www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

SEPDNet: simple and effective PCB
surface defect detection method

Du Lang'™ & Zhenzhen Lv?2

Replacing time-consuming and costly manual inspections on production lines with efficient and
accurate defect detection algorithms for Printed Circuit Boards (PCBs) remains a significant challenge.
Current PCB defect detection methods are typically optimized using existing models such asYOLO
and Faster R-CNN to enhance detection accuracy. In this study, we analyse a PCB defect dataset
characterized by small targets and a concentrated size distribution. SEPDNet (Simple and Effective
PCB Defect Detection Network) is designed for the characteristics of the dataset, only one detection
head is used, which reduces the number of parameters and improves the detection performance at
the same time. SEPDNet uses RepConv (Re-parameterizable Convolution) to improve the backbone
representation ability, and FPN (Feature Pyramid Network) is used in the neck part to simplify the
model. SEPDNet has fewer than 30% of the parameters of YOLOvV9u-s, yet achieves an improvement
of 0.025 in the F1 score, 2.7% in mAP50, and 3.8% in mAP50:95 compared to YOLOv9u-s. We propose
the method of designing the model according to the characteristics of the dataset. Our experiments
show that customizing the model design according to dataset characteristics can achieve strong
performance with a simplified structure and fewer parameters.
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Printed Circuit Boards (PCBs) occupy a pivotal role in electronic devices, serving the dual purpose of providing
mechanical support and facilitating electrical interconnections between various components. PCBs are
ubiquitously employed across a wide range of electronic devices, including 3C products, household appliances,
automotive electronics, and numerous other sectors. The performance of electronic systems is largely contingent
on PCB quality. Consequently, PCB manufacturers must ensure their products meet stringent standards of
quality, precision, and reliability. Thus, implementing rigorous quality control measures throughout the PCB
manufacturing process, along with effective defect detection, is crucial. Failure to promptly and accurately detect
recurring defects can result in the rejection of numerous PCBs, leading to substantial waste and considerable
financial losses'.

Traditional manual inspection methods for PCB defects are inherently vulnerable to external environmental
factors, which greatly reduce the efficiency of the defect detection process®. Furthermore, the identification of
minute defects can cause visual fatigue in inspectors, resulting in increased rates of misclassification®. To address
these challenges, researchers have effectively integrated machine learning techniques into PCB defect detection,
leading to significant advancements. Wang et al.* developed an automated detection algorithm tailored
specifically for PCB pinholes, utilizing machine learning techniques. The algorithm can efficiently detect pinhole
defects as small as 2 mm within 10 s, demonstrating its effectiveness in rapid and precise defect identification.
Yuk et al.> advanced the field further by applying PCB defect detection methods based on a combination of
accelerated robust features and the random forest algorithm. By generating weighted kernel density estimation
(WKDE) mappings, which model feature density using weighted probabilities, they achieved precise localization
of defect concentration areas, significantly improving overall detection accuracy.

While traditional image processing methods for PCB defect detection have achieved moderate accuracy,
they are frequently hindered by time-intensive procedures and increased sensitivity to environmental conditions
and input image quality®. Recent rapid advancements in deep learning (DL) and computer vision have driven
a paradigm shift, establishing DL and convolutional neural networks (CNNs) as dominant techniques for PCB
defect detection’. These contemporary methods harness deep neural networks to automatically learn and extract
discriminative features from complex image data, markedly improving both the efficiency and robustness of
the detection process. By integrating DL and CNNs, researchers have successfully addressed the limitations of
traditional methods, achieving faster detection rates and greater resilience to environmental fluctuations and
image quality degradation.
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Deep learning-based methods for PCB defect detection are broadly categorized into two types: single-stage
detection algorithms and two-stage detection algorithms. Single-stage detection algorithms directly identify
defects from images without requiring intermediate steps®~'°. Two-stage detection algorithms first generate
candidate bounding boxes and then detect defects within these regions. Two-stage detection algorithms,
exemplified by R-CNN (Region-based Convolutional Neural Networks), Fast R-CNN, Faster R-CNN, and
Cascade R-CNN!'!"1, generally offer higher detection accuracy but at the cost of slower processing speeds
compared to single-stage algorithms. Single-stage detection algorithms are exemplified by the YOLO (You Only
Look Once) series and SSD (Single Shot MultiBox Detector)'®. Although single-stage detection algorithms
typically offer lower detection accuracy compared to two-stage algorithms, they are faster and have been widely
adopted in industrial defect detection.

