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Unmanned rollers are typically equipped with satellite-based positioning systems for positional 
monitoring. However, satellite-based positioning systems may result in unmanned rollers driving out 
of the specified compaction areas during asphalt road construction, which affects the compaction 
quality and has potential safety hazards. Additionally, satellite-based positioning systems may 
encounter signal interference and cannot locate unmanned rollers. To solve this problem, a lateral 
positioning method for unmanned rollers is proposed to realize the positioning of unmanned rollers 
relative to asphalt road. First, we captured images from different perspectives and developed a dataset 
for asphalt road construction. Second, a method for boundary extraction of asphalt road is proposed 
to accurately locate pixels of asphalt road boundary. Subsequently, the lateral distances are measured 
by the designed lateral positioning methods. Finally, field validation experiments are conducted to 
evaluate the effectiveness of the proposed lateral positioning method. The results indicate that the 
method excels in extracting the asphalt road boundary. Furthermore, the proposed lateral positioning 
method shows excellent performance, with a mean relative error of 3.40% and a frequency of 6.25 Hz. 
The proposed lateral positioning method meets the performance requirements for lateral positioning 
in both accuracy and real-time in asphalt road construction for unmanned rollers.
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With the advancement of automation technology and artificial intelligence, rollers have gradually transitioned 
from manual operation to unmanned driving1–3. Unmanned rollers not only enhance construction efficiency and 
reduce labor costs but also significantly improve safety at construction sites. Accurate positioning is fundamental 
for unmanned rollers to achieve accurate and reliable compaction in complex construction environments and to 
enhance overall construction quality4,5.

Currently, the most commonly used positioning technologies for unmanned rollers are the global positioning 
system6 (GPS) and the real-time kinematic global navigation satellite system7,8 (RTK-GNSS). Although the 
satellite-based positioning systems can achieve centimeter-level positioning accuracy, they have limitations in 
obstructed environments such as buildings, trees, and mountains9,10. Signal interference and signal attenuation 
in such environments significantly affect the accuracy and reliability of the satellite-based positioning systems. 
In addition, limited by the positioning accuracy of the satellite-based positioning systems and their inability 
to perceive the surrounding environment, unmanned rollers may drive out of the specified compaction areas 
during asphalt road construction, which will affect the compaction quality and has potential safety hazards. 
The satellite-based positioning systems are suitable for the positioning of unmanned rollers in open areas, like 
dams11. Given the limitations of the satellite-based positioning systems, researchers have introduced the visual 
perception-based positioning to locate unmanned rollers. Compared with the satellite-based positioning, visual 
perception-based positioning can provide accurate position and orientation for unmanned rollers by analyzing 
the relevant images12. It efficiently solves the positioning challenges when satellite-based positioning fails. 
Moreover, visual perception-based positioning offers the ability to identify surrounding environment within the 
compaction areas13,14, which provides convenience for the monitoring of the construction site and enhances the 
security for the construction of unmanned rollers.

Few researchers focused on visual perception-based positioning for unmanned rollers. Lu et al.15 introduced 
a thermal-based technology that tracks and maps roller paths. The proposed technology provides the current 
position based on the previous position of the roller. However, after working for a long time, it still needs to 
manually periodically input the actual position of the roller into the algorithm to eliminate the cumulative 
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translation error. After this, they optimized the estimation of the lateral positioning to reduce the error, which 
makes it achieve the same accuracy as RTK-GNSS9. Sun et al.16 proposed a lateral positioning method based on 
visual feature extraction for soil roads. Although the proposed method has realized the relative positioning, it 
is still necessary to manually set the ground markings. These visual perception-based positioning methods for 
unmanned rollers above still require manual intervention to ensure the accuracy of positioning. Additionally, 
existing visual perception-based positioning systems are used as visual odometers to achieve the positioning 
of unmanned rollers relative to the construction starting point of construction. These visual perception-based 
positioning systems do not pay attention to the lateral positioning between the roller and the asphalt road 
boundary, which is not suitable for the positioning of unmanned rollers during asphalt road construction.

Building upon this context, this paper aims to propose an unmanned roller lateral positioning method. This 
method aims to measure the distances between the roller steel wheels and the asphalt road boundary to realize 
the positioning of unmanned rollers relative to asphalt road, which can effectively avoid the possible collision 
between the roller steel wheels and the curbstones. This goal is realized by a Red Green Blue - Depth camera 
(RGB-D camera). The first step is to accurately extract the asphalt road boundary. The asphalt road boundary is 
typically extracted by edge detection combined with Hough transform for line detection. However, it is difficult 
to adjust the optimal parameters to adapt to the complex construction environment. In order to solve this 
problem, a robust method for the extraction of the asphalt road boundary in complex environments is necessary. 
The second step is to measure the distances according to the proposed lateral positioning method. Finally, the 
effectiveness of the proposed method was verified in construction sites.

