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In real-world scenarios, mixture models are frequently employed to fit complex data, demonstrating 
remarkable flexibility and efficacy. This paper introduces an innovative Pufferfish privacy algorithm 
based on Gaussian priors, specifically designed for Gaussian mixture models. By leveraging a 
sophisticated masking mechanism, the algorithm effectively safeguards data privacy. We derive the 
asymptotic expressions for the Kullback–Leibler (KL) divergence and mutual information between 
the original and noise-added private data, thereby providing a solid theoretical foundation for the 
privacy guarantees of the algorithm. Furthermore, we conduct a detailed analysis of the algorithm’s 
computational complexity, ensuring its efficiency in practical applications. This research not only 
enriches the privacy protection strategies for mixture models but also offers new insights into the 
secure handling of complex data.
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The concept of mixture models originated in statistics, with its earliest application tracing back to Karl Pearson’s 
study of biological data in 18941. Pearson employed a mixture of Gaussian distributions to describe a complex 
biological dataset that could not be adequately modeled by a single normal distribution. The core idea behind 
mixture models is the assumption that data is generated from multiple distinct statistical distributions, and the 
combination of these distributions can better capture the complexity of the data.

Mixture models have seen widespread application in statistics and have gradually evolved into more 
sophisticated forms. The theory behind mixture models has further developed, encompassing more complex 
structures such as Bayesian mixture models and Hidden Markov Models. In recent years, mixture models have 
become a key tool in machine learning and artificial intelligence, with wide applications in clustering analysis, 
pattern recognition, natural language processing, anomaly detection, and more.

Using mixture models in differential privacy protection algorithms offers several advantages: 

	1.	� Flexibility and accuracy: In the processing of multimodal data, using mixture models, particularly Gaussian 
Mixture Models (GMM), can effectively handle multimodal data, where the data distribution may consist of 
multiple different sub-distributions. The combination of differential privacy techniques and mixture models 
can accurately describe the diversity and complexity of the data while maintaining data privacy2.

	2.	� Improved privacy protection: For example, in the effectiveness of noise addition, a common method in dif-
ferential privacy is to add noise to data or query results. The application of mixture models can make noise 
addition more intelligent and targeted, thereby reducing its impact on data analysis results. For instance, 
adding noise independently to each sub-distribution can effectively prevent excessive noise from interfering 
with the useful information in the data3.

	3.	� Enhanced data utility: Mixture models can maximize the retention of statistical properties of the data while 
maintaining privacy. This capability allows algorithms that use differential privacy to protect privacy while 
still providing highly practical and accurate analysis results4.

	4.	� Adaptation to different data structures: Mixture models can flexibly adapt to the complex structures of data-
sets. This characteristic allows mixture models to be combined with differential privacy techniques to pro-
vide effective privacy protection in complex data scenarios without significantly compromising data utility5.

	5.	� Reduced overfitting risk: By introducing multiple sub-distributions to model the data, mixture models can 
avoid the overfitting issues that may arise from using a single model. When combined with differential pri-
vacy techniques, this approach can further reduce the risk of overfitting when dealing with sensitive data, 
ensuring the robustness of the generated model or analysis results.Overall, using mixture models to address 
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data privacy protection issues can maintain high accuracy and utility in data analysis while protecting data 
privacy. This combination is particularly effective in handling complex, multimodal, and high-dimensional 
data and provides an effective and flexible solution for protecting sensitive data.

While differential privacy is often used for its mathematical rigor, it has several limitations in practice, primarily 
reflected in the following aspects:

Differential privacy mainly focuses on a single type of secret, i.e., protecting the information of individual 
data points. In differential privacy, all data points are protected by the same mechanism, making it difficult to 
differentiate which information needs stronger protection or to apply different protection strategies to various 
types of information. When faced with complex data structures, such as multiple correlated attributes or multi-
level data distributions, the application of differential privacy can become less flexible as it relies on a global 
privacy protection mechanism. differential privacy’s protection mechanism usually does not consider domain 
knowledge, treating all data points equally in terms of privacy protection. This could lead to over-protection in 
some cases, thus affecting the utility of the data. differential privacy is typically designed as a general privacy 
protection mechanism suitable for a wide range of scenarios, which means it may not perform optimally in 
certain specific scenarios.