Zhang et al.!® achieved impressive detection results with a cost-sensitive residual convolutional neural
network, specifically developed for detecting PCB appearance defects. However, the model is marked by its
high complexity and a large number of parameters. Ding et al.'” introduced TDD-net (Tiny Defect Detection
Network), a Faster R-CNN-based model specifically designed to detect small target defects in PCBs. Despite its
high accuracy, the model’s large size limits its practicality for deployment on embedded devices. Xuan et al.'8
proposed a YOLOX-based detection algorithm incorporating coordinate attention, achieving strong performance
in PCB defect detection. However, the models size of 379 MB presents challenges for specific application
scenarios. Wu et al.!? introduced ghost conv, SE (Squeeze-and-Excitation), and CBAM (Convolutional Block
Attention Module) into YOLOV5, named GSC (Ghost SE CBAM) YOLOV5, a deep learning detection approach
combining lightweight networks with a dual-attention mechanism to address the challenge of small target
detection. However, the complexity of the proposed attention mechanism, along with its speed limitations, still
requires further optimization. Bowei et al.?’ proposed a detection algorithm, based on YOLOV5, incorporating
depth-wise convolution, an attention mechanism, and a BiFPN (Bidirectional Feature Pyramid Network),
to enhance detection accuracy. Wei et al.?! proposed Transformer-YOLO, utilizing the Swin Transformer to
enhance the model’s feature extraction capabilities, thereby improving detection accuracy. However, the added
computational complexity reduces detection speed. Junlong et al.?? introduced various optimization methods
based on YOLOVS5 and developed PCB-YOLO, which slightly decreases detection speed but enhances accuracy.

In industrial applications, PCB defect detection algorithms must carefully balance detection speed and
accuracy to meet operational requirements. PCB defect areas are typically small, and to ensure high detection
accuracy, they are often upscaled to higher resolutions before detection. However, increasing resolution
inevitably increases computational complexity and slows down detection speed.

Existing PCB defect detection methods are typically optimized based on baseline models, with performance
enhancements achieved through the incorporation of techniques from other studies. Although these methods
can improve detection performance, they lack in-depth analysis of the specific characteristics of PCB defects
and fail to effectively tailor model design to these features. The motivation behind our research stems from a
central question: Are baseline-optimized methods truly the most effective solution for PCB defect detection?
We analysed the PCB defect detection dataset and, based on its characteristics, developed a streamlined defect
detection model SEPDNet. SEPDNet avoids the use of specialized optimizer methods and achieves high detection
accuracy with only a minimal number of parameters. The main contributions of this paper are as follows:

(1) We abandoned the conventional baseline optimization approach and designed SEPDNet from scratch,
achieving exceptional performance in PCB defect detection.

(2) SEPDNet uses RepConv to improve the feature representation of the backbone without affecting the infer-
ence speed, uses the FPN structure to simplify the neck module and reduce the model parameters, and uses
only a single detector head to match the dataset’s small target and concentrated distribution.

(3) We analysed the PCB defect dataset and developed a model tailored to its specific characteristics. Our mod-
el uses less than 30% of the parameters in YOLOv9u-s, yet improves the F1 score by 0.025, mAP50 by 2.7%,
and mAP50:95 by 3.8%.

