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Concrete compressive strength is a critical parameter in construction and structural engineering. 
Destructive experimental methods that offer a reliable approach to obtaining this property involve 
time-consuming procedures. Recent advancements in artificial neural networks (ANNs) have shown 
promise in simplifying this task by estimating it with high accuracy. Nevertheless, conventional ANNs 
often require deep networks to achieve acceptable results in cases with large datasets and where 
generalization is required for a variety of mixtures. This leads to increased training durations and 
susceptibility to noise, causing reduced accuracy and potential information loss in deep networks. In 
order to address these limitations, this study introduces a novel multi-lobar artificial neural network 
(MLANN) architecture inspired by the brain’s lobar processing of sensory information, aiming to 
improve the accuracy and efficiency of estimating concrete compressive strength. The MLANN 
framework employs various architectures of hidden layers, referred to as “lobes,” each with a unique 
arrangement of neurons to optimize data processing, reduce training noise, and expedite training 
time. Within the study context, an MLANN is developed, and its performance is evaluated to predict 
the compressive strength of concrete. Moreover, it is compared against two traditional cases, 
ANN and ensemble learning neural networks (ELNN). The study results indicated that the MLANN 
architecture significantly improves the estimation performance, reducing the root mean square error 
by up to 32.9% and mean absolute error by up to 25.9% while also enhancing the A20 index by up to 
17.9%, ensuring a more robust and generalizable model. This advancement in model refinement can 
ultimately enhance the design and analysis processes in civil engineering, leading to more reliable and 
cost-effective construction practices.
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strength, Neural network optimization

Concrete is one of the most widely utilized construction materials globally, largely due to its availability and 
the ease of sourcing local materials1,2. With coarse and fine aggregates like stones and sand, along with cement, 
water, and chemical admixtures, concrete offers a cost-effective and durable solution that requires limited skilled 
labor for its application. Nevertheless, these properties contribute to its inherent heterogeneity, resulting in a 
nonlinear behavior under compressive stress. Existing destructive experimental methods that offer a reliable 
approach to determining this property are time-consuming and labor-intensive3,4. Accordingly, developing 
models for accurate predictions of compressive strength enables efficient resource allocation and time-effective 
construction practices, while imprecise estimations can lead to structural failures or overdesign, with significant 
economic implications5,6.

Recently artificial neural networks (ANNs) have emerged as promising tools for predicting material properties, 
including the compressive strength of concrete, owing to their ability to model complex nonlinear relationships 

1Department of Civil Engineering, Eastern Mediterranean University, via Mersin 10, Famagusta, North 
Cyprus, Türkiye. 2Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 
United Arab Emirates. 3Faculty of Civil Engineering, Damascus University, Damascus, Syria. email:  
maan.habib@damascusuniversity.edu.sy

OPEN

Scientific Reports |         (2025) 15:1989 1| https://doi.org/10.1038/s41598-024-84325-z

www.nature.com/scientificreports

http://orcid.org/0000-0002-7282-5656
http://orcid.org/0000-0001-5607-9334
http://orcid.org/0000-0002-0102-8852
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-84325-z&domain=pdf&date_stamp=2025-1-14


within datasets7–12. Conventional ANN consists of interconnected layers based on a mathematical structure13. 
The architecture starts with an input layer vector, which connects to one or more hidden layer vectors, ultimately 
leading to an output layer vector. Each layer contains units called neurons (nodes), which gives rise to the term 
“neuron” in the context of artificial neural networks. These neurons are linked through weights and numerical 
values that define the strength of connections between them14. During training, ANNs iteratively adjust these 
weights using feedforward and backward propagation to improve performance15. Activation functions such as 
step, linear, sigmoid, and rectified linear functions enable the network to handle nonlinear problems16, while 
bias values better capture real-world data patterns17,18.

Despite their potential, conventional ANNs face limitations when applied to large datasets. These challenges 
include extended training times, susceptibility to noise, and potential information loss in deep networks, all of 
which compromise the accuracy and reliability of predictions19,20. Recent research has sought to use alternative 
machine learning techniques, such as bagging and boosting methods, to predict the strength and performance 
of concrete materials and structures21–25. Accordingly, there is still a gap in developing architectures that improve 
the accuracy and robustness for predicting concrete compressive strength with a large dataset.

