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Most of toolpaths for machining is composed of series of short linear segments (G01 command), which 
limits the feedrate and machining quality. To generate a smooth machining path, a new optimization 
strategy is proposed to optimize the toolpath at the curvature level. First, the three essential 
components of optimization are introduced, and the local corner smoothness is converted into an 
optimization problem. The optimization challenge is then resolved by an intelligent optimization 
algorithm. Considering the influence of population size and computational resources on intelligent 
optimization algorithms, a deep learning algorithm (the Double-ResNet Local Smoothing (DRLS) 
algorithm) is proposed to further improve optimization efficiency. The First-Double-Local Smoothing 
(FDLS) algorithm is used to optimize the positions of NURBS (Non-Uniform Rational B-Spline) control 
points, and the Second-Double-Local Smoothing (SDLS) algorithm is employed to optimize the 
NURBS weights to generate a smoother toolpath, thus allowing the cutting tool to pass through each 
local corner at a higher feedrate during the machining process. In order to ensure machining quality, 
geometric constraints, drive condition constraints, and contour error constraints are taken into 
account during the feedrate planning process. Finally, three simulations are presented to verify the 
effectiveness of the proposed method.
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In recent years, with the rapid development of aerospace technology, many parametric curves and surfaces have 
been widely used to describe aerospace components due to their simple modeling and high-order continuity, 
including Bezier curves, NURBS splines, and PH curves. These provide a general mathematical tool for the 
analytical calculations. Although CNC machining paths can now be described by spline curves, most machining 
paths are still predominantly created using G01 commands. The tangential discontinuities between the line 
segments caused by the machining path's poor smoothness cause the machining feedrate to decrease to very 
low or even zero, with significant swings in the acceleration and jerk restrictions. Therefore, in order to improve 
machining efficiency, the machining path needs to be smoothed at the geometry level. Currently, smoothing 
methods are divided into two categories: local corner smoothing and global smoothing. Global smoothing, due 
to the complexity of error analysis and the difficulty of precisely controlling errors, remains challenges1–3. Most 
recent research has primarily focused on local corner smoothing.

The analytical calculation method is the most commonly utilized for local corner smoothing. References4–18 
have provided analytical calculations explaining the reasons why asymmetric local machining paths and 
symmetric local machining paths can enhance machining efficiency. These findings have been validated through 
experiments and simulations. The difference lies in the order of continuity, the degree of curves, the different 
applications, and the complexity of the calculation. Lu4 employed the PSO algorithm to optimize local velocity. 
However, the efficiency of the PSO optimization algorithm is affected by factors such as population size and 
computational resources, which can reduce the solution efficiency. Xu6 provided analytical calculations to give 
a method of how to control the approximation-error, but there is still room for optimization, which can still 
further optimize the curvature by adjusting the position of the control points. Huang7 proposed a real-time local 
corner smoothing method that significantly reduces the acceleration of each axis while simultaneously ensuring 
accuracy in the tool tip and tool axis vector errors. This method has been integrated into an open environment 
CNC system, validating its effectiveness. Hu8 et al. presented an analytically computed cubic continuous local 
smoothing method, which locally inserts B-spline curves to limit the maximum approximation error while 
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performing local smoothing. It has been experimentally verified that the method has smoother acceleration and 
smaller contour errors. Hu9 verified why the overlapping spline curves are not smooth enough by the numerical 
and analytical calculations and proposed a method to remove overlapping asymmetric curves to smooth the 
curves, which significantly reduces the curvature and saves machining time. Han et al.15 performed analytical 
calculations while also conducting parameter sensitivity analysis on local control points at different angles, and 
S-shaped acceleration and deceleration planning was used to plan the residual distance between speed intervals 
in order to improve the machining efficiency. Zhang et al.16 considered chord error and feedrate, which enhanced 
efficiency as well as machining quality compared to point-to-point curvature optimization. Huang17 proposed 
a new curve, Airthoid, which represents curvature in a more concise way and uses this curve for local corner 
smoothing. Additionally, a time synchronization strategy that maximizes the acceleration process is established 
to improve machining efficiency.

In summary, numerical analysis methods are predominantly used in most recent research for local corner 
smoothing, and these methods are often applied only within or on the control polygon, leaving room for further 
optimization. In this paper, a new optimization approach is first established near the NURBS control polygon 
to smooth the local corner by formulating an optimization objective. Intelligent optimization algorithms are 
employed to solve it, and deep learning methods are utilized to accelerate the optimization process. The methods 
related to the intelligent optimization algorithms, deep learning models and their corresponding optimization 
functions, machining process simulation parameters, and comparative methods selected in this paper will be 
introduced in subsequent sections19–24.