To address these challenges, we adopt a more flexible Pufferfish privacy approach. Compared to differential 
privacy, it offers the following advantages: 

	1.	� Flexibility and customizability: Pufferfish privacy allows users to customize protection strategies based on 
specific application needs. It can specify which information is considered secret and which assumptions 
should be applied to protect those secrets. This makes Pufferfish privacy capable of handling more diverse 
threat models, especially in situations where multiple types of secret information need protection.

	2.	� Handling complex data structures: Pufferfish privacy can flexibly protect specific secrets within complex data 
structures without needing to homogenize the entire data structure. It can assign different protection meas-
ures to different secrets, thereby increasing the effectiveness and efficiency of protection.

	3.	� Encoding domain knowledge: Pufferfish privacy allows domain knowledge to be encoded into the privacy 
protection strategy. Users can customize protection strategies based on the characteristics of the data and the 
specific application context, achieving more precise privacy protection. This capability is particularly useful 
in applications where a balance between privacy protection and data utility is necessary.

	4.	� Adaptation to specific application scenarios: Pufferfish privacy can be adjusted according to specific applica-
tion scenarios and protection needs, making it more adaptable in certain situations. For instance, in appli-
cations involving multiple data sources or multi-level data, Pufferfish privacy can offer more flexible privacy 
protection.

	5.	� Better privacy-utility trade-off: Since Pufferfish privacy can employ different protection strategies for different 
secrets, it can maintain high levels of privacy protection while maximizing data utility. This allows Pufferfish 
privacy to provide a better privacy-utility trade-off in some cases.In this paper, we address the challenges of 
differential privacy by designing a Pufferfish privacy algorithm based on mixture models. Within the mask-
ing mechanism of the GMM, we provide a polynomial approximation algorithm to measure the distance 
between the original and the noise-added data, and we prove that it satisfies Pufferfish privacy guarantees.

The structure of this paper is as follows: first, Sect. 2 presents the theory of mixture models and related privacy 
concepts. Next, Sect. 3 provides the asymptotic expression for the information entropy of the mixture model 
masking algorithm. Section  4 then presents the asymptotic formula for the mutual information. Finally, we 
conclude with a discussion and outlook on future research directions.

Preliminaries
Finite Gaussian mixture models
Finite mixture models can achieve high accuracy when modeling complex data. Researchers can construct 
mixture models with arbitrary component distributions based on the structure of the data. However, Gaussian 
distributions are a focal point of research as components in mixture models due to their symmetry, rotational 
invariance, and other elegant mathematical properties. Below, we present the definition of a Gaussian mixture 
model.

Definition 1  6 We called x is a M order Gaussian mixture models if the probability density function of x follows 
that

	
p(x) =

M∑
i=1

wiN(x|µi, Σi),� (1)

where wi is mixing weight satisfying wi ≥ 0,
∑M

i=1 wi = 1; µi ∈ Rd and Σi ∈ Rd×d are the mean and 
covariance parameter of the i-th component, i.e. N(x|µi, Σi). For conveniently, we write the parameters of i-th 
component as θi = (wi, µi, Σi), the parameter vector as θ = (θ1, · · · , θM ).
We adopt a more general notation,

	
G (d, Di) :=

{
Di∑
i=1

wiN(x|µi, Σi), wi ≥ 0,

Di∑
i=1

wi = 1

}
.� (2)
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where d is the dimension of data set, Di is the number of the components. We employ the following distance 
measure to quantify the difference between two distinct mixture distributions7.

	
distGMM (G (d, Di), G (d, Dj)) = min

π
max

i∈[Di]

{
|wi − w′

π(i)|, dTV
(
N(µi, Σi), N(µ′

π(i), Σ′
π(i))

)}
.� (3)

The foundations of differential privacy
Definition 2  ((ϵ, δ) − DP 8) A mechanism M  satisfied (ϵ, δ) differential privacy for some ϵ, δ > 0, if for any 
neighboring data set x, x′ i.e. only different 1 element between x and x′, for any event A ⊂ Y  we have

	 P(M (x) ∈ A ) ≤ eϵP(M (x′) ∈ A ) + δ.� (4)

Specially, if δ = 0, we called the (ϵ, 0)-DP as a pure DP.

