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Local corner smoothing based on
deep learning for CNC machine
tools

Bai Jiang?, Rong Sun?, Ze-long Li3, Liang Xu?, Huang Liao?, Xiao-yan Teng**“ & Bing Li3**

Most of toolpaths for machining is composed of series of short linear segments (G01 command), which
limits the feedrate and machining quality. To generate a smooth machining path, a new optimization
strategy is proposed to optimize the toolpath at the curvature level. First, the three essential
components of optimization are introduced, and the local corner smoothness is converted into an
optimization problem. The optimization challenge is then resolved by an intelligent optimization
algorithm. Considering the influence of population size and computational resources on intelligent
optimization algorithms, a deep learning algorithm (the Double-ResNet Local Smoothing (DRLS)
algorithm) is proposed to further improve optimization efficiency. The First-Double-Local Smoothing
(FDLS) algorithm is used to optimize the positions of NURBS (Non-Uniform Rational B-Spline) control
points, and the Second-Double-Local Smoothing (SDLS) algorithm is employed to optimize the
NURBS weights to generate a smoother toolpath, thus allowing the cutting tool to pass through each
local corner at a higher feedrate during the machining process. In order to ensure machining quality,
geometric constraints, drive condition constraints, and contour error constraints are taken into
account during the feedrate planning process. Finally, three simulations are presented to verify the
effectiveness of the proposed method.
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In recent years, with the rapid development of aerospace technology, many parametric curves and surfaces have
been widely used to describe aerospace components due to their simple modeling and high-order continuity,
including Bezier curves, NURBS splines, and PH curves. These provide a general mathematical tool for the
analytical calculations. Although CNC machining paths can now be described by spline curves, most machining
paths are still predominantly created using GOl commands. The tangential discontinuities between the line
segments caused by the machining path's poor smoothness cause the machining feedrate to decrease to very
low or even zero, with significant swings in the acceleration and jerk restrictions. Therefore, in order to improve
machining efficiency, the machining path needs to be smoothed at the geometry level. Currently, smoothing
methods are divided into two categories: local corner smoothing and global smoothing. Global smoothing, due
to the complexity of error analysis and the difficulty of precisely controlling errors, remains challenges!~. Most
recent research has primarily focused on local corner smoothing.

The analytical calculation method is the most commonly utilized for local corner smoothing. References*!®
have provided analytical calculations explaining the reasons why asymmetric local machining paths and
symmetric local machining paths can enhance machining efficiency. These findings have been validated through
experiments and simulations. The difference lies in the order of continuity, the degree of curves, the different
applications, and the complexity of the calculation. Lu* employed the PSO algorithm to optimize local velocity.
However, the efficiency of the PSO optimization algorithm is affected by factors such as population size and
computational resources, which can reduce the solution efficiency. Xu® provided analytical calculations to give
a method of how to control the approximation-error, but there is still room for optimization, which can still
further optimize the curvature by adjusting the position of the control points. Huang’ proposed a real-time local
corner smoothing method that significantly reduces the acceleration of each axis while simultaneously ensuring
accuracy in the tool tip and tool axis vector errors. This method has been integrated into an open environment
CNC system, validating its effectiveness. Hu® et al. presented an analytically computed cubic continuous local
smoothing method, which locally inserts B-spline curves to limit the maximum approximation error while
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performing local smoothing. It has been experimentally verified that the method has smoother acceleration and
smaller contour errors. Hu’ verified why the overlapping spline curves are not smooth enough by the numerical
and analytical calculations and proposed a method to remove overlapping asymmetric curves to smooth the
curves, which significantly reduces the curvature and saves machining time. Han et al.!> performed analytical
calculations while also conducting parameter sensitivity analysis on local control points at different angles, and
S-shaped acceleration and deceleration planning was used to plan the residual distance between speed intervals
in order to improve the machining efficiency. Zhang et al.!® considered chord error and feedrate, which enhanced
efficiency as well as machining quality compared to point-to-point curvature optimization. Huang!” proposed
a new curve, Airthoid, which represents curvature in a more concise way and uses this curve for local corner
smoothing. Additionally, a time synchronization strategy that maximizes the acceleration process is established
to improve machining efficiency.

In summary, numerical analysis methods are predominantly used in most recent research for local corner
smoothing, and these methods are often applied only within or on the control polygon, leaving room for further
optimization. In this paper, a new optimization approach is first established near the NURBS control polygon
to smooth the local corner by formulating an optimization objective. Intelligent optimization algorithms are
employed to solve it, and deep learning methods are utilized to accelerate the optimization process. The methods
related to the intelligent optimization algorithms, deep learning models and their corresponding optimization
functions, machining process simulation parameters, and comparative methods selected in this paper will be
introduced in subsequent sections'®-24.