The remainder of this paper is organized as follows. The proposed lateral positioning method is described 
in “Methodology”. In “Experiments and discussion”, the experiments are conducted to validate the accuracy of 
the proposed method. Then, the experimental results are discussed. Finally, conclusions and future work are 
provided in “Conclusions”.

Methodology
The proposed lateral positioning method aims to measure the distances between the roller steel wheels and the 
asphalt road boundary. The flowchart of the proposed method is shown in Fig. 1. Firstly, road images and the 
corresponding depth images are captured. Secondly, semantic segmentation is employed to segment the asphalt 
road. Edge detection is employed on the segmented results to obtain the semantic boundary. After eliminating 
the abnormal pixels of the semantic boundary, the asphalt road boundary can be obtained. Thirdly, the asphalt 
road boundary in the pixel coordinate system can be converted to the camera coordinate system by using the 
internal parameters of the camera. Subsequently, line fitting is performed on the asphalt road boundary in the 
camera coordinate system to obtain the direction vector n⃗ of the asphalt road boundary and a point M on 
the asphalt road boundary. Finally, the lateral distances between the roller steel wheels and the asphalt road 
boundary are measured. The proposed roller lateral positioning method includes lateral positioning based on 
the camera installation height (LPCIH) and lateral positioning based on the roller steel wheels (LPRSW).

Data preprocessing
The extraction of the asphalt road boundary stands as a pivotal stage within the proposed lateral positioning 
method, and it directly affects the accuracy of positioning. Traditionally, the asphalt road boundary is extracted 
through edge detection operator combined with Hough transform for line detection17,18. However, due to the 
intricate background surrounding the asphalt road boundary, it is difficult to extract the pixels of asphalt road 
boundary by adjusting the parameters of the edge detection operator19,20. This makes it challenging to use 
Hough transform for line detection to obtain the asphalt road boundary21,22. Although the detection of lane 
lines23,24 is similar to the detection of asphalt road boundary, these methods cannot be directly used to extract 
the asphalt road boundary because there is no lane lines on the road during asphalt road construction. Therefore, 
we proposed a method (SSED) combining semantic segmentation and edge detection to effectively extract the 
asphalt road boundary.

In this paper, DeepLabv3+25 with MobileNetV226 serving as the backbone is utilized to segment asphalt 
road, because it stands out among numerous semantic segmentation frameworks due to its effectiveness and 
efficiency27. The structure of DeepLabv3+ used in this paper is shown in Fig. 2. The original images are input 
into DeepLabv3+ to extract backbone features and shallow features. Backbone features are extracted from the 
output results of MobileNetV2. These features contain information about the overall structure and category of 
the objects in the image. Shallow features are extracted from the middle layer of MobileNetV2. These features 
contain more local texture, edge, color and other information. Backbone features are used to distinguish different 
categories (background and asphalt road), while shallow features are used to determine the boundaries of each 
category. The combination of backbone features and shallow features significantly improves the accuracy of 
segmentation of asphalt road. The backbone features are up-sampled four times and stacked with the shallow 
features to obtain the fused features. The fused features are recovered the resolution of the original image through 
up-sampling to finish the image prediction.

Asphalt road boundary is typically surrounded by different objects, such as curbstones, guardrails, construction 
enclosures, greening facilities, drainage ditches, etc. These objects will affect the accurate extraction of the 
asphalt road boundary. We captured the images from different perspectives to develop a dataset for asphalt road 
construction. Part images of the developed dataset are shown in Fig. 3. They are used as the training dataset for 
DeepLabv3+. In addition, data enhancement is performed on these images to enhance the generalization ability 
of DeepLabv3+. Data enhancement includes image angle transformation and image brightness transformation. 
During the asphalt road construction, the position of rollers on the asphalt road is changing. As a result, the 
position of the asphalt road in the images also changes. Angle transformation can simulate the images of asphalt 
road captured from different positions and angles. Moreover, the changes of lighting and weather conditions 
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have a significant influence on the images of roller construction environment. Brightness transformation is 
used to simulate images captured at different lighting and weather conditions. In order to expedite the training 
process, we utilized pre-trained weights from MobileNetV2 to initialize the backbone of DeepLabv3+.