Definition 3  ((ϵ, δ)-indistinguishbale8) A mechanism M  satisfied (ϵ, δ)-indistinguishbale for some ϵ, δ > 0, if 
for any neighboring data set x, x′

	 P(M (x) ∈ A ) ≤ eϵP(M (x′) ∈ A ) + δ,� (5)

and

	 P(M (x′) ∈ A ) ≤ eϵP(M (x) ∈ A ) + δ.� (6)

Definition 4  (ϵ-MIDP8) A mechanism M  satisfied ϵ-Mutual information differential privacy (MIDP), if

	
sup

Px∈Θ,g∈G ,w∈W :g∼w

I (g(x); M (x) | w(x)) ≤ ϵ.� (7)

Definition 5  (Pufferfish privacy8) Fix ϵ, δ > 0. A random mechanism M : X n×k → Y  is (ϵ, δ)-private in 
the pufferfish framework (S , Q, Θ) if for all f(x) ∈ Θ, (R, T ) ∈ Q with f(x|R), f(x|T ) > 0 and A ⊂ Y  
measurable, we have

	 P(M (x) ∈ A | R) ≤ eϵP(M (x) ∈ A | T ) + δ.� (8)

Definition 6  (Rényi Pufferfish privacy, RPP9). Let α > 1 and ϵ ≥ 0. A random mechanism M  is said to be 
(α, ϵ)-Rényi Pufferfish private in a framework (S , Q, Θ) if for all R, T ∈ Θ, we have

	 Dα (P (M (X)|R), P (M (X)|T )) ≤ ϵ,� (9)

where Dα (µ, ν) = 1
α−1 log Ex∼ν

[
( µ(x)

ν(x) )α
]

 is the Renyi divergence of order α.

Pufferfish privacy algorithm
First, we apply the Nuradha’s algorithm (Algorithm 1) to perform privacy masking on each mixture component 
of the original data8.

Next, we approximate the Kullback–Leibler (KL) divergence DKL (P ∥ Q) between the original data and 
the two masked mixture models P (x) =

∑Di

i=1 wiN(x|µi, Σi), and Q(x) =
∑Di

i=1 ŵiN(x|µ̂i, Σ̂i).
Finally, we provide an asymptotic upper bound on the mutual information between the two mixture models 

using the asymptotic KL divergence.

Taylor and Legendre entropy approximations
Because of the fact

	 I(Xi; Y |X−i) = E [DKL (P ∥ Q)] = EP [log P ] − EP [log Q],� (10)

we consider to use Taylor seriese to approximate KL divergence. 
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Algorithm 1.  Perturbed Gradient EM Algorithm

Definition  7  For a function f(x), its n-th order Taylor polynomial at the point x0 is

	
Tf,n(x0) =

n∑
i=0

f (n)(x0)
n! (x − x0)n,� (11)

where f (n)(x0) is the n-th derivative of f at the point x0.
Huber et al. use Taylor series expansion to get approximation of GMM differential entropy10 as

	
H(p(x)) = −

m∑
i=1

wi

∞∑
n=0

h(n)(µi)
n! Ex∼N(x|µi,Σi) [(x − µi)n] .

We now provide the Taylor series expansion for the expectation of the logarithmic function.

Lemma  3.1  Let P (x) =
∑Di

i=1 wiN(x|µi, Σi), and let masked data distribution as Q(x) =
∑Di

i=1 ŵiN(x|µ̂i, Σ̂i) 
are different two Gaussian mixture models, then the k-th order moment of P(x) can be write as follows:

	

EP [P (x)k] =
∑

j1+···+jDi
=k

(
k

j1, . . . , jDi

) Di∑
i=1

wi
N(0|µi, Σi)
N(0|µ, Σ)

Di∏
t=1

(wtN(0|µt, Σt))jt ,� (12)

where Σ =
(∑Di

i=1 Σ−1
i +

∑Di

t=1
1
jt

Σ−1
t

)−1
 and µ = Σ

(∑Di

i=1 Σ−1
i µi +

∑Di

t=1 jtΣ−1
t µt

)
. The k-th order 

moment of Q(x) can be write as follows:

	

EP [Q(x)k] =
∑

j1+···+jDi
=k

(
k

j1, . . . , jDi

) Di∑
i=1

ŵi
N(0|µ̂i, Σ̂i)
N(0|µ, Σ)

Dj∏
t=1

(wtN(0|µt, Σt))lt ,� (13)

where Σ =
(∑Di

i=1 Σ̂−1
i +

∑Di

t=1
1
jt

Σ̂−1
t

)−1
 and µ = Σ

(∑Di

i=1 Σ̂−1
i µ̂i +

∑Di

t=1 jtΣ̂−1
t µ̂t

)
.

