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Aftershocks can cause additional damage or even lead to the collapse of structures already weakened 
by a mainshock. Scarcity of in-situ recorded aftershock accelerograms heightens the need to develop 
synthetic aftershock ground motions. These synthesized motions are crucial for assessing the 
cumulative seismic demand on structures subjected to mainshock-aftershock sequences. However, 
existing research consistently highlights the challenge of accurately representing the spectral 
differences and interdependencies between mainshock and aftershock ground motions. In this study, 
we propose an innovative approach utilizing automated machine learning (AutoML) to forecast the 
acceleration spectrum (Sa) at varying periods for the largest expected aftershock. The AutoML model 
integrates essential parameters derived from the mainshock, including its Sa, and rupture parameters 
(moment magnitude, source-to-site distance), and site information (average shear-wave velocity in 
the top 30 m). Subsequently, we employ a wavelet-based technique to generate synthetic aftershock 
accelerograms that align with the spectrum of the mainshock, using the mainshock ground motion as a 
reference input. In contrast to classical machine learning techniques, AutoML requires minimal human 
involvement in model design, selection, and algorithm tuning. We collected 2500 sets of mainshock 
and in-situ aftershock recordings from a global database to train the AutoML model. Notably, even 
without aftershock rupture parameters as inputs, our predicted Sa shows significant agreement with 
actual recorded aftershock ground motions. Our predictions achieved R2 scores ranging from 0.85 
to 0.9 across various periods, affirming the model’s accuracy. Furthermore, the Pearson correlation 
between predicted Sa intensities across different periods closely mirror that derived from observed 
aftershock recordings. These findings validate our trained AutoML model’s capability to forecast the 
response spectrum of the largest expected aftershock ground motions. The peak ductility demand 
of SDOF systems, using artificial mainshock-aftershock ground motions as input, also shows good 
agreement with those under recorded seismic sequences. Given the fully automated nature of our 
approach, the AutoML framework could be extended to predict other relevant non-Sa intensity 
measures of aftershocks.

Keywords  Mainshock-aftershock sequence, Automated machine learning(AutoML), Artificial aftershock 
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Strong earthquakes are often followed by multiple aftershocks within a relatively short time interval1,2. A 
structure that has already been damaged during the preceding mainshock typically cannot be effectively repaired 
within a short time. Consequently, it is prone to experiencing significant additional damage from subsequent 
aftershocks3–7. In recent years, numerous studies have been conducted to examine the structural nonlinear 
responses8–15 when subjected to mainshock-aftershock sequences. These investigations have revealed that 
aftershocks can have detrimental impacts on a structure’s seismic performance, rendering mainshock-damaged 
structures more vulnerable.

Evaluating structural safety under mainshock-aftershock sequences is challenging due to the insufficient 
availability of recorded aftershock data and limited access to these recordings. Goda and Taylor16 claimed that an 
incomplete database of real mainshock-aftershock sequences may result in the underestimation of the aftershock 
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impact. In engineering practice, aftershock ground motions are often generated by repeating or scaling the 
recordings of the corresponding mainshocks, disregarding the potential differences in spectrum shape between 
mainshock and aftershock events17,18. This approach has been validated to significantly overestimate the inelastic 
structural seismic demand16. In addition, in-situ mainshock and aftershock ground motions tend to share features 
due to similar source characteristics and wave propagation path factors. Therefore, it is crucial to estimate the 
response spectrum of aftershocks by considering the dependency of aftershock ground motion characteristics on 
the mainshock event. Failing to do so could introduce further bias in the assessment of structural vulnerability 
under mainshock-aftershock sequences19–21.

Several methods have been developed to predict or generate aftershock acceleration spectra, including 
ground motion model (GMM)-based methods, mainshock-consistent scaling methods, and machine learning-
based methods.