Following the semantic segmentation of asphalt roads by using DeepLabv3+, the Canny edge detection 
operator is employed to extract the pixels of asphalt road boundary from the results of semantic segmentation, 
because it has superior edge location and low false detection rate28,29. Given that the segmentation ability of 
semantic segmentation at the image boundary30 is limited, there are always abnormal pixels in the asphalt road 
boundary extracted by edge detection. The abnormal pixels must be eliminated to obtain the accurate asphalt 
road boundary. Since wrong segmentation occurs only on one side of the image, it is easy to remove the abnormal 
pixels by searching the pixels at the side of the image.

Subsequently, it is necessary to convert the asphalt road boundary from the pixel coordinate system to the 
camera coordinate system for lateral positioning. A diagram in Fig. 4 shows the process of converting pixel 
coordinates to camera coordinates. The camera coordinate system is O-xyz. O is the optical center of the camera. 
N(X, Y, Z) are in the camera coordinate system, and its coordinates in the imaging plane are N′(X′, Y′, Z′). The 
focal length of the camera is f.

Figure 1.  The flowchart of the proposed lateral positioning method.
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Figure 3.  Part images of the developed dataset.

 

Figure 2.  Structure of DeepLabv3+.
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According to the triangle similarity principle, as shown in Fig. 4b, there is the relationship shown in equation 
(1).

	

X ′ = f
X

Z

Y ′ = f
Y

Z

� (1)

where, Z represents the depth information, which is sourced from the depth image captured by the camera.

Suppose that a pixel plane is fixed on the imaging plane. The coordinates of N on the pixel plane are (u, v). So, 
there is the following relationship:

	

u = fx
X

Z
+ cx

v = fy
Y

Z
+ cy

� (2)

where, fx and fy  are the focal length of the camera in x direction and y direction, respectively. cx and cy  are the 
main point coordinates of the camera.

Convert Eq. (2) into a matrix, and it can be expressed in the form of homogeneous coordinates as follows:
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)
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According to Eq. (3), the points in the pixel coordinate system can be converted to the camera coordinate system.

The turning radius of the asphalt road is typically large to ensure driving safety. Additionally, due to the limitation 
of the camera’s perspective, the asphalt road boundary within images can be approximated as a straight line. 
Therefore, the direction vector n⃗ = (nx, ny, nz) of the asphalt road boundary and a point M(x, y, z) on the 
asphalt road boundary can be obtained by line fitting the asphalt road boundary in the camera coordinate 
system. The lateral distances can be measured from the contact points between the roller steel wheels and the 
road to the asphalt road boundary.

Estimation of roller lateral positioning
Lateral positioning based on the camera installation height
The schematic diagram of LPCIH is shown in Fig. 5. LPCIH includes both the lateral distance from the front 
roller steel wheel to the asphalt road boundary and the lateral distance from the rear roller steel wheel to the 
asphalt road boundary. When the camera is installed on the roller, the camera installation height h is determined. 
However, the measurement reference of the camera height h is not on the rear roller steel wheel, as shown in Fig. 
5b. The lateral distances are measured through the relative relationship △P  between the camera and the roller 
steel wheels.

Figure 4.  The diagram of converting pixel coordinates to camera coordinates.
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It needs to measure the distance dOP  between the camera and the positioning point D on the asphalt road 
boundary. dOP  can be calculated by equation (4).

	
dOP = |O⃗M × n⃗|

|n⃗|
� (4)

where, P is the foot point of the roller steel wheel to asphalt road boundary. n⃗ is the direction vector of the fitted 
asphalt road boundary AB, as shown in Fig. 5a. M is a point on the asphalt road boundary. O is the optical 
center of the camera. O⃗M  represents the vector from the point O to the point M. × represents the cross product 
between vectors. | | represents the modulus of a vector.

The lateral distance dP D  between the camera and the positioning point D can be measured by the pythagorean 
theorem, as shown in equation (5).

	 dP D =
√

d2
OP − h2� (5)

Finally, the distances between the roller steel wheels and the asphalt road boundary are measured by combining 
the relative position △P , as shown in Eq. (6).

	 LPCIH = dP D + △P � (6)

Lateral positioning based on the roller steel wheels
The schematic diagram of LPRSW is shown in Fig. 6. Compared with LPCIH, LPRSW needs to ensure that 
there are roller steel wheels in the view of the camera. When the camera is installed on the roller, the two contact 
points between the roller steel wheels and the asphalt road are fixed in their positions relative to the camera. The 
coordinates of these two points, E and F, are manually identified from the captured images, and they are assumed 
to be unchanged. The distance dCE  between the front roller steel wheel and the positioning point on the asphalt 
road boundary, and the distance dDF  between the rear roller steel wheel and the positioning point on the asphalt 
road boundary are measured by equation (7).

Figure 6.  The schematic diagram of LPRSW.

