > 0. A random mechanism .# is said to be
(a, €)-Rényi Pufferfish private in a framework (., 2, ©) if for all Z, 7 € ©, we have

Do (P(A(X)|%), P(#(X)|.7)) <, €)

where Do, (1, v) = =5 log Exns [( 58; )O‘} is the Renyi divergence of order a.

Pufferfish privacy algorithm
First, we apply the Nuradha’s algorithm (Algorithm 1) to perform privacy masking on each mixture component
of the original data®.

Next, we approximate the Kullback-Leibler (KL) divergence D, (P || Q) between the original data and
the two masked mixture models P(z) = EiD:il wi N (z|pi, 2:), and Q(x) = EiD:il W; N (2| fui, 34).

Finally, we provide an asymptotic upper bound on the mutual information between the two mixture models
using the asymptotic KL divergence.

Taylor and Legendre entropy approximations
Because of the fact

I(X5Y|X™") = E[Dxr (P || Q)] = Ep[log P] — Ep[log Q), (10)

we consider to use Taylor seriese to approximate KL divergence.
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Input: GMM given by {(wi, tti,Z;) }ic[x and parameters ny(vo), nﬁo)’n)go) >0
FOR: r=1toT

FOR: i=1toD;

1. Computing: max(O,wEt) + néf)g),g ~A4(0,1)

2. Computing: [.L © +77;l 8,8 ~N(0 Y)

1/2 ) T 1/2(’) dxd . PO
3. Computing: £,"" "(I; + nZ G) (Ia+1n5’G)"'E;’" ", where G € R**“ be a matrix with independent N (0, 1)
entries. 0
t
4. Computing: {(w{", " 7 )y {«@COMP(WG( )Mo (i)s Zoi) }

5. Computing: v?)(t+1 <—W / Yiep) W

6. Return: {(% ’“,a““) >:(’“))}
ENDFOR

6. Return: {(WD),aT) £y}
ENDFOR

0]
i

Algorithm 1. Perturbed Gradient EM Algorithm

Definition 7 For a function f(x), its #n-th order Taylor polynomial at the point zo is

nopn)
Tynwo) = 3 L0 o gy, (v

n!
i=0

where f(™) (o) is the n-th derivative of fat the point z.
Huber et al. use Taylor series expansion to get approximation of GMM differential entropy' as

m

A ()
==Y wiy, — EenNeluzo [(@ = pa) "]
=1 n=0

We now provide the Taylor series expansion for the expectation of the logarithmic function.

Lemma3.1 LetP(z) = Z? L wiN (x| i, X4),andletmasked datadistributionasQ(z) = ZZD LW N(z|fii, 3

are different two Gaussian mixture models, then the k-th order moment of P(x) can be write as follows.

er@l= Y (55 )Z o) H(wt OB, (2)

Ji+-+ip; =k

where ¥ = (Z b T4 Zt T _1)_1 and p=3% (Zf):il E;lui + ZtD:il tht_lut> . The k-th order
moment of Q(x) can be write as follows:

DJ

D,
(0|, .
ErlQ()] = Z ( .717...,.7D )Zﬁ] (|)llli,u7 (weN Olpae, )", (13)
=1 1

Ji++ip, =k t=

where ¥ = (Z Z +Zt ) JT )71 and,u:Z(ZiD:il fl;lﬂi—l—zgljtf]t_lﬂt).

Dahlke and Pacheco respectively obtamed the Taylor series approximation,

N nol ™
A% (P(@) = ~losto) - 3 ST (1) oy tep P @), (14)

na™

and

A% ,(Q() = —log(a) ~ 3 N

i( ) (~a)" T EplQ)"), (15)

and the Legendre series approximation,
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N

N " (=) (n 4+ (G og(a) — k
5o (P@) = ~tog(@) - S _n+ ) Y LU RO =D (Eplp(a)']). 1o

and

N

A "L (=) (n+ NG og(a) —
Q) =~ loga) = Y (20 + 1) 3 I EDIIH LR =D (60101 L (17)

n=0 3=0
for the Gaussian mixture distributions P and Q.

Gaussian mixture models Pufferfish privacy
Next, we present the improved formula for calculating mutual information, which in turn provides the guarantees
for our privacy algorithm.

First, we present the following lemma!!, which demonstrates that the limits of the entropy expressions
obtained through two series approximations exist.

Lemma 4.1 Let P(x) :ZZD1 N(z|wi,X;), and let the masked data distribution be denoted as

Qx) = Zf):"l ;N (z|fii, 3:) are different two Gaussian mixture models. When a > 1/2 max{P(z), Q(z)},

we have

Jim B (P@) = H(P(), (18)
and
i 71.,(Q() = H(@Q()) (19

When a > max{P(z), Q(z)}, we have

Jim Hy o(P(x)) = H(P(x)), (20)
and
1\}51100 HN Q(Q(l')) = H(Q(CL‘)% (21)

Theorem 4.2 Let P(x )_Zle N(z|pi,X;), and let the masked data distribution be denoted as

Qz) = Zf) L Wi N (| f3, ;) are different two Gaussian mixture models, then we get:
I($i§y|$_i)
N n ,
(=1)" " (n+ )N + 1) log(a) — 1)

—1)tI n O,
_Z(2n+1)z( D" (n+ )N + 1) log(a) — )L[O,a],n (Er[P(2)"),

(n—=G+1)!