Dahlke and Pacheco11 respectively obtained the Taylor series approximation,

	
ĤT

N,a(P (x)) = − log(a) −
N∑

n=1

(−1)n−1

nan

n∑
k=0

(
n
k

)
(−a)n−kEP [P (x)k],� (14)

and

	
ĤT

N,a(Q(x)) = − log(a) −
N∑

n=1

(−1)n−1

nan

n∑
k=0

(
n
k

)
(−a)n−kEP [Q(x)k],� (15)

and the Legendre series approximation,
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ĤL

N,a(P (x)) = − log(a) −
N∑

n=0

(2n + 1)
n∑

j=0

(−1)n+j(n + j)!((j + 1) log(a) − 1)
(n − j)!(j + 1)!2 L[0,a],n

(
EP [P (x)k]

)
,� (16)

and

	
ĤL

N,a(Q(x)) = − log(a) −
N∑

n=0

(2n + 1)
n∑

j=0

(−1)n+j(n + j)!((j + 1) log(a) − 1)
(n − j)!(j + 1)!2 L[0,a],n

(
EP [Q(x)k]

)
,� (17)

for the Gaussian mixture distributions P and  Q.

Gaussian mixture models Pufferfish privacy
Next, we present the improved formula for calculating mutual information, which in turn provides the guarantees 
for our privacy algorithm.

First, we present the following lemma11, which demonstrates that the limits of the entropy expressions 
obtained through two series approximations exist.

Lemma 4.1  Let P (x) =
∑Di

i=1 wiN(x|µi, Σi), and let the masked data distribution be denoted as 
Q(x) =

∑Di

i=1 ŵiN(x|µ̂i, Σ̂i) are different two Gaussian mixture models. When a > 1/2 max{P (x), Q(x)}, 
we have

	
lim

N→∞
ĤT

N,a(P (x)) = H(P (x)),� (18)

and

	
lim

N→∞
ĤT

N,a(Q(x)) = H(Q(x)).� (19)

When a > max{P (x), Q(x)}, we have

	
lim

N→∞
ĤL

N,a(P (x)) = H(P (x)),� (20)

and

	
lim

N→∞
ĤL

N,a(Q(x)) = H(Q(x)),� (21)

Theorem 4.2  Let P (x) =
∑Di

i=1 wiN(x|µi, Σi), and let the masked data distribution be denoted as 
Q(x) =

∑Di

i=1 ŵiN(x|µ̂i, Σ̂i) are different two Gaussian mixture models, then we get:

	

I(xi; y|x−i)

=
N∑

n=0

(2n + 1)
n∑

j=0

(−1)n+j(n + j)!((j + 1) log(a) − 1)
(n − j)!(j + 1)!2 L[0,a],n

(
EP [Q(x)k]

)

−
N∑

n=0

(2n + 1)
n∑

j=0

(−1)n+j(n + j)!((j + 1) log(a) − 1)
(n − j)!(j + 1)!2 L[0,a],n

(
EP [P (x)k]

)
,

Proof  When a > 1/2 max{P (x), Q(x)}, we have

	

I(xi; y|x−i) = E [DKL (P ∥ Q)]
= EP [log P ] − EP [log Q]
= ĤT

N,a(P (x)) − ĤT
N,a(Q(x))

=
N∑

n=1

(−1)n−1

nan

n∑
k=0

(
n
k

)
(−a)n−kEP [Q(x)k] −

N∑
n=1

(−1)n−1

nan

n∑
k=0

(
n
k

)
(−a)n−kEP [P (x)k],

Furthermore, when a > 1/2 max{P (x), Q(x)}, we have
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I(xi; y|x−i) = E [DKL (P ∥ Q)]
= EP [log P ] − EP [log Q]
= ĤL

N,a(P (x)) − ĤL
N,a(Q(x))

=
N∑

n=0

(2n + 1)
n∑

j=0

(−1)n+j(n + j)!((j + 1) log(a) − 1)
(n − j)!(j + 1)!2 L[0,a],n

(
EP [Q(x)k]

)

−
N∑

n=0

(2n + 1)
n∑

j=0

(−1)n+j(n + j)!((j + 1) log(a) − 1)
(n − j)!(j + 1)!2 L[0,a],n

(
EP [P (x)k]

)
.

