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OPEN A kurtosis-ESPRIT algorithm for

RealTime stability assessment in
droop controlled microgrids

Adham Osama™’, Abdallah F. El-Hamalawy?, Mohammed E. Ammar?, Amr M. AbdelAty*3*,
Hatem H. Zeineldin?, Tarek H. M. EL-Fouly* & Ehab F. El-Saadany?!

Although detailed analytical models for droop-controlled microgrids are available, they are
computationally complex and do not consider real-time variations in microgrid parameters and
operating conditions. This paper proposes Kurtosis-Estimation of Signal Parameters via Rotational
Invariance Technique (ESPRIT) to identify the dominant modes in droop-controlled inverter-based
microgrids (IBMGs) using local real-time measurements. In the proposed approach, a short-duration
small disturbance is applied to the selected DG’s active power droop gain, and then, the system’s
dominant modes are estimated from its local measurements. Additionally, a kurtosis measure

is proposed as a quick measure to assess the estimation signal’s characteristics and evaluate the
presence and prominence of significant modes within the signal. The effectiveness of the developed
approach is validated via MATLAB/SIMULINK simulations. Four case studies were conducted to verify
the robustness of the proposed algorithm as follows: under different values of active power droop
gains, several variations of lines’ X/R ratios, various levels of noise, and under large load changes and
topological disturbances. Besides, a controller-in-the-loop (CIL) experiment was conducted using
OPAL-RT to provide a real-time validation of the results. The modes obtained from the proposed
algorithm are validated against the analytically derived modes and the estimation accuracy is
compared to the recent methods: Prony, Matrix Pencil, and Subspace Identification techniques.
Results show higher estimation accuracy for the proposed approach with a robust performance in noisy
environments, across varying load conditions, and under different network configurations.

Keywords Distributed generation, Droop control, ESPRIT technique, Kurtosis measure, Low-frequency
oscillations, Microgrids, Small-signal stability

The surges in the penetration of renewable energy sources in modern power systems have been associated with
a corresponding increase in distributed generation (DG) technologies'. The integration of DG systems allows
for reduced dependency on fossil fuels which in turn minimizes the long-term costs associated with energy
generation. Hence, microgrids have become crucial building blocks in the modern electric grid as they facilitate
the operation of inverter-based distributed generation (IBDG)>®. However, the operation and control of
microgrids equipped with renewable energy sources (RESs) are challenging due to their associated intermittent
behavior and low inertia compared to conventional synchronous generators*. Generally, the modern power
system is continuously subject to changes. This is due to the stochastic variations of the loads and the dynamic
nature of the power generation system>°. Load variations lead to an oscillatory response in the system’s
waveforms. Additionally, the reduced generation reserve margins, the rising demands, and the limitations of
increasing transmission network capacity forced the grid operator to run the system closer to its technical
limits’. Thus, these factors make the system more vulnerable to stability issues and frequent disturbances. These
problems usually appear as poorly damped, low-frequency oscillations (LFO).

LFOs typically lie in the range of 0.2 to 3 Hz and are regarded as one of the major problems that can negatively
impact the stability of the power system®. Generally, LFOs decay quickly and the system remains stable, but
the stability of the power system will deteriorate if the LFOs are poorly damped which can lead to unstable
system operation and even a major system blackout’. Thus, accurate identification of oscillation properties is of
utmost importance for maintaining the safe operation of the power system and for initiating emergency control
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actions that preserve the system’s stability!?. As a result, researchers’ interest in the dynamic monitoring of grid
operations in real-time has grown extensively in the past two decades!!-!%. Low-frequency oscillatory modes can
be identified using two approaches: model-based approach and measurement-based approach. The former is an
off-line analysis that is based on the eigenvalue analysis of a system state-space matrix that is linearized around
a certain operating point!*. However, the power system has a dynamic nature with time-varying operating
conditions, which makes it very difficult to construct an accurate model that accommodates all operating points.
In addition, the complexity of large-scale power systems will make the construction of the system’s state-space
matrix a very sophisticated process. Therefore, this approach is not suitable for high-order power systems!”. The
other approach for estimating oscillation parameters is based on measurements. Hence, the use of data-driven
techniques has thrived with the expansion of wide area monitoring systems (WAMS) and phasor measurement
units (PMU) in power systems'®!”. These techniques employ advanced mathematical algorithms to identify key
characteristics of power system oscillations.

Examples of recent measurement-based methods that have been used recently for the detection of LFO
modes include the Kalman filter, Matrix Pencil'®, Prony'?, Subspace Identification (SID) technique?’, and
ESPRIT2122, The Kalman filter is a recursive system identification technique, however, it has a problem of
numerical instability>>. A SID-based approach is used for the online assessment of the system's stability, and
it exhibits good performance in the presence of measurement noise**>. However, SID techniques suffer from
a high computational burden which makes them difficult to implement in a real-time environment. In?, the
dynamic behavior of microgrids was investigated using Prony analysis and state-space modeling techniques.
Prony analysis was introduced in'*?” as a modal identification technique to analyze the oscillatory behavior of
the power system. However, Prony algorithm shows sensitivity to noise interfering with the measured signal, and
although the improved versions of Prony can overcome this issue, they still suffer from a high computational
burden. On the other hand, ESPRIT technique exploits the rotational shift invariance property of the signals to
extract different signal parameters. Compared to Prony which uses the data samples directly to form the data
matrix, ESPRIT uses the Hankel data matrix, which provides it with higher immunity toward noise?®. In%, an
estimate for power system harmonics and inter-harmonics was performed using an ESPRIT-based approach.
Further, a detailed development of several robust signal processing algorithms including TLS-ESPRIT is provided
in%’. The numerical examples introduced in these studies verified the effectiveness of ESPRIT algorithm.

