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Energy hubs, with their diverse regeneration and storage sources, can engage concurrently in energy 
transfer and storage. It is anticipated that managing the energy of these hubs within energy networks 
could enhance economic, environmental, and technical metrics. This article explains how electrical and 
thermal network hubs manage their energy consumption in the context of the multi-criteria objectives 
of efficiency, sustainability, reliability of the network operator, and operation. The hubs have solar 
power, a bio-waste unit, and wind turbines among other sustainable energy sources. They have 
compressed air, heat, and hydrogen storage units installed. Thermal energy is produced by means of a 
heat pump from electrical energy. Combining heat and power technology is used by both the bio-waste 
unit and the hydrogen storage unit. Subject to the operating model and reliability restrictions of these 
networks, the suggested strategy seeks to reduce the overall estimated costs of energy procurement, 
dependability, and emissions within the designated networks. Additional constraints of the problem 
encompass the operational model of sources and storages, conceptualized as an energy hub. This plan 
takes into account uncertainties about demand, energy costs, renewable energy sources, and the 
availability of network equipment. Reliability is accurately predicted by scenario-based techniques 
to stochastic optimization. The simultaneous modeling of economic, operational, reliability, and 
environmental indicators as well as the evaluation of the capabilities of heat pumps, biowaste units, 
compressed air and hydrogen storage units, and heat pumps in the hub performance are seen to be the 
new aspects of this approach. In summary, numerical results validate the usefulness of the proposed 
approach in enhancing the technical and financial aspects of thermal and electrical networks via 
efficient hub energy management. The incorporation of renewable hubs, equipped with storage units 
and heat pumps, has led to improvements in the economic, operational, reliability, and environmental 
conditions by approximately 44.1%, 28–90%, 85.6%, and 72.1% respectively, in comparison to load 
distribution studies.
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List of symbols
Variables
Cost	� Expected cost of operation, reliability, and emissions ($)
EEM	� Expected total emissions of energy networks ($)
EEC	� Expected total cost of emissions of energy networks ($)
EENS	� Expected energy not supplied in energy networks (MWh)
EOC	� Expected operating cost of energy networks ($)
ERC	� Expected reliability cost of energy networks ($)
HB, HHP, HF	� Thermal power of bio-waste unit (BU), heat pump (HP), and fuel cell (FC) in MW
HCH, HDIS	� Thermal power of thermal energy storage (TES) in charge and discharge mode (MW)
PB, PV, PW	� Active power of BU, photovoltaic (PV), and wind turbine (WT) in MW
PE, PF	� Active power of electrolyzer (EL) and FC in hydrogen storage (HS) in MW
PEH, HEH	� Active and thermal power of energy hub (EH) in MW
PHP	� Active power of HP in MW
PL, QL, HL	� Active (MW) and reactive (MVAr) power passing through the electric distribution line, and 

thermal power (MW) passing through the heat pipe
PM, PG	� Active power of motor and generator in compressed air energy storage (CAES) in MW
PN, HN	� Not supplied active load and Not supplied thermal load (MW)
PS, QS, HS	� Active (MW) and reactive (MVAr) power passing through the electric distribution post, and 

thermal power (MW) passing through the heat post
T	� Temperature (p.u.)
V, φ	� Voltage range (p.u.) and voltage angle (radian)
Parameters
AE	� Intersection matrix of bus and electric distribution line
AH	� Intersection matrix of node and heat pipe
BL, GL	� Susceptance and conductance of electric distribution line (p.u.)
CE	� Intersection matrix of EH and electric bus
CH	� Intersection matrix of EH and heat node
CL	� Thermal constant of the heat pipe (p.u.)
ECAT , ECAT , ÊCAT  	� Minimum and maximum energy stored in compressed air tank (CAT) and its 

initial energy (MWh)
EHT , EHT , ÊHT  	� Minimum and maximum energy stored in hydrogen tank (HT) and its initial ener-

gy (MWh)
ET ES , ET ES , ÊT ES  	� Minimum and maximum energy stored in TES and its initial energy (MWh)
HCH , HDIS  	� Charge/discharge rate in TES (MW)
HL, HS  	� Maximum thermal power passing through the heat pipe and heat post (MW)
HHP  	� Maximum thermal power produced by HP (MW)
nB, ηB, GB	� Number of BUs, efficiency, and gas (m3) produced by BU
nV, AV, ηV, IV	� Number of PVs, area (m2), efficiency, and solar radiation (kW/m2) of PV
nCA, nHS, nT, nHP	� Number of CAESs, HS, TES, and HP
nW	� Number of WTs
P  	� Capacity of WT (MW)
PD, QD, HD	� Active (MW), reactive (MVAr), and thermal (MW) load
P E , P F  	� EL and FC capacity in HS (MW)
P M , P G 	� Motor and generator capacity in CAES (MW)
SL, SS  	� Maximum apparent power passing through electric distribution line and post 

(MVA)
Tmin, Tmax	� Minimum and maximum permissible temperature (p.u.)
uEL, uES	� Accessibility of electric distribution line and post
uHL, uHS	� Accessibility of heat pipe and post
v, vr, vc-in, vc-out	� Wind speed, nominal value, cut-in, and cut-out (m/s)
Vmin, Vmax	� Minimum and maximum permissible voltage range (p.u.)
VOEP	� Pollution penalty price ($/ton)
VOLL	� Value of lost load ($/MWh)
Vref, Tref	� Voltage and temperature range in slack bus (p.u.)
γ	� Probability of scenario occurrence
ηCH, ηDIS	� Charge and discharge efficiency in TES
ηE, ηF	� EL and FC efficiency in HS
ηH	� Thermal efficiency in combined heat and power (CHP)
ηHP	� HP efficiency
ηM, ηG	� Motor and generator efficiency in CAES
λE, λH	� Electric and thermal energy price ($/MWh)
ρCH4, LHVCH4	� Methane percentage in BU gas and low heat value for methane gas (kW/m3)
ρE, ρH	� Pollution coefficient for supplying electric and thermal energy from centralized 

energy production units (ton/MW)
Indices
b, n	� Bus in the electric network, a node in the heat network
i	� EH
j	� Auxiliary index corresponding to bus or node
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t, w	� Operating hour, scenario

Motivation
One strategy being looked at to cut emissions is the integration of renewable energy sources (RESs) into power 
systems and energy networks1. These sources encompass wind turbines (WTs) and photovoltaics (PVs), which 
harness wind speed and solar radiation respectively to generate electricity1. The bio-waste unit is an additional 
kind of RES (BU). This device produces methane gas from environmental trash, which is then transformed into 
electrical energy2. Moreover, this kind of unit may generate thermal energy in addition to electrical energy if it is 
outfitted with combined heat and power (CHP) technology. Since renewable phenomena are by their very nature 
unpredictable, producing renewable electricity is also unpredictable. Consequently, there could be differences 
between the results of operations in real time and those obtained from data on projected renewable power. 
In real-time operation, this might result in an imbalance between output and consumption3. Energy storage 
systems may adjust both their active and thermal power to make up for changes in renewable power3. Despite the 
fact that there are many different types of storage units, batteries are extensively employed in most applications 
due to their superior efficiency. However, these storage units have drawbacks, including capacity limitations, 
a relatively short lifespan, and high installation costs. Compressed air energy storage (CAES) and hydrogen 
storage (HS) are two further forms of energy storage. These storage units have an average 75% efficiency, are 
long-lasting, and are not limited by size4,5. Furthermore, HS could have CHP technology installed, enabling it to 
generate thermal energy in addition to electrical energy storage. Every one of the above mentioned capabilities 
is dependent upon the choice of energy management system (EMS)5. In the initial phase of implementing 
an EMS, diverse sources and storage units can be organized in a coordinated manner, akin to an energy hub 
(EH), to enhance their efficiency. In this setup, the hub operator can manage the energy of these elements in 
accordance with its objectives and those of the network operator, by establishing bidirectional coordination with 
the sources and storage units. This implies that the hub operator maintains communication with various energy 
network operators. Thus, the hub operator can orchestrate optimal energy management for sources and storage, 
aligning with its requirements as well as those of the network operator6. It is predicted that the establishment 
of an appropriate EMS in energy networks, in conjunction with EHs, could constitute a beneficial and effective 
measure towards enhancing the economic, environmental, and technical conditions of these networks.