The remainder of this paper is organized as follows: “The optimization architecture of the local tool path” 
introduces the optimization architecture of intelligent optimization (as shown on the left in Fig.  1). Section 
“Deep learning optimization” presents the deep learning model to accelerate the optimization process (as shown 
in the center of Fig. 1). To ensure processing quality, “Feedrate planning based on multiple constraints” discusses 
the relevant constraints (as shown on the right in Fig. 1). Section “Simulation results” describes simulations to 
verify the effectiveness of the proposed method.

The optimization architecture of the local tool path
The curvature of the machining path has a significant effect on the feedrate. Various constraints, including 
geometric constraints, acceleration constraints, and contour error constraints, are converted from curvature to 
feedrate on the machining path. Therefore, it is essential to smooth the machining path at the geometry level.

NURBS
NURBS provide a generalized mathematical tool for free-form curves and have become one of the most common 
tools for describing machining paths in recent years. NURBS is shown in Eq. (1):

Fig. 1.  The flow chart of this paper.
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C(u) =

∑n

i=0 Ni,p(u)wiPi∑n

i=0 Ni,p(u)wi

, u0 ≤ u < un+p+1� (1)

where Pi is the control point of the NURBS spline curve, wi is the weight of the NURBS spline curve, and Ni,p

(u) is the basis function of the NURBS spline curve. The basic functions of the NURBS splines are calculated 
through recursive calls, as shown in Eq. (2):

	
Ni,p(u) = u − ui

ui+p − ui
Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)� (2)

It is necessary to specify that “0/0 = 0” in Eq. (2). The first and second order derivatives of the basic functions of 
NUEBS spline curves are expressed in Eqs. (3) and (4):

	
N ′i,p(u) = p

ui+p − ui
Ni,p−1(u) − p

ui+p+1 − ui+1
Ni,p−1(u)� (3)

and

	
N

′′
i,p(u) = p

ui+p − ui
N ′i,p−1(u) − p

ui+p+1 − ui+1
N ′i+1,p−1(u)� (4)

Further, the first-order derivative and the second-order derivative of the NURBS curve can be expressed as:

	

C′(u) =
∑n

i=0 N ′
i,p(u)wiPi − C(u)

∑n

i=0 N ′
i,p(u)wi∑n

i=0 Ni,p(u)wi

C′′(u) =
∑n

i=0 N ′′
i,p(u)wiP − 2C′(u)

∑n

i=0 N ′
i,p(u)wi − C(u)

∑n

i=0 N ′′
i,p(u)wi∑n

i=0 Ni,p(u)wi

� (5)

The curvature of the NURBS curve can be expressed as:

	
ρ(u) = |C′(u)|3

|C′(u) × C′′(u)|
� (6)

Each local corner that needs to be smoothed can be simplified into the form shown in Fig. 2b, which shows the 
distribution of NURBS spline control points using two different methods. In Fig. 2b, the blue circles within the 
black circle represent the additional control points compared to method 1. Since the curve is symmetric about 
the y-axis, an additional control point is added on the right side of the y-axis in the same way. The other NURBS 
control points, not circled in black, coincide with each other. The number of method 2 control points is 7, and the 
number of method 1 control points is 5. The NURBS splines generated by the two different methods are shown 
in Fig. 2a, and the curvature of the two spline curves is illustrated in Fig. 2c. It can be observed that the spline 
obtained by distributing the NURBS control points using method 2 exhibits a significantly greater reduction in 
curvature compared to method 1. Therefore, this paper primarily focuses on method 2.

Fig. 2.  Comparison of the two different methods of distributing control points.

 

Scientific Reports |          (2025) 15:404 3| https://doi.org/10.1038/s41598-024-84577-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


It should be noted that although method 2 makes the locally smoothed path closer to the central control point 
(as shown in Fig. 2a), the addition of two control points may cause δ1 (as shown in Fig. 3) at the local machining 
path that exceeds the user-defined maximum approximation error δmax compared to method 1. Typically, δ2 is 
greater than δ1, and it is required that δ2 is also less than the maximum approximation error δmax. The subsequent 
optimization process ensures that max (δ2, δ1) < δmax.