Based on the aforementioned review, it can be noticed that system identification techniques were widely
applied in different power system applications, however, few research studies are available for the real-time
monitoring and stability assessment in microgrids. In fact, dynamics in microgrids are considerably different
from conventional power systems, especially for microgrids employing DGs with power electronic interfaces
and renewable energy sources which are characterized by their intermittent nature. The dynamics in islanded
microgrids are more rapid and nonlinear compared to dynamics in conventional systems which tend to be more
stable and predictable. Thus, it is quite challenging to accurately capture the microgrid’s dominant modes under
these fast-changing dynamics. This motivated the authors to propose a robust real-time stability assessment
algorithm to continuously identify the system’s stability margin which can help network operators to design
more robust controllers and take timely corrective actions, when necessary. The proposed approach relies on
locally measured signals from the perturbed DG. Thus, it avoids the dependency on data communications,
which are subject to reliability issues. Moreover, a clear understanding of the nature of the measurement signal
is provided in this paper through the Kurtosis measure. This measure is generally utilized to detect outliers in
the signal’s distribution which can indicate the presence of stronger and more dominant modes in the signal,
especially in noisy environments. Kurtosis-based analysis can be combined with the ESPRIT algorithm in
one tool to identify the dominant modes from the measured signal. Further, this tool can be combined with
conventional decentralized microgrid controllers to enhance microgrid stability by updating the droop gains
online. The contributions of this paper are summarized as follows:

« Proposing a robust stability assessment tool based on Kurtosis-ESPRIT algorithm for real-time monitoring of
microgrids’ stability. To the best of the authors’ knowledge, this is the first study to demonstrate the effective-
ness of ESPRIT for real-time stability assessment in droop-controlled inverter-based microgrids which hold a
quite different and more challenging dynamic behavior compared to conventional power systems.

« Utilizing Kurtosis as a quick measure for describing the signal’s characteristics, indicating whether further
detailed analysis, using ESPRIT, is likely to be more or less accurate.

o Assessing microgrids’ stability through local measurements only and thus, avoiding the use of PMUs and
their associated communication channels.

« With its high estimation accuracy, ESPRIT analyzer demonstrates it can serve as an efficient alternative to the
detailed small signal models when they are not available.

« Confirming the robustness of ESPRIT algorithm towards different levels of noise, across varying load condi-
tions, and under different network configurations.

« Achieving higher estimation accuracy for the system’s dominant modes compared to the existing modal iden-
tification techniques discussed in the literature.

The organization of the rest of the paper is as follows: Section “Small-signal model-based analysis” presents
the small-signal analysis of a generic islanded microgrid, which is used later to determine the accuracy of
the proposed approach. In section “Kurtosis-ESPRIT-based stability assessment algorithm”, Kurtosis-ESPRIT
algorithm is reviewed. Section “The proposed real-time stability assessment approach” illustrates the developed
stability assessment tool. Case studies and simulation results are discussed and compared to the other existing
algorithms in section “Simulation results”. A real-time validation for the proposed algorithm is introduced in
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section “Real-time validation of ESPRIT performance using OPAL-RT” Finally, section “Conclusion” concludes
the paper.

Small-signal model-based analysis

The adopted small-signal model of an islanded microgrid using droop-based control was developed in®!. The
given modeling procedure can be applied for any number of DGs and various network configurations. Figure 1
shows the adopted control structure for the inverter-interfaced DGs. The voltage and current components in the
dq frame are obtained, and the instantaneous active and reactive powers are calculated. These powers are filtered
to produce the average values of active and reactive powers. In this control topology, the dq rotating frame is
adopted for the derivation of the equations in the three control loops. The droop characteristics determine the
microgrid’s frequency based on the active power, while the DG’s reference voltage is set based on the reactive
power. The reference values of the current controller are set by the voltage controller. Both the current and voltage
control loops are proportional-integral (PI)-based controllers that are utilized to provide efficient tracking for
the signals. The final small-signal model of a DG is the resultant integration of the droop controller, current
and voltage controllers, output filter, and coupling inductance. In turn, the small-signal model of an islanded
microgrid considers the dynamics of the whole system including inverter dynamics in addition to network and
load dynamics. The model of the " DG can be represented as follows:

[Azinvi] = Ainvi [Azinvi] + Binvi [A Vepi] + Biw com[A W com], (1)
[ AAJ)DLQZ ] = [ CC'I']]\;\]V;: } [Azinvi] [Azinvi] =[Ad: AP AQi Aagi A gqi Atdgi A Vodgi Adpagi]”,  (2)

where A, represents the small signal variation. The matrices A, B, and C determine the relationships between
inverter state variables and input and output vectors. (P, Q) are the DG’s output active and reactive powers,
and g, represents the angle between the local reference frame of each inverter and the global frame. (® dgp Y
dql.) are the errors integration of voltage and current expressed in their dq-frame components, respectively. The
states (iyy, foggp Vodgi) A€ the output currents and voltage in the dq rotating frame. w_,, is the common rotating
reference frame frequency. The islanded microgrid’s small signal model includes the models of the inverters,
network, and loads that constitute the microgrid. The model consists of (k) IBDGs and a network of () nodes

that has (r) lines and supplies (b) loads. The microgrid’s small-signal model is represented as follows:

A XINV A XINV
A ?line dq = Amg A ?line dq 5 (3)
Lload dq Lload dq

where A is the microgrids state matrix. AX ., Aij, ., and Ai, 4g AT€ the combined inverters’ state vector,
the network lines’ current states, and the loads’ current states, respectively, which can be expressed as follows:

T
AXinv =[] Azinv:  Azinve ... Azxinvy, | (4)
A lline dqg = [ A Uine dq 1 A Uine dq 2 cee A Uine dqr } (5)
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Fig. 1. Block diagram of DG control loops.
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. . . . T
A lload dg = [ A tload dq 1 A tload dq 2 o A tload dqy, ] (6)

The stability and damping of the system can be evaluated using the microgrid’s state matrix A, , which allows
the identification of its eigenvalues. If all eigenvalues have negative real parts, the system is stable. Conversely,
if any eigenvalue of the state matrix has a positive real part, the system is then unstable. The detailed modeling
and analysis of the proposed inverter-based microgrid are given in’!. Further, participation factor analysis was
performed in this work to determine the contribution of different state variables to the overall system response.
As presented in*?, the participation of a certain state variable can be described as the measure of involvement of
the k™ state variable on the i, mode and it can be expressed as follows:

[Viei Wi

Py = ikl
NS M VWil

(7)

where V. and W, are the left and right eigenvectors of the state matrix A . The magnitude of V,, represents a
: ith ; h . h ; y

measure of involvement of the i mode Z(t) in the K™ state variable X, (t). The magnitude of W,, represents the

influence of the K% state variable X, () in the i" mode Z(1).