Related work
YOLO framework
Real-time object detection has consistently been a central focus in computer vision research, striving to accurately
predict object categories and positions within an image with minimal latency. The YOLO models have garnered
growing acclaim for their adept equilibrium between performance and efficiency?. The initial YOLO model
pioneered a revolutionary approach to object detection by formulating it as a unified regression problem?:.
Figure 1 illustrates the general framework of the YOLO series of object detection algorithms, which typically
consists of three components: the backbone, the neck, and the head. The backbone is responsible for extracting
input feature information, the neck performs feature fusion, and the head generates the final prediction results.
Unlike traditional methods that applied classifiers to multiple regions of interest, YOLOv1 predicted
bounding boxes and class probabilities directly from full images in one pass®>. YOLOv2, also known as
YOLO9000%, introduced several enhancements over its predecessor. One of the key innovations was the use
of anchor boxes, which improved the model’s ability to detect objects at different scales. Additionally, YOLOv2
incorporated batch normalization and high-resolution classifiers, which helped improve both accuracy
and generalization. YOLOV3 built upon the improvements of YOLOv2 by introducing a more complex and
capable architecture called Darknet-53, which included 53 convolutional layers with residual blocks’. This
allowed the model to better capture spatial hierarchies in images. YOLOv4 focused on balancing speed and
accuracy, making it highly suitable for real-time applications?®. The model introduced the Cross-Stage Partial
(CSP) network, which improved learning efficiency by reducing the computational bottleneck and enhancing
gradient flow through the network. YOLOV5 introduced new data augmentation techniques, such as mosaic
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Fig.1. The architecture of the YOLO series.
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Fig. 2. The YOLO architecture for adding small target detection heads.

augmentation, which helped improve the model’s robustness by combining four training images into one, and
adaptive anchor computation to better fit the dataset’s specific characteristics?®. YOLOv6 was developed with
a focus on deployment optimization. It incorporated techniques such as RepVGG () blocks, which simplify
network structure during inference while retaining high performance®®. YOLOv7 introduced a new direction in
model efficiency by integrating ideas from EfficientNet and other modern architectures®'. It featured compound
scaling, which balanced model depth, width, and resolution to achieve better performance on diverse hardware
platforms. YOLOVS included significant advancements with the introduction of C2f. and SPPF modules by
recent developments in convolutional architectures’. YOLOvV8 boasts a balanced approach between accuracy
and speed, introducing multiple model sizes (e.g., yolov8n, yolov8s) to cater to diverse requirements. It employs
Darknet53 as the backbone and PANet for enhanced feature fusion, achieving robust performance across image
classification, object detection, and instance segmentation tasks. YOLOV9 further refines the architecture with
PGI (Programmable Gradient Information) and GELAN (Generalized Efficient Layer Aggregation Network) and
proposes SPPELAN and RepNCSPELAN4 modules, a lightweight yet powerful design that surpasses existing
real-time detectors on MS COCO, particularly excelling in small object detection®>. YOLOV10 revolutionizes the
field by eliminating Non-Maximum Suppression (NMS), adopting a dual-head architecture with a continuous
double assignment strategy, and significantly boosting inference speed while maintaining competitive accuracy™.

Small-object detection
Algorithms developed for general object detection often exhibit suboptimal performance on high-resolution
images featuring small objects. Copy-pasting technique oversamples images containing small objects by
generating multiple copies of these objects®>. However, this augmentation necessitates pixel-level labeling, which
is not directly compatible with object detection datasets and incurs additional labeling requirements. SSD-
MSN extracts richer features of small objects from enlarged regions cropped from the original image®. While
the additional features enhance detection performance, the selection of regions for enlargement introduces
a computational burden. JCS-Net has been proposed for small-scale pedestrian detection, integrating both
classification and super-resolution tasks within a unified framework?®”. Although this method improves detection
accuracy, the integration of multiple distinct models can significantly decrease detection speed. SAHI (Slicing
Aided Hyper Inference) segments input images into overlapping patches, which results in relatively larger
pixel areas for small objects compared to the images inputted into the network®. Ultimately, the overlapping
prediction results are consolidated back into the original image size. SAHI can enhance the accuracy of small
target detection; however, its speed is influenced by the number of patches into which the image is divided.
While all the aforementioned methods enhance the detection accuracy of small targets, their practical
application in industry is hindered by the requirement for additional labeling or compromised detection speed.
To mitigate computational demands and enhance detection speed, object detection models typically operate
at resolutions of 1/8, 1/16, and 1/32. During the downsampling process, the model loses a portion of feature
information, which particularly impacts the detection of small targets. Commonly employed methods to enhance
the accuracy of small target detection in industrial settings include increasing the input image resolution or
incorporating an additional detection head at the low-resolution feature map of the model. Both approaches
enhance small target detection results by preserving critical feature information. Figure 2 depicts the YOLO
architecture with the integration of a dedicated small target detection head. In industrial settings, the detection
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accuracy for small targets is enhanced by augmenting both the small-target detection head and the input image
resolution, provided that detection speed requirements are met.