The GMM-based method is considered indirect because the spectral accelerations (Sa) of aftershocks are 
not directly derived from the Sa of the corresponding mainshocks. In this approach, the occurrence time and 
seismic parameters (i.e., magnitude, distance, and other rupture parameters) of the aftershock event must first be 
estimated. For instance, Goda and Taylor17 determined the magnitude of aftershock events using a combination 
of the generalized Omori’s law, Gutenberg–Richter’s law22, Bath’s law23, and the modified Omori’s law24. Similarly, 
Hu et al.25 generated magnitudes, locations, and occurrence times of aftershock sequences using the branching 
aftershock sequence (BASS26) seismicity model. Once the aftershock event catalog is established, the Sa intensities 
of aftershocks can be predicted using ground motion models (GMMs), as demonstrated in studies such as [27–
29]. The GMM-based method requires detailed seismicity information of the studied region. However, mature 
GMMs for aftershock events are still limited; most existing GMMs are only applicable to mainshock events. 
Consequently, the direct application of these GMMs may not accurately reflect the dependency of aftershock 
spectral characteristics on the mainshock event.

The mainshock-consistent scaling method proposed by Papadopoulos et al.21 is referred to as a conditional 
method because the aftershock Sa shape is predicted based on the corresponding mainshock response 
spectrum. In recent years, the dependence between the response spectral shapes of mainshocks and aftershocks 
has been investigated by many scholars28,29, and several models have been proposed to describe their joint 
distributions28–30. Based on the joint distribution of the spectral epsilons of mainshock-aftershock pairs (i.e., 
the indicator of spectral shape31), the conditional mean and standard deviation of the spectrum for aftershock 
ground motions can be predicted. The conditional method relies heavily on the sufficiency and efficiency of 
the established correlation relationships between Sa ordinates. The utilized empirical correlation relationship 
between Sa significantly influences the generated aftershock response spectrum results.

In recent years, machine learning techniques have been used to predict aftershock spectra because ML-
based methods do not rely on predefined empirical joint distribution models or relationships between the Sa of 
mainshocks and aftershocks. For instance, Vahedian et al.32 developed an artificial neural network (ANN)-based 
prediction model for aftershock spectra using the Sa of corresponding mainshocks as inputs. Moreover, Ding et 
al.33 applied deep neural networks (DNN) and conditional generative adversarial networks to predict spectral 
accelerations of aftershock ground motions using eight seismic variables and the spectral accelerations of 
mainshocks as input. Although ML-based methods provide a promising way to estimate the response spectrum 
of aftershock events, previous studies utilized a relatively limited number of real mainshock and aftershock 
recordings as the training database. This limitation affects the reliability and generalization ability of the 
developed ML-based prediction models. Specifically, only 126 sets of mainshock-aftershock sequences recorded 
on soil type C were used in Vahedian et al.32, and 503 sets of mainshock-aftershock sequences were adopted in 
Ding et al.33 to predict aftershock Sa ordinates at more than 20 periods. This dataset size is not large enough 
to fully exploit the power of deep learning techniques. Additionally, traditional deep learning methods often 
require high computational costs to search for optimal hyperparameters34. This makes it inconvenient to update 
the ML-based prediction model of aftershock response spectra when new training datasets are added. Therefore, 
we decided to utilize automated machine learning (AutoML) techniques to automatically select and compose 
machine learning models. The basic idea of AutoML is to, given a training dataset and an error measure, utilize 
minimal misfit to automate the search for the optimal learner and hyperparameters34.

Two folds of efforts are taken in this study. First, a total of 2500 sets of mainshock-aftershock sequence 
recordings are selected from worldwide database and used as training and test datasets. This dataset is 
significantly larger than previous ML-based studies32,33. Based on our extended training dataset, FLAML Fast 
and Lightweight AutoML Library34 (FLAML)is used to train the prediction model of aftershock Sa intensities. 
The predicted aftershock acceleration spectrum is then used to generate artificial aftershock ground motions 
using wavelet-based method. The inelastic seismic demand of single degree of freedom (SDOF) system under 
generated artificial mainshock-aftershock sequences is compared with that under real seismic sequences.