Kurtosis-ESPRIT-based stability assessment algorithm

Kurtosis statistical analysis

Kurtosis is a statistical measure used to describe the characteristics of a dataset. In33, it was defined as a
descriptive statistic that measures how data is dispersed between a distribution’ tails and its center. Kurtosis was
also characterized as “a measure of data peakedness or flatness relative to a Gaussian distribution” as mentioned
in®*. The normal distribution curve of a dataset is always depicted as a bell-shaped curve with a Kurtosis equal
to three (K=3) where most of the distribution of data is concentrated around the mean*. Large Kurtosis (K> 3)
is normally characterized by thickly concentrated tails that hold extreme values or outliers, while low Kurtosis
(K<3) indicates a distribution with shorter tails and a more uniform distribution of data that lacks significant
extremes. In this regard, a low Kurtosis value close to 3 for the measured data distribution can indicate that
ESPRIT algorithm will have more difficulty identifying the dominant modes from the measured signal especially
if the signal includes white Gaussian noise which has a kurtosis of three®, then the presence of these modes
might be masked by the noise content. Thus, a low Kurtosis value in the presence of noise doesn't necessarily
imply the absence of dominant modes, rather, it may indicate that noise is overshadowing the signal features.
Mathematically, the Kurtosis of a dataset can be calculated as follows:

4
E(:c—a:)
K=

where F is the expectation operator, 7 is the measured data vector, and z is the mean of the data vector 7.

ESPRIT analysis background

ESPRIT is one of the signal processing techniques used to decompose complex signals in the form of the sum of
exponentially damped sinusoidal signals. ESPRIT demonstrated high reliability and good estimation accuracy
in terms of analyzing signals, especially in the presence of noise?®. Several implementation methodologies
were adopted for ESPRIT algorithm including the autocorrelation matrix of the signal®»¥. In this paper, the
measurement data vector was converted into a Hankel matrix instead of using the data samples directly or
forming an autocorrelation matrix. This step provides the algorithm with higher immunity towards noise and
allows more accurate estimations for the system’s dominant modes?3. In addition, the measurement data were
filtered through low-pass filters that remove high-frequency noise and allow only lower-frequency components
to pass, besides DGs’ output filters that provide further cleaning for the signal.

The preprocessed low-frequency oscillation (LFO) signal is represented as follows:

Fm)=x(n) +r(n) =Y 7 AT cos (2 fiTun+61) + 7 (n), ©)

where n=0, 1, 2, ...., J-1, ] is the signal sampling points, x(n) is the original low-frequency signal, T, is the
sampling period, r(n) is the residual noise, Z(n) is the measured LFO signal, P is the number of signal modes or
the frequency components in the signal, and «, f,, 6, and A, are the damping factor, frequency, initial phase, and
amplitude of the i*" mode respectively. Equation (9) can be rewritten as follows:

Fm)=am)+r(n)=> ¥ G2 +rn), (10)
where Z, is the signal pole and it is equal to elxiti2m f)Ts C, represents %Aieje ‘

In this study, x(n) represents the batch of measurements taken after the perturbation removal until the
oscillations are damped. ESPRIT algorithm follows the following steps to estimate the frequency components
and their corresponding damping factors:
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Step 1 The data vector of the selected measurement of a length J is arranged as a Hankel matrix of order M. L
is a parameter representing the number of Hankel matrix rows and it should be given first where L >2P, M > 2P,
and J=L + M-1. The Hankel matrix is constructed from the signal x(n) in the following manner.

z (0) z (1) .oz(M=1)
H= ) ) . . (11)
2(J—M) z(J-M+1) . a(J-1)

The selection of the proper data vector size plays a critical role in achieving a clearer separation between signal
and noise subspaces. In general, larger data vectors enhance resolution and improve estimation accuracy.
Accordingly, in this study, the data size is defined such that the measurement data are taken immediately after the
removal of perturbations and continue until the system reaches its steady state. This strategy ensures a balance
between the accuracy of the algorithm’s estimations and the reduction in computational time.

Step 2 The singular value decomposition (SVD) is used to decompose the Hankel matrix in step 1. It divides the
matrix into a signal subspace (S) and a noise subspace (N) as follows.

H=UY v =[Us UN}[ZOS ZONH“//?’}’ (12)

where U and V are two unitary matrices containing signal and noise subspaces. X is a diagonal matrix that
comprises all the singular values of H. The model order can be determined from the diagonal matrix. In this
work, the fifth value in this matrix has a noticeable decline compared to the first four values. Thus, the model
order was chosen to be four.

Step 3 The signal subspace is then divided into two shifted matrices and from the signal subspace U, in step 2
by removing the last and first row of.

U ={u1,ug, ... ,up—1} (13)

U2 = {’11,2,11137 e ,UJW},
where U e CM-1)x2P 4 d Uk CM-Dx2P are the two shifted subspaces.

Step 4 The matrix V,  can be constructed as follows.

Vnew = [ Ul U2 ] (14)

_ _H _
Then applying SVD to the matrix V.~ to get: View =U Y, ~V  where U C

new

"€ CM=1x (4P) e O0MP)x (4P) and v/ is divided into four matrices 2Px2P

(M=1)x (M—1)

y=| Y Ve (15)
Vo1 Va2
Step 5 Using the shift-invariance property, the rotation matrix ¥ is obtained from and as follows.
_ _—1
¥ =—Vi2Va (16)

Step 6 Calculate the eigenvalues of the rotation matrix ¥. The frequency f; and damping factor a; of all modes of
the oscillation signal can be calculated as follows.

tan—1 (Im(/\ - 1:))

fim e (17)
T 2m Ts ’
In |)\ 2 7,|
o= ——22H 18
T (18)
where )L%. are the eigenvalues of the rotation matrix ¥, TS is the signal sampling time, and V=123, ....2P

Step 7 Using the eigenvalues of the rotation matrix A,,, Vandermonde matrix A, is constructed as follows.
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The original amplitude and initial phase angle can be obtained by the least squares method, where X
Step 8 Calculate where C, and are column vectors that can be represented as follows.
Ci=[C1 G o G ],

X=[z0) z1) - z(-1]"

=A,.Ch.