In order to address these challenges, this study introduces a novel multi-lobar artificial neural network 
(MLANN) architecture inspired by the brain’s lobar processing of sensory information. This approach integrates 
multiple “lobes,” each with a distinct arrangement of neurons, designed to enhance data processing efficiency, 
reduce noise during training, and improve generalization capabilities. Unlike conventional ANNs, the MLANN 
framework provides a robust and adaptable solution for handling nonlinear datasets while maintaining a 
computationally efficient structure. The proposed MLANN is evaluated through comprehensive experiments 
to predict the compressive strength of concrete, utilizing a dataset with diverse mixture compositions. The 
methodology incorporates data normalization, shuffling, and unique weight initialization strategies to optimize 
training. The study employs the SoftPlus activation function to aggregate outputs from all lobes. Performance 
metrics such as root mean square error (RMSE), mean absolute error (MAE), and the A20 index are utilized to 
benchmark the MLANN against traditional multi-layer ANNs and ensemble learning neural networks (ELNN). 
By addressing the shortcomings of existing models and presenting a robust alternative, this study underscores 
the potential of MLANNs in advancing predictive modeling in civil engineering. The findings contribute to the 
broader application of brain-inspired computational frameworks in material science, paving the way for more 
reliable and cost-effective construction practices.

Research significance
Existing destructive testing methods, while reliable, are time-intensive procedures, creating a need for efficient, 
accurate, and cost-effective alternatives. Artificial neural networks (ANNs) have shown promise in this domain, 
but their application is often hindered by challenges such as extended training times, noise susceptibility, and 
accuracy limitations when dealing with large nonlinear datasets. In order to address these shortcomings, this 
research introduces a novel multi-lobar artificial neural network (MLANN) architecture inspired by the brain’s 
lobar processing of sensory information. The MLANN framework enhances data processing, reduces training 
noise, and improves generalization capabilities, resulting in a model that significantly outperforms conventional 
ANNs and ensemble learning neural networks. This advancement holds substantial implications for civil 
engineering, as accurate and efficient predictions of concrete compressive strength enable better design, analysis, 
and construction practices. The findings contribute to material science and also to the broader application of 
bio-inspired computational frameworks.

Proposed neural network architecture
The human brain processes sensory information through a complex network of neurons, where different 
regions, known as lobes, manage specific aspects of incoming nerve impulses26. This lobar processing allows 
the brain to handle complex tasks efficiently. Traditional ANNs, Fig. 1, typically rely on straightforward input-
output pathways, which can be inadequate for handling large datasets and complex problems without significant 
computational overhead. These conventional ANNs often require deep networks to achieve satisfactory results, 
leading to lengthy training times and increased susceptibility to noise, which can compromise accuracy.

For a traditional ANN architecture, the process within a single layer l can be mathematically represented as:

	 al = f
(
W lal−1 + bl

)
� (1)

where al−1 is the input (or activations from the previous layer); W l is the weight matrix; bl is the bias vector; 
f  is the activation function; al is the output of layer l. For an ANN with L layers, the final output y is:

	 y = fL
(
W LfL−1 (

· · · f
(
W lx + bl

)
· · ·

)
+ bL

)
� (2)

In order to address these limitations, ensemble learning neural networks (ELNNs) have been previously 
developed, as shown in Fig.  2. ELNNs aggregate multiple models through an ensemble layer to improve 
predictive performance. The ELNN’s operation involves multiple sub-models i = 1,2, . . . , M , each producing 
an output yi:

	 yi = fi (Wix + bi)� (3)

The final output of the ELNN is obtained by combining the outputs of all sub-models using an aggregation 
function g, such as a weighted sum:

Scientific Reports |         (2025) 15:1989 2| https://doi.org/10.1038/s41598-024-84325-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
y =

∑
M
i=1α iyi� (4)

However, they can introduce interdependencies between models, potentially propagating noise and reducing 
training efficiency. Accordingly, this study develops an MLANN framework to replicate the brain’s biological 
mechanisms and functionalities for processing data structures in machine learning tasks.

