
An integrated DEA-fuzzy AHP 
method for prioritization of 
renewable energy sources in India
Jyoti Luhaniwal, Shivi Agarwal & Trilok Mathur

As India’s population grows and urbanization accelerates, energy demand is increasing sharply 
while conventional sources fall behind. To tackle energy shortages and climate change, India must 
prioritize renewable energy sources (RES), which offer sustainable solutions. The country is rich in RES, 
which can enhance fuel mix for electricity generation. This study analyzes various RES in India-solar, 
geothermal, hydro, biomass, wave, onshore, and offshore wind energy -using an integrated data 
envelopment analysis (DEA) and fuzzy analytic hierarchy process (Fuzzy AHP) methodology. Four main 
parameters-technical, economic, environmental, and socio-political -are identified and supported by 
19 criteria, with environmental parameters including both desirable and undesirable criteria. In first 
phase, undesirable criteria are transformed into desirable criteria using Modified Ratio model. DEA 
is then applied to calculate initial efficiency score of RES under each parameter category. Fuzzy AHP 
determines weights for each parameter. The weights and initial efficiency scores are then combined to 
calculate overall efficiency score and ranking of RES. Sensitivity analysis shows that results obtained 
from proposed methodology are significant, and robust. Offshore wind ranks highest in efficiency, 
followed by hydro and onshore wind, while geothermal scores lowest. This methodology could benefit 
developing nations and guide policymakers in adopting RES.

Sustainable development has become crucial for the well-being of both society and nations. A widely cited 
and globally embraced definition of sustainable development is the notion of progress that satisfies the current 
generation’s requirements without harming the potential of future generations1–3. Energy is a critical component 
of sustainable development, driving economic growth and improving living standards. In India, industrialization 
and technological advancements have led to a significant increase in energy demand. As a result, the decline in 
fossil fuel reserves has caused economic burdens, social and political conflicts, and technological challenges. To 
address current and future energy needs, it is crucial to explore alternative energy sources. Renewable energy 
sources (RES) present a viable and sustainable solution to this challenge.

As a developing country, India has experienced substantial social progress and economic growth, leading 
to rising energy demands. This trend is expected to continue, supported by government initiatives like the 
Saubhagya Scheme and 24*7 Power for All. Additionally, policies such as Make in India and Atmanirbhar India, 
along with the adoption of e-mobility, will further increase energy demand4,5. India’s installed power capacity 
has expanded dramatically, from 1,713 MW in 1950 to 426,131 MW by 2023, representing an average growth 
rate of about 10.2% per year. By 2050, the International Energy Agency (IEA) estimates that India will require an 
additional power capacity of 600 GW to 1,200 GW6. As living standards improve and urban areas grow, India’s 
energy sector faces mounting pressures, including supply shortages, greenhouse gas emissions, and the need 
for extensive land for energy infrastructure. To overcome energy shortages, it is important to make good use of 
the plentiful renewable resources at hand. India has a range of RES, such as solar, hydro, biomass, onshore and 
offshore wind, wave, and geothermal energy. These energy sources can effectively produce electricity, address 
energy gaps, and support the country’s sustainable development. As of December 2023, India’s energy mix 
includes 56% thermal energy, 11% hydro, 2% nuclear, and 31% renewable sources7. Reducing the high share of 
non-renewable energy is essential to ensure long-term sustainability and energy security. India’s commitment to 
achieving net-zero emissions by 2070 highlights the necessity of transitioning to renewable energy8. Embracing 
RES not only meets energy needs but also drives economic growth, creates jobs, and helps reduce greenhouse 
gas emissions9.

Prioritizing various RES based on sustainability criteria is a complex challenge due to multiple dimensions. 
The 2002 World Summit on Sustainable Development identified social, environmental, and economic 
dimensions as key aspects for sustainability assessment3. Factors such as managing infrastructure, land use, 
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and source variability complicate the decision-making process for optimal energy sourcing in India. Despite 
extensive research on ranking and selection of RES, several important gaps remain. First, many existing studies 
fail to address both desirable and undesirable outputs, particularly regarding environmental impacts. This study 
bridges that gap by converting undesirable outputs into desirable ones using the modified Ratio model and 
evaluated the efficiency of all RES utilizing the Data Envelopment Analysis (DEA) method, a method rarely 
applied in this field. Second, there is often little consideration for uncertainty in expert judgments, which can 
affect decision-making. This research incorporates Fuzzy Analytic Hierarchy Process (Fuzzy AHP) to manage 
such uncertainty, improving the accuracy of the results. Third, previous work tends to focus on limited criteria, 
such as technical and economic aspects, without considering the full range of factors. This study includes 
technical, economic, environmental, and socio-political factors, offering a more comprehensive evaluation. 
Furthermore, in the Indian context, no research has been conducted that considers wave and offshore wind 
energy as alternatives in the evaluation despite their significant potential. This study fills that gap by prioritizing 
these sources, making the findings more relevant to India’s energy landscape.

To address these gaps, this study uses an integrated DEA and Fuzzy AHP methodology. The DEA component 
and modified Ratio model address undesirable criteria by transforming them into desirable ones, after 
which efficiency scores are evaluated. Meanwhile, Fuzzy AHP manages uncertainties in expert assessments 
and determines the weights for the criteria. By incorporating a broader set of criteria-technical, economic, 
environmental, and socio-political-this research offers a more thorough evaluation of RES. Additionally, 
including wave and offshore wind energy expands the focus to less-explored renewable sources, providing 
valuable insights for India’s energy planning. The current study integrates DEA with Fuzzy AHP to improve the 
ranking process and provide a more effective solution for India. DEA is a flexible, non-parametric method that 
does not assume a predefined mathematical model for the data, making it suitable for analyzing diverse data 
types. It allows for simultaneous evaluation of multiple inputs and outputs without requiring predefined weights, 
ensuring objective assessment. DEA can handle both desirable and undesirable outputs, making it particularly 
useful for evaluating renewable energy sources by considering both benefits and impacts. By comparing each 
option against the best performers, DEA calculates efficiency scores, provides clear rankings, and identifies 
areas for improvement through benchmarking less efficient options against the most efficient ones. This method 
manages slacks more accurately and maintains both radial attributes and slack monotonicity. This ensures 
optimal utilization of all inputs and outputs when assessing the performance of renewable energy sources. 
These features make DEA a comprehensive and unbiased tool for assessing renewable energy sources. Fuzzy 
AHP, on the other hand, simplifies complex decision-making by organizing criteria into a clear hierarchy and 
prioritizing options based on expert judgments. Using fuzzy numbers accounts for the inherent vagueness in 
human preferences, effectively handling uncertainties. This study employs triangular fuzzy numbers to represent 
the imprecision inherent in human preferences, offering a balance between computational simplicity and the 
ability to model uncertainty effectively. Compared to other MCDM methods like TOPSIS and PROMETHEE, 
which often require precise data, Fuzzy AHP is particularly adept at dealing with imprecise information and 
managing multiple criteria. This makes it an accurate and adaptable choice for decision-making, especially when 
expert opinions and uncertainties are crucial. By combining DEA for efficiency analysis and Fuzzy AHP for 
incorporating expert insights, this integrated approach ensures more accurate, comprehensive, and balanced 
decision-making.

The remainder of this paper is organized as follows: “The application of MCDM in evaluating renewable 
energy sources” section offers a literature review on decision-making related to renewable energy. “Alternatives 
and parameters for evaluation of renewable energy sources (RES)” section presents an overview of available 
RES and parameters for RES evaluation. “Research framework” section outlines the proposed methodology. 
“Results” section presents the findings, sensitivity analysis, and implications for policy and management. Finally, 
“Conclusions” section 6 provides conclusions and recommendations based on the study’s results.