□

In summary, we derive the Pufferfish privacy theorem for mixture models with a Gaussian prior12.

Theorem 4.3  Fix ϵ > 0, let f : X n×k → Rd and consider a random mechanism Q(x) := P (x) + ZG, where 
ZG ∼ N(0, σ2Id), σ > 0. If

	
σ2 ≥ sup

Px∈P,Qx∈T

∑
m,l

w∗
m,l

[∑d

v=1(|µi,m(v) − µj,l(v)2| + τ∗(δ)2|σi,m(v) − σj,l(v)|2)
]

d(e2ϵ/d − 1)
,

then MG is ϵ-MIPP, where τ∗(δ) = min{τ : P (ZG > τ) ≤ δ/2}.

Empirical testing framework for Pufferfish privacy with Gaussian mixture models
Given the inherent complexity of the proposed model, we have not conducted direct experiments within the 
scope of this study. However, it is important to note that while we did not perform empirical experiments, we 
have outlined several algorithmic frameworks and methodologies that could be effectively used to empirically 
validate our theoretical results in the future. These frameworks provide a strong foundation for potential 
empirical exploration of our model and demonstrate its applicability in practical contexts.

•	 Potential Experimental Approaches and Algorithmic Frameworks. To provide empirical validation of the 
Pufferfish privacy mechanism based on GMMs, we propose leveraging synthetic data experiments. Simulated 
datasets offer a controlled environment that allows systematic evaluation of privacy guarantees and utility 
trade-offs by manipulating parameters like dimensionality, number of components, and mixing weights. This 
approach has been demonstrated successfully in privacy research, as highlighted by Diao et al.3 in their study 
on local differential privacy for GMMs.

•	 Numerical Approximations and Computational Techniques. Apart from simulated experiments, another 
promising approach involves using numerical techniques such as Monte Carlo integration or Gaussian quad-
rature to approximate key performance metrics, including privacy loss (ϵ) and utility metrics. Nuradha and 
Goldfeld8 have employed similar techniques in their information-theoretic analysis of Pufferfish privacy, pro-
viding a computational means to validate privacy mechanisms without needing a direct experiment. This nu-
merical framework could be adapted to assess the privacy guarantees and utility trade-offs in our algorithm, 
providing empirical support for our theoretical results.

•	 Cross-Validation and Comparative Benchmarking. To further strengthen empirical support, we can employ 
cross-validation and benchmarking against other privacy-preserving algorithms, such as Gaussian differen-
tial privacy5. Such benchmarking would help illustrate the privacy-utility trade-offs offered by our Puffer-
fish privacy mechanism relative to well-established differential privacy techniques. The comparative analysis 
would be valuable for establishing the practical efficiency and relevance of our proposed method.

•	 Case Study Evaluation. Another potential empirical approach is to apply our privacy mechanism within do-
main-specific contexts, such as healthcare or finance, where privacy is critical. Kamath et al.4 used similar 
case studies to demonstrate privacy guarantees in healthcare data analysis, providing a nuanced perspective 
on privacy-utility trade-offs in real-world applications. A case study could thus serve as an effective method 
for validating the practical application of our privacy mechanism, specifically by testing how well it balances 
privacy preservation with data utility.

•	 Future Directions for Empirical Work. In conclusion, while experimental work has not been undertaken 
in the present study due to the complexity of the model, the aforementioned frameworks illustrate feasible 
approaches for future empirical validation. These methodologies lay the groundwork for validating our the-
oretical contributions and exploring their practical implications comprehensively. Future work could involve 
implementing these frameworks to empirically demonstrate the effectiveness of our Pufferfish privacy mech-
anism in both synthetic and real-world data settings.
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Conclusion
In this paper, we investigated the privacy protection problem for mixture models and proposed an effective 
Pufferfish privacy algorithm. By masking each component in the Gaussian mixture, we protected the privacy of 
the component distributions. Furthermore, we demonstrated how to calculate the mutual information between 
the distributions before and after privacy computation using two series approximations. Reducing computational 
complexity is one of our future research directions, as well as ensuring alignment among components after the 
masking mechanism, which remains a crucial issue.
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