 

Figure 5.  The schematic diagram of LPCIH.
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LPRSW




dCE = |M⃗E × n⃗|
|n⃗|

dDF = |M⃗F × n⃗|
|n⃗|

� (7)

where, C and D are the foot points of the roller steel wheels to asphalt road boundary, respectively. M⃗E and M⃗F  
represent the vector from the point M to the the contact points between the roller steel wheels and the asphalt 
road (E and F), respectively.

Experiments and discussion
The proposed lateral positioning method is implemented on a laptop equipped with a Core i7-10875H CPU and 
a NVIDIA RTX2060 GPU. The camera used in this paper is a ZED2i camera. ZED2i camera is a binocular camera 
and is a kind of RGB-D camera. It captures the images of the same scene through two side-by-side cameras, and 
then uses the parallax principle to calculate the depth information of each pixel to form a depth map based on 
the binocular stereo vision principle. Its lens focal length is 2.1 mm, its perspective is 110◦ (Horizontal) ×70◦ 
(Vertical), and its resolution is set to 1280×720. These ensure that both roller steel wheels and the asphalt road 
boundary are fully within the view of the camera. The frame rate of image acquisition is set to 30 FPS. The 
vibration of the roller will make the image captured by the camera produce motion blur and affect the quality of 
the image. ZED2i camera can effectively reduce motion blur due to its global shutter technology. Additionally, 
a vibration-damping device is installed to further mitigate the impact of the vibration on the camera. These 
measures effectively solve the vibration and ensure the reliability and accuracy of our lateral positioning method.

Asphalt road boundary extraction
Some models with superior semantic segmentation ability were compared with DeepLabv3+. These models 
include HRNet31, PSPNet32, PP-LiteSeg33, U2Net34, and LR-ASPP35. Intersection over Union (IoU), Recall, 
Precision, Pixel Accuracy (PA), and inferring time serve as metrics for evaluating the performance of different 
semantic segmentation models in asphalt road segmentation. The experimental results are shown in Fig. 7. All 
these metrics, except the inference time, the difference among them is small. It indicates that the accuracy of 
these models in asphalt road segmentation is almost the same. DeepLabv3+ shows the best performance with an 
inference time of 64.7 ms. Therefore, DeepLabv3+ is selected to segment the asphalt road to ensure the real-time 
performance of the lateral positioning method.

We conducted experiments to validate the effectiveness of SSED. The experimental setup includes the usage 
of images, the lighting conditions, the presence of obstacles, and roller positions, as shown in Table 1. The 
results are shown in Fig. 8. The images labeled from 1 to 4 in Fig. 8a are used to validate the performance of 
DeepLabv3+ in segmenting asphalt road. These images with this perspective are used to develop a dataset for 
asphalt road construction and enhance the performance in segmenting asphalt road but not utilized for lateral 
positioning. The images labeled from 5 to 7 in Fig. 8a are captured from the perspective of the roller and utilized 
for lateral positioning. The image labeled 7 in Fig. 8a is used to test the robustness of SSED in extracting road 
boundaries in insufficient lighting conditions.

In the images labeled 1 and 5 in Fig. 8a, shadows appeared on the asphalt road due to the influence of roadside 
facilities. However, as shown in the results in Fig. 8b, the segmentation results of asphalt road are not affected 
by the shadow on the asphalt road. In addition, for the image labeled 7 in Fig. 8a, the segmentation results of 

Figure 7.  The experimental results of different models in asphalt road segmentation.
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asphalt road are consistent with the actual asphalt road. It indicates that image brightness transformation during 
training process enhances the adaptability of DeepLabv3+ to changes in brightness. In Fig. 8a, although the 
images labeled from 5 to 7 contain non-road areas such as the roller body, the asphalt road segmented is almost 
the same as the actual asphalt road. The non-road areas are not mistakenly divided into asphalt road, which 
indicates that DeepLabv3+ realizes the accurate segmentation of asphalt road. Fig. 8d shows the edge results 
obtained by performing edge detection and eliminating abnormal pixels on the semantic results in Fig. 8b. In the 
images labeled 5 to 7 in Fig. 8a, since there is a roller body near the bottom boundary of the images, the contour 
of the roller body is detected when edge detection is performed directly on the results of semantic segmentation. 
Given that these non-road areas consistently occur near the bottom boundary of the images, it is easy to remove 

Figure 8.  The experimental results of extracting the asphalt road boundary.