Training/Testing dataset
A relatively large database of mainshock-aftershock sequences has been established, comprising a total of 2,500 
mainshock recordings with their corresponding aftershock ground motions. In this database, the two horizontal 
components of ground motion recordings are treated as two independent training samples. Of the 2,500 sets of 
mainshock-aftershock recordings, 1,112 sets and 1,314 sets are selected from the Pacific Earthquake Engineering 
Research Center (PEER) NGA-West2 database35 and K-NET/KiK-net36 in Japan, respectively, with the remaining 
74 sets selected from the ITACA database37 (refer to the electronic supplement for details). It is noteworthy that 
only mainshock events with a magnitude of Mw > 5.0 are considered in this study. The corresponding aftershock 
sequence is identified from earthquake clusters using the time window and distance range suggested by Gardner 
and Knopoff38. In the aftershock sequence following a given mainshock event, only the aftershock event with 
the largest magnitude is considered, as it tends to cause significant additional damage to structures already 
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compromised by the mainshock[40–42]. As illustrated in Fig. 1, the stations triggered by both the mainshock 
and the largest aftershock are distributed across various regions, including Japan, Taiwan, Europe (mainly the 
Mediterranean coast), Turkey, and the western United States.

Figure  2 shows the distributions of moment magnitude (Mw) and hypocenter distance for the selected 
mainshock-aftershock ground motions. All recordings are randomly divided into 80% for training and 20% for 
testing. It should be noticed that the two horizontal components from the same event were not split between 
the training and test sets. The train and test set contains data from entirely distinct events to maintain strict 
separation between training and testing procedure. The histograms in Fig. 2 demonstrate that the sample size 
proportions of different magnitude and distance bins are similar between the training and testing datasets. This 
is crucial for controlling the potential overfitting of our ML-based model. To examine the spectral content of 
the selected recordings, Sa values of the mainshock recordings and the associated largest aftershock recordings 
are compared at various periods, as shown in Fig. 3. Notably, the Sa values of the aftershock recordings are 
generally lower than those of the mainshock recordings, and the decay tendency of the spectral shape in the long 
period range also differs. This observation underscores that simply scaling the mainshock spectrum to represent 
the aftershock spectrum neglects the potential differences in spectral shape, highlighting the importance of 
accurately predicting Sa values for aftershocks.

Utilized AutoML architecture
In this section, we briefly review the concept and technical advancements of FLAML (Fast and Lightweight 
AutoML Library)[35] and compare it to other AutoML platforms. We then introduce the architecture and main 
components of FLAML.

Fig. 1.  Spatial distribution epicenter locations for mainshock event and corresponding aftershock event with 
largest magnitude. The trigged stations are distributed in three regions: (a) Japan and China Taiwan island, (b) 
European (mainly mediterranean coast) and Turkey, and (c) western United States. The figure is plotted using 
GMT6 (generic mapping tools) software (https://doi.org/10.1029/98EO00426).
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Fig. 3.  The median and 16th /84th percentile of response spectra for mainshocks and aftershocks in dataset.

 

Fig. 2.  Distribution of moment magnitude with respect to hypocenter distance regarding (a) mainshock 
recordings and (b) aftershock recordings. Training dataset and testing dataset are represented with different 
colors. Histograms of magnitude and distance bins regarding training and testing dataset are also compared in 
the figure.
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In most AutoML systems, conducting a large number of trials in an extensive search space is common practice. 
Consequently, the order of the trials significantly impacts the efficiency of the search process. Meta-learning is 
a commonly used technique to improve search order, based on the assumption that a large number of datasets 
and experiments can be collected for meta-training, allowing the performance of learners and hyperparameters 
to be measured accordingly. This requires conventional AutoML systems to have much more training data to 
find an optimal prediction model. However, in our case, the mainshock-aftershock datasets are limited and not 
suitable for meta-learning in AutoML.

Machine learning comprises various algorithms, including K-Nearest Neighbors (KNN), Decision Tree (DT), 
Artificial Neural Network (ANN), and Gaussian Process (GP). Traditionally, the choice of algorithm depends on 
the specific application and the unique characteristics of each method. In this study, ensemble learning, which 
integrates multiple algorithms, is introduced in the automated machine learning framework. The ensemble 
techniques used in this research are Random Forest (RF), Extremely Randomized Trees (ET), AdaBoost (AB), 
and Gradient Boosting (GB).