Methodologies

Dataset analysis

The PCB defect dataset utilized in this study was sourced from Peking University’s Open Laboratory for Intelligent
Robotics(https://robotics.pkusz.edu.cn/resources /dataset/). The dataset comprises 555 training samples and 138
validation samples, encompassing six types of defects: short, spur, open circuit, mouse bite, spurious copper, and
missing hole. The image resolutions in the dataset vary, including categories such as 2464 x 3056, 2156 x 2544,
2316x2868, 1921 x2904, and 2154 x 2759, among others. Figure 3 presents six examples of defect data, with
each image illustrating a distinct defect type.

Figure 4 illustrates the distribution of defective instances across each category within the training set,
revealing that the number of instances is approximately balanced across categories, with no evident sample
imbalance. Figure 5 depicts the distribution of centroid positions for defect targets within PCB images, as well
as the distribution of target sizes. In Fig. 5, x denotes the horizontal coordinate of the defect center, while y
represents the vertical coordinate of the defect center, with both x and y normalized to the range [0, 1]. Width
denotes the width of the defective region, and height signifies the height of the defective region, with both width
and height scaled equivalently to x and y. Most defect areas in the PCB defect dataset occupy less than 0.0016 of
the total image area. The majority of defects in this dataset are small targets, presenting a significant challenge for
defect detection within the PCB dataset. This dataset is characterized by its small and similarly sized detection
targets, which inform the design of our network.

The lightweight network accelerates the model’s inference speed (measured in FPS) by minimizing its
parameters while striving to enhance detection accuracy without compromising the inference performance.
For the PCB dataset characterized by small targets and concentrated distribution, we developed a model
incorporating a single high-resolution detection head, thereby reducing the number of head parameters. We

Fig. 3. The examples of the PCB defect datasets.

Scientific Reports |

(2025) 15:10919 | https://doi.org/10.1038/s41598-024-84859-2 nature portfolio


https://robotics.pkusz.edu.cn/resources
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

instances
N N
o w
o o
1 1

=

wn

o
1

400 -
350 -
300 -
100 -

50 -

Fig. 4. The instances of each category in the training dataset.
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Fig. 5. Target centroid position distribution and target size distribution.

incorporated RepConv (Re-parameterizable Convolution) into the Backbone and Neck modules to enhance
model detection performance without incurring additional inference costs.

Proposed network

In contrast to prior approaches to PCB defect detection model design, we refrained from modifying or adding
modules to existing models. Instead, we employed existing deep learning techniques to develop a PCB defect
detection model from scratch, characterized by a simple structure, minimal parameters, and rapid detection
speed, tailored to the characteristics of the PCB dataset. Based on the characteristics of the dataset, we developed
SEPDNet.

SEPDNet is designed with a focus on simplicity, as depicted in Fig. 6. The proposed SEPDNet contains fewer
parameters in the backbone, neck, and head sections compared to the YOLO series model shown in Fig. 2. The
YOLO model depicted in Fig. 2 undergoes five stages of downsampling, resulting in a minimum feature map
resolution of 1/32 of the input. The backbone of SEPDNet is downsampled four times, yielding a minimum

Scientific Reports |

(2025) 15:10919 | https://doi.org/10.1038/s41598-024-84859-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Backbone Neck Head

Conv(k=3,s=2,p=1)

Comv(ksds=2p=l) ([T~~~ """~~~ ——- m———- .

|
|
bl L) —|J|1/4—> o
|

Conv(k=3,5=2,p=1) ! [}

N 11/8
RepConv (k=3, s=1, p=1) —:-|—> Concat
I

|

Conv(k=3,s=2,p=1) ! T
I

RepConv (k=3, s=1, p=1) : |

SPPELAN

| | I
| I

! !