Step 9 The original amplitude and initial phase angle of each i# component can be obtained as follows.

_1 (Im(Cy)
;= C; ;= 1 ]
A =2 |, 0 tan ( e(Ci))

The proposed real-time stability assessment approach

As outlined in section “Small-signal model-based analysis’, the state space matrix A represents the small-
signal model at a specific operating point. On the contrary, the proposed approach employs ESPRIT technique to
obtain the microgrid’s most dominant modes in real-time. The block diagram of the suggested ESPRIT estimator
is illustrated in Fig. 2, where the droop gain exciter disturbs the active power droop gain for the selected DG for
a very short duration (300 msec in this study). The system will respond to this small intentional perturbation
and will start oscillating. After the perturbation removal, the real-time measurements are collected and pre-
processed, where raw sensors data is filtered to remove noise and finally fed into the ESPRIT analyzer which
follows the steps mentioned in section “ESPRIT analysis background” to get the dominant modes of the system.
In industrial systems, the proposed algorithm can be integrated into the local controller of each DG unit by using
commercially available digital signal processors (DSPs) or microcontrollers. These platforms are well-suited for
real-time implementation due to their high computational efficiency and ability to handle the relatively low
computational burden of ESPRIT algorithm. Therefore, the algorithm can operate as an add-on module to the

local droop controller to enable the real-time monitoring of the system’s stability margin.

As per the analysis in’!, the low-frequency modes are mainly affected by the DG angle, active power, and
reactive power. Hence, for a strictly local estimation procedure, the proposed algorithm uses only one locally
measured DG variable. Assessing the microgrid stability is carried out by evaluating the location in the s-plane of
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Fig. 2. Local stability assessment ESPRIT-based algorithm block diagram.
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Load 1

Load 2

Fig. 3. Single-line diagram for the 3-bus benchmark.

Parameter | Value | Parameter | Value

Re (Q) le™! Riine2(Q) | 35¢2
L¢ (H) 1.35¢73 | Line2 (H) | 1.85¢73
Cs (F) 50e® | Ricaa1(Q)) |25

Rc (Q) 0.03 Lioad1 (H) |1e7?
L¢c (H) 0.35¢7 | Rioaa2(Q) |25

Riine1(Q) |23¢2 | Ligaaz (H) | le?
Liine1 (H) | 0.35¢73 | Voltage (V) | 381
X/Riiner | 0477 | X/Riine2 | 1.66

Table 1. Microgrid parameters for the 3-bus benchmark.

the dominant modes (represented by the exponent (« ; &= 527 f;)) that are predicted by the ESPRIT analysis of
the selected measurement signal. The real-time stability assessment is repeated based on an expectation of how
frequently unexpected contingency events occur such as the temporary DGs disconnection or sudden variations
of loads in the microgrid.

Simulation results

Two benchmark systems are introduced in this paper to validate the proposed ESPRIT algorithm. The 3-bus
network which was developed in®' and a modified version of the CIGRE MV benchmark which is derived
from the German MV distribution network introduced in®®. The 3-bus microgrid is depicted in Fig. 3 and is
comprised of three identical DGs of the same rating (10 KVA) connected via two connecting lines and supplying
two loads. The microgrid has a nominal frequency of 50 Hz and a nominal phase voltage of 220 V. The system
base power is selected to be 4 KVA. The detailed parameters of the given network are listed in Table 1. On the
other hand, the modified version of the CIGRE system has a rated voltage of 20 KV and a nominal frequency of
60 Hz. As shown in Fig. 4, the CIGRE system includes two subnetworks where lines 11 and 12 are underground
cables and the rest of the lines in the network are overhead lines. The microgrid has four identical DG units of
2 MVA each, 12 connecting lines, and 11 loads. Network line parameters are provided in the appendix of*. The
total network load is 4.9 MW and 1.7 MVAR and the system base power is selected as 2 MVA.

To select the measurements that have the highest participation in the dominant modes, participation factor
analysis was performed. Table 2 illustrates the participation percentages of the state variables for the 3-bus
microgrid when m =1.1x 10~* and for the modified CIGRE microgrid when m =0.7x 10" 7. Tt shows that DG2
power angle and active power have the highest percentage of participation for the first system and for the CIGRE
system, DG3 and DG4 power angles have the largest participation ratio followed by DG2 active power. These
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Fig. 4. Single-line diagram for the modified CIGRE MV benchmark.

System Measurement Participation factor % | Type of measurement
DG2 power angle | 42.48 Communication-based
3-bus microgrid DG2 active power | 21.3 Local
DGl active power | 14.62 Local
Others 21.6 -
DG3 power angle | 29.914 Communication-based
Modified CIGRE MV microgrid | DG4 power angle | 26 Communication-based
DG2 active power | 15.208 Local

Table 2. Participation factor analysis for the 3-bus benchmark at m_=1.1x10"* and the modified CIGRE MV
benchmark at m =0.7x 10 7. Significant values are in bold.

results are explicitly presented in Figs. 5 and 6. Although changes in the active power droop gain might affect
the participation factor percentages, these changes are minor and can be neglected. To attain local estimations
and avoid the use of PMUs and their associated communication channels, power angles will not be considered
in this work and the estimation signal will be taken locally from the perturbed DG. The measurement data were
down-sampled to minimize the processing time and to ensure that the estimation process was completed within
milliseconds. Across all case studies, the maximum estimation time recorded was 0.0778 s, utilizing an 11th
Gen Intel’ Core™ i7-1165G7 processor operating at 2.80 GHz. This computational time is determined by the
key operations involved in the proposed algorithm, which include the construction of the Hankel matrix from
the measurement data, the Singular Value Decomposition (SVD) of the Hankel matrix, and the computation of
eigenvalues to estimate the system’s dominant modes. This suggests that the proposed approach is feasible for
deployment in practical microgrid systems and real-time applications.