The application of MCDM in evaluating renewable energy sources
Various studies have employed multi-criteria decision-making (MCDM) methods to prioritize RES. These 
methods are particularly suitable because selecting the optimal RES involves multiple, complex criteria that 
must be evaluated. Kongar and Rosentrater10 proposed a new approach employing DEA to analyze and rank RES 
based on efficiency and effectiveness. By considering various inputs and outputs, the model offered a thorough 
analysis of energy sources, aiding decision-makers in selecting the most suitable technology. The study addressed 
the growing demand for sustainable energy solutions amid increasing global energy needs and environmental 
concerns. Jha et al.11 concentrated on ranking renewable energy alternatives in India, utilizing Fuzzy AHP and 
an Energy Index parameter. This index was derived by aggregating scores across various alternatives, assessed 
based on eleven environmental and techno-economic criteria. Saglam 12 extensively examined the effectiveness 
of seven key RES using DEA, providing valuable insights into their comparative efficacy. By employing DEA 
methodologies, the research offered policymakers a robust framework to assess and prioritize RES based on their 
effectiveness and performance. Solangi et al.13 applied AHP and Fuzzy VIKOR methods to assess various sites 
for solar energy plants. Weights for each criterion and sub-criteria were obtained by AHP, and Fuzzy VIKOR 
performed a ranking of feasible alternatives. Xu et al.14 developed an integrated framework that combined Slack-
Based DEA, Fuzzy AHP, and Fuzzy TOPSIS to rank and prioritize the most efficient and sustainable hydrogen 
production methods in Pakistan. In a recent study, Kolagar et al.15 introduced a hybrid methodology that 
merges DEA with the fuzzy best-worst method (FBWM) to prioritize RES in Iran. This method encompassed 
five sustainability facets: economic, technical, political, social, and environmental. Furthermore, a sensitivity 
analysis conducted in three stages validated the reliability of the DEA-FBWM approach compared to alternative 
decision-making approaches. In a study by Shah et al.16, the feasibility of various RES for hydrogen production 
in Pakistan was examined using a combination of Fuzzy Delphi, Fuzzy AHP, and environmental DEA methods. 
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The researchers focused on six RES options: wind, solar, biomass, municipal solid waste, geothermal, and 
micro-hydro. First, Fuzzy Delphi was applied to establish the criteria and sub-criteria, followed by fuzzy AHP 
to calculate the relative weights of the criteria for selecting the best RES. Environmental DEA was then used 
to measure the efficiency of each RES, with the criteria weights serving as outputs and the cost of electricity 
generation as the input. The results indicated that wind energy emerged as Pakistan’s most efficient hydrogen 
production source. Solangi et al.17 developed a mathematical framework that combined AHP and Fuzzy TOPSIS 
to analyze barriers to renewable energy in Pakistan. The study first utilized the AHP method to rank the barriers 
and sub-barriers, identifying “Economic & Financial,” “Political & Policy,” and “Market” as the key challenges. 
Following this, the Fuzzy TOPSIS method evaluated strategies for the effective implementation of renewable 
energy technologies, indicating that “Capital Subsidies,” “Feed-in Tariffs,” and “Direct, Enabling, & Integrating 
Policies” were the most viable solutions to overcome these barriers. Shah et al.18 examined the energy crisis in 
Pakistan, where citizens face extensive power outages. The study employed the Fuzzy Delphi method to identify 
barriers to renewable energy deployment and then used the Grey AHP to assess the relative importance of these 
barriers across various RES. The study found that solar energy faced the fewest barriers, ranking highest. At the 
same time, policy and regulatory challenges emerged as the most significant obstacles to advancing renewable 
energy in the country. Longsheng et al.19 conducted a study where SWOT factors and strategies were finalized 
through a literature review, and FAHP was used to assign weights to these sub-factors based on input from 
fifteen anonymous experts in the energy sector. Grey-TOPSIS then employed the FAHP weights to prioritize 
twelve strategies derived from the SWOT analysis, offering a systematic approach to strategy evaluation. The 
given literature provides adequate evidence that the DEA and Fuzzy AHP methods are proficient in deciding on 
the selection and prioritization of RES. Therefore, this study applied the integrated DEA-Fuzzy AHP method to 
choose the most optimum RES for the sustainable production of electricity in India. Table 1 summarizes studies 
that rank RES in different countries using various MCDM methods. These methods assess and prioritize RES 
based on technical, economic, environmental, and socio-political parameters. This overview provides insights 
into how different approaches prioritize RES based on each country’s unique energy needs and goals. Table 2 
highlights various case studies that evaluate RES in India using MCDM approaches. As shown in this table, two 
studies have also employed the Fuzzy AHP method to rank RES in the country.

Building on the above-mentioned research gaps and previous work, the current paper aims to integrate 
the DEA method with Fuzzy AHP to enhance the ranking process and provide a more effective solution for 
India. DEA is a non-parametric approach, meaning it does not assume a mathematical form for the data, 
giving it flexibility in handling different data types. It allows the analysis of multiple inputs and outputs at the 
same time. Unlike other methods, DEA does not need predefined weights for inputs and outputs, making the 
evaluation more objective. It can also handle both desirable and undesirable outputs, which is helpful when 

Author Country Methods Results

20 Turkey
Fuzzy AHP

Wind > solar > biomass > geothermal > hydro
Fuzzy axiomatic design

11 India Fuzzy AHP Geothermal > hydro > wind > biomass > solar

21 India
Shannon entropy

Solar > wind > hydro > biomass > nuclear > thermal
Fuzzy AHP

22 Chicago
AHP

Solar > wind > biomass > hydro > geothermal > nuclear
VIKOR

23 Turkey IF-EDAS Solar > hydro > wind > geothermal > hydrogen > biomass > wave

24 India
Entropy Entropy: solar > wind > biomass > hydro

CRITIC CRITIC: solar > biomass > wind > hydro

25 China
AHP

Hydro > wind > biomass > solar > nuclear
TOPSIS

26 India PF-VIKOR Wind > hydro > biomass > geothermal > solar
27 Turkey ANP Hydro > solar > wind > geothermal > biomass
28 Turkey IF-TOPSIS Hydro > geothermal > wind > solar

29 Saudi Arabia
BWM

Gas > solar > hydro > coal > diesel
TOPSIS

30 Turkey
Fuzzy COPRAS

Wind > biomass > solar > geothermal > hydro
Fuzzy MULTIMOORA

31 Algeria AHP Solar > wind > biomass > geothermal > hydro

32 Turkey
Shannon Entropy

Hydro > geothermal > regulator > wind
Fuzzy TOPSIS

16 Pakistan

DEA

Wind > micro-hydro > solar > municipal solid waste > biomass > geothermalFuzzy Delphi

Fuzzy AHP

Table 1.  Ranking of RES by country and methodology.
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considering the benefits and impacts of renewable energy sources. It evaluates efficiency scores by comparing 
each option to the best performers, allowing for clear rankings and helping identify areas where improvements 
are needed by benchmarking less efficient options against the best ones. These features make DEA an effective 
tool for evaluating RES comprehensively and unbiasedly. Fuzzy AHP breaks down complex problems into a 
clear hierarchy of criteria, making it easier to analyze and prioritize different options. By considering subjective 
expert judgments through fuzzy numbers, this method captures the vagueness of human preferences. Compared 
to other MCDM methods, Fuzzy AHP excels at managing uncertainty and dealing with multiple criteria. While 
methods like TOPSIS and PROMETHEE often require exact measurements, Fuzzy AHP effectively handles 
imprecise information. Overall, it provides a flexible and accurate way to make decisions, especially when expert 
opinions and uncertainties are significant. DEA provides an efficiency analysis in this integrated method, while 
Fuzzy AHP incorporates expert knowledge, allowing for more accurate and well-rounded decision-making. 
This study contributes to the literature by addressing the limitations of conventional DEA models, such as 
CCR and BCC, which often struggle with slack handling and the full utilization of input and output criteria. 
By employing the New Slack Model (NSM) DEA, this research introduces a method that accurately manages 
slacks while maintaining radial attributes and slack monotonicity, ensuring the efficient utilization of inputs and 
outputs. Furthermore, the integration of the NSM model with the Modified Ratio model offers a novel solution 
for converting undesirable criteria into desirable outputs, a gap not thoroughly explored in previous studies. The 
inclusion of fuzzy AHP enhances the robustness of the analysis by effectively assigning parameter weights and 
addressing uncertainties in expert judgments. This comprehensive approach, encompassing criteria handling, 
weight assignment, efficiency evaluation, and ranking, represents a significant advancement, offering a more 
holistic and adaptable framework for prioritizing renewable energy sources.