The proposed MLANN architecture, depicted in Fig.  3, is inspired by the brain’s lobar structure. In this 
regard, each lobe in the MLANN functions as an independent processing unit capable of addressing specific 
nonlinearities in diverse datasets. In the MLANN, the operation of each lobe k = 1,2, . . . , N  can be described 
as:

	 zk = fk (Wkx + bk)� (5)

Fig. 1.  Typical ANN architecture.
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where zk  is the output of the k-th lobe; Wk  and bk  are the weights and biases specific to that lobe; fk  is the 
activation function used within the lobe.

The outputs of all lobes are then aggregated using a function h, such as the SoftPlus activation function:

	
y = log

(
1 + e

∑
N
k=1zk

)
� (6)

Fig. 2.  An example of the ELNNs architecture.
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This design inherently promotes adaptability and scalability, enabling the incorporation of various types and 
functions within a single model without relying on deep layering. In the MLANN, each lobe consists of its own 
set of layers and neurons, allowing it to process input data independently before combining the outputs. This 
modular approach enhances flexibility and improves noise control during training compared to conventional 
methods. The independent lobes reduce the risk of noise propagation, as each lobe can specialize in learning 
different patterns or features within the data.

Fig. 3.  Architecture of the proposed MLANN.
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The MLANN algorithm, as described in Algorithm 1, outlines the procedure for training a model for 
regression tasks. While it follows many conventional ANN practices, it includes specific steps for this framework. 
Initially, the data is shuffled randomly to eliminate any inherent order that could bias the training process. The 
shuffled data is then divided into training and testing sets.

Both sets are normalized to ensure consistent scaling, which can improve the MLANN’s convergence speed 
and overall performance. The weights and biases of the MLANN are initialized randomly, with each lobe starting 
from a different seed. Each neuron in the MLANN employs an activation function to introduce nonlinearity 
into the model. During forward propagation, the input data passes through the MLANN, progressing through 
each lobe and layer, to produce a regression output. This process involves multiplying the inputs by the weights, 
adding biases, and applying activation functions at each neuron.

In the output layer, the SoftPlus activation function is utilized to aggregate the effects of all lobes, combining 
their outputs into a single regression result. Optimization techniques are then applied to minimize the loss 
function with respect to the network’s weights and biases27,28. Finally, the optimized weights and biases are saved, 
and the model’s performance is evaluated using the testing dataset to assess its generalization capability.

Materials and methods
Developed database
In order to assess the proposed approach’s capabilities in estimating the compressive strength of concrete, a 
dataset with a large sample size was utilized. This dataset was adopted extensively in similar research in the 
past29–33. Table 1 depicts the descriptive statistics of the adopted dataset. Generally, it consists of 1005 mixtures 
with their compressive strengths at different ages. The input features for each of the investigated neural network 
models included the materials used in each concrete specimen, while the compressive strength of concrete was 
chosen as the prediction model’s output. Figure 4 shows a correlation analysis of the features in the dataset.

Cement (kg/m3)
Blast furnace 
slag (kg/m3)

Fly ash 
(kg/m3) Water (kg/m3)

Superplasticizer 
(kg/m3)

Coarse 
aggregate 
(kg/m3)

Fine 
aggregate 
(kg/m3)

Age 
(days)

Compressive 
strength 
(MPa)

Count 1005 1005 1005 1005 1005 1005 1005 1005 1005

Mean 278.63 72.04 55.54 182.08 6.03 974.38 772.69 45.86 35.25

Standard deviation 104.34 86.17 64.21 21.34 5.92 77.58 80.34 63.73 16.28

Minimum 102 0 0 121.8 0 801 594 1 2.33

First quartile 190.7 0 0 166.6 0 932 724.3 7 23.52

Median 265 20 0 185.7 6.1 968 780 28 33.8

Third quartile 349 142.5 118.3 192.9 10 1031 822.2 56 44.87

Maximum 540 359.4 200.1 247 32.2 1145 992.6 365 82.6

Table 1.  Descriptive statistics of the adopted dataset in this study.