FLAML is designed to robustly adapt to an ad-hoc dataset out of the box and does not require users to collect 
a large number of diverse meta-training datasets as preparation. After customizing the learners, search spaces, 
and optimization metrics, FLAML can be directly used to solve the problem without the need for an additional 
costly round of meta-learning. For further application and debugging, a single learner trained by FLAML, rather 
than ensembles used in other AutoML systems, is unquestionably better suited to our problem. The architecture 
of the FLAML model utilized is presented in Fig. 434. It consists of two layers: an ML layer and an AutoML layer. 
The ML layer contains multiple candidate learners that are fed to the AutoML layer. The AutoML layer comprises 
a learner proposer, a hyperparameter and sample size proposer, a resampling strategy proposer, and a controller.

As labeled in Fig. 4, computation process in FLAML could be divided into four main steps, where the first 
three steps focus on choosing variables in each component, including the leaner, resampling strategy and 
hyperparameters. In Step 4, the controller will invoke the trial using selected learner in ML layer, and validate 
the error metrics and cost. Steps 2–4 are repeated by iterations until running out of budget or reaching threshold 
of error. Next we briefly introduce basic idea of each step in FLAML.

Step 1 Resampling strategy proposer chooses r.
Resampling strategy is decided based on a simple thresholding rule. If the training dataset has fewer than 

100 K instances and the budget is smaller than 10 M per hour, we usually use cross validation. In our case, the 
five-fold cross-validation is selected in this step. This simple thresholding rule can be easily replaced by more 
complex rules, e.g., from Meta learning.

Step 2 Learner proposer choosesl.
The notion of estimated cost for improvement (ECI) is used in the search strategies34, which is defined 

in Eq.  (1). The estimated cost of improvement for learner l, i.e., ECI(l), is defined as the cost of searching 
configurations in l that result in lower error (denoted as ε̃l) than the current best error among all learners. The 
estimated cost for improvement is defined as Eq. (1). K0 (abbreviations of K0 (l)) is the total cost spent on l so far, 
and δ (abbreviations of δ(l)) be the error reduction between the two configurations.

	

ECI1 = max(K0 − K1, K1 − K2), ECI2 = cκl

ECI = max( (ε̃l − ε̃∗) (K0 − K2)
δ

, min(ECI1, ECI2))
� (1)

Each learner l is chosen with probability in proportion to 1/ECI(l). The random sampling according to ECI in 
Step 2 and the random restarting in Step 3 help method escape from local optima. The ECI-based prioritization 
in Step 2 favors cheap learners in the beginning but penalizes them later if the error improvement is slow.

Fig. 4.  Architecture and major components in the utilized FLAML model.
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Step 3 Hyperparameter and sample size proposer choosesh and s.
The random direct searching strategy proposed by Wu et al.43 is utilized in this step to perform cost-effective 

optimization for cost-related hyperparameters. A random direction is utilized to train a model at each iteration. 
If error is not decreased, another model is trained in another direction. The training sample size is small at 
start of search process, and gradually approaches the size of complete dataset as the search progresses. This 
search process will end when the error fails to converge. The hyperparameter and sample size proposer in Step 
3 tends to propose cheap configurations at the starting of the search process. However it quickly moves to the 
configurations with high model complexity and large sample size in the later stage of the search process.

Step 4 Validation of the error and cost metrics.
After a round of ECI-based sampling, randomized direct search, and updating of ECIs, the controller will 

invoke the trial using selected learner in ML layer and measure the corresponding validation error and cost. 
Then a new round of trail will start until running out of budget or reaching threshold of error.

The designs mentioned in Steps 1 ~ 4 enable FLAML to efficiently navigate large search spaces for both small 
and large datasets. The complexity of algorithm is linearly related to the dimensions of the hyperparameters 
rather than the number of trails. Therefore the computation cost in AutoML layer is negligible comparing with 
the cost spent in ML layer.