 

Label number

Usage

Lighting Obstacles Roller positionsValidation Lateral positioning

1 ✓ × Uneven No Side

2 ✓ × Medium No Centered

3 ✓ × Strong No Side

4 ✓ × Strong No Side

5 × ✓ Uneven No Side

6 × ✓ Medium No Side

7 × ✓ Insufficient No Side

Table 1.  The experimental setup of validating the effectiveness of SSED.
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the non-road boundary pixels by searching the pixels near the bottom boundary of the image during performing 
edge detection on the semantic segmentation results. This process ensures that only the asphalt road boundary, 
which is crucial for lateral positioning, is retained. The final asphalt road boundary extracted by combining 
semantic segmentation and edge detection are shown in Fig. 8e, and they can effectively represent the actual 
asphalt road boundary. This indicates that the proposed method that combines semantic segmentation and edge 
detection to extract the asphalt road boundary is effective.

Lateral positioning experiments
As far as we know, the lateral positioning method based on visual perception is rare. A comparative analysis with 
the lateral positioning method (LPVFE) in Ref.16 was conducted to validate the performance of the proposed 
lateral positioning method. LPVFE16 is summarized as follows. Firstly, the distortion of images with ground 
markings is corrected by the internal parameters of the camera. Secondly, the images are converted to grayscale 
images, after which Gaussian Filter is performed to reduce noise and smooth the images. Subsequently, a 
method combining edge gradient threshold and color feature threshold is used to extract the features of interest. 
Then, the morphological operation is performed to highlight features of interest. Additionally, the region of 
interest (ROI) is set as the part of the ground markings within work area to avoid background interference. 
Following this, the Hough transform is performed on the pre-processed region of interest to form a line set. 
Then, a slope threshold is established for these lines to eliminate redundant and falsely detected lines. Finally, 
the lateral distances between the look-ahead point in the moving direction of the roller and the left and right 
ground markings are calculated by the camera imaging geometry. The scenes of the comparative experiment 
are shown in Fig. 9. In order to better reproduce the ground markings extraction of LPVFE, we arranged white 
ground markings along the asphalt road boundary, as shown in the blue box in Fig. 9a, b. There are no ground 
markings in Fig. 9c. In order to make the lateral positioning methods comparable, we set the coordinates of the 
contact point between the roller steel wheel and the asphalt road in our proposed method to the midpoint of the 
bottom boundary of the image to calculate the lateral distance.

The accuracy of the lateral positioning methods is evaluated by absolute error and relative error, as shown 
in Table 2. The lateral positioning accuracy of LPVFE is the worst due to its larger absolute errors and relative 
errors. When the roller is far away from the asphalt road boundary, the ground markings in the image do not 
intersect with the bottom boundary of the image, as shown in Fig. 9b. In this case, LPVFE cannot calculate 
the lateral distance, which is one of its limitations. In the experiment, when the lateral distance exceeds 1.392 
m, LPVFE can no longer calculate the lateral distance. However, LPCIH and LPRSW are still able to calculate 
the lateral distances without being affected by the position of the asphalt road boundary in the image. This 
is one of the advantages of our proposed lateral positioning method. When the real distances are small, the 
absolute errors of LPCIH and LPRSW are around 0.01 m. As distances increase, the absolute errors of LPCIH 
and LPRSW are less than 0.10 m. Therefore, the proposed lateral positioning method exhibits superior accuracy 
and applicability compared with LPVFE.

The reasons for the poor accuracy of LPVFE is explained in Fig. 10. Figure 10b shows the threshold 
segmentation results of the ROI at the ground markings obtained by the threshold segmentation method in 
Ref.16. As shown in Fig. 10b, there is false detection for the ground markings by using edge gradient threshold 
and color feature threshold to extract the ground markings in the ROI. This is also a limitation of LPVFE. In Fig. 
10c, the red line represents the ground markings extracted by combining Hough transform for line detection and 
slope threshold of LPVFE, and the green line represents the ideal ground markings. It can be seen that there is 
a difference between the extracted ground markings and the ideal ground markings. The inaccurate extraction 
of ground markings is the primary reason for the poor accuracy of LPVFE. In contrast, the proposed method 
does not rely on the ground markings, and it uses a semantic segmentation model to segment the asphalt road, 
as shown in Fig. 10e. The proposed method enhances accuracy for extraction of the asphalt road boundary by 
combining semantic segmentation and edge detection, as shown in Fig. 10f. It provides a good foundation for 
the proposed lateral positioning.