Today, energy production is highly dependent on fossil fuels. Fossil fuels, in addition to causing environmental 
pollution, will run out in the coming years. This can cause social concerns. To solve this problem, organizations 
operating in the energy sector suggest using renewable resources. However, to access sustainable energy from 
these resources, it is necessary to use storage devices in addition to the aforementioned resources. In addition, 
the energy consumed has various types, such as electrical and thermal energy. Some renewable resources are 
able to produce several types of energy in their output, which increases the efficiency of the resource. Therefore, 
access to sustainable energy based on renewable resources will be of great importance in many countries in the 
coming years. This is in line with the promotion of social welfare in relation to energy supply in the coming years. 
Hence, the academic field should provide appropriate solutions for providing sustainable renewable energy. 
According to7,8, a suitable solution in relation to the stated issue and the implementation of a high-performance 
EMS is the aggregation of resources and storage devices. In addition, EHs have high energy efficiency because 
they manage several different types of energy. For example, in an EH, if a BU is the only supplier of electrical 
energy, this source operates with an efficiency of about 40%. However, if it is equipped with CHP, the efficiency of 
the source increases to about 80%2. In addition, the aggregation of resources and storage devices, for example in 
the form of an EH, can lead to a reduction in the fluctuations of the output power of the hub. Because the storage 
device is able to compensate for the fluctuations of the power of renewable resources by controlling its power7. 
In7,8, the operation of resources and storage devices separately is compared with their operation in the form of 
an integrated system such as a hub. Based on the results of7,8, the integrated model of resources and storage has 
better capabilities in improving the economic and technical status of energy hubs and networks.

Research background
The functioning of EHs in energy networks has been the subject of many published research studies. The 
hydrogen vehicle (HV) parking lot, electric heat pump (HP), absorption chiller (AC), photovoltaic (PV) module, 
boiler, hydrogen electrolyzer, and electric, thermal, cooling, and hydrogen storage systems are all included in 
the unit commitment (UC) in EHs created in9. Here, the natural gas, electricity, and heat inputs of the EH are 
used to fulfill the demands for hydrogen as well as natural gas, heat, cooling, and power. EHs connected to 
demand response aggregators are scheduled a day in advance using the method described in10. Photovoltaic 
and wind, biomass, hydrogen electrolyzers (ELs), combined heat and power (CHP) units, solar heaters, boilers, 
and electric, thermal, and hydrogen storage systems are some of the renewable energy sources that are being 
researched. EH has the option to purchase electricity from demand response aggregators in addition to the 
gas network and the electric grid. Information gap decision theory (IGDT) is utilized as a risk-aware method 
to manage the uncertainties related to solar heat, electricity price, photovoltaic and wind power, and electric, 
thermal, and hydrogen demands. Reference11 discusses the optimal load dispatch form for an EH in order 
to minimize the hub’s total costs, which include costs for CO2 emissions and exploitation. Electric vehicles 
(EVs), gas boiler, PV arrays, heat storage, CHP unit, and WT are all part of this energy center. A developed 
technique based on grasshopper search is implemented to cope with future uncertainties in electricity pricing. 
EV uncertainty is addressed using Monte Carlo simulation (MCS). Furthermore, the suggested model takes into 
account the thermal and electric demand response (DR) techniques in their whole. In12, the robust optimization 
approach has been used to address the uncertainty related to the price of power and the dispersed resources of 
renewable energy. The MCS has been used to discriminate between the integrated charging load of EVs under 
coordinated and uncoordinated charging modes. A unique Monte-Carlo-based modeling and computational 
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framework for simulating Smart Hub activities is presented in Ref.13, offering a way to thoroughly evaluate the 
technical and financial feasibility of these activities. The approach takes into consideration driver choice, price 
inflation, power losses, PV module deterioration, variance in EV adoption, and variability in EVs and charging 
stations using a mathematical model that is both simple and realistic. For the operation of energy hubs in 
conjunction with day-ahead and real-time electricity markets, a two-stage stochastic model is presented in14 that 
accounts for demand, renewable power, and real-time electricity price. The model incorporates value-at-risk, a 
risk measure, to prevent unnecessary operational expenses in the worst-case scenarios. The operational point of 
the hub components and the transactions for natural gas and electricity are determined, and a multi-objective 
optimization problem is created. A novel approach to using EH to thermally integrate a thermomechanical 
pulp mill and paper machine is presented by the authors of15. To provide the heating requirements of the paper 
machine, the thermomechanical pulp mill is coupled with an EH that comprises of an electric boiler and a steam 
generator heat pump. This study integrates load profile prediction, reliability and availability evaluation, and 
thermo-economic analysis to evaluate the sophisticated, economical design and operation of the EH. A two-
level paradigm based on demand unpredictability and RES is provided by16 for the optimal EH planning and 
operation. To illustrate optimum planning at the primary level and optimal operation at the secondary level, 
stochastic-probability models are used. Reference17 describes the energy management of thermal and electrical 
networks in the presence of renewable energy sources. This is done in order to control the networks’ flexibility via 
flexible pricing services. Renewable sources, bio-waste units, responsive loads, and energy storage are examples 
of hubs. The bio-waste unit produces electrical energy and heat at the same time. The recommended strategy 
lessens the difference between the network’s energy expenses and the hub’s flexibility income. The hub flexibility 
model, the best power flow equations, network flexibility limitations, and the energy hub operating model for 
resources, storage, and responsive loads all have an impact on it. In reference18, it is discussed how the market 
clearing price model may be used to include flexible renewable energy houses (EHs) that are outfitted with 
compressed air, thermal, hydrogen, and wind farms in addition to bio-waste units in the energy market. Hubs 
are concurrently found in thermal and electrical networks. Using integrated heat and power technologies, the 
bio-waste unit produces both thermal and electrical energy. Bi-level optimization shapes the suggested design. 
The research background’s work summary is presented in Table 1.

Research gaps
The following are the main research gaps for the energy management of EHs linked to the network, based on 
Table 1 and the study background:

•	 The bulk of studies have examined how hubs affect the operational and financial elements of energy networks. 
However, it’s important to recognize that hubs are situated at multiple consumption points within these net-
works and can contribute significantly to energy transfer and storage. It is predicted that in the event of an N 
− 1 incident, hubs could offset a substantial proportion of consumer outages, thereby playing a pivotal role in 
enhancing the network’s reliability. This particular aspect, though crucial, has been less explored in studies, 
such as the one referenced in15. Furthermore, hubs typically rely on RESs and eco-friendly components. It is 
anticipated that their integration into the network could reduce emissions caused by the energy supply from 
centralized production units like power plants. While this issue has been addressed in numerous studies, only 
a handful, such as the one cited in11, have discussed a mathematical model for assessing the impact of hubs 
on environmental conditions. This highlights a potential area for further research and exploration. Another 
noteworthy point is that, enhancing one index does not necessarily result in the improvement of another. For 
instance, bolstering reliability requires sources within the network to inject high power, which consequently 
leads to an escalation in energy losses. This emphasizes how important it is for the hubs’ energy management 
strategy to simultaneously simulate a variety of technical and environmental variables. References11,15 point 
out that research have not as often addressed this element.

Ref.