Prediction model of Sa for aftershock ground motions
For the AutoML-based prediction model in our study, input and output variables are listed as follows:

•	 Input variables: mainshock moment magnitude; hypocenter distance; average shear-wave velocity in the top 
30 m (Vs30); mainshock Sa at the interested periods;

•	 Output variables: largest expected aftershock Sa at interested periods;

Faulting mechanism is another possible input feature that may impact spectral prediction results. Approximately 
45% of the recordings in the training and test sets come from the NGA-West2 database. When solely using 
the NGA-West2 database with detailed fault mechanism information for training and testing, we found 
no significant improvement when including the fault mechanism as an input variable. Additionally, reliable 
geometric information of the rupture plane is hard to determine for ground motion events in K-NET, KiK-net 
and ITACA. Therefore, we decided to use only magnitude, hypocenter distance, and VS30 as input variables.

To validate the performance of utilized AutoML model on Sa at different periods, 21 specific vibration 
periods (T) ranging 0.0 s to 4.0 s are selected: {T = 0s; 0.1s; 0.12s; 0.15s; 0.18s; 0.22s 0.26s 0.32s; 0.39s; 0.47s; 0.57s; 
0.7s; 0.85s; 1.03s; 1.25s; 1.52s; 1.84s; 2.23s; 2.71s; 3.29s; 4.0s}. All the input/output variables are not normalized.

We applied FLAML to train the model on an AMD Ryzen 9 5900HX CPU, and the training process took 
nearly 100 s. After establishing the prediction model of Sa for aftershock ground motions, its performance was 
evaluated using the testing dataset. To do this, the predicted Sa ordinates of aftershocks at a total of 21 specific 
vibration periods were compared with the measured values, as shown in Fig.  5. The predicted Sa values of 
aftershocks are generally close to the measured results. To further validate this result, the R2 score, a commonly 
used performance measurement for ML models, was calculated and is shown in Fig. 5. The R2 score is defined as:

	

R2 = 1 −

∑
i

(yi
observe − yi

predict)2

∑
i

(y − yipredict)2 � (2)

whereyi
observeandyi

predictare the measured and predicted Sa values of aftershocks, respectively; andyis mean 
value of observations. As shown in Fig. 6, the calculated R2 scores for Sa intensities of aftershocks at different 
periods range from 0.85 to 0.93. This result indicates that the trained model has a good agreement with the 
measured Sa values, consolidating the strong performance of the developed prediction model.

The Sa values of random selected samples in the testing dataset are compared with observations in Fig. 7. 
We compare one of the GMM-based method with AutoML-based model. The basic idea of conditional mean 
spectrum for aftershock (CMSA) was proposed by Zhu et al[29], the conditional mean epsilons of aftershocks are 
computed based on the corresponding values of mainshocks using the correlation relationship among them, and 
then these conditional mean epsilons are further used to modify the predicted response spectra of aftershocks 
estimated by a specific GMM. This method considers the dependence of the spectral shapes (epsilons) between 
mainshocks and aftershocks. The aftershock information (e.g. magnitude, distance) are required as input for 
GMM to generate the spectrum, which is also compared. From Fig. 7, it can be observed that although the 
CMSA requires aftershock magnitude and distance as inputs, the regional nature of the Ground Motion Model 
(GMM) limits its ability to accurately represent seismic characteristics across different region. Consequently, 
biases in the bakcbone response spectrum are propagated to the subsequently generated CMSA, leading 
to significant deviations in certain periods. In contrast, the AutoML-based method, which does not rely on 
aftershock magnitude and distance, produces response spectra that are largely closer to the target spectral shape, 
demonstrating the effectiveness of the developed AutoML-based model.