In order to validate the accuracy of LPCIH and LPRSW, we conducted lateral positioning experiments on 
the front and rear roller steel wheels, respectively. The experimental results of lateral positioning for the front 
roller steel wheel are shown in Table 3. LPCIH measures the lateral distance through the relative position △P
. The relative position △P  needs to be properly corrected with the change of the movement direction of the 
roller since the movement direction of the roller may not always be parallel to the asphalt road boundary and 
the installation position of the camera is close to the rear roller steel wheel. It is difficult to correct the relative 
position △P  in real time when the roller is working. Therefore, the error of lateral positioning for the front 

Figure 9.  The scene of the comparative experiment.
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roller steel wheel obtained by LPCIH is larger, with a mean relative error of 8.64%. In contrast, LPRSW directly 
measures the lateral distance between the front roller steel wheel and the asphalt road boundary since the front 
roller steel wheel is in the view of the camera. Therefore, LPRSW obtains smaller error, with a mean relative 
error of 3.40%. When the roller is close to the asphalt road boundary, the absolute error of lateral positioning 
for LPRSW is only 0.012 m. When the roller is far away from the asphalt road boundary, the absolute error of 
LPRSW remains below 0.15 m. Therefore, the proposed lateral positioning method meets the requirement of the 
lateral positioning accuracy for the front roller steel wheel.

Figure 10.  Results of extracting the asphalt road boundary by different lateral positioning methods.

 

Experimental sequence Methods Measured distance (m) Real distance (m) Absolute error (m) Relative error (%)

1

LPVFE 0.027 0.100 0.073 73.00%

LPCIH 0.090 0.100 0.010 10.00%

LPRSW 0.106 0.100 0.006 6.00%

2

LPVFE 0.086 0.250 0.164 65.60%

LPCIH 0.261 0.250 0.011 4.40%

LPRSW 0.258 0.250 0.008 3.20%

3

LPVFE 0.157 0.562 0.405 72.06%

LPCIH 0.601 0.562 0.039 6.94%

LPRSW 0.571 0.562 0.009 1.60%

4

LPVFE 0.268 0.865 0.597 69.02%

LPCIH 0.896 0.865 0.031 3.58%

LPRSW 0.863 0.865 0.002 0.23%

5

LPVFE 0.371 1.144 0.773 67.57%

LPCIH 1.161 1.144 0.017 1.49%

LPRSW 1.131 1.144 0.013 1.14%

6

LPVFE 0.456 1.392 0.936 67.24%

LPCIH 1.401 1.392 0.009 0.65%

LPRSW 1.373 1.392 0.019 1.36%

7

LPVFE – – – - -

LPCIH 1.597 1.615 0.018 1.11%

LPRSW 1.571 1.615 0.044 2.72%

8

LPVFE – – – –

LPCIH 2.524 2.522 0.002 0.08%

LPRSW 2.463 2.522 0.059 2.34%

9

LPVFE – – – - -

LPCIH 2.882 2.953 0.071 2.40%

LPRSW 2.865 2.953 0.088 2.98%

Table 2.  The comparison results of lateral positioning methods.
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The experimental results of lateral positioning for the rear roller steel wheel are shown in Table 4. The errors 
of lateral positioning for the rear roller steel wheel obtained by LPCIH and LPRSW are similar. When the roller 
is close to the asphalt road boundary, the absolute errors of LPCIH and LPRSW are less than 0.01 m. When the 
roller is far away from the asphalt road boundary, the absolute errors of LPCIH and LPRSW remain below 0.15 
m. This indicates that both LPCIH and LPRSW meet the requirements of the lateral positioning accuracy for the 
rear roller steel wheel. Compared with the error of lateral positioning for the front roller steel wheel obtained by 
LPCIH, the error of lateral positioning for the rear roller steel wheel obtained by LPCIH is smaller. This is because 
the installation position of the camera is close to the rear roller steel wheel, so that the relative position △P  does 
not need to be corrected excessively. The mean relative error of lateral positioning for LPCIH is 2.32%, which 
fully meets the needs of lateral positioning accuracy. LPRSW directly measures the lateral distance between the 
rear roller steel wheel and the asphalt road boundary since the rear roller steel wheel is in the view of the camera. 
Consequently, LPRSW demonstrates commendable accuracy in lateral positioning, with a mean relative error of 
1.87%. Therefore, the proposed lateral positioning method can meet the requirement of the roller for positioning 
accuracy for the rear roller steel wheel.

An experiment in construction sites was conducted to verify the effectiveness of the proposed lateral 
positioning method. The experimental scene and experimental results are shown in Fig. 11. The roller speed 
during compaction is about 2∼3 km/h. The experimental results are expressed in the form of (real distance, 
measured distance). In Fig. 11a, the absolute errors of the lateral distances AB and CD are 0.123 m and 0.143 
m, respectively, and the relative errors are 3.30% and 3.81%, respectively. In Fig. 11b, the absolute errors of the 
lateral distances, EF and GH, are 0.124 m and 0.117 m, respectively, and the relative errors are 3.04% and 2.85%, 
respectively. It can meet the requirements of the lateral positioning accuracy of the roller during the construction 
process.