The robustness of the proposed ESPRIT algorithm is validated and tested through four different case studies
in the next subsections. In the first case study, the impact of variations of the active power droop gains on ESPRIT
estimation accuracy is investigated, while in the second case study, the impact of variation of lines’ X/R ratio is
evaluated. In the third case study, the impact of signal noise on the accuracy of the proposed estimator is studied.
Finally, the performance of the algorithm is evaluated under large load changes and topological disturbances. In
all cases, the estimation was performed locally using the real-time measurements of DG2 active power which are
assumed to be instantaneously available for mode estimation. The accuracy of the estimation for the proposed
approach was checked and validated by comparing the estimated modes to the eigenvalues derived from the
small-signal analysis.
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Participation Factor Analysis For
the 3-bus Benchmark
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Fig. 5. Ilustrative bar chart for participation factor analysis for the 3-bus benchmark.
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Fig. 6. Illustrative bar chart for participation factor analysis for the modified CIGRE MV benchmark.
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Fig. 7. Analytically derived modes versus estimated modes for the 3-bus benchmark at different active power
droop gains, m = (0.9, 1.1, 1.35) x10~4.

ESPRIT Prony
% Error % Error
me10’4 Sy d Estimated modes | Real | Imag | Kurtosis measure me10’4 Estimated modes | Real | Imag
0.9 —10.174+47.504i | 9.87 |4.0065
0.9 —9.26+45.674i | —9.22+45.79i 0.431 | 0.254 | 12.951 1.1 —8.2739+52.382i | 8.965 | 2.61
1.35 ~5.6602+58.355i | 5.28 | 2.4351
Matrix pencil
1.1 —-7.593+51.05i | =7.504+51.16i 1.17 ] 0.215 | 7.6248
0.9 —10.174+47.504i | 9.87 |4.0065
1.1 ~8.2739+52.5231 | 8.965 | 2.881
1.35 | —5.6674+58.3561 | 542 |2.43
Subspace Identification
1.35 —5.376+£56.97i | —5.201+£57.09i 325 | 021 |5.64
0.9 —9.97 £45.72i 7.66 | 0.1
1.1 ~8.2+52.794i 7.99 |3.41
1.35 ~5.81+57.22i 8.072 | 0.438

Table 3. Percentage error of estimated dominant modes in the 3-bus benchmark for different active power
droop gains using ESPRIT, Prony, Matrix Pencil, and SID techniques.

Impact of variation of the active power droop gain on the estimation accuracy of the
proposed approach

The proposed ESPRIT estimator was applied to the 3-bus microgrid and the modified CIGRE MV system, both
tested under three different active power droop gains. Additionally, to further substantiate its robustness and
reliability, ESPRIT estimator was evaluated on a 34-bus microgrid’’, representing a larger and more complex
microgrid, to rigorously assess its estimation accuracy. In all cases, the active power droop gain of DG2 was
perturbed with a negative perturbation of Am_= -1% for a duration of 300 msec, then the original my, was restored.
The percentage of perturbation Am_and its duration were minimized to the least possible level that maintains an
accurate estimation of the system’s most dominant modes. At each droop value, the estimation was performed
using DG2 active power to evaluate the estimation accuracy of the proposed ESPRIT algorithm. In Fig. 7, the
estimated most dominant modes for the 3-bus microgrid are plotted versus the analytically derived modes from
the small-signal analysis at m =9x 1075, m =1.1x107% and m =1.35x10"* It is evident that as increases, the
dominant modes are shifted towards the right-hand side, causing a reduction in the network stability margin.
Additionally, the estimated and analytically derived modes are very close to each other for different values of
active power droop gains which demonstrates the high accuracy of estimation for the proposed algorithm.
Table 3 lists the estimated dominant modes for the three above-stated droop gains. The estimation accuracy of
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ESPRIT Prony
% Error % Error

m, x10~7 | System modes Estimated modes | Real | Imag | Kurtosis measure ml,><10‘7 Estimated modes | Real | Imag
0.3 —13.224 £ 33.064i | 10.22 | 6.14

0.3 —14.73+31.151 —14.4+29.851 224 | 417 9357 0.4 —13.109 £ 39.416i | 8.328 | 14.41
0.5 —12.603 +44.854i | 9.97 |13.78
Matrix pencil

0.4 —14.3+34.45i —13.96+34.85i 237 [ 116 |89
0.3 —13.22 + 33.068i 10.25 | 6.157
0.4 —13.11 £ 39.416i 8.321 | 14.41
0.5 —12.618 +£44.854i | 9.87 |13.78

0.5 —14+39.42i -13.2+39.72i 571 {0.76 |6.92 Subspace identification

0.3 —13.987 £ 32.2811i | 5.04 |3.63
0.4 —13.321 £37.362i | 6.84 |8.45
0.5 —12.818 + 40.73i 8.44 |3.32

Table 4. Percentage error of estimated dominant modes in the modified CIGRE MV benchmark for different
active power droop gains using ESPRIT, Prony, Matrix Pencil, and SID techniques.
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Fig. 8. Analytically derived modes versus estimated modes for the modified CIGRE benchmark at different
active power droop gains, m = (0.3, 0.4, 0.5) x1077.

ESPRIT technique is also compared to Prony, Matrix Pencil, and SID techniques. In all cases, the estimation of
ESPRIT method has a percentage error of less than 3.25%in the real part and 0.254% in the imaginary part which
is a high accuracy given that it is a local estimator that does not require any communication channels. Prony
algorithm identifies the most dominant modes with a percentage error of up to 9.87% in the real part and 4% in
the imaginary part. The results of Matrix Pencil are very close to those obtained by Prony algorithm. Finally, SID
technique was applied to estimate the dominant modes for the above-mentioned droop gains with a maximum
error of 8% in the real part and 3.41% in the imaginary part.