For further validation of the predicted Sa values of aftershocks, the correlations between the predicted 
aftershock Sa values at different periods are compared with those between real aftershock Sa values at different 
periods, as shown in Fig. 8. In this study, the Pearson correlation coefficient is used to measure the correlation 
between the Sa values at different periods, which is defined as:
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Fig. 5.  Comparison of predicted and real spectral accelerations for aftershocks at different periods.
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ρSa(T1),Sa(T2) =

n∑
i=1

(
Sai(T1) −

________

Sa(T1)
) (

Sai(T2) −
________

Sa(T2)
)

√
n∑

i=1

(
Sai(T1) −

________

Sa(T1)
)2 n∑

i=1

(
Sai(T2) −

________

Sa(T2)
)2 � (3)

where Sai(T1) and Sai(T2) are predicted (or real) spectral values at T1 and T2, respectively; and 
________

Sa(T1)

and
________

Sa(T2)  are predicted (or real) mean spectral values at T1 and T2, respectively. The correlation coefficient 
structure between the predicted Sa at different periods are close to the observations in testing dataset. The good 
agreement validates that the prediction model successfully capture spectral characteristic of largest expected 
aftershock.

In many applications, understanding why a ML model makes a particular prediction is just as important as 
the prediction’s accuracy. However, ML-based models are often very complex and make the interpretation work 
difficult. This study used a unified framework, i.e., SHAP (SHapley Additive exPlanations), to obtain a better 
understanding of the predictions by AutoML-based model described earlier50. The importance of input variables 
in every sample is measured by the Shapley values. It is calculated as mean value of the absolute Shapley values 
regarding the entire dataset. Specifically, Tree SHAP is chosen in our work to estimate the Shapley values. It can 
be seen from Fig. 9 that Sa intensity levels of mainshocks show more significant influence on final prediction 
results, comparing with other input variables. The average of Shapley values for mainshock Sa is almost five 
times larger than the earthquake magnitude, distance and Vs30.

Shapley values can also be used to describe the feature dependency of various input variables. The scatter 
plots in Fig. 10 illustrate the relationship between features (or input variables) and Shapley values. The color of 
the dots represents the values of another potentially critical feature, with blue to red indicating small to large 
values. The Shapley value is measured with increasing levels of Sa intensities of mainshocks. As expected, the 
amplitude of Sa is generally related to the magnitude of the mainshock event. The resulting large Shapley values 

Fig. 6.  Calculated R2 scores for the predicted Sa values at different periods.
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indicate that moderate to large mainshock events with high Sa values tend to have a greater impact on our 
final prediction results than smaller mainshock events. However, no clear trend is observed between mainshock 
event magnitude and Shapley value. This demonstrates that using magnitude as the sole input variable does not 
achieve accurate prediction results. Furthermore, the Shapley values tend to decrease with increasing hypocenter 
distance and VS30 values. This suggests that soil sites (with VS30 less than 760 m/s) and non-far-field recordings 
contribute more to the prediction performance. Given that magnitude, distance, and VS30 are all independent 
variables, no relationship between these features is expected.

Assessment of peak ductility demand
For a given mainshock event, the Sa coordinates of aftershocks can be predicted using our trained AutoML-
based model. Subsequently, the wavelet-based spectrum-compatible ground motion generation method of 
Hancock et al.45 is utilized to simulate aftershock ground motions, with the corresponding mainshock as the 
seed recordings. In this section, SDOF systems are used for illustration, and the structural inelastic response 
under real and artificial mainshock-aftershock sequence recordings is compared. Similar to the work of Goda 
and Taylor16, a time interval of 60 s is inserted between the mainshock and aftershock recordings to ensure that 
the mainshock-induced structural vibration ceases gradually before the occurrence of the subsequent aftershock.

The existing hysteresis models can be generally categorized into two groups: polygonal hysteresis models 
and smooth hysteresis models. As stated by Ning et al.50, the smooth hysteretic model performed much better 
than the polygonal one for both pinched and non-pinched hysteresis behaviors. Among the available smooth 

Fig. 7.  Comparison between AutoML-based method predicted and real aftershock spectra for some randomly 
selected earthquake events. The magnitude of mainshock is labeled. CMSA(Zhu et al., 2017) and spectrum 
derived from GMM are compared.
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hysteretic models, the inelastic restoring force translational displacement relationship predicted by the BWBN 
model matched well with the experimental data, with an average error of 3%50. In this study, the Bouc-Wen 
model, which accounts for both pinching and degradation effects, is used to simulate the nonlinear behaviors of 
SDOF systems. The specific values of the model’s parameters can be found in [16] and [52].