In the lateral positioning experiments, the camera captures images at a resolution of 1280×720, with an 
acquisition frame rate of 30 FPS. With these parameters, the proposed lateral positioning method achieves a 
frequency of 6.25 Hz. This frequency fully satisfies the requirements for real-time application in asphalt road 
construction for rollers whose working speeds are typically about 2∼3 km/h.

Real distance (m)

Measured 
distance (m)

Absolute error 
(m)

Relative error 
(%)

LPCIH LPRSW LPCIH LPRSW LPCIH LPRSW

0.268 0.260 0.265 0.008 0.003 3.08% 1.01%

0.821 0.816 0.815 0.005 0.006 0.56% 0.67%

1.330 1.382 1.291 0.052 0.039 3.88% 2.92%

1.821 1.816 1.782 0.005 0.039 0.25% 2.15%

2.412 2.381 2.382 0.031 0.030 1.29% 1.26%

2.838 2.780 2.782 0.058 0.056 2.04% 1.97%

3.176 3.086 3.150 0.090 0.026 2.82% 0.82%

3.726 3.608 3.619 0.118 0.107 3.17% 2.88%

4.020 3.900 3.912 0.120 0.108 2.98% 2.69%

4.648 4.501 4.538 0.147 0.110 3.16% 2.36%

Average – – 0.063 0.052 2.32% 1.87%

Table 4.  The experimental results of lateral positioning for the rear roller steel wheel.

 

Real distance (m)

Measured 
distance (m)

Absolute error 
(m)

Relative error 
(%)

LPCIH LPRSW LPCIH LPRSW LPCIH LPRSW

0.328 0.381 0.316 0.053 0.012 16.01% 3.58%

0.937 1.044 0.894 0.107 0.043 11.37% 4.56%

1.479 1.589 1.450 0.110 0.029 7.46% 1.98%

1.968 1.839 1.871 0.129 0.097 6.58% 4.93%

2.265 2.151 2.190 0.114 0.075 5.02% 3.32%

2.762 2.550 2.651 0.212 0.111 7.67% 4.02%

3.133 3.387 3.028 0.253 0.105 8.09% 3.34%

3.802 3.474 3.676 0.328 0.126 8.63% 3.31%

4.228 3.953 4.145 0.275 0.083 6.51% 1.95%

4.589 4.171 4.452 0.418 0.137 9.10% 2.99%

Average – – 0.200 0.082 8.64% 3.40%

Table 3.  The experimental results of lateral positioning for the front roller steel wheel.
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Discussion
LPCIH employs the relative position △P  between the camera and the roller steel wheels to measure lateral 
distances. It needs to calibrate the relative position △P . Given that the movement direction of the roller may 
not always be parallel to the asphalt road boundary, proper adjustment of the relative position △P  is necessary 
to ensure accurate lateral positioning as the movement direction of the roller changes. Otherwise, it will cause 
errors in lateral positioning. LPRSW directly measures the lateral distances between the roller steel wheels and 
the asphalt road boundary since the roller steel wheels are in the view of the camera. This makes LPRSW show 
higher accuracy and better practicability in roller lateral positioning. On the other hand, during the compaction 
of the asphalt road by the roller, the roller will change the lane to compact the road. In this case, the front roller 
steel wheel may temporarily disappear in the camera’s field of view, which will cause LPRSW to fail to complete 
the lateral positioning of the front roller steel wheel. At this time, LPCIH can be used as a preparation method 
to make up for the missing lateral positioning of the front roller steel wheel because its accuracy is only slightly 
lower than that of LPRSW.

The asphalt road typically has road cross slope, slope36–38, and so on. The lateral distances measured by 
LPCIH are in the horizontal plane, not in the plane parallel to the asphalt road. The lateral distances measured 
by LPCIH need to be properly corrected to approximate the real lateral distances. However, the slope angle 
of asphalt roads is not constant. It is necessary to continuously adjust the correction coefficient to accurately 
measure the lateral distances, which will make it difficult to accurately measure the lateral distances. LPRSW 
measures the lateral distances from the contact point of the roller steel wheels and the ground to the asphalt road 
boundary, and it is unaffected by the road cross slope, slope, and so on.

The proposed lateral positioning method for unmanned rollers focuses on the positioning of unmanned 
rollers relative to asphalt road during asphalt road construction. By monitoring the lateral distances between 
roller steel wheels and asphalt road boundary, our proposed method can effectively reduce potential collision 
between the roller and the objects on the asphalt road boundary. Once the roller collides with the asphalt road 
boundary, it will cause damage to the roller and asphalt road, which will affect the asphalt road construction. 
Moreover, the proposed lateral positioning method enhances the accuracy of lateral positioning, which is 
helpful for making the compaction of the asphalt road more uniform and durable. Additionally, our proposed 
method can be used to monitor the compaction state of asphalt road. This constant monitoring contributes to 
the longevity and reliability of asphalt road.