A

| | Upsample

|

|

|

|

|

|

|

| | : RepNCSPELAN4 :
I A |

|

v |
|

|

|

|

|

|

|

| ! Upsample

Y ':1/16

Fig. 6. The architecture of SEPDNet.

feature map resolution of 1/16 of the input. Compared to the YOLO series model, the SEPDNet backbone
requires one fewer downsampling operation.

Instead of using the feature fusion approach of PAN (Path Aggregation Network) in the neck, SEPDNet adopts
FPN (Feature Pyramid Networks) to create a 1/4-resolution feature map by merging shallow backbone features
with upsampled features. Figure 7 illustrates the structures of FPN and PAN, highlighting that FPN is simpler
and has fewer layers than PAN. The single detection head is specifically designed to match the centralized target
size distribution observed in the PCB defect dataset. The SEPDNet head has only one-third of the parameters
compared to the YOLO series’ three-head design. The final detection results are derived from direct predictions
made on the 1/4 resolution feature map. SEPDNet generates predictions from the 1/4 resolution feature maps,
thereby mitigating the issue of downsampling-induced loss of detailed information for small targets. SEPDNet
primarily comprises the following components: Concat, Conv, Detect, Upsample, RepCov, SPPELAN, and
RepNCSPELAN4. The Concat module is employed to concatenate the feature maps.

Figure 8a illustrates the architecture of the Conv module, which incorporates Conv2d, BatchNorm2d, and the
SiLU activation function. Figure 7b depicts the architecture of the RepConv module. During training, RepConv
operates with multiple distinct branches, which are subsequently fused into a single convolutional layer during
inference through reparameterization. The RepConv module enhances the model’s feature extraction capabilities
without elevating the inference cost.

Figure 9 depicts the architecture of SPPELAN, RepNCSPELAN4, and RepCSP. The SPPELAN module
incorporates multiple pooling layers to expand the receptive field and extract contextual semantic information.
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RepNCSPELAN4 comprises two RepCSP modules and several Convs, utilizing residual connections. This
module represents an aggregated network structure, designed to be lightweight while enhancing both inference
speed and accuracy. RepCSP consists of three Convs and N RepBottleneck modules. The bottleneck architecture
of RepBottleneck is depicted in Fig. 10, showcasing the network structure with and without residual connections.
The RepCSP architecture reduces the number of parameters while preserving the model’s feature extraction
capabilities.

Figure 1 illustrates the model architecture of the YOLO series, with subsequent models adhering to a similar
structural framework. In contrast to the YOLO series algorithms, SEPDNet streamlines the backbone and neck
architecture, retaining only a single detection head. Given that the target sizes within this study’s dataset are
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similar, only one detection head is utilized. For different datasets, additional detection heads can be incorporated
based on the distribution of bounding boxes.

Experiments

Evaluation metric

To illustrate the effectiveness of our approach, we assess our model using the validation dataset. We present the
classical confusion matrix, comprising true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). In the context of object detection, TP refers to the number of ground truth defective objects
correctly identified as defective, FP refers to the number of ground truth normal objects falsely predicted
as defective, and FN denotes ground truth defective objects misclassified as normal. Once these values are
established, precision and recall are computed using Eqs. (1) and (2). Precision quantifies the proportion of
objects predicted as defective that are truly defective, while recall measures the proportion of truly defective
objects that are correctly identified by the model. Ultimately, the F1 score (Eq. 3) serves as the definitive metric,
representing the harmonic mean of precision and recall.

recision = L (1)
b “TPYFP
TP
T'€CCL” = m (2)

2 X precision X recall
F'1 score = P

3)

precision + recall

Average Precision (AP) and mean Average Precision (mAP) are utilized to evaluate defect detection performance.
Precision, recall, and Intersection over Union (IoU) are employed to calculate the AP value. AP is assessed across
various IoU thresholds. It is computed for 10 IoU thresholds ranging from 50 to 95%, in increments of 5%, and
is typically reported as AP50:5:95. AP evaluates the performance for individual classes, while mAP represents
the mean AP value across all classes. The Precision/Recall (P/R) curve offers an intuitive visualization, directly
reflecting the performance of the detection algorithm. The AP value is derived by computing the area under
the P/R curve. The number of parameters and frames per second (FPS) are metrics employed to evaluate time
efficiency. FPS was averaged over five experiments.