The optimization process description
The optimization process in this paper can be described as finding two symmetric NURBS control points Pi+3, 
Pi+4 in the pink region such that the curvature is optimal within the region. Simultaneously, the constraint max 
(δ2, δ1) < δlim must be satisfied. The optimal control point positions should be determined without exceeding 
the pink region, while also ensuring that they do not coincide with the boundary (the control points Pi+3 and 
Pi+4, as shown in Fig. 4, cannot coincide with Pi−1, Pi, and Pi+1.). To ensure that the maximum curvature in the 
optimization region occurs as much as possible within the region shown in Fig. 2a, it should be ensured that 
∠ Pi−2Pi−1Pi+3 and ∠ Pi−1Pi+3Pi are both smaller than ∠ Pi+3PiPi+4.

In summary, the three essential components of optimization can be described as follows:

	




T o find P i
i+3, P i

i+4

Minimize

(
max

(
N∑

i=1
curi

))

s.t. curi < curi,max

P i
i−1,x < P i

i+3,x < P i
i,x

P i
i−1,y < P i

i+3,y < P i
i,y

P i
i,x < P i

i+4,x < P i
i+1,x

P i
i,x < P i

i+4,x < P i
i+1,x

∠P i
i−2P i

i−1Pi+3 > ∠P i
i+3PiP

i
i+4

∠P i
i−1P i

i+3Pi > ∠P i
i+3PiP

i
i+4

max
(
δi

2, δi
1
)

≤ δmax
Ni+3,pwi+3P i

i+3+Ni,pwiP i
i +Ni+4,pwi+4P i

i+4
Ni+3,pwi+3+Ni,pwi+Ni+4,pwi+4

− P i
i = δlim

� (7)

where max
(∑N

i=1 curi

)
 is each local corner that needs to be smoothed, and curi,max is the maximum 

curvature of each local corner. If the curvature of a local corner is too large, the feedrate needs to be reduced to 
satisfy certain constraints. Therefore, in order to ensure machining efficiency, it is required that the curvature 
should be less than curi,max. P i

i+3,x denotes the x-coordinate of the Pi+3 control point for the ith local corner 
requiring smoothing, as shown in Fig. 3. Similarly, P i

i+3,y  represents the y-coordinate of the Pi+3 control point 
for the ith local corner requiring smoothing. In order to avoid δ2 exceeding δmax, the last constraint uses the form 
of solving an equation to limit δ2. Since the location of the NURBS main control point cannot be guaranteed, (the 
main control point is the control point that has the most influence on the point of the NURBS spline curve), it is 

Fig. 4.  Schematic diagram of the optimization process.

 

Fig. 3.  The approximation error of the local corner.
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necessary to discuss the above situation separately: when the main control point is P i
i , set wi to 1, and set wi+3 

and wi+4 to equal values before solving. When the main control point is P i
i+3 or P i

i+4, set wi+3 and wi+4 to 1, 
and then solve for wi.

The selection of optimization algorithm
The Particle Swarm Algorithm (PSO)22 is a heuristic and intelligent optimization algorithm. It is particularly 
effective in addressing multi-dimensional nonlinear problems and has a strong global search capability. 
Therefore, the Particle Swarm Optimization (PSO) algorithm is selected as the optimization agent model. The 
update strategy of the PSO algorithm is as follows:

	

vk+1
id = wvk

id + c1r1(pk
id,pbest − xk

id) + c2r2(pk
id,gbest − xk

id)
+ c3r3(pk

id,pbest − pk
id,gbest)

� (8)

where c1 represents the weight of the particle's next step being influenced by its own experience, which 
accelerates the particle towards the individual’s best position. c2 signifies the weight of the particle's next step 
being influenced by the experience of other particles, accelerating the particle towards the global best position. 
c3 denotes the weight that reflects the contribution of the group's experience in relation to the particle's own 
experience. The positions of the two additional control points (Pi+3 and Pi+3) in Fig. 4 are treated as particles 
to be optimized. Under the constraints of Eq. (7), the positions of the particles are iteratively updated within 
the feasible domain until the algorithm converges. The NURBS control point positions and the corresponding 
NURBS weights are stored as datasets for subsequent deep learning training.