Network indices
Investigate the impacts of (.) on EH 
operation

Capability of EH on network reliabilityOperation Economic Reliability Environmental CHP-BU CHP-HS CAES HP
9 ✓ ✓ × × ✓

Only HS
× × ×

10 ✓ ✓ × × BU without CHP × × ×
11 ✓ ✓ × ✓ × × × × ×
12 ✓ ✓ × × × × × ✓ ×
13 ✓ ✓ × × × × × × ×
14 ✓ ✓ × × × × × × ×
15 ✓ × ✓ × × × × × ✓
16 ✓ ✓ × × × × × × ×
17 ✓ ✓ × × ✓ × × × ×
18 ✓ ✓ × × ✓ Only HS ✓ × ×

Presented study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.  Taxonomy of recent research works.
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•	 RESs come in various forms, including WTs, PV, and BUs. While much of the research has centered on the 
use of WT and PV, the potential of BU remains relatively unexplored. BUs, by processing environmental 
waste, can generate electrical energy. Furthermore, if they are outfitted with CHP technology, they have the 
ability to generate thermal and electrical energy simultaneously. As mentioned in references10,17,18, research 
has, however, less often evaluated their competence inside EHs. Only the BU’s capacity to generate electrical 
energy was considered in Ref.10.

•	 Predominantly, batteries have been the storage of choice in EHs in most research studies. Despite their high 
energy efficiency and power density, batteries have certain limitations such as a shorter lifespan, high in-
stallation costs, and expensive upgrades for higher capacities18. To address these issues, compressed air and 
hydrogen storages emerge as viable alternatives to batteries in hubs. These storage options can be constructed 
at a high capacity, boast a longer lifespan, and maintain a suitable energy efficiency of approximately 75%. 
Additionally, a fuel cell (FC) is used in hydrogen storage to convert hydrogen into electrical energy. This FC 
can concurrently create heat energy and electricity if combined heat and power (CHP) technology is coupled 
with it. However, as references9,10,18 demonstrate, prior research has not paid much attention to the exami-
nation of hydrogen storage deployment in hubs. These studies did not take into account the FC’s capability 
to produce thermal energy. Similarly, the use of CAES has been less commonly considered in studies, as 
indicated in reference18.

•	 Heat pump (HP) can transform electrical energy into thermal energy. This allows it to receive electrical ener-
gy from RESs and supply thermal consumers, aligning with environmental improvement efforts. In contrast, 
conventional thermal producers often rely on fossil fuels for conversion into thermal energy, which contrib-
utes to emissions. However, the potential of HP within renewable hubs has been less frequently explored in 
studies, as indicated in reference12.

Contributions
In an effort to close the research gaps indicated in the section above, this work offers an energy management 
strategy for hubs connected to thermal and electrical networks. As seen in Fig. 1, this method takes network 
operators’ operational, financial, environmental, and reliability objectives into account. The hubs under 
consideration are equipped with RESs such as wind, solar, and bio-waste. They also have hydrogen, thermal, and 
compressed air storage units. To increase energy efficiency, BU and FC are equipped with CHP. HP is utilized for 
the conversion of electrical energy into thermal energy. In essence, the hubs generate electrical energy through 
WT, PV, and BU. Thermal energy is supplied from FC, HP, and BU. In the electrical (thermal) section, hydrogen 
and compressed air (thermal) storage units are utilized. In this scheme, the objective function is designed to 
consider the multi-criteria objectives of network operators. It is equivalent to the total expected costs associated 
with the operation, environmental impact, and reliability of electrical and thermal networks. These constraints 
include equations for optimal power distribution, network reliability restrictions, and the operational model 
of RESs, storage units, and HPs, all of which are designed to function as an energy hub. The proposed scheme 
factors in uncertainties related to load, energy price, wind speed, solar radiation, gas production by the BU, and 
equipment availability within the network. In this study, Scenario-Based Stochastic Optimization (SBSO) is 
employed for the accurate modeling of reliability indices. This approach is necessary for a thorough examination 
of reliability indices, as it allows for the exploration of various scenarios of uncertainties related to network 
equipment availability, load, and renewable power14. The SBSO creates circumstances using the Roulette Wheel 
Mechanism (RWM) and reduces them using the Simultaneous Backward Method (SBM). The following is a list 
of this concept’s main advancements and contributions.

Fig. 1.  The framework for managing renewable hubs equipped with storage and HPs in energy networks.
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•	 Storage units in electrical and thermal networks are used for energy management of renewable energy sourc-
es. Enhancing these networks’ environmental, operational, economic, and reliable indicators all at once is the 
aim.

•	 Evaluating the performance of compressed air and hydrogen storage units with CHP inside EHs.
•	 Evaluation of BU, outfitted with CHP and HP, within the EH to boost energy efficiency.
•	 Simultaneous modeling of economic, operational, environmental, and reliability indices.

EHs are a unit integrating renewable and non-renewable resources, storage devices and demand response 
programs. EH has different types of energy such as electricity, gas and heat in its input and output. This issue 
is also present in the energy hub used in this article. There are electricity and heat energies in the input and 
output of the hub. In this design, only renewable resources were used, so that the hubs have low environmental 
pollution. An important feature of the hub used in this study compared to the research background9–18 is the 
supply of thermal energy from renewable sources. So that according to Fig. 1, BU, FC and HP are thermal energy 
producers. BU is a renewable source; HP supplies its input electrical energy from renewable sources. FC also 
receives hydrogen from HT at its input. Hydrogen is also obtained from renewable sources by electrolyzer. This 
feature is due to the use of CHP in HS and BU. In addition, according to Sect. 1.3, batteries were generally used 
in hubs. Although this storage device has high efficiency and power density, its useful life is short and it has high 
installation cost. The hub used in this research uses CAES and HS. These storage devices have long useful life and 
low installation cost. There is also a good efficiency for them. In addition, HS can be equipped with CHP, which 
makes HS play a role in providing thermal energy and increase its working efficiency.

There are renewable energy sources in the energy hub. The production power of these sources depends on 
natural phenomena such as wind speed and solar radiation. The amount of these phenomena is different at 
various times, so the production power of renewable resources changes according to time. Therefore, the daily 
load profile and the daily power profile of renewable resources are not the same. Storage is used to cover the 
gap between the aforementioned profiles so that it can achieve an energy production role for the hub. In this 
situation, the hub is able to improve the technical and economic status of the network by injecting power into the 
network. The storage is able to compensate for fluctuations in the power of renewable resources. This can lead to 
a balance of production and consumption in the hub. In addition, a heat pump was used in the energy hub. This 
element was used so that the hub could supply its thermal consumption energy with renewable resources. This 
will result in improving the environmental situation.

The proposed idea is feasible when the smart platform is established in the energy hubs and networks. So that, 
according to Fig. 1, the hub operator is in two-way communication with the resources and storage devices. The 
hub elements send their data to the hub operator, the hub operator obtains the optimal active and thermal power 
scheduling for the resources and storage devices. Of course, the hub operator is also in two-way communication 
with the energy networks operator. In this coordination between the operators, the network operator reports 
the optimal active and thermal power scheduling to the hub operator, considering its objective function and the 
technical constraints of the network. Therefore, the initial introduction to the implementation of the proposed 
scheme is to create a smart platform in the energy hub and networks.

Paper organization
The formulation of energy management for network-connected hubs is detailed in the second section. The third 
section presents the modeling of uncertainties, utilizing the SBSO approach. The fourth section discusses the 
numerical results derived from various case studies. Conclusions are mentioned in the fifth section.

Formulation of the proposed plan
The energy management of renewable energy harvesters (EHs) that use flexible sources, such as compressed air, 
hydrogen, and thermal storage, is examined in this section. Intelligent electric and thermal networks comprise 
these EHs. This strategy aims to lower the overall estimated operating costs and emissions while improving the 
chosen networks’ dependability. The operational model of renewable and flexible sources in the EH format, 
as well as the optimum power distribution equations in energy networks, set the system’s bounds. Thus, this 
strategy may be represented mathematically as follows.