Alternatives and parameters for evaluation of renewable energy sources (RES)
India’s economy has experienced significant growth, yet the energy supply still needs to match this accelerated 
growth. Consequently, there has been a substantial increase in India’s energy demand34.

India, situated in the northern hemisphere, spans from the latitudes 8◦40′ to 37◦6′ North to longitudes 68◦7′ 
and 97◦25′ East, making it one of the largest countries in Asia. With a land area of approximately 3.287 million 
Km2, India experiences rapid population growth and urbanization. Consequently, India’s energy demand has 
steadily risen in recent years. In 2022, India’s total energy consumption is around 650 Mtoe, projected to escalate 
to 1200 Mtoe by 203035. As of December 2023, India’s installed capacity consists of 56% thermal energy, 11% 
hydro energy, 2% nuclear energy, and 31% renewable energy sources, as shown in Fig. 17. The Indian government 
is focused on boosting renewable energy, strengthening this sector, and promoting its development through 
various initiatives. Despite India’s rapid economic growth, the energy supply has failed to keep pace, resulting 
in a substantial increase in the country’s energy demand34. The rise in population and environmental concerns 
highlight the urgent need for sustainable energy, making renewable sources a priority for researchers. Renewable 
sources replenish more rapidly than they are consumed36. Globally, India is fourth in installed renewable energy 
capacity, encompassing large hydro, and ranks fourth in solar and wind energy capacity37. A brief overview of 
the RES is described in the below section.

Solar energy
Solar power stands out as the limitless and plentiful resource of renewable primary energy, freely accessible to 
all. The efficient harnessing of solar radiation reaching Earth annually could produce energy equivalent to 10,000 
times the global energy demand for a year38. India’s location amidst the Tropic of Cancer and the Equator results 
in an average yearly temperature of 25 ◦C to 27.5 ◦C and significant solar radiation, ranging from 1200 kWh/
m2/year to 2300 kWh/m2/year. Within the solar belt, India receives about 3000 sun hours yearly, equivalent 
to a power of 5000 trillion kWh. This advantageous positioning underscores India’s substantial solar energy 
potential. The Jawaharlal Nehru National Solar Mission (JNNSM), initiated by the government of India in 2010 
through the National Action Plan on Climate Change (NAPCC), focuses on accelerating solar energy generation 
by fostering and advancing solar resources in India to attain 2000 MW of off-grid solar power and 20,000 MW 
of grid solar power39. Although solar energy is commonly regarded as a highly sustainable technology for energy 
generation, emissions are associated with it to some extent due to the use of substances such as mercury and 
cadmium in fabricating solar cells40.

Author Year Research purpose Method Results

11 2017 Assessment and prioritization of RES in 
terms of energy index Fuzzy AHP Geothermal is most preferred, followed by hydro, wind, biomass, and solar

26 2020 Evaluation of RES PF-VIKOR Wind is identified as highly suitable source, followed by hydro, biomass, geothermal and 
solar

21 2021 Evaluation of energy alternatives for 
sustainable development of energy sector

Shannon entropy Economic and environmental are most important criteria and solar and wind are identified 
as top suitable, while gas power, thermal, and nuclear energy are least preferredFuzzy AHP

24 2024 Selection of an optimal RES
Entropy

Solar to be the best source for energy production, followed by wind and biomass
CRITIC

33 2024 Selection of best RES Fuzzy GTMA Wind energy is the most preferred among primary RESs due to its lower cost, mature 
technology, and negative impact on the environment, followed by solar and biomass energy

Table 2.  Indian case study in RES selection and ranking using MCDM methods.
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Hydro energy
Hydroelectric power plants convert water’s potential energy into electricity, offering a sustainable energy solution 
that harnesses the Earth’s natural water cycle. These facilities provide benefits such as quick response to peak load 
demands, fast on/off capabilities, and energy storage to fulfill daily, seasonal, and peak demand needs41. India 
holds a significant hydroelectric potential, placing it fifth worldwide for its harnessable hydroelectric potential. 
India’s primary hydroelectric power station, featuring a 130 kW capacity, commenced operations in Darjeeling 
in 187942. India’s hydraulic energy installation capacity is increasing rapidly, with the installed capacity reaching 
approximately 39,788.40 MW as of September 30, 2013, and currently standing at 46,512 MW as of 202243. 
Hydroelectric power projects entail significant time and financial investment. India still has opportunities for 
further expanding its hydropower generation, as the development of mini- and micro-hydropower systems 
could be viable alternatives for harnessing the nation’s water resources and channels to generate cost-effective 
electricity from hydroelectric power44. While they emit fewer greenhouse gases, NOx, and SO2, they disrupt 
socio-environmental systems by altering agricultural and irrigation practices, land procurement, environmental 
clearance procedures, and community resettlement45.

Biomass energy
India, focusing on agriculture, possesses abundant biomass resources, including agricultural residue, animal 
waste, and organic components from municipal and industrial waste46. Diverse technologies enable the 
conversion of biomass into usable energy. India’s substantial biomass power potential includes 17,538 MW 
from agricultural residue, 5000 MW from the combined bagasse generation, and 2556 MW from organic 
and municipal waste11. Biomass has historically served as a significant energy source for the nation due to its 
environmentally friendly nature, plentiful supply, renewability, and capacity to create employment opportunities 
in rural areas. Furthermore, biomass contributes to sustainable energy production. The primary drivers for 
biomass-to-energy conversion in India revolve around cost reduction and enhanced efficiency47. Across India, 
facilities for biomass energy production, including those for both bagasse and non-bagasse processing, have 
been established, collectively generating 10,205.61 MW of electricity for the grid.7. Gujarat, Madhya Pradesh, 
Rajasthan, and Punjab are the top states in biomass energy production. Biomass energy has ecological drawbacks, 
such as emitting greenhouse gases and minor emissions of NOx and SOx

40.

Geothermal energy
Geothermal energy, sourced from heat retained within the Earth’s crust and evident on the surface through 
phenomena such as hot springs and geysers, is prominent in countries like the USA, Indonesia, Philippines, 
Turkey, and New Zealand. In India, the Geological Survey of India (GSI) has approximated a theoretical potential 
of 10 GW that could be harnessed from geothermal energy48. This established and dependable renewable energy 
source holds considerable potential in India. Geothermal energy proves versatile and operates effectively in both 
connected-to-the-grid and off-grid setups. It offers significant benefits in countryside power supply initiatives. 
It serves diverse needs like industrial operations, space heating, warmth provision, greenhouse heating, aquatic 
activities, bathing, agricultural drying, and various other applications49. The exploration of geothermal energy 
in India commenced in 1862. The Geological Survey of India has surveyed 340 thermal springs and identified 
several promising geothermal regions, including the Puga Valley in Ladakh district, which stands out as 
particularly prospective. These assessments indicate a substantial geothermal potential of 10,600 MW, yet much 
remains untapped in practice50.

Fig. 1.  Installed power capacity of India.
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Onshore wind energy
Onshore wind power energy can provide electricity for both residential and industrial purposes, representing 
a mature and cost-effective technology with a well-established supply chain51. The generation process involves 
transforming the kinetic energy of moving air using wind turbines, which arises from the airflow phenomenon 
resulting from the uneven heating of the Earth’s outer layer. Widely recognized as a renewable energy option, 
onshore wind power reduces dependence on petroleum and other fossil fuels. By the end of 2023, India had 
installed nearly 44.96 GW of onshore wind capacity, poised to significantly contribute to the country’s electricity 
objectives52. Across elevations spanning from 20 to 120 m, 794 specialized platforms have been constructed to 
monitor wind conditions, aiming to assess the potential of wind energy7.