The remainder of this paper is organized as follows: “The optimization architecture of the local tool path”
introduces the optimization architecture of intelligent optimization (as shown on the left in Fig. 1). Section
“Deep learning optimization” presents the deep learning model to accelerate the optimization process (as shown
in the center of Fig. 1). To ensure processing quality, “Feedrate planning based on multiple constraints” discusses
the relevant constraints (as shown on the right in Fig. 1). Section “Simulation results” describes simulations to
verify the effectiveness of the proposed method.

The optimization architecture of the local tool path

The curvature of the machining path has a significant effect on the feedrate. Various constraints, including
geometric constraints, acceleration constraints, and contour error constraints, are converted from curvature to
feedrate on the machining path. Therefore, it is essential to smooth the machining path at the geometry level.

NURBS
NURBS provide a generalized mathematical tool for free-form curves and have become one of the most common
tools for describing machining paths in recent years. NURBS is shown in Eq. (1):
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Fig. 1. The flow chart of this paper.
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where P; is the control point of the NURBS spline curve, w; is the weight of the NURBS spline curve, and N; ;

(u) is the basis function of the NURBS spline curve. The basic functions of the NURBS splines are calculated
through recursive calls, as shown in Eq. (2):

C(u)

uo < U < Untptl (1)
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It is necessary to specify that “0/0=0” in Eq. (2). The first and second order derivatives of the basic functions of
NUEBS spline curves are expressed in Egs. (3) and (4):
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Further, the first-order derivative and the second-order derivative of the NURBS curve can be expressed as:
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The curvature of the NURBS curve can be expressed as:
/ 3
C'(w) ©
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Each local corner that needs to be smoothed can be simplified into the form shown in Fig. 2b, which shows the
distribution of NURBS spline control points using two different methods. In Fig. 2b, the blue circles within the
black circle represent the additional control points compared to method 1. Since the curve is symmetric about
the y-axis, an additional control point is added on the right side of the y-axis in the same way. The other NURBS
control points, not circled in black, coincide with each other. The number of method 2 control points is 7, and the
number of method 1 control points is 5. The NURBS splines generated by the two different methods are shown
in Fig. 2a, and the curvature of the two spline curves is illustrated in Fig. 2c. It can be observed that the spline
obtained by distributing the NURBS control points using method 2 exhibits a significantly greater reduction in
curvature compared to method 1. Therefore, this paper primarily focuses on method 2.
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Fig. 2. Comparison of the two different methods of distributing control points.
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Fig. 3. The approximation error of the local corner.
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Fig. 4. Schematic diagram of the optimization process.

It should be noted that although method 2 makes the locally smoothed path closer to the central control point
(as shown in Fig. 2a), the addition of two control points may cause d, (as shown in Fig. 3) at the local machining
path that exceeds the user-defined maximum approximation error §, . compared to method 1. Typically, &, is
greater than §,, and it is required that 8, is also less than the maximum approximation error §_, . The subsequent

optimization process ensures that max (,, §,) <6,

The optimization process description

The optimization process in this paper can be described as finding two symmetric NURBS control points P,,,,
P, in the pink region such that the curvature is optimal within the region. Simultaneously, the constraint max
(0,, 0,) <9y, must be satisfied. The optimal control point positions should be determined without exceeding
the pink region, while also ensuring that they do not coincide with the boundary (the control points P, , and
P, ,as shown in Fig. 4, cannot coincide with P_,P, and P, +1.). To ensure that the maximum curvature in the
optimization region occurs as much as possible within the region shown in Fig. 2a, it should be ensured that
£P,_,P, P, ;and £P,_ P, P areboth smaller than 2P, .P,P, ,.

In summary, the three essentlal components of optimization can be described as follows:
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N
where max (3},

curvature of each local corner. If the curvature of a local corner is too large, the feedrate needs to be reduced to
satisfy certain constraints. Therefore, in order to ensure machining efficiency, it is required that the curvature
should be less than cur; max-. PH_3 » denotes the x- coordmate of the P, , control point for the ith local corner
requiring smoothing, as shown in Fig. 3. Similarly, P, 5 ,, represents the- y coordinate of the P; 13 control point
for the ith local corner requiring smoothing. In order to avoid d, exceeding §, , the last constraint uses the form
of solving an equation to limit 8,. Since the location of the NURBS main control point cannot be guaranteed, (the

main control point is the control point that has the most influence on the point of the NURBS spline curve), it is

curi) is each local corner that needs to be smoothed, and cur; max is the maximum
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necessary to discuss the above situation separately: when the main control point is Pf, set w; to 1, and set w;3
and w; 14 to equal values before solving. When the main control point is P}, 3 or P}, 4, set w; 3 and wi44 to 1,
and then solve for w,.