Experimental environment

We perform experiments utilizing the PCB defect dataset from Peking University’s Open Laboratory for
Intelligent Robotics, train the model parameters on the training set, and evaluate the model’s performance on
the validation dataset. To maintain experimental fairness, identical hardware and software configurations are
employed across all tests. The hardware specifications for the experiments are as follows: Intel® Core™ i9-12900 K
Processor, 64 GB RAM, a single RTX 4090 GPU, and Ubuntu 22.04 operating system.

SEPDNet employs an anchor-free detection head and utilizes the TaskAlignedAssigner sampling strategy
during training. SEPDNet was developed using Ultralytics(https://github.com/ultralytics/ultralytics) with
PyTorch version 2.2.0, mosaic data augmentation was disabled during training. The loss functions used are
cross-entropy loss and ciou loss. Both the loss function and the TaskAlignedAssigner sampling strategy are
implemented using ultralytics.

All models in the experiment were trained with identical hyperparameters. The training configuration
included a maximum of 300 epochs, a base learning rate of 0.001, a batch size of 16 for a single RTX 4090 GPU,
the AdamW optimizer, and an input resolution of 640 x 640 for both training and evaluation.
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Head Feature Resolution | Params(M) | F1 score | mAP50(%) | mAP50:95(%)
1/8 227 0.925 94.6 50.2
1/16 2.40 0.938 94.5 51.0
1/4,1/8 3.13 0.936 95.3 52.1
1/4,1/16 3.57 0.932 94.9 52.0
1/8,1/16 3.36 0.922 93.0 50.2
1/4,1/8,1/16 3.99 0.934 94.8 52.2
1/4 2.05 0.937 95.1 53.1

Table 1. The comparison of detection head design. Significant values are in bold.

F1 score | mAP50(%) | mAP50:95(%)
Conv 0.922 94.5 50.9
RepConv 0.921 94.2 51.5
C3 0.933 94.6 51.8
C2f. 0.920 93.9 51.6
RepNCSPELAN4 | 0.937 95.1 53.1

Table 2. The comparison of different modules in Neck. Significant values are in bold.

F1 score | mAP50(%) | mAP50:95(%)
Conv 0.911 94.1 52.1
RepNCSPELAN4 | 0.920 93.8 51.2
C3 0.924 94.0 51.1
C2f. 0.936 95.2 51.7
RepConv 0.937 95.1 53.1

Table 3. The comparison of different modules in Backbone. Significant values are in bold.

Ablation study

We conducted ablation studies on the Head, Neck, and Backbone components of SEPDNet to evaluate the
performance of various modules. Table 1 presents a comparison of performance across varying numbers of
detector heads. In Table 1, the values 1/4, 1/8, and 1/16 represent the resolution ratios of the input feature map
of the detection head relative to the input image of the model. The results show that the highest mAP50:95 can
be obtained at 1/4 resolution using a single detector head with the fewest parameters available, while the mAP50
and F1 scores are only slightly lower than those of the other models. This finding confirms that a single detector
head provides superior detection performance when the target size distribution is concentrated.

We performed experiments on the Neck component by replacing RepNCSPELAN4 with Conv, RepConv, C3,
and C2f. modules, respectively. As demonstrated in Table 2, RepNCSPELAN4 exhibits a mAP50 improvement
of 0.6%, 0.9%, 0.5%, and 1.2% over Conv, RepConv, C3, and C2f,, respectively. Additionally, RepNCSPELAN4
achieves a superior F1 score and mAP50:95 metrics compared to the other modules, indicating its enhanced
capability in extracting deep features.

We also performed experiments on the Backbone component by substituting RepConv with Conv,
RepNCSPELAN4, C3, and C2f. modules, respectively. As illustrated in Table 3, RepConv achieves a superior F1
score and mAP50:95 metrics compared to Conv, RepNCSPELAN4, C3, and C2f. However, RepConv’s mAP50
is marginally lower than that of C2f. The multiple branches of RepConv enhance its feature representation
capabilities without incurring additional inference costs. Experimental results demonstrate that RepConv
outperforms other modules within the backbone.