Currently, the most commonly used positioning systems for unmanned rollers in asphalt road construction 
are GPS. The cost of a robust GPS with multiple antennas and high precision is about CNY ¥20,000. Additionally, 
GPS might involve extra data service fees for regular updates and subscriptions. Continuous subscription fees for 
high-precision GPS are about CNY ¥4,000 per year. In short, a robust GPS may cost CNY ¥24,000. In contrast, 
the cost of a robust camera-based system with high precision is about CNY ¥4,000 per unit, and the camera-
based system usually does not involve additional data connection fees. In this paper, a ZED2i camera is used for 
lateral positioning, and it can accurately measure distances within a range of 5 m. Its cost is about CNY ¥4,000 
per unit. For higher precision requirements, a visual sensor with superior precision is recommended, and its cost 
will also increase. Therefore, compared with the commonly used GPS for unmanned rollers, the camera-based 
roller lateral positioning used in this paper has a significant advantage in cost.

Conclusions
An unmanned roller lateral positioning method for asphalt road construction is proposed in this paper to realize 
the positioning of unmanned rollers relative to asphalt road. Compared with satellite-based positioning, this 
relative positioning can accurately determine whether unmanned rollers drive out of the specified compaction 
areas when unmanned rollers are working near the asphalt road boundary. On the other hand, the proposed lateral 
positioning method can provide positioning for unmanned rollers when the satellite-based positioning systems 
fail. Additionally, a method combining semantic segmentation and edge detection was proposed to extract the 
asphalt road boundary, and it significantly enhances the accuracy of the extraction of asphalt road boundary. 
Compared with the traditional method of using edge detection and Hough transform for line detection to extract 
asphalt road boundary, the proposed method solves the difficulty of adjusting the edge detection parameters 
caused by the intricate background surrounding the asphalt road boundary. The experimental results show that 

Figure 11.  The experimental scene and experimental results in the field experiment.
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the extracted asphalt road boundary is almost consistent with the actual asphalt road boundary. Field validation 
demonstrates that the proposed lateral positioning method has high accuracy, with a mean relative error of 
3.40%. The frequency of lateral positioning can reach 6.25 Hz. It fully satisfies the performance requirements 
for lateral positioning in both accuracy and real-time during asphalt road construction for unmanned rollers. 
In addition, the proposed lateral positioning method can be implemented solely through a camera, which 
demonstrates simplicity and low hardware costs.

The main contributions of this paper are summarized as follows: 

	(1)	� An unmanned roller lateral positioning method is proposed to realize the positioning of unmanned rollers 
relative to asphalt road, which has received little attention before. The method solves the problem that un-
manned rollers may drive out of the compaction areas and collide with the objects around the construction 
area during construction of asphalt road. Moreover, the proposed method can still locate unmanned rollers 
when satellite-based positioning fails.

	(2)	� An image dataset for asphalt road construction is developed. Different from the current asphalt road data-
sets, our dataset is primarily focused on images of asphalt road with different objects surrounding the as-
phalt road, such as curbstones, guardrails, construction enclosures, greening facilities, and drainage ditches, 
etc. These images were captured during asphalt road construction, and there is no lane lines and other 
driving signs on the road, which is the most significant feature of our dataset.

	(3)	� A method combining semantic segmentation and edge detection is proposed to accurately extract the as-
phalt road boundary. The proposed method effectively solves the challenge of adjustment parameters of 
both edge detection and Hough transform for accurate extraction of asphalt road boundary in complex 
construction environment.

Although the proposed method is robust, there are still some limitations that need to be solved to further 
improve the performance of the proposed method. Accurate extraction of asphalt road boundary is a crucial 
step for the proposed roller lateral positioning method. The complex background at the asphalt road boundary, 
the indistinct features at the asphalt road boundary, and variations in weather conditions etc., lead to significant 
differences in the images of the asphalt road, thereby affecting the accuracy of boundary extraction. For future 
work, image contrast transformation can be employed to enhance the dataset for the semantic segmentation to 
improve the adaptability of the semantic segmentation model to such situation. In addition, the current lateral 
positioning is discrete along the movement direction of the roller. We intend to focus on longitudinal positioning 
to achieve more accurate roller positioning by combining lateral positioning and longitudinal positioning.

Data availability
The data used to support this study are available from the corresponding author upon request.
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