Objective function
With the goal of minimizing anticipated operating costs (EOC), environmental costs (EEC), and enhancing 
reliability costs (ERC) in the electrical and thermal networks, the suggested approach is based on objective 
function (1). In the first row of (1), the cost of acquiring energy from the upstream network is equivalent to the 
EOC for the electrical network (first term) and the thermal network (second term)17. The energy price multiplied 
by the amount of energy sent via the distribution posts yields the cost. The costs linked to emissions of carbon 
dioxide (CO2), nitrogen oxide (NO2), and sulfur dioxide (SO2) as a consequence of the networks’ connection to 
centralized industrial facilities are shown in the second row19. This means that EEC = EEM×VOEP, anticipated 
emissions (VOEP) stands for emissions anticipated penalty price. The emissions coefficients of CO2, NOx, and 
SO2 added together provide the coefficient ρ. ERC, which is introduced in the third row of (1), represents the 
cost of the customer outages during event N-1. The value of lost load (VOLL in $/MWh) multiplied by the 
expected energy not provided (EENS) determines this cost for each network20.

In this paper, the objective function includes minimizing the operating cost of energy networks, minimizing 
environmental pollution, and unfed energy under N-1 event conditions. Energy hubs have various resources 
and storage devices, so that they can act as energy transfer and storage device. Therefore, by implementing 
appropriate energy management, it is expected that hubs can play a significant role in improving the economic, 
technical, and environmental conditions of energy networks. In economic terms, it is expected that hubs can 
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reduce the cost of purchasing energy from upstream networks by injecting power into the network. Renewable 
hubs, which have very low emissions, can reduce the energy demand in networks by injecting energy into 
electrical and thermal networks. Therefore, the energy received by these networks from centralized power plants, 
which are generally based on fossil fuel consumption, is reduced, and environmental conditions are improved. 
In addition, hubs are generally located at consumption points. If an error occurs in the network, the hubs can 
feed part of the consumed energy. Therefore, the network can have high reliability. Considering these issues, 
the main objective of this paper is to investigate the effectiveness of renewable hubs in improving the economic, 
environmental and reliability functions of energy networks. Therefore, the objective function (1) was selected. 
Based on this relationship, the objective variables in this paper include the cost function (Cost), power passing 
through distribution substations (PS and HS), unfed power (PN and HN), emission level (EEM), EENS, reliability 
cost (ERC), emission cost (EEC) and network operating cost (EOC).

	

min Cos t =

EOC︷ ︸︸ ︷
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w
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PN b,t,w +
∑
n,t

HN n,t,w

)

� (1)

Operation-reliability model of energy networks
Constraints (2)–(16) provide the equations for the optimal power distribution in the thermal and electrical 
networks. Limitations (2) through (10) provide an explanation of this network’s power flow interactions21–25. 
More specifically, Eqs.  (2) and (4) represent the distribution of thermal power in the thermal nodes and the 
distribution of active and reactive power in the electrical buses, respectively17,18. Additionally, the models in 
(5)–(7) represent the thermal power flowing through the pipes and the active and reactive power traveling via 
the electrical distribution lines, respectively3. The values for the temperature at the slack node and the voltage’s 
magnitude and angle at the slack bus are given in the constraints (8)–(10). Constraints (11)–(16) detail the limits 
of the thermal and electrical networks. (11) and (12) in these constraints relate to the temperature limitation at 
the thermal nodes and the voltage magnitude restriction at the electrical buses, respectively3,17,18. The thermal 
power limitation traveling through the pipelines and the apparent power restriction traveling through the 
electrical distribution lines are shown in (13) and (14) accordingly17. In (15) and (16), these limitations for the 
thermal and electrical distribution posts are also considered18,26,27. In (2)-(16), the parameter u signifies the 
accessibility of network equipment, including distribution lines and distribution posts, in incident N – 1. A value 
of 1 (zero) for this parameter denotes the presence (disconnection) of the corresponding equipment in (from) 
the network during an incident. Reliability constraints are articulated in (17) and (18) for electrical and thermal 
networks, respectively. These constraints pertain to the limitation of not supplied load in the aforementioned 
networks20.

	
PN b,t,w + PS b,t,w +

∑
i

CE i,bPEH i,t,w +
∑

j

AE j,bPL b,j,t,w = PD b,t,w ∀b, t, w� (2)

	
QS b,t,w +

∑
j

AE j,bQL b,j,t,w = QD b,t,w ∀b, t, w� (3)

	
HN n,t,w + HS n,t,w +

∑
i

CH i,nHEH i,t,w +
∑

j

AH j,nHL n,j,t,w = HD n,t,w ∀n, t, w� (4)

	
PL b,j,t,w =

{
GL b,j(Vb,t,w)2 − Vb,t,wVj,t,w

{
GL b,j cos (φb,t,w − φj,t,w) +
BL b,j sin (φb,t,w − φj,t,w)

}}
uEL b,j,w ∀b, j, t, w� (5)

	
QL b,j,t,w =

{
−BL b,j(Vb,t,w)2 + Vb,t,wVj,t,w

{
BL b,j cos (φb,t,w − φj,t,w) −
GL b,j sin (φb,t,w − φj,t,w)

}}
uEL b,j,w ∀b, j, t, w� (6)

	 HL n,j,t,w = {CL n,j (Tn,t,w − Tj,t,w)} uHL n,j,w ∀n, j, t, w� (7)

	 Vb,t,w = Vref ∀b = Slack bus, t, w� (8)
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	 φb,t,w = 0 ∀b = Slack bus, t, w� (9)

	 Tn,t,w = Tref ∀n = Slack node, t, w� (10)

	 Vmin ⩽ Vb,t,w ⩽ Vmax ∀b, t, w� (11)

	 Tmin ⩽ Tn,t,w ⩽ Tmax ∀n, t, w� (12)

	 (PL b,j,t,w)2 + (QL b,j,t,w)2 ⩽ S̄L b,j ∀b, j, t, w� (13)

	 |HL n,j,t,w| ⩽ H̄L n,j ∀n, j, t, w� (14)

	 (PS b,t,w)2 + (QS b,t,w)2 ⩽ S̄S buES b,w ∀b, t, w� (15)

	 |HS n,t,w| ⩽ H̄S nuHS n,w ∀n, t, w� (16)

	 0 ⩽ PN b,t,w ⩽ PD b,t,w ∀b, t, w� (17)

	 0 ⩽ HN n,t,w ⩽ HD n,t,w ∀n, t, w� (18)