Deep learning optimization
Intelligent optimization algorithms are affected by the population size, the search space, and the computational 
resources, which can lead to inefficient optimization. Deep learning, because of its efficient feature extraction 
capabilities and powerful autonomous learning efficiency, has made significant progress in applications. Deep 
learning relies on feature transformation between network layers and layer-by-layer training mechanisms to 
significantly improve the efficiency of complex data and special tasks. The Resnet23 architecture defines the desired 
underlying mapping as H(x) and modifies the stacked nonlinear layers to fit another mapping, f(x) = H(x) − x. 
The original mapping is then reformulated as f(x) + x. The expression f(x) + x can be effectively utilized through 
“shortcut connection” to prevent the vanishing gradient, which often leads to poor model training performance 
as the depth of deep learning layers increases, The network structure is shown in Fig. 5.

The selection of a loss function
In this paper, the Double- Resnet local corner smoothing algorithm is employed, including FDLS (First-Double-
ResNet local smoothing algorithm) and SDLS (Second-Double-ResNet local smoothing algorithm). The above 
two algorithms are respectively used to predict the control point positions and the weight w of the NURBS curve. 
The overall structure of the FDLS is shown in Fig. 6. The FDLN inputs are the five NURBS spline control points 
before smoothing (as shown in Fig. 6 (1)), and its outputs are the two control points added after smoothing (as 
shown in Fig. 6 (2)). The input of the SDLS consists of all control points after smoothing (as shown in Fig. 6 (3)), 
and the output is the weights (as shown in Fig. 6 (4)) obtained by solving the equations that prevent the error δ2 
from being excessively large under the last constraint.

The residual block is shown in Fig. 7, which performs a shortcut connection every 8 layers, and the whole 
structure has 64 fully connected layers, with dropout interspersed among them to prevent overfitting. The 
dropout is to reduce co-adaptation among neurons. Specifically, it prevents certain neurons from becoming 
overly reliant on others. Dropout enables the network to better adapt to varying input data by decreasing the 
dependencies between neurons.

Fig. 5.  Shortcut connection.
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The selection of a loss function and the selection of optimization algorithm
In deep learning, a loss function is needed to evaluate how good the model is. Since the task is a typical regression 
task, the MSE (Mean Squared Error) loss function is selected.

	
MSE = 1

s

s∑
i=1

(yi − ŷi)2� (9)

where s denotes the number of samples, which is the total count of data points in the dataset. yi is the true value 
of the i-th sample. ŷi is the predicted value for the i-th sample.

Since the optimization process of finding the optimal NURBS control points to achieve the optimal curvature 
will have high nonlinearity, this paper adopts the optimization algorithm Adam. The algorithm improves the 
global search capability and accelerates the convergence speed. Its optimization process can be expressed as 
follows24:

	 mt = β1mt−1 + (1 − β1)gt� (10)

	 vt = β2vt−1 + (1 − β2)g2
t � (11)

	
∧

mt = mt

1 − βt
1

� (12)

	
∧
vt = vt

1 − βt
2

� (13)

Fig. 7.  The residual block.

 

Fig. 6.  DRLS network structure.
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θt+1 = θt − η√
∧
vt + ε

∧
mt� (14)

where mt and vt denote the first-order and second-order matrices of the gradient in momentum form at time t, 
respectively. 

∧
mt represents the bias-corrected momentum first-order matrix, and 

∧
vt denotes the bias-corrected 

momentum second-order matrix. β1 and β2 indicate the exponential decay rate of the first-order moment 
estimation and the exponential decay rate of the second-order moment estimation, respectively. Moreover, βt

1 
and βt

2 refer to the t-th power of β1 and β2, respectively. ε denotes a constant close to 0 and is designed to ensure 
the stability of the numeric.

After extensive experiments, the settings for FDLS and SDLS in this paper are as follows: FDLS: batch size = 16, 
learning rate = 0.005; SDLS: batch size = 64, learning rate = 0.001. The training process is illustrated in Figs. 8 
and 9. FDLS achieves a final convergence magnitude of 10−4 after 1000 iterations, while SDLS reaches a final 
convergence magnitude of 10−2 after 10,000 iterations. Both models reach the expected error magnitudes well 
before the maximum preset number of iterations. The FDLS model approaches convergence after around 2000 
iterations. The SDLS model nears convergence after approximately 15,000 iterations. Neither appears overfitting. 
The detailed results of the training process can be found in ESM Appendix A.

Feedrate planning based on multiple constraints
The geometric error and the contour error
The chord error can be calculated by Eq. (15):

	
∆ = ρ −

√
ρ2 −

(
vT

2

)2
� (15)

Fig. 9.  SDLS training process.