Offshore wind energy
Offshore wind can generate electricity on an industrial scale. On a global scale, offshore wind has a history 
spanning approximately two decades, beginning with Denmark’s installation of the first offshore wind turbine in 
1991, which was decommissioned in 2017. Offshore wind power projects have a combined capacity exceeding 
18 countries. The foremost nations include the UK, the Netherlands, Germany, China, and Denmark. Currently, 
India has not installed any offshore wind capacity. Nevertheless, the initial evaluation of offshore wind energy 
potential within designated zones suggests approximately 70 GW off the coasts of Tamil Nadu and Gujarat7. 
Consequently, offshore wind is anticipated to bolster India’s renewable energy objectives significantly. Offshore 
wind turbines, typically ranging between 5 to 10 MW per turbine, are more significant than their onshore 
counterparts, which usually produce between 2 to 3 MW per turbine. While offshore turbines incur higher costs 
per MW due to the need for robust structures and foundations in the marine environment, the potential for 
advantageous tariffs arises from the improved efficiencies of these turbines as the ecosystem matures7.

Wave energy
Wave energy is extracted from the agitation of water surfaces caused by winds interacting with the surface of 
the sea or ocean. It is typically captured from waves with average heights ranging between 2 and 3 meters. Wave 
energy is deemed more efficient than solar and wind energy as an unconventional energy source. However, 
its widespread use is limited due to the high costs associated with energy conversion30. According to a survey 
conducted in December 2014, the projected theoretical capacities for wave energy are estimated at 41,300 MW53. 
Wave energy generation depends on both the amplitude of the wave and its duration. Initial assessments of the 
potential for harnessing wave energy along India’s coastline suggest a range of approximately 5–15 MW per 
meter, resulting in a theoretical estimated potential of around 40–60 GW.

Parameters and criteria
After identifying the RES for comparison and prioritization, the next step is to establish the parameters and 
criteria for assessing these sources. The selection of parameters and criteria varies by country, influenced by 
specific conditions, energy goals, and development strategies. This study selects the criteria by reviewing many 
studies from India and other countries to identify widely recognized and relevant factors. The widely recognized 
criteria in these studies are adopted to ensure they are relevant and easy to compare. This approach ensures 
that the selected criteria align with earlier research and provide a strong basis for the analysis. The number of 
criteria chosen is also based on the availability of quantitative and qualitative data that are pertinent, accessible, 
and capable of producing meaningful results. Previous research has highlighted a variety of factors that 
support sustainable energy development. In this study, these factors were grouped into four main parameters: 
technical, economic, environmental, and socio-political. A total of 19 criteria are selected from an extensive 
literature review within these categories. Each criterion can be classified as either desirable or undesirable, and 
this classification plays an important role in evaluating the alternatives. The selected criteria, along with their 
associated parameters and sources, are summarized in the following sections and presented in Table 3.

Technical parameter

•	 Deployment time (C1) refers to the duration required for the entire process of planning, designing, construct-
ing, and commissioning the power plant until it becomes operational and starts generating electricity.

•	 Technical maturity (C2) signifies the extent to which a particular technology is adopted and utilized on re-
gional, national, and global scales. It also indicates whether the technology has already achieved its maximum 
theoretical efficiency or if there are opportunities for further enhancements.

•	 Efficiency (C3) serves as a frequently utilized technical measure for evaluating energy systems, signifying the 
amount of sound energy that can be obtained from an energy source. The efficiency coefficient, commonly 
employed as a measure of efficiency, is described as the proportion of output energy to input energy.

•	 Capacity Factor (C4) of a power plant is determined by the ratio of the actual electricity generated during a 
specific timeframe to the potential electricity that could have been produced if the plant had been operating 
at its maximum power output throughout that period.

Economic parameter

•	 Capital cost (C5) encompasses the complete expenditure involved in establishing a plant, which includes costs 
associated with equipment, labor, installation, infrastructure, and commissioning.

•	 Operations & maintenance costs (C6) encompass the expenses associated with the day-to-day operation of a 
plant, including employee salaries, costs of parts and spares required for scheduled maintenance, and other 
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related expenditures. While O&M costs for renewable energy plants are generally lower when compared to 
fossil fuel-fired power plants, they still represent a substantial portion of the overall expenses.

•	 Payback period (C7) of an energy project represents the time frame needed for the returns on an investment 
to equal or exceed the initial investment amount.

•	 Levelized Cost of Electricity (C8) stands for the cost of energy generated per unit. It is expressed in Rs/kWh or 
$/kW h.

•	 Operational life (C9), or service life, of a power plant refers to the duration it can effectively operate before 
decommissioning. This lifespan is typically measured in years.

Environmental parameter

•	 Land requirement (C10) for power generation holds an opportunity cost affecting human habitation, utiliza-
tion, and environment. For a fair comparison of technologies, this study analyzes land use across power plant 
lifecycles, encompassing fuel extraction, processing, transport, waste disposal, construction, operation, and 
decommissioning.

•	 CO2 emission (C11) plays a vital role in the greenhouse effect. A substantial portion of it is released into the 
atmosphere during the combustion of fossil fuels for electricity generation.

•	 SO2 emission (C12) is one of the detrimental gases released into the atmosphere during electricity generation, 
posing a significant risk to power plant workers.

•	 NOX  emission (C13) Similar to SO2 emission, this poisonous gas is discharged into the atmosphere during 
power generation. Its presence exerts negative implications on the environment, contributing to environmen-
tal degradation and posing potential risks to the ecosystem.

•	  Impact on the ecosystem (C14) is defined as the change in the local ecosystem due to the introduction of RE 
technology.

Socio-political parameter

•	 Foreign Dependency (C15) mainly analyzes the dependency of fuel imports from foreign countries.
•	 Job creation (C16) refers to the capacity of an energy project to generate potential employment opportunities. 

Renewable energy development should consider the impact on local residents by evaluating improvements in 
quality of life and the potential for job creation.

•	 Social acceptance (C17) is crucial for adopting renewable energy technologies and achieving energy policy 
goals, gauging public approval of RE. It’s pivotal as public and advocacy group opinions can impact project 
timelines.

•	 Political acceptance (C18) involves acknowledging and endorsing renewable energy sources by government 
policies concerning technological advancement. It encompasses the alignment of RES with political, legis-
lative, and administrative frameworks, ensuring their compliance with existing regulations and governance 
structures.

•	 Social benefits (C19) refer to the positive impact and advancement within the local community and region 
resulting from initiating a power project.