 

Algorithm 1.  Multi-lobar artificial neural networks frameworkalgorithm.
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Investigated models
This study compares three different architectures, ANN, ELNN, and MLANN, to highlight the latter’s 
performance in enhancing the estimation accuracy in the case of compressive strength of concrete. During 
the training phase, the primary focus in these models was to minimize the loss function, which was taken 
as the normalized root mean squared error. In general, all models were independently constructed using the 
TensorFlow library in Python. The Pandas library was used for dataset management, while the NumPy library 
was utilized to handle post-training mathematical calculations. To ensure a robust comparison, the following 
conditions were maintained:

•	 The ANN, ELNN, and MLANN cases adopted the same activation functions where the leaky rectified linear 
units (Leaky ReLU) were used in the hidden layers, and the SoftPlus was used in the output layer.

•	 The parameters (weights and biases) for each model were initialized using the GlorotNormal function to 
prevent confounding factors. In order to address the variability in parameter initialization, each model un-
derwent 1000 training cycles, each using a different randomization seed on normalized datasets. The best 
performance across these training cycles was considered for comparison.

•	 The investigated models utilized backward propagation with the Nadam optimizer while maintaining uni-
form learning rates and batch sizes.

•	 The ANN architecture was optimized with 10 hidden layers, each with 50 neurons. The MLANN architecture 
was composed of four lobes to produce a comparable case, where the first lobe had one hidden layer, the sec-
ond lobe had two hidden layers, the third lobe had three hidden layers, and the fourth lobe had four hidden 
layers with each hidden layer in the MLANN containing 50 neurons. As a result, both the ANN and MLANN 
had an identical total number of neurons. Finally, the ELNN had the same structure as the MLANN with the 
same number of hidden neurons and hidden layers but with the exception of having an ensemble layer before 
the final output to aggregate the sub-models directly.

•	 The database was randomly split into 70% training dataset and 30% testing dataset. In order to avoid any over-
fitting due to data splitting, the training was repeated 1000 times, each with a different random seed, meaning 
that the training and testing datasets were randomly changed 1000 times to ensure that the model accuracy is 
not affected by the data splitting and the selection of the random seed.

As a further investigation, linear regression, support vector machine, k-nearest neighbor, decision tree, random 
forest, adaptive boosting, and gradient boosting models were developed on the same dataset to benchmark the 
proposed approach performance against alternative machine learning techniques.

Performance assessment metrics
In order to evaluate the performance of the developed models herein, four different metrics were utilized, 
including the coefficient of determination (R2), Eq. (7), the root-mean-square error (RMSE), Eq. (8), the mean 
absolute percentage error (MAE), Eq. (10), and the A20 index which measures the percentage of predictions 
that fall within 80% accuracy of the actual values, Eq. (10). The A20 index typically ranges from 0 to 100%, with 

Fig. 4.  Correlation analysis of the dataset (A color scale with an arrow showing how the scale varies is 
provided. It indicates that the light green color refers to high positive correlation coefficients while the magenta 
color refers to high negative correlation coefficients).
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the latter being the best scenario where 100% of the predictions are within 80% accuracy while the earlier being 
the worst case.

	
R2 = 1 −

∑
(xi − yi)2

∑
(xi −

−
xi)2

� (7)

	
RMSE =

√∑
n
i=1(xi − yi)2

n
� (8)

	
MAE = 1

n

∑
n
i=1 |xi − yi|� (9)

	
A20 =

( 1
n

∑
n
i=11

(
xi − yi

xi
≤ 0.2

))
× 100� (10)

where xi is the true value; 
−
xi denotes the average of the true values; yi refers to the predicted value; n is the 

total count of data points; 1 (• ) is an indicator function that equals 1 if the condition inside is true, and 0 
otherwise.