Operational model of renewable EHs with storage
The limitations on how EHs28 with flexible and renewable energy sources may operate are outlined in (19)–(39). 
Constraints (19) and (20) delineate the equilibrium between thermal and active power in Environmental Hubs. 
These Constraints state that only the BU is used to produce thermal energy, whereas RESs like WT, PV, and BU 
contribute to the creation of electrical energy. In addition to the BU, the FC, and HP also contribute to thermal 
energy production, although the HP is an active power consumer. HS and CAES are utilized for active power 
control and electrical energy storage within EH. TES is employed for thermal power control and thermal energy 
storage. The operational model of the RESs encompasses Wind Farms (WF), PV Farms (PVF), and BU Farms 
(BUF), as outlined in constraints (21)29, (22)30, and (23)-(24)17,18, respectively. As per constraint (21), the WT 
operates across four zones31–35. In the first and fourth zones, when the wind speed is either below the cut-in 
speed or above the cut-out speed, the wind turbine does not generate any power. The power generation rises 
linearly with wind speed in the second zone, which is defined by wind speeds between the cut-in speed and the 
nominal speed29. In the third zone, the wind speed surpasses the designated speed but stays below the threshold 
for automatic shutdown. Within this area, the power output of this source is consistently kept at its designated 
capacity in order to protect the mechanical components of the wind turbine. In accordance with constraint 
(22), the power output of photovoltaic systems (PVFs) is calculated by multiplying the number of PVs, their 
area, efficiency, and the solar radiation they receive30,36–39. Contrarily, Constraint (23), specifies that in order to 
calculate the active power output of BUFs40, the number and efficiency of BUs, the amount of methane in the BU 
gas, the low heating value of methane gas, and the gas produced by BUs are multiplied. Our research indicates 
that the BU is equipped with CHP technology, which allows it to produce both thermal and electrical energy. 
The quantity of thermal power produced by the BU is delineated in (24), which is a coefficient of the BU’s active 
power17. The operational model of HPs is expounded in (25) and (26). The HP is designed to convert electrical 
energy into thermal energy41. In essence, it acts as a consumer of active power and a producer of thermal power. 
Constraint (25) delineates the relationship between thermal power and active HP41. Constraint (26) takes into 
account the capacity limitation of power generation at the output of HPs. Constraints (27)-(31) present the 
operational model of HS42. Within HS, there are three components: FC, electrolyzer (EL), and Hydrogen Tank 
(HT). Hydrogen is produced by the electrolyzer and is then kept in the hydrogen tank. Hydrogen is taken out 
of the Hydrogen Tank (HT) by the FC and sent to the EH as thermal and electrical energy42. The fuel cell (FC) 
used in this study is assumed to be equipped with combined heat and power (CHP) technology, which enables 
it to produce thermal and electrical power concurrently. It is significant to notice that the FC is used in the 
discharge mode and the EL is engaged in the HS charging mode. As a result, in (27) and (28), respectively, the 
capacity limitations of the FC and EL are expressed. Because HS is unable to operate in both the charge and 
discharge modes at the same time, constraint (29) is used to prevent EL and FC from operating concurrently. 
Constraint (30) sets a maximum value for the amount of hydrogen energy that may be stored in HT42. According 
to this equation, the energy of hydrogen is equal to the sum of the original energy, the energy retained while 
charging, and the energy released. The CHP model for Fuel Cells (FC) is defined by Constraint (31) and states 
that the thermal power of an FC is proportionate to its active power. The limitations (32)–(35) characterize the 
CAES operating model43,44. A CAT, a generator, and a motor make up the CAES system. The motor works by 
transforming electrical energy into compressed air during the CAES charging phase. The pressurized air is then 
stored in the CAT, or compressed air tank. The generator runs during the compressed air energy storage (CAES) 
discharge phase, transforming compressed air into electrical energy43. The generator and motor’s capacity 
restrictions are represented by constraints (32) and (33). Constraint (34) prohibits the generator and motor 
from operating simultaneously. The maximum quantity of compressed air energy that may be stored in the CAT 
is expressed by restriction (35). According to this relation, the energy in CAT is equal to the sum of the initial 
energy and the energy stored in the CAES charging mode minus the energy discharged in the CAES discharge 
mode43. The operational model of TES is delineated in relations (36)-(39)3. Constraints (36) and (37) display the 
charge and discharge rate constraints45 of TES. Relation (38) stipulates the constraint that prevents simultaneous 
charge and discharge of TES, and (39) formulates the constraint on the energy stored in TES3.

	

PEH i,t,w = PW i,t,w + PV i,t,w + PB i,t,w + (PF i,t,w − PE i,t,w) + (PG i,t,w − PM i,t,w)
− PHP i,t,w − PD i,t,w ∀i, t, w

� (19)
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	 HEH i,t,w = HB i,t,w + HHP i,t,w + HF i,t,w + (HDIS i,t,w − HCH i,t,w) − HD i,t,w ∀i, t, w� (20)

	
PW i,t,w = nW P̄

{ 0
vi,t,w−vc−in

vr−vc−in

1

vi,t,w < vc−in, vi,t,w > vc−out

vc−in ⩽ vi,t,w ⩽ vr

vr ⩽ vi,t,w ⩽ vc−out

∀i, t, w� (21)

	 PV i,t,w = nV ηV AV IV i,t,w ∀i, t, w� (22)

	 PB i,t,w = nBηBρCH4LHVCH4GB i,t,w ∀i, t, w� (23)

	
HB i,t,w = (1 − ηB) ηH

ηB
PB i,t,w ∀i, t, w� (24)

	 HHP i,t,w = ηHP PHP i,t,w ∀i, t, w� (25)

	 0 ⩽ HHP i,t,w ⩽ nHP H̄HP i ∀i, t, w� (26)

	 0 ⩽ PF i,t,w ⩽ nHSP̄F i ∀i, t, w� (27)

	 0 ⩽ PE i,t,w ⩽ nHSP̄E i ∀i, t, w� (28)

	 PF i,t,wPE i,t,w = 0 ∀i, t, w� (29)

	
nHSE−

HT i

⩽ nHSÊHT i +
t∑

h=1

(
ηEPE i,t,w − 1

ηF
PF i,t,w

)
⩽ nHSĒHT i ∀i, t, w� (30)

	
HF i,t,w = (1 − ηF ) ηH

ηF
PF i,t,w ∀i, t, w� (31)

	 0 ⩽ PG i,t,w ⩽ nCAP̄G i ∀i, t, w� (32)

	 0 ⩽ PM i,t,w ⩽ nCAP̄M i ∀i, t, w� (33)

	 PG i,t,wPM i,t,w = 0 ∀i, t, w� (34)

	
nCAE−

CAT i
⩽ nCAÊCAT i +

t∑
h=1

(
ηM PM i,t,w − 1

ηG
PG i,t,w

)
⩽ nCAĒCAT i ∀i, t, w� (35)

	 0 ⩽ HDIS i,t,w ⩽ nT H̄DIS i ∀i, t, w� (36)

	 0 ⩽ HCH i,t,w ⩽ nT H̄CH i ∀i, t, w� (37)

	 HDIS i,t,wHCH i,t,w = 0 ∀i, t, w� (38)

	
nT E−

T ES i

⩽ nT ÊT ES i +
t∑

h=1

(
ηCHHCH i,t,w − 1

ηDIS
HDIS i,t,w

)
⩽ nT ĒT ES i ∀i, t, w� (39)

Uncertainty modeling
In the proposed plan, parameters such as energy price, λE and λH, load (PD, QD, and HD), wind speed (v), solar 
radiation (IV), BU generated gas (GB), and network equipment availability (uEL, uHL, uES and uHS) are considered 
uncertain. It’s crucial to remember that this approach requires the computation of reliability indices such outage 
cost and EENS20. The computation of these indices provides a precise examination of various scenarios of 
load, power generation, and equipment availability in the network20. Consequently, stochastic planning, which 
leverages a combination of the RWM and SBM46, is employed for modeling the aforementioned uncertainties.

Scenario generation
In this part, the Robust Weighted Mean (RWM) method is used to produce a significant quantity of situations. 
This approach randomly gives values to unknown parameters in each individual case. The allocation of load, 
energy price, wind speed, sun radiation, and BU gas is based on their average value and variability. The Forced 
Outage Rate (FOR) of the network equipment determines its availability, denoted by u, in every circumstance. 
The normal Probability Density Function (PDF) is used to calculate the likelihood of chosen values for the load, 
energy price, and BU gas. The Weibull and Beta PDFs are used to determine the likelihood of certain wind speed 
and solar radiation values, respectively. Using the Bernoulli PDF, the chance of network equipment availability 
is also computed. Ultimately, the probability of each generated scenario (γ0) is determined as the product of the 
probabilities of the uncertainty parameters within that scenario.

Scenario reduction
First, a great deal of circumstances is created at random. To lessen the need for calculation, the scenario set 
should be reduced. The literature offers a variety of scenario reduction techniques46. Because SBM has great 
accuracy and no processing overhead, it is used in this study. In order to identify the most unlikely and dissimilar 
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possibilities, this approach computes the distance between several scenarios. The following steps are employed 
to reduce the scenarios46:

•	 Step 1 Consider ξs as the initial set of the scenarios. Additionally, consider DS to be the original empty col-
lection of scenarios that remain after the scenario reduction procedure. Determine how far apart any two 
possibilities are using the formula below:

	

DTw,w′ = DT (Rw, Rw′ ) =

√√√√
e∑

g=1

(rw,g − rw′,g) ∀w, w′ = 1, 2, . . . , NS � (40)

•	 Step 2 Determine the least distance with other scenarios for each scenario Re:

	 DTw,l = min DTw,w′ ∀w, w′ = 1, 2, . . . , NS , w ̸= w′� (41)

where l holds the number of scenarios with the least distance from scenario s.