Parameters Criteria References

Technical

C1: Deployment time [years] 15,54

C2: Technical maturity 24,55

C3: Efficiency 21,24

C4: Capacity factor 11,24

Economic

C5: Capital cost [USD/kW] 21,56

C6: Operation and maintenance cost [USD/MW] 15,54

C7: Payback period [years] 33

C8: Levelized cost of electricity [USD/kWh] 24,55

C9: Operational life [years] 21

Environmental

C10: Land requirement [km2/1000 MW] 54–56

C11: CO2  emission [mg/Kwh] 11

C12: SO2  emission [mg/Kwh] 11

C13: NOx  emission [mg/Kwh] 11

C14: Impact on ecosystem 33

Socio-political

C15: Foreign dependency 21,33

C16: Job creation [jobs/500 MW] 33,54

C17: Social acceptance [%] 11,21

C18: Political acceptance [%] 21,55

C19: Social benefits 33,54

Table 3.  Parameters and criteria of the decision model.
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Research framework
To fulfill the objective of this study, the research framework is divided into four phases. In the first phase, 
parameters and criteria for evaluating RES for electricity generation are identified through a comprehensive 
literature review using Science Direct, Google Scholar, Web of Science, and Scopus databases. At this stage, 
which criteria will be treated as input, desirable output, and undesirable output criteria are also determined. Data 
is gathered from various secondary sources, including annual reports, balance sheets of India’s renewable energy 
organizations, literature reviews, and expert inputs37,57–60. Since RES can also produce undesirable outputs, this 
study addresses these by using a modified ratio model. In the second phase of the analysis, the model proposed 
by Zhu et al. (2020) is applied to transform undesirable output criteria into desirable ones. This transformation 
ensures a more accurate and comprehensive evaluation of RES. In the third phase, after transforming these 
undesirable criteria, the data is prepared for applying the NSM-VRS output-oriented DEA model to calculate the 
initial efficiencies for each of the four sustainability parameters across the seven RES. In the final phase, Fuzzy 
AHP is used to calculate the weights for each sustainability parameter, using expert inputs to ensure accurate 
assessments. This study employs triangular fuzzy numbers to represent the imprecision inherent in human 
preferences, offering a balance between computational simplicity and the ability to model uncertainty effectively. 
These weights are then combined with the initial efficiency scores to derive the overall efficiency score and 
establish the relative ranking of the RES. As the final ranking of alternatives heavily relies on expert weighting, 
a sensitivity analysis based on criteria weights is performed to demonstrate the stability of the ranking. For this, 
various scenarios are examined, each involving different parameter weight allocations. A schematic diagram of 
the research framework is presented in Fig. 2.

Methods
Modified ratio model proposed by Zhu et al.61

Consider R Decision Making Units (DMUs) denoted as (r = 1, 2, . . . , R) which produce n outputs using m inputs 
Xik(i = 1, 2, . . . , m). Among these outputs, n1 are classified as undesirable (denoted as B−

q (q = 1, 2, . . . , n1)
), and n2 are categorized as desirable (denoted as Y +

p (p = 1, 2, . . . , n2)), with n1 + n2 = n. Given our ultimate 
objective of merging undesirable outputs with desirable ones, desirable outputs can, to some extent, show the 
input data of DMUs. Consequently, when computing the combined weights of undesirable outputs, inputs are 
excluded, and only the desirable outputs Y +

p  and undesirable outputs B−
q are considered. This computation 

occurs in two stages, as outlined below. Initially, the efficiency scores of DMUs are determined utilizing the 
output-oriented multiplier model. These scores are obtained by considering the desirable and undesirable 
outputs as inputs within the model.

The model is :

	

min δk =
n1∑

q=1

vqkbqk

s.t.
n2∑

p=1

upkypk = 1,

n2∑
p=1

uprypr −
n1∑

q=1

vqrbqr ≤ 0, r = 1, 2, . . . , R,

vqr ≥ 0, q = 1, 2, . . . , n1,

upr ≥ 0, p = 1, 2, . . . , n2.

� (1)

In this context, vq  and up symbolize the weights allocated to the undesirable and desirable outputs, respectively, 
while δ indicates the efficiency score of the assessed DMU, ranging from 1 to infinity. An efficiency score of 1 
indicates that the evaluated DMU is efficient. The efficiency score attained for each DMU using this model is 
represented as δ∗. It can be applied in the subsequent step, which involves determining the aggregate weights ρq  
of the various undesirable outputs B−

q  using equation (3).

	

min
n1

α

s.t.
n1∑

q=1

ρqbqr − δ∗
r ≤ α,

n2∑
p=1

ρprypr = 1,

n1∑
q=1

ρqbqr − δ∗
r ≥ 0, r = 1, 2, . . . , R,

ρq ≥ 0, q = 1, 2, . . . , n1,

ρpr ≥ 0, p = 1, 2, . . . , n2.

� (2)
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Here, δ∗ denotes the efficiency score derived from model (1); ρq  represents the aggregate weight of an undesirable 
output; ρpr  indicates the weight of a desirable output; and α signifies the maximum deviation between the 
efficiency score of the multiplier model and the weighted undesirable outputs. The objective function aims 
to minimize α. Desirable outputs are bound by 

∑n2
p=1 ρprypr = 1. The weights assigned to the desirable 

outputs (ρpr) are individual weights, and these constraints do not impact the values of the aggregate weights 
of undesirable outputs obtained from model (2). In essence, these constraints are unnecessary Importantly, the 
aggregate weights obtained from model (2) lack dimensions, thus evading issues related to the attributes of the 
original measures. Ψk  denotes the aggregated undesirable outputs, which can be evaluated as:

	 Ψk = ρ1B−
1k + . . . + ρn1 B−

n1k.� (3)

Fig. 2.  Research framework.
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Here, ρq (q = 1, 2, . . . , n1) represents the aggregate weights of undesirable outputs. The modified desirable 
output Y ′

p  is obtained by dividing Ψk  by Y +
p , where Ψk  serves as the denominator and Y +

p  as the numerator:

	
Y ′

p = 1
Ψk

Y +
p , (p = 1, 2, . . . , n2) .� (4)

Here, Y ′
p  can encompass attributes of both desirable and undesirable outputs concurrently. Eventually, the 

efficiency scores of all DMUs can be ascertained using the conventional DEA model (5).

Data envelopment analysis (DEA)
DEA is widely regarded as a powerful non-parametric method for measuring performance and efficiency, 
offering advantages over traditional methods like ratio analysis and regression. Unlike these approaches, DEA 
does not require a predefined production function, giving it flexibility to handle different types of data. DEA uses 
linear programming to calculate the relative efficiency of DMUs, allowing them to select the best combination 
of inputs and outputs to maximize efficiency. This flexibility has led to its extensive use in various fields, such as 
banking, supply chain management62, and energy and environmental assessments63. DEA creates an efficiency 
frontier composed of the most efficient DMUs and compares all other units against this frontier. Units on the 
frontier are deemed efficient, while those below it are considered inefficient. DEA identifies the gap between 
inefficient DMUs and the frontier, offering insight into where improvements can be made. This is particularly 
useful when handling multiple inputs and outputs, as DEA compares each DMU to the best performers. The 
original DEA model, known as the CCR model, was introduced by Charnes, Cooper, and Rhodes in 1978, 
assuming constant returns to scale. Later, in 1984, Banker, Cooper, and Charnes developed the BCC model, 
which incorporated variable returns to scale by adding a convexity constraint. This made DEA more adaptable to 
varied scenarios. Further advancements included the Cone Ratio Model62, Slack Adjusted Model64, Slack-Based 
Model63, and the New Slack Model (NSM)65. This study employs the New Slack Model (NSM) to address the 
limitations of traditional DEA models. Unlike CCR and BCC models, which do not handle slacks well, and SBM 
model lacking radial characteristics, NSM maintains both radial attributes and slack monotonicity. This ensures 
all inputs and outputs are fully utilized when assessing DMU performance. The output-oriented NSM-VRS 
model applied here provides a more thorough analysis, ensuring all multipliers are positive, thereby improving 
the overall assessment of DMU efficiency.

	

Max θ̄k = θk + 1
m + n2

(
n2∑

p=1

s+
pk

y′
pk

+
m∑

i=1

s−
ik

xik

)

subject to
R∑

r=1

λrky′
pr − s+

pk = θky′
pk ∀p = 1, 2, . . . , n2,

R∑
r=1

λrkxir + s−
ik = xik ∀i = 1, 2, . . . , m,

R∑
r=1

λrk = 1,

λrk ≥ 0, ∀r = 1, 2, . . . , R

s−
ik, s+

pk ≥ 0, ∀i = 1, 2, . . . , m; p = 1, 2, . . . , n2.

� (5)

where λrk  represents the dual variable corresponding to the rth constraint and is termed as the intensity variable, 
s+

pk  signifies the slack in the pth output of the kth DMU, s−
ik  indicates the slack in the ith input of the kth DMU. 

xik  denotes the observed quantity of the ith input of the kth DMU, y′
pk  denotes the observed quantity of the pth 

modified output of the kth DMU. θk , unrestricted in sign, represents the proportional adjustment employed to 
all outputs of the kth DMU to enhance efficiency.