 

Fig. 8.  FDLS training process.
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where ρ represents the radius of curvature, T  denotes the interpolation period. Consequently, the feedrate 
constrained by the chord error can be determined:

	
v∆(ρ) =

2
√

2ρ △lim − △2
lim

T
� (16)

The relationship between contour error and feed rate can be expressed as Eq. (17):

	
vc = ρwn

√
1 − 2ζ2 +

√
(2ζ2 − 1)2 −

ε2
lim − 2εlimρ

(ρ − εlim)2
� (17)

where εlim is the contour-error limitation, ζ  is Damping ratio, wn =
√

Kp/J , ζ = B/(2
√

JKp), wn is 
undamped natural frequency, Kp is the position-loop proportional gain, J is the equivalent rotational inertia of 
the feed-drive system, and B is the equivalent damping factor.

The feedrate constrained by normal acceleration and normal jerk
When the feedrate is v, the normal acceleration can be derived from Eq. (18)19:

	
an = v2

ρ
� (18)

Therefore, the feedrate under the normal acceleration constraint is described as follows:

	 va(ρ) = √
ρan,lim� (19)

where an,lim is the limit of the normal acceleration.

The jerk can be expressed by the rate of change of acceleration as shown in Fig. 10:

	




△ an = ∥an+ − αn−∥ = 2 v2

ρ
sin

(△θ
2

)
△ t = ρ△θ

v

jn = lim
△t→0

△an
△t

= lim
△θ→0

2 v2
ρ

sin(△θ
2 )

ρ△θ
v

= v3

ρ2

� (20)

The relationship between the jerk limit and the radius of curvature can be expressed as:

	 vj(ρ) = 3
√

ρ2jn,lim� (21)

where jn,lim is the limit of the jerk.

Based on the above constraints, the feedrate at each point on the NURBS spline can be determined:

	 vf = min[v△, va, vj , vc]� (22)

where vf  is the maximum feedrate for each point.

Fig. 10.  The calculation of normal jerk.
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The feed rate planning method adopts the method described in reference19. The NURBS machining path is 
discretized into a finite number of sample points. The curvature is converted to feed speed based on Eq. (22). 
The point less than the maximum feedrate is defined as the sensitive interval point. The minimum speed within 
the sensitive interval is defined as the feedrate of the sensitive interval. Set the points greater than or equal to 
the maximum feedrate to the maximum feedrate and define them as non-sensitive intervals. Since the feedrate 
changes continuously during the machining process, acceleration and deceleration should be performed in the 
non-sensitive intervals to smoothly reach the feedrate for each sensitive interval. Considering the limited drive 
capabilities of each axis, certain sensitive interval speeds need to be updated to ensure that acceleration and 
deceleration can be completed within the non-sensitive intervals. The parameters are set as shown in Table 1.

Simulation results
In this section, three simulations are performed to verify the effectiveness of the proposed methods. Example 1 
is introduced in this paper to demonstrate that the proposed method can indeed optimize the machining path 
in terms of curvature. Example 2 and Example 3 are presented to show that the proposed method, compared to 
other methods20,21, is more applicable to paths with both large and small curvatures (as in Example 2), as well as 
paths with a higher frequency of large curvature segments that are close each other (as in Example 3). To further 
verify the generality and optimization efficiency of the proposed deep learning model, the comparative data 
between PSO algorithm and the proposed deep learning model can be found in ESM Appendix B.

Case 1
Case 1 selects the W-shaped machining path shown in Fig.  11. As indicated in Table 2 and Fig.  12a, the 
approximation error in each local corner did not exceed the maximum local approximation error. Additionally, 
the curvature after optimization decreased to varying degrees compared to before optimization, with a maximum 
reduction of up to 92.7%. The above results demonstrate that the proposed method can optimize the curvature 
of each local corner while maintaining the shape of the machining path to a certain extent. After optimizing the 
curvature, the tool tip can pass through the local corners at a higher federate (as shown in Fig. 12b). Due to the 
large curvature of the local corners and the shortness of the arc lengths of the neighbor corner, the feedrate is 
low (as shown in Fig. 12b). It can be observed that none of the processing parameters exceeds the limit values 

Fig. 11.  W-shaped machining path.