•	 Step 3 Multiply the probability of each scenario prw with the least distance from other scenarios:

	 P Dw′,l = prlDTw′,l ∀w′ = 1, 2, . . . , NS � (42)

•	 Step 4 Omit the dth scenario with the lowest value for the below criterion from the initial scenarios set ξs:

	 P Dd = min P Dw ∀w = 1, 2, . . . , NS � (43)

	 ξ = ξ − {d}, DS = DS + {d}, prl = prl + prd� (44)

•	 Step 5 Repeat Steps 2 to 4 until reaching the desired number of scenarios.

Similar situations and scenarios with low probability will be excluded by the aforementioned scenario reduction 
process. As a result, the remaining scenario set is sufficiently varied to represent the problem’s maximum 
uncertainty spectrum. All of the above outcomes would lead to a framework that is deterministic-equivalent to 
the stochastic problem. The optimal solutions of different scenarios are combined via an aggregation process to 
construct the final optimal solution as (1). γw is:

	
γw = γ0

w∑NS

k=1 γ0
k

� (45)

This equation yields a single optimum solution for the stochastic issue rather than a collection of solutions. 
Through the use of this aggregating method, it becomes feasible to not only analyze each individual scenario, 
but also maintain the original structure of the stochastic issue. Figure 2 displays the flowchart of uncertainty 
modeling, which is derived from the integration of RWM and SBM.

The proposed scheme is in the form of a mathematical model47–51. This mathematical model includes the 
optimization formulation52–54. It includes an objective function that has the task of minimizing or maximizing 
one or more objective functions55–58. This problem includes various constraints that are equal and unequal59–63. 
To apply the optimization problem to the network, an intelligent platform is needed. This platform includes 
telecommunication devices and intelligent algorithms64–67.

Numerical simulation
Data
Figure 3 illustrates how the EMS covered in this section is applied to both the IEEE 33-bus electrical network68 
and the 14-node Madumvej heat network69. The electrical network runs on a base power of 1 MVA and a voltage 
of 12.66 kV. As the reference bus, Bus 1 maintains both a voltage angle of zero and a voltage amplitude (Vref) of 
one per unit (p.u.). Voltage amplitude is allowed to vary from 0.9 to 1.1 per unit (p.u.)70–76. The requirements for 
the distribution lines and distribution post are outlined in reference68. The maximum active and reactive load 
for several busses was documented in the work in reference68. The load factor curve multiplied by the maximum 
load yields the load at different time intervals77–81. The expected daily curve of the load factor for the electrical 
network is illustrated in Fig. 417,18. The price of electrical energy during off-peak hours, specifically between 
1:00 and 7:00, is 17.6 $/MWh. The energy price during peak hours, specifically between 17:00 and 22:00, is 33 $/
MWh. For other hours, referred to as mid-load, the energy price is 26.4 $/MWh17,82–84. The total emissions factor, 
accounting for CO2, SO2, and NOx emissions when supplying electrical energy from the upstream network, is 
918.2 ton/MW19. In the heat network, the base power and temperature are 1  MW and 100  °C, respectively. 
The slack node, Node 1, has a temperature (Tref) of 1 p.u. The acceptable temperature ranges for various nodes 
spans from 0.9 p.u. to 1.1 p.u. Details regarding the pipeline and heat post are available in69. Peak load data for 
various nodes can also be found in Ref.69, and Fig. 4 shows the heat load factor’s projected daily curve16. For both 
peak (5:00–15:00) and off-peak (1:00–4:00 and 16:00–24:00) hours, the price of thermal energy is fixed at 22 $/
MWh17. The heat post’s total emissions factors for CO2, SO2, and NOx are 714.6 ton/MW. This paper assumes 
that the N – 1 incident occurs over the course of one day’s operation, and the Forced Outage Rate (FOR) for lines 
and posts across various networks is 1%20.
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As depicted in Fig. 3, the system under examination utilizes six hubs. The locations of the EHs are detailed 
in this figure, and the quantity of sources, storage units, and installed HPs in each EH align with the data in 
Table 2. This table indicates that hubs 1 and 2 deliver thermal energy via BUF, while hubs 4 and 5 provide thermal 
energy in accordance with the HPs present in these hubs. Hubs 1, 4, and 5 possess CAES type electrical storage, 
whereas the remaining hubs feature HS type electrical storage. Table 3 provides a detailed overview of the specs 
for each source, storage unit, and HP. The load of each hub is equivalent to the load of the hub’s position within 
the network. Figure 4 displays the anticipated graph of wind speed rate, BU gas, and sun radiation17,29,30. An 
uncertainty of 10% is considered as the standard deviation for energy price, load, wind speed, sun radiation, 
and BU gas.

Fig. 2.  Flowchart of uncertainty modeling using RWM + SBM.

 

Scientific Reports |          (2025) 15:464 11| https://doi.org/10.1038/s41598-024-84231-4

www.nature.com/scientificreports/

RETRACTED A
RTIC

LE

http://www.nature.com/scientificreports


Results and discussion
The simulation in this part is conducted using the GAMS software environment. The suggested system is solved 
using the IPOPT algorithm85. Subsequently, the quantitative findings are presented in the next section.

Analysis of the objective function
This section aims to determine the optimal VOLL and VOEP, as well as to scrutinize the objective functions, as 
illustrated in Figs. 5 and 6. Figure 5 plots the environmental indices, namely EEM and EEC, and the economic 
index, EOC, based on VOEP. Based on Fig. 5(a), an increase in the VOEP up to 0.09 $/ton results in a decrease in 
emissions, as measured by EEM, from 97,000 tons to 13,856 tons. For VOEP values greater than or equal to 0.09 
$/ton, the EEM value remains constant. Figure 5(b) outlines the status of the emissions cost, EEC, and network 
operation cost, EOC, in relation to VOEP. This figure reveals that EEC escalates with an increase in VOEP, as the 
impact of changes in VOEP has a more significant effect on EEC than changes in EEM. Similarly, EOC rises with 

Fig. 4.  Expected daily curve of load factor17, rate value of wind speed, PV irradiation and BU gas17,29,30.

 

Fig. 3.  Test network, (a) IEEE 33-bus electrical system68, (b) 14-node Madumvej district heating grid69.
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an increase in VOEP up to 0.09 $/ton, but for VOEP values greater than or equal to 0.09 $/ton, EOC saturates. 
In order to lower the EEM, EHs must significantly reduce the amount of electricity that is received from the 
upstream network by injecting it into the network during different working hours. It’s crucial to remember that 
at certain hours, RESs could not be able to inject high power. During these periods, HPs and storage units are 
required to inject substantial power into the network. This issue is further explored in Sect. 4.2.B. For high energy 
discharge, storage units must obtain high energy consumption in discharge mode. Also, HPs require electrical 
energy to generate thermal energy. In such a scenario, it’s expected that the energy losses of the aforementioned 
elements will escalate, leading to an increase in EOC. Consequently, as VOEP rises, EEM diminishes, and the 
EOC augments. According to Fig. 5, the optimal price of VOEP is 0.09 $/ton. This is attributed to the fact that 
at this VOEP value, the EEM reaches its minimum value and EOC reaches saturation. Additionally, EEC at this 
juncture has the lowest value compared to when VOEP exceeds 0.09 $/ton.

The state of the economic index, EOC, and the reliability indices, EENS and ERC, with respect to VOLL is 
shown in Fig. 6. According to Fig. 6(b), EENS decreases as VOLL increases up to 80 $/MWh. Nonetheless, the 
EENS value stays constant and achieves its minimal value at VOLL values larger than or equal to 80 $/MWh. 

Data of WT29

 Capacity (kW) 10

 vc−in, vr, vc−out (m/s) 2.5, 10, 13

 Peak of wind speed (m/s) 9.7

Data of PV30

 AV (m2) 3.21

 ηV (%) 12

 Peak of irradiation (kW/m2) 0.82

Data of BU17

 ηB, ηH (%) 37, 39

 ρCH4 (%) 65

 LHVCHP (kW/m3) 10

 Peak of BU generation gas (m3) 4160

HP data41

 ηHP (%) 76

 Capacity (kW) 10

CAES data44

 Motor capacity (kW) and efficiency (%) 20, 81

 Generator capacity (kW) and efficiency (%) 20, 79

 CAT capacity (kWh) 100

 Minimum and initial energy in CAT (kWh) 10

HS data42

 FC capacity (kW) and efficiency (%) 10, 51

 EL capacity (kW) and efficiency (%) 10, 75

 HT capacity (kWh) 50

 Minimum and initial energy in HT (kWh) 5

TES data3

 Charge and discharge rate (kW) 10

 Charge and discharge efficiency (%) 80

 TES capacity (kWh) 50

 Minimum and initial energy in HT (kWh) 5

Table 3.  Sources and storages data.