Fuzzy AHP
The initial work on Fuzzy AHP was introduced by Van Laarhoven and Pedrycz (1983)66, integrating AHP with 
fuzzy set theory. This approach is particularly effective in managing the uncertainty present in decision-making 
processes. Decision-makers often prefer to provide subjective or interval judgments rather than fixed values, as 
they may find it difficult to precisely express their preferences due to the inherent vagueness in the comparison 
process. FAHP organizes the problem into a hierarchical structure consisting of a goal, criteria, and sub-criteria, 
making it easier to systematically evaluate options. The fuzzy AHP method employs pairwise comparisons to 
allocate weights to criteria and rank various energy alternatives using Table 4. Opinions from both academic 
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and renewable energy experts are collected through a questionnaire utilizing linguistic terms, with the aim 
of applying the Fuzzy AHP method. Questionnaire are carried out in accordance with relevant guidelines 
and regulations and confirming that informed consent is obtained from all subjects and/or legal guardian(s). 
Experimental protocol are approved by institutional committee.

Step - I. Research conducted using the fuzzy AHP method introduced by Buckley in 198567.
Step - II. The relative significance of sustainable energy alternatives is determined through pairwise 

comparisons. The weights are computed using the fuzzy geometric mean method, with equations derived from 
Saraswat et al. (2021)21.

	 a = (p1 × p2 × . . . × pn) , b = (q1 × q2 × . . . × qn) , c = (r1 × r2 × . . . × rn)� (6)

n denotes count of criteria.

Step - III. Fuzzy weights are derived by multiplying the fuzzy geometric mean and the reciprocal of the sum of 
those fuzzy geometric mean values, as detailed in equation (6).

	

wl = al (a1 + a2 + . . . + an)−1 , wm = am (a1 + a2 + . . . + an)−1 ,

wu = au (a1 + a2 + . . . + an)−1 � (7)

Step - IV. De-fuzzified crisp numeric values (DCNV) are determined by averaging the fuzzy lower, medium, and 
upper values, as specified in equation (7)..

	
DCNV = wl + wm + wu

3
� (8)

Step - V. To validate the consistency of the expert’s opinion, the consistency ratio is assessed. A consistency ratio 
below 0.1 indicates an accurate determination of criteria weight.

	
CR = CI

RI
� (9)

	 CI = (λmax − n) /(n − 1)� (10)

where, CI represents the consistency index, RI denotes the random index, λmax signifies the maximum 
eigenvalue, and n stands for the number of criteria.

Results
India boasts various RES, including biomass, solar, geothermal, wind, hydro, and wave. Harnessing electricity 
from these renewable sources underscores India’s significant potential to generate power from sustainable fuels.

Table 3 lists the sustainable parameters and all the nineteen criteria falling under these parameters. The results 
of implementing the proposed integrated DEA-Fuzzy AHP method to evaluate the prioritization of renewable 
energy alternatives with a focus on sustainable development are outlined in this section.

Selection of parameter, criteria and data colletion
The study begins by identifying various RES in India and establishing evaluation criteria through an extensive 
literature review and expert consultation. A decision-making team of nine experts from academia and renewable 
energy organizations in India is formed. In phase I, parameters related to sustainability assessment and criteria 
for each parameter are identified through literature review, authoritative articles, books, and expert consultation. 
The literature review and expert insights identify prominent RES: Solar, Offshore Wind, Onshore Wind, Biomass, 

Linguistic statement Fuzzy-AHP scale

Equally important (1,1,1)

Weakly important (2,3,4)

Fairly important (4,5,6)

Strongly important (6,7,8)

Absolutely important

(9,9,9)

(1,2,3)

(3,4,5)

(5,6,7)

Interpolation scale (7,8,9)

Table 4.  Fuzzy AHP Scale.
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Hydro, Wave, and Geothermal Energy. These alternatives are evaluated using economic, technical, socio-
political, and environmental parameters within the sustainable development framework. This research considers 
these parameters for a robust evaluation of renewable energy sustainability, ensuring effective oversight of the 
energy sector. Following the selection of sustainability parameters, criteria are listed under these parameters. It 
is then determined which criteria served as inputs and desirable and undesirable outputs in the DEA model for 
each parameter. Accordingly, the inputs and outputs are identified as follows: C1 as the input and C2, C3, and C4 
as the outputs for the technical parameter, C5, C6, C7, and C8 as inputs and C9 as the output for the economic 
parameter, C10 as the input and C11, C12, C13 are undesirable outputs, and C14 as the desirable output for the 
environmental parameter, and finally C15 as the input and C16, C17, C18, and C19 as the outputs for the socio-
political parameter. Additionally, the inputs and outputs for each category are visually represented in the second 
phase of Fig. 2. To conduct the data envelopment analysis, data from various secondary sources have been 
collected. Quantitative data regarding to criteria C1, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, and C16 
are extracted from multiple annual reports and balance sheets of India’s renewable energy organizations37,57–60. 
Data pertaining to criteria C2, C3, C17, and C18 is gathered from extensive literature, while the remaining 
data for C15 and C19 is based on opinions from the decision-making team, assessed on a 10-point scale as 
depicted in Table 5. In practical scenarios, qualitative data often needs to be incorporated into the structure of 
data envelopment analysis. All the statistical data is presented in Table 6.

Modified ratio model results
In light of the increasing emphasis on environmental performance and sustainable production practices, the 
study first applies the modified ratio model proposed by Zhu et al. (2020)61. In Phase II, the modified ratio 
model is used to convert undesirable outputs related to environmental factors, such as CO2, SO2, and NOx 
emissions, into desirable outputs. This step is important for aligning these outputs with the sustainability goals 
of the study. First, efficiency scores are calculated using model (1), where the undesirable outputs are treated 
as inputs, and the positive impact on the ecosystem (C14) is treated as the desirable output. These efficiency 
scores, identified as δ∗, are subsequently applied in the model (2) to ascertain the aggregate weights for the 

Criteria Mean SD Min Max

C1 3.036 2.324 0.500 7.000

C2 37.429 13.988 20.000 57.000

C3 39.114 27.106 9.500 97.300

C4 43.714 21.110 15.000 77.000

C5 1934.429 1224.018 22.000 3991.000

C6 1.478 2.824 0.021 8.360

C7 3.420 3.316 0.390 10.000

C8 0.060 0.013 0.045 0.080

C9 26.429 6.389 20.000 40.000

C10 843.571 1715.174 1.000 5000.000

C11 30.634 15.998 13.000 58.000

C12 109.143 102.721 10.000 280.000

C13 268.571 441.341 10.000 1325.000

C14 62.319 43.884 16.131 149.400

C15 3.143 1.125 2.000 5.000

C16 11531.943 9388.176 2500.000 27050.000

C17 63.714 12.532 40.000 80.000

C18 63.714 12.532 40.000 80.000

C19 6.286 1.485 4.000 9.000

Table 6.  Research data statistics for implementing data envelopment analysis.

 

Scale Description

2 Compared to the other sources, its level is extremely low

4 Compared to the other sources, its level is low

6 Compared to the other sources, its level is medium

8 Compared to the other sources, its level is high

10 Compared to the other sources, its level is extremely high

1, 3, 5, 7, 9: intermediate values are used to compromise between 
two judgments.

Table 5.  Ten-points scale scoring the criteria.
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various undesirable outputs. After calculating the aggregate weights, as shown in Table 7, the study computes 
Ψk , which represents the total undesirable outputs, using equation (3). Next, the modified desirable output Y ′

p  
is calculated by combining both the desirable and undesirable outputs into one value through equation (4). This 
creates a modified desirable output for the environmental parameter, now called C20. This approach ensures 
that undesirable outputs are effectively included in the evaluation, helping provide a more complete assessment 
of renewable energy sources.