The peak ductility demands under real and artificial mainshock–aftershock sequences are compared. To 
ensure the rigor of the conclusions, we used the ground motion samples in the testing dataset for calculating 
the structural responses. The empirical cumulative distribution function (CDF) curves of the ductility demand 
under 500 mainshock-aftershock sequences are plotted in Fig. 11. For SDOF systems with different vibration 
periods (ranging from 0.2s to 1.0s) and different constant strength reduction factors (R = 2, 5), a good agreement 
is observed between the CDF results of real and artificial mainshock-aftershock sequences. This observation 
consolidates the reliability of the developed AutoML-based model for predicting Sa intensities of aftershock 
ground motions. Furthermore, this result also demonstrates the practical implementation potential of the 
proposed AutoML-based model.

Fig. 9.  SHAP values of different input variables for the AutoML-based prediction model.

 

Fig. 8.  Correlation coefficients for (a) measured and (b) predicted Sa values at different periods.
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Conclusions
An Automated Machine Learning (AutoML)-based model has been proposed to predict the Sa intensities of 
the largest expected aftershock, given the response spectrum and rupture/site parameters (including the event 
magnitude, hypocenter distance, and VS30) of the corresponding mainshock. A fast and lightweight AutoML 
library was used to automatically search for optimal ML-based prediction models. The training/testing dataset 
is significantly larger than that used in previous similar work employing deep learning techniques, comprising 
2500 mainshock-aftershock sequences collected from a global ground motion database. The R2 score for different 
Sa ordinates at 21 vibration periods for the testing dataset (500 sets of recordings) ranged from 0.85 to 0.93, 
demonstrating the good performance of the prediction model. Additionally, the spectral correlation structure 
among the predicted Sa ordinates at different periods was consistent with that among the measured Sa ordinates 
of real aftershock events. This result indicates that our proposed AutoML-based prediction model successfully 
captures the spectral characteristics of the largest expected aftershocks.

SHAP analysis revealed that moderate to large mainshock events with high Sa values have a much greater 
influence on our final prediction results. As a practical application, the developed AutoML-based prediction 
model of aftershock Sa intensities was used to generate artificial aftershock accelerograms using a wavelet-
based spectrum-compatible method, with the corresponding mainshock as seed recordings. The peak ductility 
demands of SDOF systems under artificial mainshock-aftershock sequences and recorded ones were compared 
and showed good agreement.

It is noteworthy that the performance of our AutoML-based models could be further improved with updated 
datasets without the need to repeatedly search for optimal hyperparameters or redesign prediction models. The 
utilized AutoML framework could also be extended to new tasks, such as predicting other non- Sa intensity 
measures of aftershocks. Although the AutoML technique is essentially a “black-box” that needs to be used with 
caution, it offers a promising approach to solving similar problems in earthquake engineering.

Fig. 10.  Feature dependence plots for (a) Sa (mainshock); (b) Mw; (c) R and (d) Vs30
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request. Mainshock and Aftershock recordings used in this study are collected from NGA-West2 database 
of PEER Ground Motion Database at https://ngawest2.berkeley.edu/; K-NET and KiK-net database at ​h​t​t​p​s​:​/​/​
w​w​w​.​k​y​o​s​h​i​n​.​b​o​s​a​i​.​g​o​.​j​p​/​​​​​; Italian Accelerometric Archive of waveform at https://itaca.mi.ingv.it/. The detailed 
information of selected mainshock and aftershock ground motions can be referred to the electronic supplement. 
The python script for training FLAML and example cases have been uploaded in Github: ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​b​​.​c​o​m​/​​
W​​a​​n​g​m​e​​n​​g​c​i​​v​i​​l​/​P​r​​e​d​​​i​c​t​i​o​​​n​-​o​​f​-​a​f​​t​e​r​s​h​o​c​k​-​s​p​e​c​t​r​a​l​-​a​c​c​e​l​e​r​a​t​i​o​n​-​u​s​i​n​g​-​a​u​t​o​m​a​t​e​d​-​m​a​c​h​i​n​e​-​l​e​a​r​n​i​n​g​-​A​u​t​o​M​L​​​​​.​​
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