 

Symbol Parameter Value

T Interpolation period 2 ms

vp Programmed maximum feedrate 70 mm/s

wn Natural frequency 60 rad/s

ζ Damping ratio 0.76

△lim Chord error limitation 1 μm

an,lim Normal acceleration limitation 990 mm/s2

jn,lim Normal jerk limitation 29,000 mm/s3

at,lim Tangential acceleration limitation 800 mm/s2

jt,lim Tangential jerk limitation 20,000 mm/s3

εlim Contour error limitation 0.05 mm

δlim Approximation error limitation 0.1 mm

Table 1.  The parameter setting for simulations.
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(guaranteeing machining quality) through Fig. 12c–h, proving that the constraints proposed in this paper are 
effective.

Case 2
The “Dress” machining path is selected as case 2, which is characterized by both large and small curvatures. Due 
to the short arc length left for acceleration and deceleration, neither the methods proposed in references20,21 
nor the method presented in this paper were able to reach the maximum feedrate vp. The feedrate distributions 
of the three methods are shown in Fig. 13a. It can be seen by the processing time shown in Fig. 13b that the 
method proposed in this paper achieved the shortest machining time, followed by the method in Ref.20, while 
the method in reference21 resulted in the longest machining time. The proposed method reduced machining 
time by 8% and 36.9% compared to the methods in Refs.20,21, respectively. Although the maximum values of 
chord error, normal acceleration, normal jerk, contour error, tangential acceleration and tangential jerk of the 
method proposed in this paper are still larger (e.g., Fig. 13c–h), they are all smaller than the limit values, which 
proves that the aforementioned constraints are effective. The approximation error for case 2 is shown in Fig. 13i. 
It should be noted that the machining path in case 2 has symmetric geometry. Therefore, only the approximation 
error for each local corner in half of the symmetric structure is shown. The approximation error at each local 
corner for all three methods is less than the maximum value 0.1 mm.

Case 3
In case 3, the “torch” machining path shape is selected as shown in Fig. 14a, and the local corner of the path with 
large curvature is close to each other. The overall value of the path curvature is larger, so the feedrate is lower 
than in case 2. Given that the path's beginning and ending portions are made up of arcs with a curvature of 0 
and comparatively lengthy arc lengths, the feedrate can be accelerated to the maximum feedrate vp, as shown 
in Fig. 14b. It also can be observed that the proposed method results in relatively high values for chord error, 
normal acceleration, normal jerk, contour error, tangential acceleration and tangential jerk (e.g., Fig. 14c–h), but 
none of these exceed the limit value. It is clear from Fig. 14i that the method proposed in this paper achieves 
smaller approximation errors compared to Refs.21,22, indicating that our deep learning approach offers better 
optimization for machining paths with multiple closely spaced high-curvature features. Based on the analysis 
of case 2 and case 3, it can be seen that the proposed method not only ensures the accuracy of the machining 
process but also optimizes curvature to a certain extent. It improves processing efficiency while maintaining 
processing quality and meeting the specified constraints.

Conclusion
This paper proposes a novel method that transforms the local corner smoothing problem into an optimization 
problem. The optimization objective, design variables, and constraints are defined, and the Particle Swarm 
Optimization (PSO) algorithm is employed to solve it. Considering the impact of population size and 
computational resources on intelligent optimization algorithms, the deep learning method is employed 
to establish the mapping between inputs and outputs to improve optimization efficiency. The deep learning 
network FDLS is used to optimize the positions of NURBS control points, while the network SDLS is utilized to 
optimize NURBS weights. To ensure processing quality, this paper considers chord error, normal acceleration, 
normal jerk, and contour error as constraints for limiting the federate. Finally, it is demonstrated through the 
cases that the proposed method can improve processing efficiency while maintaining processing quality. The 
future research is to extend the method to 5-axis CNC machining.

Maximum 
local corner 
approximation error 
(mm)

Maximum curvature of local 
corner

δa δb δc Cornera Cornerb Cornerc

Before 
optimization 0.050 0.062 0.034 14.16 27.06 55.96

After optimization 0.043 0.042 0.020 9.37 14.04 30.77

Percentage of 
change 14% 32.2% 41.2% 33.8% 92.7% 45%

Table 2.  The data about the machining path “W”.
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Fig. 12.  Comparing result.
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Figure 12.  (continued)
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Figure 12.  (continued)
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Fig. 13.  Comparison of data related for the “clothes” shaped machining paths.
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Figure 13.  (continued)
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Fig. 14.  Comparison of data related for the “Torch” shaped machining paths.
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Figure 14.  (continued)
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Data availability
Data is provided within the manuscript.Data and materials will be available upon reasonable requests. If some-
one wants to request the data from this study, please contact Xiao-yan Teng (E-mail: tengxiaoyan@hrbeu.edu.
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