DEA initial efficiency results
After computing the modified desirable output, the data is organized to apply the NSM-VRS output-oriented DEA 
model. In phase III, this model is used to calculate the initial efficiency scores for each of the four sustainability 
parameters across the seven RES. These calculations are carried out using MATLAB version R2020b software, and 
the results are presented in Table 8, showing the initial efficiency scores for each RES under different parameters. 
In the technical parameter, hydro, biomass, and wave energy show a high efficiency score of 1, indicating they are 
fully efficient in this category. Onshore wind has a slightly lower efficiency score of 0.913, meaning it performs 
well but not as efficiently as the top performers. Offshore wind, solar, and geothermal have lower scores of 
0.758, 0.681, and 0.491, respectively, showing room for improvement in technical efficiency. For the economic 
parameter, two of the seven RES exhibit inefficiencies, with hydro and geothermal scoring 0.895 and 0.526, 
respectively, while the remaining RES display efficient economic performance. Regarding the environmental 
parameter, offshore wind and hydro achieve full efficiency with scores of 1, whereas biomass performs poorly 
with an efficiency score of 0.019, indicating significant inefficiencies in its environmental impact. In the socio-
political parameter, solar energy demonstrates full efficiency with a score of 1, while biomass and offshore wind 
follow with scores of 0.809 and 0.805, respectively. Hydro, however, reflects lower efficiency in this parameter, 
with a score of 0.491.

Fuzzy AHP results and ranking of RES
In phase IV, opinions from both academic and renewable energy experts are collected through a questionnaire 
utilizing linguistic terms, with the aim of applying the Fuzzy AHP method using Table 4 in the first week of March 
month. Fifteen experts from academia, renewable energy, and environmental sectors were reached out, and nine 
of them agreed to participate in the survey. While some studies have also used four or ten experts, choosing 
nine qualified experts in this study balances diverse perspectives with a focused analysis16,68,69. Responses were 
collected virtually for the questionnaire in the first week of March month, spanning approximately 1.1 months. 
Respondents were requested to provide pairwise comparisons for the evaluation criteria using the relative 
importance attributes scale for the Fuzzy AHP method outlined in Table 4. Following the collection of responses 
for pairwise comparison of four sustainable parameters, we analyzed them to determine the weights for each of 
these parameters. These terms are subsequently converted into triangular fuzzy numbers (TFNs) using equations 
(6) and (7) to determine the weight of each sustainability parameter. The model is then solved in MS-Excel to 
derive optimal TFN values (l1, m1, u1), (l2, m2, u2), (l3, m3, u3), and (l4, m4, u4). These TFN values are 
further transformed into crisp values using equation (8), enabling the calculation of the optimal weights for 
the sustainability parameters. Finally, the outcomes of the model solution, along with the overall weights of 
the sustainability parameters, are presented in Table 9. Given that the CR value of 0.078, below the threshold 
of 0.10 in Fuzzy AHP, indicates high consistency and stability in the comparisons used to calculate the weights 
of sustainability parameters. Table 9 illustrates that economic parameter possesses higher weights, surpassing 
the importance of the remaining factors with a weight share of 43.9%, while the environmental parameter hold 
relatively lower weights accounting for 25.6%. Moreover, the technical parameter holds a relative weight of 
19.2%, that is the third most important parameter. Socio-political parameter is given relatively less emphasis 
in terms of weights accounting for 11.3%. Consequently, it can be inferred that investors should prioritize 
economic and environmental parameter when selecting most appropriate renewable energy sources to advance 

Alternatives Technical Economic Environmental Socio-political

Solar 0.681 1.000 0.228 1.000

Onshore Wind 0.913 1.000 0.740 0.574

Offshore Wind 0.758 1.000 1.000 0.805

Hydro 1.000 0.895 1.000 0.491

Biomass 1.000 1.000 0.019 0.809

Geothermal 0.491 0.526 0.466 0.756

Wave 1.000 1.000 0.266 0.577

Table 8.  Initial efficiency scores.

 

ρ1 ρ2 ρ3

7.3704999 × 10−2 1.389881 × 10−2 8.79374 × 10−3

Table 7.  Aggregate weights ρq  of the undesirable outputs.
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sustainability layouts. In the last step, using the weights derived from Fuzzy AHP method, we obtained the 
efficiencies associated with each sustainability parameter, calculated by multiplying the initial efficiency score 
and corresponding weights for each of parameter. Consequently, the efficiencies are averaged to determine the 
overall efficiencies and rankings of each renewable energy source, as illustrated in Table 10. The ranking of 
energy sources using the DEA-Fuzzy AHP method is as follows: Offshore Wind > Hydro > Onshore Wind > 
Wave > Solar > Biomass > Geothermal. These rankings are based on the higher overall efficiency scores, with 
Offshore Wind Energy emerging as the most suitable renewable energy source for India’s future, boasting the 
highest overall efficiency value of 0.932 among the available sources. Hydro energy achieved the second rank 
with an efficiency score of 0.896, followed by onshore wind energy in third place with an efficiency of 0.869. 
Wave, solar, biomass, and geothermal energy obtained the fourth, fifth, sixth, and seventh ranks respectively, as 
shown in Table 10.

Sensitivity analysis
As the final ranking of alternatives heavily relies on expert weighting, a sensitivity analysis based on criteria 
weights is performed in this section to demonstrate the stability of the ranking. To achieve this objective, various 
scenarios are examined, each involving different weight allocations for the parameters. These weight variations 
are based on the five scenarios outlined in Table 11. This analysis aims to explore the impact of parameter weight 
adjustments on the final rankings. These scenarios, labeled from I to V, allocate weights differently. In Scenario 
I, all parameters are equally weighted. Scenario II assigns 50% weight to the technical parameter, distributing 
the remaining 50% among the economic, environmental, and socio-political parameters. Scenarios III to V 
individually prioritize the economic, environmental, and socio-political parameters as shown in Table 11. This 
approach allows us to assess how varying degrees of importance assigned to each dimension influence the final 

Parameter

Scenario-I Scenario-II Scenario-III Scenario-IV Scenario-V

Equal weights Technical Economic Environmental Socio-political

Technical 0.25 0.500 0.167 0.167 0.167

Economic 0.25 0.167 0.500 0.167 0.167

Environmental 0.25 0.167 0.167 0.500 0.167

Socio-political 0.25 0.167 0.167 0.167 0.500

Table 11.  Criteria weight for different cases.

 

Alternatives Technical Economic Environmental Socio-political Overall efficiencies Rank

Solar 0.131 0.439 0.058 0.113 0.741 5

Onshore wind 0.175 0.439 0.190 0.065 0.869 3

Offshore wind 0.146 0.439 0.256 0.091 0.932 1

Hydro 0.192 0.393 0.256 0.055 0.896 2

Biomass 0.192 0.439 0.005 0.091 0.727 6

Geothermal 0.094 0.231 0.119 0.085 0.530 7

Wave 0.192 0.439 0.068 0.065 0.764 4

Table 10.  Overall efficiencies and rank of the renewable energy alternatives.