Results comparison and analysis

SEPDNet is compared with YOLOvV3-tiny, YOLOv5u, YOLOv6u, YOLOv7, YOLOv8, YOLOv9u, and
YOLOV10u, as detailed in Table 4. Compared to YOLOv5u-s, YOLOv6u-s, YOLOv7, YOLOv8s, YOLOv9u-s, and
YOLOvV10u-s, SEPDNet achieves significant improvements: an increase of 0.032, 0.067, 0.047, 0.043, 0.025, and
0.067 in F1 score, respectively; a rise in mAP50 by 3.3%, 7.6%, 3.4%, 3%, 2.7%, and 4.4%; and an enhancement
in mAP50:95 by 4.9%, 8.4%, 7.5%, 5%, 3.8%, and 4.5%. Experimental results show that our proposed method
achieves 53.1% mAP50:95, whereas YOLOv9u-s achieves 49.3% mAP50:95, outperforming other YOLO
detectors in F1 score, mAP50, and mAP50:95. The proposed SEPDNet has a parameter size of only 2.05 M,
which is significantly smaller than that of the other models. However, it achieves substantial improvements in
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Method FPS Params(M) | F1 score | mAP50(%) | mAP50:95(%)
YOLOv3-tiny | 250.0 | 12.13 0.806 83.1 39.1
YOLOv5u-s 161.29 | 9.11 0.905 91.8 48.2
YOLOv6u-s 175.44 | 16.30 0.870 87.5 44.7
YOLOv7 68.493 | 36.51 0.890 91.7 45.6
YOLOVS8s 158.73 | 11.13 0.894 92.1 48.1
YOLOV9u-s 105.26 | 7.17 0.912 92.4 49.3
YOLOv10u-s | 169.49 | 8.04 0.870 90.7 48.6
SEPDNet 204.08 | 2.05 0.937 95.1 53.1

Table 4. The metrics of models. Significant values are in bold.

1.0 o 0.6
N s e s s o o
0.4
[ Ji - 8
IS [ ol® <
i ‘ - YOLOv5u-s Eool | ¢ f ~— YOLOv5u-s
| ¢ +— YOLOV6uU-s i A ~— YOLOV6u-s
f ~ YOLOv8s VoW + YOLOv8s
J ’ +—YOLOV9u-s ; ¢ ~—YOLOV9u-s
[ ¢ +— YOLOv10u-s B +YOLOv10u-s
004 do SEPDNet 00d. ¢ ! SEPDNet
T T T > T T T >
0 100 200 300 0 100 200 300
Epoch Epoch
Fig. 11. The validation metric by epochs.
Defeat classes | YOLOv5u-s (%) | YOLOvS8s (%) | YOLOvV9u-s (%) | YOLOv10u-s (%) | SEPDNet (%)
missing hole 61.1 58.8 61.3 63.4 63.7
mouse bite 47.8 50.9 48.8 48.7 54.9
open circuit 47.6 46.2 48.9 45.2 56.7
short 48.2 47.5 47.3 47.7 50.5
spur 36.7 37.3 39.1 38.5 41.6
spurious copper | 47.6 48.2 50.5 47.9 51.4
all 48.2 44.7 48.1 48.6 53.1

Table 5. mAP50:95 for different PCB detection models on the validation dataset.

F1 score, mAP50, and mAP50:95. This validates our assertion that optimal performance is attained through a
model specifically designed to align with the characteristics of the dataset.

Figure 11 illustrates the progression of mAP50 and mAP50:95 metrics for YOLOv5u-s, YOLOv6u-s,
YOLOV8s, YOLOvV9u-s, YOLOv10u-s, and the proposed SEPDNet on the validation set throughout the model’s
training process. It is evident that, as the metrics stabilize, the proposed SEPDNet consistently outperforms the
other models in both mAP50 and mAP50:95 metrics.

Table 5 presents the mAP50:95 metrics for various models across different categories within the validation
set. In every category of PCB defects, SEPDNet achieved the highest mAP50:95 metric. This underscores the
effectiveness of the SEPDNet we developed for the PCB defect detection task.