Results and discussions
Figures  5, 6 and 7 illustrate the density charts depicting the training progress of the developed models for 
predicting compressive strength. These figures were produced using the Datashader and Matplotlib libraries 
in Python and then formatted in PowerPoint. Specifically, Fig.  5 presents the results for the ANN case, 
Fig. 6 depicts the results for the ELNN case, and Fig. 7 shows the results for the proposed MLANN case. As 
mentioned before, to ensure a rigorous comparison, each model underwent 1000 training cycles. This approach 
was chosen to produce mean training curves that mitigate potential biases arising from the initial parameter 
settings. Examination of these figures reveals that, after completing the iterative optimization of weights and 
biases, all models achieved a comparable reduction in the loss function. Despite this similarity, the MLANN 
demonstrated superior performance in terms of accuracy. It reached comparable levels of precision with fewer 
training iterations compared to both the ANN and ELNN. One notable advantage of MLANN was its enhanced 
robustness in the effects of parameter initialization. The MLANN consistently showed greater resilience, whereas 
the ANN and ELNN exhibited sensitivity to fluctuations during training, with the latter having a slighter effect. 
This sensitivity can be attributed to the ANN’s larger number of weight vectors and the ELNN’s ensemble layer, 
which introduce additional complexity and noise during the initial data processing stages. As a result, the 
performance of the ANN and ELNN was more prone to variability due to the iterative optimization of a greater 
number of parameters. On the other hand, the MLANN, with its shallower architecture involving multiple lobar, 
managed to handle this noise more effectively, leading to a more stable training process and better accuracy. 
This difference underscores the potential advantages of the MLANN in scenarios where resilience to stabilized 
training and accuracy is critical.

Although both regression models achieved similar magnitudes of loss function during the training process, 
their performance diverged significantly when evaluated on the testing data. Figures 8, 9 and 10 illustrate the 
calculated versus measured compressive strength values predicted by the investigated models.

The results show that the ANN, ELNN, and MLANN models fit the training data exceptionally well, with 
R2 values around 99%. However, a different picture emerges with the testing data, where traditional cases 
underperformed compared to the MLANN. Specifically, the ANN achieved an R2 of approximately 90% on the 
testing data, while the ELNN reached an R2 of about 88%, and the MLANN produced an R2 of about 94%. This 
discrepancy can be attributed to overfitting in the ANN, likely caused by the noise introduced by its 10 hidden 
layers and the existence of an ensemble layer. In contrast, the MLANN mitigates these issues, leading to better 
generalization and performance on the testing data.

The performance assessment of the models, as shown in Fig. 11, highlights the variation between training and 
testing phases across all metrics and models. It can be seen that the MLANN demonstrates significantly better 
performance in the testing phase compared to ANN and ELNN, with clear improvements in error reduction 
and R2 and A20 indices. In this regard, the MLANN reduces the RMSE in the testing case by 24.7% compared 
to the ANN (from 5.38 to 4.05 MPa) and by 32.9% compared to the ELNN (from 6.04 to 4.05 MPa). Similarly, 
the MLANN lowers the MAE in the testing case by 21.4% compared to the ANN (from 3.78 to 2.97 MPa) and 
by 25.9% compared to the ELNN (from 4.01 to 2.97 MPa). The R2 increases by 4.4% for the MLANN in the 
testing case over the ANN (from 0.90 to 0.94) and by 6.8% over the ELNN (from 0.88 to 0.94). Furthermore, the 
MLANN improves the A20 index by 17.9% over the ANN in the testing case (from 76.08 to 89.70%) and 14.4% 
over the ELNN (from 78.41 to 89.70%), indicating better accuracy and controlled overfitting and highlighting 
the superiority of the proposed technique over traditional cases.

Further comparisons with other alternative machine learning techniques for predicting the compressive 
strength of concrete are performed, and the results are reported in Table 2. It can be observed that the decision 
trees exhibit near-perfect training performance but suffer from overfitting, reflected in a drop in testing R2 and 
A20 index. Random forest and gradient boosting outperform the simpler models, demonstrating high testing R2 
and superior generalization, with random forest giving an A20 index on testing data of 79.47% while gradient 
boosting gives 82.45%. When compared to ANN-based models, MLANN stands out as superior, achieving 
higher testing R2 (0.94), lower RMSE (4.05), and a significantly higher A20 index (89.70) than all other models 
in this analysis, including random forest and gradient boosting. ANN and ELNN, while performing well, show 
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lower performance, reflecting marginally less reliability in error tolerance. In summary, while random forest 
and gradient boosting demonstrate strong performance among traditional methods, MLANN’s enhanced 
architecture makes it more effective for both training and testing phases, particularly in scenarios requiring 
precise and reliable predictions.