 

EH Sources Storages

1 120 BUs 40 CAESs, 40 TESs

2 120 BUs 80 HSs, 40 TESs

3 80 WTs 50 HSs

4 100 WTs, 50 HPs 30 CAESs, 25 TESs

5 1500 PVs, 40 HPs 25 CAESs, 25 TESs

6 1500 PVs 50 HSs

Table 2.  Number of sources and storages for EH in different location.
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Moreover, Fig. 6(b) shows that a rise in VOLL always results in a rise in ERC. As the impact of VOLL changes on 
ERC is greater than the impact of EENS changes. According to Fig. 6(b), an increase in VOLL up to 80 $/MWh 
corresponds to a rise in EOC. However, for VOLL values greater than or equal to 80 $/MWh, the EOC reaches 
a saturation point and remains constant. To minimize EENS, it’s necessary for sources, storage units, and HPs 
to inject substantial power into the network at various hours. This situation is accompanied by an increase in 
the energy losses of storage units and HPs. Under these circumstances, it’s expected that energy losses in both 
electrical and thermal networks will escalate. This could be attributed to the potential for a significant increase 
in power from the hub to the reference bus. These factors contribute to an increase in EOC. Consequently, as 
VOLL increases, EENS decreases and EOC increases. Another point to note is that the optimal price for VOLL 
is 80 $/MWh. This value corresponds to the minimum value of EENS, and it’s at this point that the EOC reaches 
saturation. Additionally, ERC at this point is lower compared to when VOLL exceeds 80 $/MWh.

In Figs. 5 and 6, increasing VOLL and VOEP increases the importance of minimizing the reliability and 
environmental objective functions in Eq. (1). Therefore, this makes the performance of energy hubs proportional 
to the minimization of the expressed functions. In other words, with increasing VOLL (VOEP), to reduce the 
reliability (environmental) cost, it is necessary for the hubs to inject higher energy into the energy networks than 
in the case of low VOLL (VOEP). In this case, EENS (EEM) is reduced, which results in improving the reliability 
(environmental) status of the energy networks.

Table 4 presents the economic, environmental, and reliability status of the electrical and thermal networks for 
the optimal values of VOLL and VOEP. This table reports on the following case studies:

•	 Case I A load flow study.
•	 Case II A proposed scheme considering an EH that includes only WF, PVF, and BUF.
•	 Case III An EH that is a hybrid system of WF, PVF, BUF, and HP.

Fig. 5.  Curve of environmental indices in VOEP, (a) EEM, (b) EEC and EOC for VOLL = 0.
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•	 Case IV A proposed scheme that includes a renewable EH with HP, CAES, HS, and TES.

Table 4 shows that Case I has the greatest values for the dependability, environmental, and economic indices. 
our is mostly because electricity is obtained from the upstream network in our example study. Since there are no 
local sources in the energy networks, there is no control over power, which also implies that EEM, EENS, and 
EOC are not under control. Case II demonstrates the impact of incorporating RESs into the EHs. The presence 
of these RESs significantly improves various indices. Specifically, in this case study, EEM, EENS, EOC, ERC, and 
EEC decreased by approximately 57.6% (calculated as (49722–21078)/49722), 75.9%, 24.1%, 75.9%, and 57.6% 
respectively, compared to case I. Under these conditions, the objective function, represented by Cost, decreases 

Variable Case I Case II Case III Case IV

EEM (ton) 49,722 21,078 18,625 13,856

EENS (MWh) 54.7 13.2 11.5 7.9

EOC ($) 3089 2345 2108 1727

ERC ($) 4376 1056 920 632

EEC ($) 4475 1897 1676 1247

Cost ($) 11,940 5298 4704 3606

Table 4.  Value of economic, environment and reliability indices in different cases for VOLL = 80 $/MWh and 
VOEP = 0.09 $/ton.

 

Fig. 6.  Curve of reliability indices in VOLL, (a) EENS, (b) ERC and EOC for VOEP = 0.
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by approximately 55.6% compared to Case (I) The addition of HP to Case II, forming Case III, results in a more 
favorable status for all the mentioned indices compared to Cases I and (II) Specifically, EEM, EENS, EOC, ERC, 
EEC, and Cost in Case III decrease by approximately 62.5%, 79%, 31.7%, 79%, 62.5%, and 60% respectively, 
compared to Case I. Case IV concludes by reporting on the ideal condition of economic, environmental, and 
reliability indicators for electrical and thermal networks. This example is based on models (1) through (39). 
According to Table 4, the proposed scheme compared to case I has managed to reduce EEM, EENS, EOC, ERC, 
EEC, and Cost by approximately 72.1%, 85.6%, 44.1%, 85.6%, 72.1%, and 69.8%, respectively.

Performance evaluation of renewable EHs based on storage and HP
The expected daily curves of active and thermal power for sources, storage units, HPs, and EHs at optimal VOLL 
and VOEP levels are shown in Figs. 7 and 8. The daily curves of wind, solar, and biomass energy sources (RESs) 
are shown in Fig. 7, which shows a numerical reflection of the daily curves of wind speed rate, sun radiation rate, 
and BU gas rate shown in Fig. 4. This is attributed to the fact that, according to relations (21)-(23), the active 
power and production of RESs are influenced by the wind speed rate, solar radiation rate, or BU gas rate. Based 
on Fig. 7, WF, BUF, and PVF, and PVF exhibit the highest active power generation, with respective outputs 
of 1.8 MW, 2.4 MW, and 1.08 MW. In terms of the performance of HS, it’s observed from Fig. 7 that they are 
inactive during off-peak hours, specifically from 1:00 to 7:00. This corresponds to periods of lower electricity 
prices. During mid-load hours, 8:00–16:00, they are in charge mode, and active power is received by ELs for HS 
from hubs. This is because during these hours, RESs have a high active power production and full injection of 
it into the electrical distribution network could lead to excess voltage. Therefore, to prevent severe overvoltage 

Fig. 8.  Expected daily heat power curve of sources, storages and EHs for VOLL = 80 $/MWh and VOEP = 0.09 
$/ton.

 

Fig. 7.  Expected daily active power curve of sources, storages and EHs for VOLL = 80 $/MWh and 
VOEP = 0.09 $/ton.
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conditions, HSs receive power from RESs during these hours. During these hours, they can receive all their 
energy consumption from RESs, so the cost of their energy consumption that must be paid to the upstream 
network is zero. HSs operate in charge mode between 17:00 and 22:00, while FCs provide active power to the 
network between 23:00 and 24:00. HSs may reduce their EOC during these hours since electricity is costlier. CAES 
operates similarly to HS, with the exception of adding extra active power to the network during peak hours. This 
is because, in CAES, the efficiency of the motor and generator is close to each other based on Table 3, but this 
is not true for EL and FC. Also, the efficiency of FC is much less than the generator. Therefore, energy losses in 
HS are higher than CAES, so its active power in discharge mode is lower than CAES. As another point, HSs and 
CAESs were off during off-peak hours, because during these hours, according to Fig. 7, the level of active power 
produced by RESs is low. Therefore, it is expected that if the storage units consume energy during these hours, 
a percentage of the energy consumed by the mentioned storage units will be supplied by the electrical network. 
Under these circumstances, EOC is not minimized. In addition, the performance of the mentioned storage units 
has caused the EHs to always act as producers of electrical energy based on Fig. 7. Under these circumstances, 
EHs are able to provide active power to the electrical grid throughout all of its operational hours. This conduct 
is consistent with minimizing EEM and EENS. When it comes to HP performance, they are powered by EHs 
and are operational from 1:00 to 7:00 and 17:00 to 24:00. During the hours of 1:00–7:00, the power produced by 
WFs in hub 4 is around 1 MW (WT capacity ⋅ number of WTs in this hub), but according to Fig. 4, HPs have 
less than 1 MW of active power during these hours. Therefore, the energy consumed by HPs in hub 4 is supplied 
by EHs or RESs. In Hub 5, the only RES is solar, which, according to Fig. 7, has a low level of energy production 
during low-load hours. As a result, the HPs in Hub 5 rely on the electrical grid for active power. Between 17:00 
and 24:00, HSs, CAESs, and WFs in Hubs 4 and 5 generate a significant quantity of active power. As a result, 
during these hours, HPs rely on EHs for active power. However, note that the total active power of EHs is always 
positive, indicating that all EHs can act as electric energy producers during operation hours.