 

Criteria TFNs Value Overall weight

Technical
l1 0.102 0.192

m1 0.194

u1 0.383

Economic
l2 0.256 0.439

m2 0.451

u2 0.846

Environmental
l3 0.111 0.256

m3 0.260

u3 0.533

Socio-political
l4 0.061 0.113

m4 0.116

u4 0.222

Table 9.  Weights for criteria.
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rankings. The weights for specific criteria are determined by dividing the dimension weight by the number 
of criteria. Table 12 and the accompanying chart in Fig. 3 illustrate the rankings under different scenarios. 
Notably, rankings vary across scenarios. In Scenario I, offshore wind emerges as the most favorable option, 
while geothermal is deemed the least attractive. The probable explanation could be its economic viability, 
strong social acceptance, relative environmental friendliness, political approval, and promotional efforts. From 
a technical standpoint, hydro exhibits the most promising performance, followed by offshore wind, onshore 
wind, wave, biomass, solar, and geothermal. Hydro is given preference due to higher technical maturity and 
higher efficiency. In terms of economic considerations, offshore wind remains the preferred choice. Offshore 
wind energy is favored for its low initial capital investment, shorter payback period, and minimal levelized cost 
of electricity. In Scenario IV, with an emphasis on maximizing environmental impact, offshore wind power 
emerges as the top choice, followed by hydro. This is primarily due to its lack of land requirement, which helps 
preserve terrestrial ecosystems and minimal pollutant emissions. Similarly, in Scenario V, offshore wind remains 
the preferred option, with solar as the next favorable choice and geothermal ranked the least desirable from this 
perspective. This preference could be attributed to its widespread social acceptance and advantages, minimal 
adverse effects on human health, and its capacity for generating employment opportunities at the community 
level. The rankings across various scenarios consistently favor offshore wind due to its economic viability, socio-
political agreement, and environmental benefits. Considering the overall results obtained from the multiple 
sensitivity analysis scenarios in this study, the proposed DEA-Fuzzy AHP approach consistently adapts to 
changes in criteria formulation, making it the most reliable method. Therefore, it can efficiently evaluate and 
prioritize RES. However, the suitability of renewable energy sources varies based on specific criteria, emphasizing 
the importance of a detailed evaluation approach.

Discussion
This study assesses the sustainability of seven RES in India using an integrated DEA-Fuzzy AHP model that 
evaluates technical, economic, environmental, and socio-political parameters. In Phase I, criteria are selected 
through a literature review and classified into input, desirable, and undesirable outputs. Phase II transforms 
undesirable criteria into desirable ones using the modified Ratio model. Phase III applies DEA for initial 

Fig. 3.  RES ranking for different weight-changing scenarios.

 

Alternatives DEA-Fuzzy AHP Equal weights Technical Economic Environmental Socio-political

Solar 5 4 6 4 5 2

Onshore Wind 3 3 3 2 3 4

Offshore Wind 1 1 2 1 1 1

Hydro 2 2 1 3 2 5

Biomass 6 6 5 6 7 3

Geothermal 7 7 7 7 6 7

Wave 4 5 4 5 4 6

Table 12.  Sensitivity analysis results.
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efficiency calculations, followed by Fuzzy-AHP for parameter weighting in Phase IV. The RES are ranked based 
on overall efficiencies, with economic parameters receiving the highest weight (0.439) and socio-political the 
lowest (0.113). Offshore wind, hydro, and onshore wind rank as the top three, while geothermal and biomass 
rank lower. Sensitivity analysis confirms offshore wind’s consistent top ranking, enhancing model reliability. The 
ranking of energy sources using the DEA-Fuzzy AHP method is as follows: Offshore Wind > Hydro > Onshore 
Wind > Wave > Solar > Biomass > Geothermal. In this study, offshore wind energy is found to be the highest-
ranking RES in terms of efficiency, and the next are hydro and onshore wind aligning with recent research that 
highlights its potential for high performance and scalability. However, our findings contrast with some existing 
studies in India that prioritize solar energy or hydropower. The contrast arises because previous studies in India 
did not include alternatives like offshore wind energy and wave energy, which can significantly influence the 
prioritization of energy sources. Since the DEA model operates on a relative efficiency basis, offshore wind 
emerges as a more suitable option compared to solar and hydro energy when evaluated within this framework. 
A comparison of parameter weights with previous studies demonstrates strong alignment, with only slight 
variations. These differences can be attributed to the specific criteria chosen and regional factors that influence 
the prioritization of renewable energy sources. Additionally, when comparing the criteria and parameters used in 
our study with those in similar research, it is evident that while many studies emphasize economic and technical 
factors, our inclusion of socio-political and environmental criteria provides a more comprehensive assessment. 
This broader approach enhances the depth of the evaluation, addressing a wider range of challenges in renewable 
energy decision-making. The application of an integrated DEA-Fuzzy AHP approach is effective in addressing 
undesirable and conflicting criteria, providing a more robust evaluation framework compared to traditional 
standalone AHP or DEA models. Unlike Kolagar et al.15, environmental factors are divided into desirable and 
undesirable criteria, and further undesirable criteria are modified into desirable ones. Moreover, none of the 
studies in India included wave energy and offshore wind despite having significant potential. Governments 
should revise policies favoring conventional fuels and technologies, giving priority to renewable energy sources 
like offshore wind, hydro, and onshore wind for sustainability. India must accelerate the development of these 
energy sources to address power shortages, mitigate climate change, and reduce global warming. By focusing on 
offshore wind for its scalability, hydro for its reliability, and onshore wind for its accessibility, India can lead the 
fight against climate change while benefiting its environment, economy, and society. This study makes several 
significant contributions to the existing literature based on the discussion.

Policy and decisional implications
The findings of this study offer significant insights for policymakers, practitioners, and investors, emphasizing 
the prioritization of offshore wind, hydro, and onshore wind energy as the top renewable energy sources. 
These rankings align with India’s energy strategy and ongoing efforts to enhance renewable energy integration. 
Policymakers should prioritize offshore wind energy by streamlining regulatory processes, upgrading 
infrastructure, and providing financial incentives to attract investment. Current initiatives in Gujarat and Tamil 
Nadu have identified potential offshore wind zones, while policies aimed at harnessing hydroelectric resources 
in the North and North-Eastern regions reflect the government’s commitment to maximizing renewable energy 
potential. Addressing challenges like variable water availability, environmental concerns, and infrastructure 
needs is vital. Effective policies must focus on improving storage systems and ensuring project sustainability 
to optimize hydro’s contribution to the energy mix. Onshore wind farms, with their established infrastructure, 
can complement offshore projects by providing consistent energy output, particularly in regions with favorable 
wind conditions. By leveraging the study’s results, policymakers can allocate resources more effectively to 
enhance energy security and meet sustainability targets. A stronger focus on renewable energy also contributes 
to reducing carbon emissions and achieving net-zero goals. For investors, the study provides a clear roadmap 
for prioritizing investments in efficient and sustainable energy projects. Emphasizing top-ranked sources, such 
as offshore wind, minimizes risks and ensures optimal returns while supporting the country’s transition to a 
resilient energy system. The study’s structured approach to evaluating renewable energy sources can inform the 
design of policies that promote a diversified energy mix. This ensures long-term sustainability, economic growth, 
and environmental benefits, aligning with India’s national energy objectives.

Conclusions
Renewable energy is essential for meeting India’s rising energy needs while combating climate change and 
reducing dependence on fossil fuels. This study prioritized RES in India, addressing key gaps by incorporating 
undesirable criteria using the modified Ratio model, overcoming a common oversight in prior studies 
that treated undesirable factors as desirable, and evaluating efficiency through the NSM DEA model, which 
effectively handles slacks and maintains both radial attributes and slack monotonicity. This ensures optimal 
utilization of all inputs and outputs when assessing the performance of renewable energy sources. To account 
for the inherent uncertainty in expert judgment, the study employed Fuzzy MCDM, ensuring robustness in the 
analysis, while social, technical, environmental, political, and economic criteria provided a holistic assessment, 
including underexplored resources like offshore wind and wave energy. Although this study offers valuable 
insights, it is important to acknowledge certain limitations. The findings are specific to the Indian context, and 
applying the methodology to other regions may require adjustments to account for differences in local RES 
types and influencing factors. Additionally, the study employed triangular fuzzy numbers to address uncertainty 
and human judgment, while effective, could be refined with advanced fuzzy techniques such as trapezoidal or 
interval-type fuzzy numbers. Future research could enhance this framework by adopting advanced DEA models 
capable of handling undesirable factors with greater precision. Given India’s diverse climatic conditions and 
geography, conducting state-wise analyses would offer a deeper understanding of the most suitable RES for 
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each region, contingent on the availability and quality of regional data. Furthermore, this methodology could 
be extended to assess renewable energy systems in other countries or applied to industries beyond the energy 
sector, thereby broadening its applicability and providing a more global perspective.

Data availability
The author confirms that all data generated or analyzed during this study are included in this manuscript.
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