Conclusion
This study aims to develop a brain-inspired MLANN architecture for accurately estimating concrete compressive 
strength while addressing the limitations of traditional neural networks. Current approaches, such as ANNs and 
ELNNs, often struggle with overfitting and are susceptible to noise, which limits their ability to generalize to 
new data. This research introduces the MLANN model to enhance prediction accuracy and control overfitting, 
providing a more reliable and efficient solution. The study compares the performance of MLANN against 
ANN and ELNN models, demonstrating the superior generalization capability of the MLANN. Based on the 
aforementioned statements, the following conclusions are drawn:

•	 MLANN achieves a faster reduction in the loss function with respect to the epoch number than ANN and 
ELNN.

•	 MLANN improves R² by 4.4% over ANN and by 6.8% over ELNN in the testing phase, whereas it increases 
the A20 index by 17.9% compared to the ANN and by 14.4% compared to the ELNN, demonstrating im-
proved prediction accuracy.

Fig. 5.  Density plot of loss function training cycles in a conventional neural network using 1000 seeds over 
1000 iterations.
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•	 MLANN reduces the RMSE in the testing phase by 24.7% compared to the ANN and by 32.9% compared to 
ELNN, while it lowers the MAE by 21.4% compared to the ANN and by 25.9% compared to ELNN in the 
testing phase.

•	 MLANN effectively controls overfitting and generalizes unseen data better than traditional ANN and ELNN 
models.

•	 Further comparison with alternative machine learning techniques, including bagging and boosting, shows 
that the MLANN approach yields the highest accuracy, represented by the highest A20 index and lowest 
RMSE and MAE values in both training and testing cases.

Finally, the study has certain limitations. The dataset used primarily focuses on compressive strength prediction, 
and the model’s performance needs to be validated across other datasets and different material properties to 
confirm its versatility. Future research should also explore the integration of different activation functions and 
hybrid approaches with other machine learning techniques to further enhance the MLANN’s adaptability and 
robustness.

Fig. 6.  Density plot of loss function training cycles in an ELNN using 1000 seeds over 1000 iterations.
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Fig. 7.  Density plot of loss function training cycles in an MLANN using 1000 seeds over 1000 iterations.
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Fig. 8.  Predicted versus actual compressive strength via ANN model.
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Fig. 9.  Predicted versus actual compressive strength via ELNN model.
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Fig. 10.  Predicted versus actual compressive strength via MLANN model.
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Model

Training Testing

R2 RMSE (MPa)
MAE
(MPa) A20 R2

RMSE
(MPa)

MAE
(MPa) A20

Linear regression 0.60 10.26 8.17 51.21 0.60 10.28 8.10 53.31

Support vector machine 0.22 14.35 11.44 36.42 0.21 14.39 11.49 36.42

K-nearest neighbor 0.79 7.47 5.53 66.71 0.64 9.78 7.43 55.96

Decision tree 1.00 0.39 0.03 100.00 0.81 7.09 4.86 73.51

Random forest 0.99 1.89 1.36 97.58 0.89 5.37 3.87 79.47

Adaptive boosting 0.82 6.83 5.81 64.30 0.78 7.59 6.01 68.87

Gradient boosting 0.95 3.49 2.72 89.33 0.87 5.90 4.17 82.45

ANN 0.99 1.44 1.08 99.67 0.90 5.38 3.78 76.08

ELNN 0.98 2.37 1.71 94.35 0.88 6.04 4.01 78.41

MLANN 0.99 1.64 1.12 96.68 0.94 4.05 2.97 89.70

Table 2.  Performance of the proposed approach against other alternative machine learning techniques.

 

Fig. 11.  Performance assessment of the investigated models.
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Data availability
Some or all data, models, or codes that support the findings of this study are available from the corresponding 
author upon reasonable request.
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