Table 6 shows the FPS of different models on CPU i9-13900KF and i9-12900 K, and it can be seen that the
inference speed of SEPDNet on the CPU is lower than that of the models in the YOLO series. SEPDNet has some
limitations on edge devices that cannot be accelerated with GPUs.

Figure 12 displays the confusion matrix for the proposed SEPDNet detection results on the validation set,
providing a detailed view of the model’s performance across different categories. The horizontal axis indicates
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Method i9-13900KF | i9-12900 K
SEPDNet 14.53 7.18
YOLOv5u-s | 30.40 14.9
YOLOv6u-s | 25.51 12.18
YOLOvS8s 28.09 13.05
YOLOv9u-s | 23.15 12.33
YOLOv10u-s | 29.59 14.84

Table 6. FPS for different models in different CPUs.
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Fig. 12. The confusion matrix of the proposed model.

the number of defects in each category within the validation set, while the vertical axis reflects the number
of defects in each category as predicted by the proposed model. Figure 13 illustrates the precision-recall (PR)
curves for SEPDNet/YOLOv3s/YOLOv5s/YOLOv6s/YOLOv8s/YOLOv9s/YOLOv10s. A larger area below the
PR curves indicates that the model performs better, and the comparison shows that SEPDNet, compared to
other models, has better detection performance. Figure 14 presents the prediction results of various models on
three distinct PCB defect images. A comparative analysis of the detection results reveals that SEPDNet exhibits
a higher accuracy rate than other models.

Conclusion
This paper examines the characteristics of the PCB defect dataset, which features small targets with an almost
uniform size distribution. In response to the specific characteristics of the defective targets within this dataset
and the real-time demands of industrial production, we developed SEPDNet. Compared to YOLO series models,
SEPDNet surpasses them in detection accuracy for the PCB defect detection task, while using a significantly
smaller number of parameters. In comparison to YOLOv5u-s, YOLOv6u-s, YOLOv7, YOLOv8s, YOLOvV9u-s,
and YOLOv10u-s, SEPDNet demonstrates substantial improvements: an increase of 0.032, 0.067, 0.047, 0.043,
0.025, and 0.067 in F1 score, respectively; a rise in mAP50 by 3.3%, 7.6%, 3.4%, 3%, 2.7%, and 4.4%; and
an enhancement in mAP50:95 by 4.9%, 8.4%, 7.5%, 5%, 3.8%, and 4.5%. In addition to these performance
improvements, SEPDNet achieves an exceptionally fast detection speed of 204.08 FPS.

Although SEPDNet achieves good performance on PCB defect detection tasks. The direct application of
SEPDNet to other defect detection areas may not yield good results because its single detector head design
is only suitable for cases where the target size is concentrated. For detection tasks in different domains, some

Scientific Reports |

(2025) 15:10919 | https://doi.org/10.1038/s41598-024-84859-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Precision-Recall Curve Precision-Recall Curve Precision-Recall Curve

08 1

°
&
—

Precision

04 04 04 k
02 02 02 ‘
L
0.0 0.0 00
0.0 02 X .6 08 1.0 0.0 02 . X X 0.0 02 08 1.0 —— missing hole 0.988
Recall Recall Recall ~—— mouse bite 0.943
—— open circuit 0.973
EPDN YOLOVS: YOLOV6:
SEPDNet OLOVSs OLOv6s —— short 0.961
19 Precision-Recall Curve n Precision-Recall Curve 30 Precision-Recall Curve —— spur 0.866
- T . — —— spurious copper 0.978
1,
8 b
L
06 i 06 w 06
§ § g
04 04 04
N . | o2
0.0 0.0 0.0
00 02 04 06 08 10 00 02 0a 06 o8 10 00 02 0a 06 o8 10
Recall Recall Recall
YOLOvSs YOLOv9s YOLOv10s

Fig. 13. The precision-recall curves of different models.

improvements need to be made to SEPDNet’s backbone, neck, and head based on specific data characteristics.
Further improvements are needed in application scenarios without GPU-accelerated computing.
The code for SEPDNet is available at: https://github.com/justld/SEPDNet/tree/main.
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. 14. The predicted results of different models.
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