The time curve for the thermal power of BUFs, HPs, TESs, and EHs is shown in Fig. 8. The daily thermal 
power curve of BUFs and the active power curve are similar, differing just slightly in numbers. This is due to the 
validity of Eq. (24), which states that BU’s thermal power is a function of its active power. When the TESs are in 
discharge mode, the thermal peak hour is from 5:00 to 15:00. These hours correspond to periods of high thermal 
energy prices. Therefore, the discharge operation of TESs during these hours leads to the minimization of EOC. 
At other times, TESs are in charge mode. However, during these hours, the level of BUFs’ power production is 
lower compared to peak load hours. Specifically, from 1:00–6:00 and 20:00–24:00, the power produced by BUFs 
is less than the load consumed by EHs. Therefore, during these hours, to prevent TESs from receiving thermal 
power from the network, HPs are turned on and produce thermal energy for the hubs. In line with this, and 
based on Fig. 8, EHs can always act as energy producers. Hence, they constantly inject thermal power into the 
thermal network, and following this, EOC, EEM, and EENS in the thermal network are minimized.

Analysis of the operational status of electrical and thermal networks
The following are a few instances of operational indices: Peak Load Carrying Capacity (PLCC) for the ideal 
values of VOLL and VOEP for study cases I through IV; Maximum Voltage Drop (MVD) and Temperature 
Drop (MTD); Maximum Over Voltage (MOV) and Over Temperature (MOT); Expected Energy Loss (EEL) 
in the electrical (E-EEL) and thermal (T-EEL) networks; and Maximum Over Voltage (MOV) and Maximum 
Temperature (MOT). PLCC represents the maximum peak load proportional to the daily load curve load factor 
in Fig. 4 that can be fed by the network. According to Table 5, the most significant energy losses, voltage drops, 
and temperature decreases are observed in the load distribution studies of energy networks (Case I), This 
case also exhibits the lowest PLCC, overvoltage, and temperature. In contrast, Case II, which includes RESs 
at the hubs, shows improvement in all indices, with the exception of overvoltage and temperature. As a result, 
compared to Case I, the values of E-EEL, T-EEL, EEL, MVD, and MTD drop by around 28.5%, 30.7%, 29.5%, 
41.3%, and 40.7%, respectively. On the other hand, in contrast to Case I, the PLCC in the thermal and electrical 
networks indicates an increase of around 64.6% and 63.4%, respectively. In Case II, MOV and MOT rise from 
zero in Case I to 0.031 p.u. and 0.021 p.u. respectively. With the addition of HP to Case II (Case III), a more 
desirable situation for operational indices is achieved compared to Cases I and II. In such a way that E-EEL, 
T-EEL, EEL, MVD, and MTD decrease by approximately 31.7%, 34.2%, 32.9%, 42.4%, and 45.3% respectively 
compared to Case (I) However, E-PLCC and T-PLCC increase by about 63.4% and 71.5% respectively compared 

Variable Case I Case II Case III Case IV

E-EEL (MWh) 3.12 2.23 2.13 1.84

T-EEL (MWh) 2.54 1.76 1.67 1.45

EEL (MWh) 5.66 3.99 3.80 3.29

MVD (p.u.) 0.092 0.054 0.053 0.047

MOV (p.u.) 0 0.031 0.026 0.018

MTD (p.u.) 0.086 0.051 0.047 0.045

MOT (p.u.) 0 0.021 0.018 0.015

E-PLCC (MW) 3.72 6.08 6.08 6.79

T-PLCC (MW) 3.05 5.02 5.23 5.78

Table 5.  Value of operation indices in different cases for VOLL = 80 $/MWh and VOEP = 0.09 $/ton.
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to load distribution studies. Additionally, the introduction of HP has led to a reduction in MOV and MOT by 
approximately 16.1% and 14.3% respectively compared to Case (II) Finally, in Case IV, which aligns with model 
(1)-(39) and features hubs equipped with storage, HP, and RES, a more optimal operational situation is observed 
compared to the other cases studied. In this case, compared to Case I, E-EEL, T-EEL, EEL, MVD, and MTD 
decrease by approximately 41%, 42.9%, 41.9%, 48.9%, and 47.7% respectively. PLCC for both the electrical and 
thermal networks increases by about 82.5% and 89.5% respectively compared to Case I. MOV and MOT also 
decrease by 41.9% and 28.6% respectively compared to Case II.

The proposed design aimed to minimize the operating, pollution, and reliability costs of the electrical and 
thermal networks. To achieve these conditions, energy hubs should be able to generate energy at most of the 
time, and they should be able to inject active and thermal power into the energy networks at most of the time. 
In the hubs, renewable sources did not have the ability to control their power. Therefore, energy storage devices 
and heat pumps should control their power so that the hubs can play the role of energy producers. According to 
Figs. 7 and 8, the storage devices are in discharge mode during hours when the renewable sources generate low 
power. During times when the renewable sources generate high power, the storage devices are in charge mode to 
prevent overvoltage and temperature. The heat pumps were also turn-on during hours when the BUs generated 
low thermal power. This function of resources and storage devices has caused hubs to always be in the role of 
energy producers, so that they have been able to improve the economic, environmental, and technical objective 
functions compared to Case I (load distribution studies).

Conclusions
Based on environmental indices and dependability, this article discussed the cost-effective operation of thermal 
and electrical networks with renewable energy hubs, such as hydrogen, thermal and compressed air storage, 
wind turbines, solar and bio-waste units, and heat pumps. The suggested solution sought to lower emissions, 
improve reliability, and decrease overall estimated operating costs. It was restricted by the operational model of 
the designated hubs, reliability limitations, and the optimum power distribution model of the networks under 
consideration. Uncertainties like load, energy pricing, solar radiation, wind speed, gas generated from waste, 
and the availability of energy network equipment were all taken into consideration in the design. Stochastic 
optimization based on scenarios was used in this work to accurately calculate the dependability index while 
accounting for a variety of uncertainties. The numerical findings showed that it is feasible to achieve the 
least projected amount of unfed energy and emissions by selecting an ideal penalty price (high) for network 
interruption in the case of N − 1 and emissions. However, these conditions lead to an increase in the operational 
cost of energy networks when compared to a scenario with a zero penalty price. Nevertheless, the proposed plan, 
which involves optimal energy management of storage and heat pumps in conjunction with renewable sources 
within hubs, has succeeded in improving the reliability and environmental status by approximately 85.6% and 
72.1% respectively, when compared to the network load distribution studies. Furthermore, the economic status 
of the energy networks has seen an improvement of approximately 44% when compared to the load distribution 
case. This approach may lead to improvements in a number of operational indicators, such as effective power 
management for heat pumps, compressed air, hydrogen, and thermal storage in the renewable energy hub. They 
include energy losses, voltage and temperature profiles, and maximum feedable load, all of which have improved 
by 28–90% when compared to previous load distribution studies.

Data availability
All data generated or analysed during this study are included in this published article, Sect. 4.1. Also, the datasets 
used and/or analysed during the current study available from the corresponding author on reasonable request.
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