For further verification of the robustness of the proposed ESPRIT estimator, a larger system was adopted, and
the algorithm was tested on the modified CIGRE microgrid at three values of m, (mP:O.3 x 1077, mP:0.4 x 1077,
and m_=0.5x1077). As listed in Table 4, ESPRIT algorithm estimated the most dominant modes with a
percen}[)age error of less than 5.71% in the real part and 4.17% in the imaginary part. Compared to SID, Prony,
and Matrix Pencil techniques which have a percentage error of up to 10.25% in the real part and 14.41% in
the imaginary part, ESPRIT technique demonstrates its superiority over the other methods in terms of the
estimation accuracy for different values of active power droop gains. Figure 8 plots the estimated most dominant
modes versus the analytically derived modes at m_=0.3 x 1077, mP:O.4 x 1077, and m_=0.5x 10~7 for the modified
CIGRE microgrid. At the final stage of the evaluation, the performance of the ESPRIT estimator was tested
on a larger and more complex microgrid configuration. The 34-bus radial distribution network presented in*’
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Fig. 9. Single-line diagram for the 34-bus benchmark.

ESPRIT Prony
% Error % Error

m, x10~7 | System modes | Estimated modes | Real | Imag | Kurtosis measure mpx10‘7 Estimated modes | Real | Imag

0.5 -5.4713 £10.23i |2.818 |3.59

0.5 —5.63+10.612i | —5.5748 +£10.67i 0.98 | 0.546 | 4.0043 0.8 —4.3018 £ 13.559i | 0.98 217
1.1 —3.3729 +£15.928i | 5.52 1.019
Matrix pencil

0.8 -4.26+13.271 | -4.282+13.557i 0.51 |2.162 | 5.3532
0.5 —5.4674 £ 10.227i | 2.889 | 3.627
0.8 —4.3021 £ 13.559i | 0.988 |2.17
1.1 —3.3728 £15.928i | 5.52 1.019
Subspace identification

1.1 —3.57+£16.092i | —3.485+16.24i 2.38 | 0.919 | 5.5959
0.5 =5.716+11.161i 1.5275 | 5.1733
0.8 —4.336+£13.706i 1.784 | 3.285
1.1 —3.738+£16.462i 4.705 | 2.299

Table 5. Percentage error of estimated dominant modes in the 34-bus microgrid for different active power
droop gains using ESPRIT, Prony, Matrix Pencil, and SID techniques.

was modified to form a droop-controlled inverter-based microgrid, incorporating three identical distributed
generation (DG) units, each rated at 2 MVA and connected to buses 1, 27, and 30 as depicted in Fig. 9. The
network operates at a rated voltage of 11 kV, with a total installed load of 5.4 MVA and an average power factor
of 0.85. Table 5 summarizes the results of the ESPRIT evaluations conducted on the 34-bus microgrid, with
dominant modes estimated at m =0.5x 1077, m_= 0.8x 1077, and m _=1.1x1077. Across all specified droop
gain values, the ESPRIT method achieved percentage errors of less than 2.38% in the real part and 2.162%
in the imaginary part. In comparison, alternative techniques such as Prony, Matrix Pencil, and SID exhibited
higher errors, with maximum errors reaching 5.52% in the real part and 5.1733% in the imaginary part. These
results underscore the robustness and superior accuracy of the ESPRIT method, even when applied to large and
complex microgrid systems. Since it is inherently a data-driven technique, the proposed ESPRIT algorithm can
operate independently of the system size or topology which ensures the algorithm’s scalability across systems
with multiple distributed generators or more complex configurations.

For all presented benchmarks, the Kurtosis measure was calculated for each measurement data vector at each
droop gain, and it shows a large value (K> 3) which implies that the distribution of data holds extreme values
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Fig. 10. Estimated DG2 active power versus real measurements for the 3-bus microgrid simulator while
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Fig. 11. Estimated DG2 active power versus real measurements for the modified CIGRE microgrid while
excitation of DG2 active power droop gain. (a) m, =0.3x 10=7 (b) m =0.4x 1077 (¢) m =0.5x 10" 7.

(observations) thus, enabling ESPRIT to do accurate estimations for the system’s dominant modes. Additionally,
the real-time measurements of DG2 active power are plotted against the estimated signals as depicted in Figs. 10
and 11, and they explicitly reveal excellent fitting between them. In both figures, during the short perturbation
period and due to the negative perturbation on DG2 active power droop gain, DG2 provides more power than the
other DGs in the microgrid. Afterward, the steady state power is restored after the removal of the perturbation.
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m,x 10~* | X/R ratio Sy d Estimated modes | % Error Real | % Error Imag | Kurtosis measure

1.1 ~7.59+51.05i ~7.504%51.16i 1.17 0.215 7.6248
Unchanged (reference case)

1.35 537456971 | -5.201+57.09i | 3.25 0.21 5.64

1.1 Line 1 X/R —8.56 %+ 50.051 | —8.508 +50.4i 0.607 0.699 9.31

1.35 Increased by 20% —6.5544 & 56i | —6.686+56.12i 2.0078 0.214 6.6

1.1 Line 2 X/R ~7.516+ 50.7i | —7.596 +50.86i 1.064 0.3155 8.3

1.35 Increased by 20% 531+ 56581 | —5.198+56.761 | 2.109 0.318 5.7

1.1 Line 1 X/R —6.48 + 52.04i | —6.397 £52.44i 1.28 0.768 7

1.35 decreased by 20% —4.04-+ 57.87i | -387+58.078i | 4.207 0.359 4.56

1.1 Line 2 X/R —7.64+ 51.54i | -7.61+51.79i 0.392 0.485 8.33

1.35 decreased by 20% 538 57.55i | -5.287+57.581 | 1.72 0.052 573

Table 6. Percentage error in estimating dominant modes at different X/R ratios and active power droop gains
for the 3-bus benchmark.

m,x 107 | X/R ratio System modes | Estimated modes | % Error Real | % Error Imag | Kurtosis measure
0.7 Unchanged (reference case) | —13.33+47.961 | —12.427 +48.45i 6.77 1.02 11.67

0.7 %rilil:eis)ééRby 50% -12.364+52.4i | -12.505+48.95i 1.14 6.583 12.34

0.7 %ri?reezs):fi%)y 50% —13.33£47.96i —12.394+48.421i | 7.02 0.96 11.68

07 ﬁie‘;i;;i/dey s0% ~1208+53.841 | -11207£53.87i | 7.22 0.055 11343

07 Line 12X gy s0% ~12.075£53.82i | ~11276+53.7351 | 6.61 0.157 10783

Table 7. Percentage error in estimating dominant modes at different X/R ratios for the modified CIGRE MV
benchmark.