The selection of optimization algorithm
The Particle Swarm Algorithm (PSO)?? is a heuristic and intelligent optimization algorithm. It is particularly
effective in addressing multi-dimensional nonlinear problems and has a strong global search capability.
Therefore, the Particle Swarm Optimization (PSO) algorithm is selected as the optimization agent model. The
update strategy of the PSO algorithm is as follows:

vfd+1 = ’U}de +cir (p'];d,pbest - m"fd) + car2 (pfd,gbcst - xfd) (8)

k k
+ ¢33 (pid,pbest - pid,gbest)

where c; represents the weight of the particle's next step being influenced by its own experience, which
accelerates the particle towards the individual’s best position. cz signifies the weight of the particle's next step
being influenced by the experience of other particles, accelerating the particle towards the global best position.
c3 denotes the weight that reflects the contribution of the group's experience in relation to the particle's own
experience. The positions of the two additional control points (P, , and P, ,) in Fig. 4 are treated as particles
to be optimized. Under the constraints of Eq. (7), the positions of the particles are iteratively updated within
the feasible domain until the algorithm converges. The NURBS control point positions and the corresponding
NURBS weights are stored as datasets for subsequent deep learning training.

Deep learning optimization

Intelligent optimization algorithms are affected by the population size, the search space, and the computational
resources, which can lead to inefficient optimization. Deep learning, because of its efficient feature extraction
capabilities and powerful autonomous learning efficiency, has made significant progress in applications. Deep
learning relies on feature transformation between network layers and layer-by-layer training mechanisms to
significantly improve the efficiency of complex data and special tasks. The Resnet* architecture defines the desired
underlying mapping as H(x) and modifies the stacked nonlinear layers to fit another mapping, f(x) = H(x) — x.
The original mapping is then reformulated as f(x) + x. The expression f(x) +x can be effectively utilized through
“shortcut connection” to prevent the vanishing gradient, which often leads to poor model training performance
as the depth of deep learning layers increases, The network structure is shown in Fig. 5.

The selection of a loss function

In this paper, the Double- Resnet local corner smoothing algorithm is employed, including FDLS (First-Double-
ResNet local smoothing algorithm) and SDLS (Second-Double-ResNet local smoothing algorithm). The above
two algorithms are respectively used to predict the control point positions and the weight w of the NURBS curve.
The overall structure of the FDLS is shown in Fig. 6. The FDLN inputs are the five NURBS spline control points
before smoothing (as shown in Fig. 6 (1)), and its outputs are the two control points added after smoothing (as
shown in Fig. 6 (2)). The input of the SDLS consists of all control points after smoothing (as shown in Fig. 6 (3)),
and the output is the weights (as shown in Fig. 6 (4)) obtained by solving the equations that prevent the error &,
from being excessively large under the last constraint.

The residual block is shown in Fig. 7, which performs a shortcut connection every 8 layers, and the whole
structure has 64 fully connected layers, with dropout interspersed among them to prevent overfitting. The
dropout is to reduce co-adaptation among neurons. Specifically, it prevents certain neurons from becoming
overly reliant on others. Dropout enables the network to better adapt to varying input data by decreasing the
dependencies between neurons.
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Fig. 5. Shortcut connection.
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Fig. 7. The residual block.

The selection of a loss function and the selection of optimization algorithm
In deep learning, a loss function is needed to evaluate how good the model is. Since the task is a typical regression
task, the MSE (Mean Squared Error) loss function is selected.

S

1 .
MSE = - > wi-w)? ©9)

i=1

where s denotes the number of samples, which is the total count of data points in the dataset. y; is the true value
of the i-th sample. y; is the predicted value for the i-th sample.

Since the optimization process of finding the optimal NURBS control points to achieve the optimal curvature
will have high nonlinearity, this paper adopts the optimization algorithm Adam. The algorithm improves the
global search capability and accelerates the convergence speed. Its optimization process can be expressed as
follows?*:

= Bime—1+ (1 — P1)g: (10)
v = Pove—1 + (1 — 52)9752 (11)
me = (12)
t =
1— 81

b v

tT 18 (13)
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Fig. 8. FDLS training process.
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Fig. 9. SDLS training process.

n N
Opi1 = 0p — —
t+1 t \/7 my (14)
v+ €

where m and v; denote the first-order and second-order matrices of the gradient in momentum form at time ¢,
respectively. m; represents the bias-corrected momentum first-order matrix, and v; denotes the bias-corrected
momentum second-order matrix. 81 and B2 indicate the exponential decay rate of the first-order moment
estimation and the exponential decay rate of the second-order moment estimation, respectively. Moreover, /31
and B4 refer to the t-th power of 31 and 32, respectively. £ denotes a constant close to 0 and is designed to ensure
the stability of the numeric.