Proof When a > 1/2max{P(x),Q(z)}, we have
I(zi;yla™") = E[DkL (P || Q)]
= Ep[log P] — Epflog Q]
13.a(P(x)) — Hy o(Q())

CUS (3 ) corteriawt - 3 C

k=0 n=1 k=0

Mzz

-

n=

Furthermore, when a > 1/2 max{P(z), @(z)}, we have
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g

I(zi;yle™") = E[Dkr (P Q)]
= Ep[log P] — Ep[log Q]
= HE o(P(2)) — H% .(Q(z))

n

al )" (n+ HYG og(a) — k
= 3+ 3 0 S R b (Er1000))

n

N n+j : ; —
_ 2(271 +1) Z (=" (n 4+ HU( + 1) log(a) 1)L[0,a],n ([EP[P(CE)k]) .

2 (= G+ )P

In summary, we derive the Pufferfish privacy theorem for mixture models with a Gaussian prior'2.

Theorem 4.3 Fix ¢ > 0, let f : 2% — R? and consider a random mechanism Q(x) := P(z) + Za, where
Za ~ N(0,6%I4),0 > 0.If

: St Wit [y (5 (0) = 152 002 + 7 (0 (v) = 030 (0) )]
o> sup

PreP.QueT d(e?s/d —1) ’

then Mg is e-MIPPB, where 7*(§) = min{7 : P(Zg > 1) < §/2}.

Empirical testing framework for Pufferfish privacy with Gaussian mixture models
Given the inherent complexity of the proposed model, we have not conducted direct experiments within the
scope of this study. However, it is important to note that while we did not perform empirical experiments, we
have outlined several algorithmic frameworks and methodologies that could be effectively used to empirically
validate our theoretical results in the future. These frameworks provide a strong foundation for potential
empirical exploration of our model and demonstrate its applicability in practical contexts.

Potential Experimental Approaches and Algorithmic Frameworks. To provide empirical validation of the
Pufferfish privacy mechanism based on GMMs, we propose leveraging synthetic data experiments. Simulated
datasets offer a controlled environment that allows systematic evaluation of privacy guarantees and utility
trade-offs by manipulating parameters like dimensionality, number of components, and mixing weights. This
approach has been demonstrated successfully in privacy research, as highlighted by Diao et al.? in their study
on local differential privacy for GMMs.

Numerical Approximations and Computational Techniques. Apart from simulated experiments, another
promising approach involves using numerical techniques such as Monte Carlo integration or Gaussian quad-
rature to approximate key performance metrics, including privacy loss (¢) and utility metrics. Nuradha and
Goldfeld® have employed similar techniques in their information-theoretic analysis of Pufferfish privacy, pro-
viding a computational means to validate privacy mechanisms without needing a direct experiment. This nu-
merical framework could be adapted to assess the privacy guarantees and utility trade-offs in our algorithm,
providing empirical support for our theoretical results.

Cross-Validation and Comparative Benchmarking. To further strengthen empirical support, we can employ
cross-validation and benchmarking against other privacy-preserving algorithms, such as Gaussian differen-
tial privacy’. Such benchmarking would help illustrate the privacy-utility trade-offs offered by our Puffer-
fish privacy mechanism relative to well-established differential privacy techniques. The comparative analysis
would be valuable for establishing the practical efficiency and relevance of our proposed method.

Case Study Evaluation. Another potential empirical approach is to apply our privacy mechanism within do-
main-specific contexts, such as healthcare or finance, where privacy is critical. Kamath et al.* used similar
case studies to demonstrate privacy guarantees in healthcare data analysis, providing a nuanced perspective
on privacy-utility trade-offs in real-world applications. A case study could thus serve as an effective method
for validating the practical application of our privacy mechanism, specifically by testing how well it balances
privacy preservation with data utility.

Future Directions for Empirical Work. In conclusion, while experimental work has not been undertaken
in the present study due to the complexity of the model, the aforementioned frameworks illustrate feasible
approaches for future empirical validation. These methodologies lay the groundwork for validating our the-
oretical contributions and exploring their practical implications comprehensively. Future work could involve
implementing these frameworks to empirically demonstrate the effectiveness of our Pufferfish privacy mech-
anism in both synthetic and real-world data settings.
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Conclusion

In this paper, we investigated the privacy protection problem for mixture models and proposed an effective
Pufferfish privacy algorithm. By masking each component in the Gaussian mixture, we protected the privacy of
the component distributions. Furthermore, we demonstrated how to calculate the mutual information between
the distributions before and after privacy computation using two series approximations. Reducing computational
complexity is one of our future research directions, as well as ensuring alignment among components after the
masking mechanism, which remains a crucial issue.
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