Impact of variation of lines’ X/R ratio on the estimation accuracy of the proposed approach

In this section, the suggested ESPRIT-based stability assessment approach is tested to demonstrate its ability to
handle changes in network parameters, such as the changes in the lines’ X/R ratio in the microgrid. Generally, the
system’s critical oscillatory modes rely on the droop gains, the number of inverters, and the lines’ X/R ratio*!42.
Additionally, microgrids are usually low-voltage networks with a limited geographical area and short lines.
Based on this, they are considered distribution networks that are characterized by low values of the X/R ratio.
The X/R ratio varies depending on the MG size and type of the network. In this subsection, the lines’ X/R ratio
was varied, and the estimation accuracy of the proposed ESPRIT algorithm was tested under these variations for
different values of 55. Starting with the 3-bus system, four case studies were studied in this section as follows: (a)
Linel X/R ratio increased by 20%, (b) Line2 X/R ratio increased by 20%. (c) Linel X/R ratio decreased by 20%,
and (d) Line2 X/R ratio decreased by 20%.

Table 6 presents the percentage errors of identifying the most dominant modes for the four case studies
compared with the reference case of the systens original X/R ratio for two values of m_ (m =1.1x10"* and
m =1.35x10"%) in the 3-bus microgrid. ESPRIT method demonstrated a minimal estimation error for various
X/R ratios for both lines. As noticed, the maximum percentage error is less than 4.207% in the real part and
0.768% in the imaginary part. It is worth mentioning that the lines with the minimum impedance between the
sources have a strong impact on the system stability margin*’. For more validation of the effectiveness of the
proposed algorithm, the test was repeated on the modified CIGRE MV benchmark. As can be seen in Table 7, the
most dominant modes were estimated and compared to the analytically derived modes at m =0.7x 1077 in four
case studies presented as follows: (a) Line6 X/R ratio increased by 50%, (b) Line3 X/R ratio increased by 50%.
(c) Line2 X/R ratio decreased by 50%, and (d) Linel2 X/R ratio decreased by 50%. In all cases, the percentage
error is less than 7.22% in the real part and 6.58% in the imaginary part. Thus, with different variations of the
system’s X/R ratio, ESPRIT is still capable of accurately estimating the most dominant modes. Additionally, all
cases, in both benchmarks, have a large Kurtosis measure (K> 3) which indicates the presence of non-Gaussian
components in the data distribution. In other words, each signal used in the estimation process holds prominent
features allowing accurate estimations for the dominant modes. Thus, it can be concluded that the proposed
ESPRIT algorithm can accommodate the changes in the microgrid line parameters while maintaining high
estimation accuracy for its dominant modes.

Impact of signal noise on the estimation accuracy of the proposed approach

To further confirm the robustness of the proposed approach, the anti-noise feature is tested under different levels
of noise. White Gaussian noise of different levels of SNR was added to the measurements to test the estimation
accuracy of the proposed ESPRIT analyzer. White Gaussian noise has a kurtosis of three, like a standard normal
distribution [34]. Generally, this noise content can reduce the overall Kurtosis of the signal, causing prominent
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m,x 10* | SNR System modes | Estimated modes | % Error Real | % Error Imag | Kurtosis measure
Noise-free —7.504+51.16i 117 0.215 7.6248
40 —~7.44+51.893i 2.015 1.65 4.82
1.1 —7.593 £51.051
30 —7.97£50.132i 4.96 1.79 3.886
25 —7.031+48.063i 7.4 5.85 3.37

Table 8. Percentage error in estimating dominant modes at different levels of SNR for the 3-bus benchmark.

m,x 107 | SNR System modes | Estimated modes | % Error Real | % Error Imag | Kurtosis measure
Noise-free —14.4+29.851 2.24 4.17 9.357
40 —14.401+£28.71i 2.23 7.833 7.26
0.3 -14.73+31.15i
30 —13.84+28.962i 6.04 7.02 4.699
25 —11.96+25.914i 18.8 16.8 3.0397

Table 9. Percentage error in estimating dominant modes at different levels of SNR for the modified CIGRE
MYV benchmark.

m?x10’4 Disturbance Sy d Estimated modes | % Error Real | % Error Imag | Kurtosis measure
063 Before step load increase at bus 1 | —10.91£36.131 | —10.39+35.47i 4.766 1.826 11.1551
’ After step load increase atbus 1 | -11.2+£35.24i | -10.66+34.625i | 4.82 1.745 11.2264

Table 10. Percentage error in estimating dominant modes for a large load change in the 3-bus benchmark.

features of the original signal to be masked. Starting with the 3-bus benchmark, the dominant modes were
estimated and compared to the calculated system modes at m_=1.1 x 10—4 as listed in Table 8. Compared to the
noise-free reference case, the percentage error slightly increased at SNR =40 dB to reach 2.015% in the real part
and 1.65% in the imaginary part with a Kurtosis measure equal to 4.82. By increasing the noise content further to
SNR =30, and 25 dB, the estimation error jumps to 7.4% in the real part and 5.85% in the imaginary part. While
there is a noticeable reduction in the kurtosis measure, which attained 3.37 at SNR =25, it remains above 3, the
kurtosis of white Gaussian noise. Thus, the original signal still retains prominent features, allowing ESPRIT to
accurately estimate the dominant modes. The test was repeated for the modified CIGRE MV benchmark, and
the results are presented in Table 9.