After extensive experiments, the settings for FDLS and SDLS in this paper are as follows: FDLS: batch size =16,
learning rate =0.005; SDLS: batch size =64, learning rate=0.001. The training process is illustrated in Figs. 8
and 9. FDLS achieves a final convergence magnitude of 10~* after 1000 iterations, while SDLS reaches a final
convergence magnitude of 1072 after 10,000 iterations. Both models reach the expected error magnitudes well
before the maximum preset number of iterations. The FDLS model approaches convergence after around 2000
iterations. The SDLS model nears convergence after approximately 15,000 iterations. Neither appears overfitting.
The detailed results of the training process can be found in ESM Appendix A.

Feedrate planning based on multiple constraints
The geometric error and the contour error
The chord error can be calculated by Eq. (15):
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where p represents the radius of curvature, 7' denotes the interpolation period. Consequently, the feedrate
constrained by the chord error can be determined:

L A2
24/2p Aim — A7, (16)

T

va(p) =

The relationship between contour error and feed rate can be expressed as Eq. (17):

€t — 2€limp
Ve = pwa|[1—2¢% + /(202 —1)2 — im0 (17)
p ¢ \/( ¢-1) (> e )2
where e1im is the contour-error limitation, ¢ is Damping ratio, w, = /Kp/J, ( = B/(24/JK}), wy, is

undamped natural frequency, K is the position-loop proportional gain, ] is the equivalent rotational inertia of
the feed-drive system, and B is the equivalent damping factor.

The feedrate constrained by normal acceleration and normal jerk
When the feedrate is v, the normal acceleration can be derived from Eq. (18)'°:

1}2

an = — (18)
p

Therefore, the feedrate under the normal acceleration constraint is described as follows:
Va(p) = /Pln lim (19)

where an 1im is the limit of the normal acceleration.

The jerk can be expressed by the rate of change of acceleration as shown in Fig. 10:

2 .
A an = ||lant — o || = 2% sin (42)
At = £L8
- v 5 ( 9) (20)
22 sin( &2 3
o — 1i Aan _ 13 Zp 7 N2) _ v
In = Algglo ot AI;IEO pTAe p?

The relationship between the jerk limit and the radius of curvature can be expressed as:

vi(p) = V/P?Jnlim 1)

where jn 1im is the limit of the jerk.

Based on the above constraints, the feedrate at each point on the NURBS spline can be determined:

vy = minfva, va, vy, vc (22)

where v ¢ is the maximum feedrate for each point.

Fig. 10. The calculation of normal jerk.
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Symbol | Parameter Value

T Interpolation period 2 ms

A Programmed maximum feedrate | 70 mm/s

w, Natural frequency 60 rad/s

¢ Damping ratio 0.76

Alim Chord error limitation 1pum

Qn lim | Normal acceleration limitation 990 mm/s?
Jn,lim | Normal jerk limitation 29,000 mm/s®
atlim | Tangential acceleration limitation | 800 mm/s*
Jt,lim | Tangential jerk limitation 20,000 mm/s’
€lim Contour error limitation 0.05 mm

611;“ Approximation error limitation 0.1 mm

Table 1. The parameter setting for simulations.
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Fig. 11. W-shaped machining path.

The feed rate planning method adopts the method described in reference!®. The NURBS machining path is
discretized into a finite number of sample points. The curvature is converted to feed speed based on Eq. (22).
The point less than the maximum feedrate is defined as the sensitive interval point. The minimum speed within
the sensitive interval is defined as the feedrate of the sensitive interval. Set the points greater than or equal to
the maximum feedrate to the maximum feedrate and define them as non-sensitive intervals. Since the feedrate
changes continuously during the machining process, acceleration and deceleration should be performed in the
non-sensitive intervals to smoothly reach the feedrate for each sensitive interval. Considering the limited drive
capabilities of each axis, certain sensitive interval speeds need to be updated to ensure that acceleration and
deceleration can be completed within the non-sensitive intervals. The parameters are set as shown in Table 1.