The dominant modes were calculated and then estimated at m =0.3x 1077 for different levels of SNR. As
shown, the percentage error in the real part at SNR=40 dB is roughly the same as that of the noise-free case,
while the imaginary part error slightly increased to 7.83%. At SNR=30 dB, ESPRIT estimator is still capable of
identifying the dominant modes with an error of 6.04% in the real part and 7.02% in the imaginary part while
having a Kurtosis measure of 4.699. Finally, at SNR =25, and with a signal Kurtosis measure that is roughly equal
to that of white Gaussian noise (K=3.0397 for the combined signal), the error remarkably increased to 18.8%
in the real part and 16.8% in the imaginary part which implies that the white Gaussian noise is dominating the
original signal and explains the impact of noise on concealing signal features which, in turn, complicates the
estimation process.

ESPRIT performance evaluation under large load changes and topological disturbances

This section presents an evaluation of the proposed algorithm’s performance under various dynamic disturbances,
including large load changes and topological reconfiguration, with a focus on their impact on the microgrid’s
stability margin. In the 3-bus benchmark system, a static RL load of 12 kW and 17 kVAR was suddenly connected
to bus 1, and the dominant modes were estimated before and after the disturbance using ESPRIT algorithm at
m =0.63 x 10~%. The results, shown in Table 10, indicate that the maximum estimation error is 4.82% in the
real part and 1.826% in the imaginary part which demonstrates the high accuracy of estimation for both pre-
and post-disturbance conditions. Additionally, despite the considerable load increase, the stability margin was
minimally impacted.

To thoroughly investigate the robust performance of ESPRIT algorithm, a dynamic network reconfiguration
scenario was implemented on the modified CIGRE benchmark system shown in Fig. 4. This scenario involves
disconnecting DG4, disconnection of line 1 between bus 1 and bus 2, and connecting the normally-open tie
line between bus 3 and bus 12. The dominant modes were estimated before and after the reconfiguration at
m =1.25x%x10"7. Assummarized in Table 11, before the reconfiguration, the modes werelocated at — 4.984 +73.39i,
with estimation errors of 4.06% in the real part and 1.71% in the imaginary part. Following the reconfiguration,
the system displayed an enhanced stability margin, with the modes shifting to —9.1332 +48.818i and a reduction
in estimation errors to 3.94% in the real part and 1.037% in the imaginary part. These results further validate
the ESPRIT algorithm’s robustness, confirming its effectiveness in accurately estimating dominant modes under
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r

me10_7 Disturbance System modes Estimated modes | % Error Real | % Error Imag | Kurtosis measure
125 Before network reconfiguration | —5.1954+74.667i | —4.984+73.39i 4.06 1.71 9.4816
’ After network reconfiguration | —9.508+48.317i | —9.1332+48.818i | 3.94 1.037 6.831
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Table 11. Percentage error in estimating dominant modes for a reconfiguration scenario in the modified
CIGRE MV benchmark.

TECHNOLOGIES

VADPAL RT

Fig. 12. CIL experimental setup.

significant load changes and topological reconfigurations, thus proving its reliability for practical microgrid
stability analysis.

Real-time validation of ESPRIT performance using OPAL-RT

The performance of the proposed algorithm was validated through a controller-in-the-loop (CIL) experiment
using OPAL-RT real-time simulator. The experimental setup, depicted in Fig. 12, consists of the following
components: (1) The OPAL-RT OP5707XG platform for real-time simulation (2) A digital oscilloscope (MSO58B
Tektronix) (3) A PC equipped with an Intel” Xeon” W-2245 CPU @ 3.9 GHz and 128 GB of RAM, running
OPAL-RT software. The proposed algorithm was tested on the 3-bus network depicted in Fig. 3, comprising
three identical DG units, each rated at 15 kVA, supplying a total load of 20 kW and 4 kVAR. A step load increase
was introduced using a static RL load of 20 kW and 6 kVAR, and the transient responses of the DGs’ active
powers were analyzed for two values of active power droop gain: m =0.15x 10~* and m _=1.4x 107, It is well-
known that increasing the active power droop gain reduces the stability margin, leading to a more oscillatory
response following dynamic disturbances in the system. This behavior is evident and can be observed in Figs. 13,
14 and 15, which compare the transient responses of active power after the step load rise for the two specified m
values. After the load disturbance, the dominant modes of the system were estimated using ESPRIT algorithm
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Fig. 13. Transient response for DG1 active power at m =0.15x 10~*and mp=1.4x 10~* after a step load
increase.
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Fig. 14. Transient response for DG2 active power at mp=0.15 x107* and mp=1.4x 10~ after a step load
increase.
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Fig. 15. Transient response for DG3 active power at m =0.15x 10~*and mp=1.4x 10~* after a step load
increase.

for both m values, yielding — 15.276 +9.9136i for m =0.15x 10~*and - 2.8071 + 55.895i for m =1.4x 10~*. These
estimations align closely with the transient responses and their oscillatory behavior observed in the OPAL-RT
simulations which validate the accuracy and credibility of the proposed algorithm.

Conclusion

This paper proposes a real-time stability assessment tool based on Kurtosis-ESPRIT algorithm operating on
the measurements of intentionally perturbed active power. The Kurtosis measure is uniquely employed for
describing the signal’s characteristics used in the identification process of the systems dominant modes. The
proposed stability assessment tool managed to achieve minimal estimation error within all case studies while
using local measurements only. When compared to the common Prony, Matrix Pencil, and SID techniques,
the proposed algorithm showed superior performance in terms of estimation accuracy. ESPRIT algorithm
proved its reliability and accuracy in estimating the most dominant modes in different microgrid benchmarks
at various active power droop gains, different variations of line parameters, several levels of noise, and under
large load changes and topological disturbances. Additionally, the performance of the proposed algorithm was
experimentally validated using OPAL-RT real-time simulator. Thus, the developed algorithm can perform as a
robust real-time stability assessment tool that can guide network operators to take corrective actions to ensure
microgrids’ stability at different dynamic operating conditions.
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