Simulation results

In this section, three simulations are performed to verify the effectiveness of the proposed methods. Example 1
is introduced in this paper to demonstrate that the proposed method can indeed optimize the machining path
in terms of curvature. Example 2 and Example 3 are presented to show that the proposed method, compared to
other methods?®2}, is more applicable to paths with both large and small curvatures (as in Example 2), as well as
paths with a higher frequency of large curvature segments that are close each other (as in Example 3). To further
verify the generality and optimization efficiency of the proposed deep learning model, the comparative data
between PSO algorithm and the proposed deep learning model can be found in ESM Appendix B.

Casel

Case 1 selects the W-shaped machining path shown in Fig. 11. As indicated in Table 2 and Fig. 12a, the
approximation error in each local corner did not exceed the maximum local approximation error. Additionally,
the curvature after optimization decreased to varying degrees compared to before optimization, with a maximum
reduction of up to 92.7%. The above results demonstrate that the proposed method can optimize the curvature
of each local corner while maintaining the shape of the machining path to a certain extent. After optimizing the
curvature, the tool tip can pass through the local corners at a higher federate (as shown in Fig. 12b). Due to the
large curvature of the local corners and the shortness of the arc lengths of the neighbor corner, the feedrate is
low (as shown in Fig. 12b). It can be observed that none of the processing parameters exceeds the limit values
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Maximum

local corner

approximation error | Maximum curvature of local

(mm) corner

3, 3, 3, Corner, | Corner, | Corner,
Before 0.050 | 0.062 |0.034 |14.16 |27.06 |55.96
optimization
After optimization | 0.043 | 0.042 | 0.020 | 9.37 14.04 30.77

Percentage of

14% | 32.2% | 41.2% | 33.8% 92.7% 45%
change

Table 2. The data about the machining path “W”.

(guaranteeing machining quality) through Fig. 12c-h, proving that the constraints proposed in this paper are
effective.

Case 2

The “Dress” machining path is selected as case 2, which is characterized by both large and small curvatures. Due
to the short arc length left for acceleration and deceleration, neither the methods proposed in references®’!
nor the method presented in this paper were able to reach the maximum feedrate v . The feedrate distributions
of the three methods are shown in Fig. 13a. It can be seen by the processing time shown in Fig. 13b that the
method proposed in this paper achieved the shortest machining time, followed by the method in Ref.?, while
the method in reference?! resulted in the longest machining time. The proposed method reduced machining
time by 8% and 36.9% compared to the methods in Refs.?*?!, respectively. Although the maximum values of
chord error, normal acceleration, normal jerk, contour error, tangential acceleration and tangential jerk of the
method proposed in this paper are still larger (e.g., Fig. 13c-h), they are all smaller than the limit values, which
proves that the aforementioned constraints are effective. The approximation error for case 2 is shown in Fig. 13i.
It should be noted that the machining path in case 2 has symmetric geometry. Therefore, only the approximation
error for each local corner in half of the symmetric structure is shown. The approximation error at each local
corner for all three methods is less than the maximum value 0.1 mm.

Case 3

In case 3, the “torch” machining path shape is selected as shown in Fig. 14a, and the local corner of the path with
large curvature is close to each other. The overall value of the path curvature is larger, so the feedrate is lower
than in case 2. Given that the path's beginning and ending portions are made up of arcs with a curvature of 0
and comparatively lengthy arc lengths, the feedrate can be accelerated to the maximum feedrate v , as shown
in Fig. 14b. It also can be observed that the proposed method results in relatively high values for chord error,
normal acceleration, normal jerk, contour error, tangential acceleration and tangential jerk (e.g., Fig. 14c-h), but
none of these exceed the limit value. It is clear from Fig. 14i that the method proposed in this paper achieves
smaller approximation errors compared to Refs.?"?2, indicating that our deep learning approach offers better
optimization for machining paths with multiple closely spaced high-curvature features. Based on the analysis
of case 2 and case 3, it can be seen that the proposed method not only ensures the accuracy of the machining
process but also optimizes curvature to a certain extent. It improves processing efficiency while maintaining
processing quality and meeting the specified constraints.

Conclusion

This paper proposes a novel method that transforms the local corner smoothing problem into an optimization
problem. The optimization objective, design variables, and constraints are defined, and the Particle Swarm
Optimization (PSO) algorithm is employed to solve it. Considering the impact of population size and
computational resources on intelligent optimization algorithms, the deep learning method is employed
to establish the mapping between inputs and outputs to improve optimization efficiency. The deep learning
network FDLS is used to optimize the positions of NURBS control points, while the network SDLS is utilized to
optimize NURBS weights. To ensure processing quality, this paper considers chord error, normal acceleration,
normal jerk, and contour error as constraints for limiting the federate. Finally, it is demonstrated through the
cases that the proposed method can improve processing efficiency while maintaining processing quality. The
future research is to extend the method to 5-axis CNC machining.
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