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To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate 
cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental 
value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and 
Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was 
performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and 
external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two 
hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted 
from each MRI sequence, including shape-based features, gray-level histogram-based features, 
texture features, and wavelet features. The clinical model was constructed using logistic regression 
analysis. Radiomic models were created by comparing seven machine learning classifiers. The useful 
clinical variables and radiomic signature were integrated to develop the combined model. Model 
performance was assessed by receiver operating characteristic curve, calibration curve, decision curve, 
and clinical impact curve. The ratio of free PSA to total PSA, PSA density, peripheral zone volume, 
and PI-RADS score were independent determinants of malignancy. The clinical model based on these 
factors achieved an AUC of 0.814 (95% CI: 0.763–0.865) and 0.791 (95% CI: 0.742–840) in the internal 
and external validation cohorts, respectively. The clinical-radiomic nomogram yielded the highest 
accuracy, with an AUC of 0.925 (95% CI: 0.894–0.956) and 0.872 (95% CI: 0.837–0.907) in the internal 
and external validation cohorts, respectively. DCA and CIC further confirmed the clinical usefulness 
of the nomogram. Biparametric MRI-based radiomics has the potential to noninvasively discriminate 
between—BPH and malignant PCa nodules, which outperforms screening strategies based on PSA and 
PI-RADS.
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PI-RADS	� Prostate imaging reporting and data system
MRI	� Magnetic resonance imaging
PCa	� Prostate cancer
CsPCa	� Clinically significant PCa
ML	� Machine learning
TRUS	� Transrectal ultrasound
TZ	� Transitional zone
ROC	� Receiver operating characteristic curves
AUC	� Area under the curve
DCA	� Decision curve analysis
CIC	� Clinical inpact curve
mpMRI	� Multiparametric magnetic resonance
PV	� Prostate volume
tPSA	� Total PSA
fPSA	� Free PSA
fPSA/tPSA	� Ratio of fPSA to tPSA
PZV	� Peripheral zone volume
PSAD	� PSA density
T2WI	� T2-weighted imaging
TIWI	� T1-weighted imaging
DWI	� Diffusion-weighted imaging
DCE	� Dynamic contrast-enhanced imaging
ADC	� Apparent diffusion coefficient
ROI	� Region of interest
BPH	� Benign prostatic hyperplasia
VOIS	� Volumes of interest

Prostate cancer (PCa) is the most common cancer and the second most deadly cancer in males worldwide1. 
An early diagnosis of prostate cancer is crucial for improving its prognosis. Currently, prostate-specific antigen 
(PSA) testing is the most widely used screening approach, while invasive prostate biopsy is still the gold standard 
for PCa2. However, PSA screening has limitations despite significantly improving the diagnosis of PCa. Clinical 
studies have shown that PSA testing has a predictive value of 25–40%, with limited specificity and sensitivity, 
resulting in overdiagnosis and overtreatment3,4. Moreover, many of these lesions are less invasive and their 
clinical significance remains unclear. PCa is characterized by strong heterogeneity and multifocal features, and 
treatment decisions are typically based on the lesion with the largest volume or the highest gleason score5. 
Therefore, early and accurate detection of clinically significant PCa (CsPCa), is important for effective treatment5.

With the continuous advancement of imaging technology, it is possible to enhance the specificity and 
sensitivity of PSA. Multiparametric magnetic resonance imaging MRI (mpMRI) has been widely used in the 
detection and staging of prostate lesions, as well as in guiding prostate biopsies, informing treatment options, 
and facilitating active surveillance7. Currently, mpMRI plays central role in the diagnostic pathway for suspected 
PCa8. The Prostate Imaging Reporting and Data System (PI-RADS) has greatly contributed to achieving these 
goals by enabling reliable identification of CsPCa requiring biopsy and facilitating lesion localization9. The PI-
RADS 2.1 serves as the reference for risk stratification of PCa based on mpMRI. Suspected lesions are assigned 
scores ranging from 1 to 5 based on lesion location and image characteristics10. However, the interpretation of 
images based on the PI-RADS guidelines remains challenging due to interobserver variability, particularly for 
PI-RADS-3 lesions. Lesions with a PI-RADS score of 3 or higher usually undergo biopsy. However, PI-RADS-3 
corresponds to CsPCa in less than 15% of patients10. Therefore, using mpMRI only to determine which patients 
should undergo biopsy is suboptimal11. Previous studies have shown that biparametric MRI, with its lower 
cost, no need of contrast agent, and shorter scanning time, is not inferior to, and even superior to, mpMRI in 
detecting PCa12,13. Consequently, there is an urgent need for clinical tools that can accurately identify PCa and 
minimize unnecessary biopsies.

Tumor risk stratification remains a challenging task due to the difficulties in interpreting mpMRI images. 
Machine learning (ML) has the potential to assist radiologists in assessing the invasiveness of indistinct 
lesions, reducing variability between observers. Previous studies have demonstrated the successful utilization 
of ML in prostate volume segmentation, lesion segmentation, and detection14. Accurate segmentation and 
volume estimation of the prostate can provide valuable information for the diagnosis and clinical treatment 
of hyperplasia and PCa. This can improve the treatment of hyperplasia, surgical planning and prognosis of 
PCa. Prostate segmentation is increasingly utilized for the diagnosis of PCa, particularly for MRI transrectal 
ultrasound (MRI/TRUS) fusion biopsy, as accurate prostate segmentation on MRI images is crucial for the 
interpretation of MRI/TRUS fusion biopsy results15. In addition to segmentation, prostate volume estimation is 
a useful indicator, especially in the context of BPH treatment, surgical planning, and PCa prognosis16. ML can 
serve as a valuable tool to address the high variability among readers in certain areas, such as the transitional 
zone (TZ). Previous studies have compared ML models with the PI-RADS score in evaluating the performance 
of lesion classification, but consensus has not been reached17–19. Some previous studies have combined the 
results of the PI-RADS score with ML models to distinguish PCa in a clinical setting, but these approaches still 
rely on subjective PI-RADS scoring and are not sufficient for clinical practice20–22.

Radiomics enables the extraction of high-throughput and quantitative image features from medical images. 
By employing ML algorithms, the radiomic features can be utilized to construct models that uncover information 
pertaining to tumor pathophysiology. This, in turn, aids in medical decision-making and enhances diagnostic 
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capabilities. This study aimed to develop a clinical-radiomic model that integrates clinical variables and radiomic 
features to differentiate between—BPH and malignant PCa nodules.

Materials and methods
Patients
This retrospective study was approved by the Ethics committee of Zhongshan City People’s Hospital and 
the requirement for written informed consent was waived by the Human Research Ethics Committee of the 
Zhongshan City People’s Hospital. A total of 617 patients with prostatic nodules who underwent contrast-
enhanced MRI at two tertiary hospitals between January 2018 and December 2020 were reviewed. The inclusion 
criteria were as follows: (1) patients with histologically confirmed hyperplasia or PCa identified through needle 
systematic biopsy underwent a technique known as cognitive fusion, in which the urologist performing the 
biopsy would estimate the location of regions of interest (ROIs) based on the imaging reviewed during the 
procedure; (2) patients who underwent contrast-enhanced MRI within one week prior to surgery or biopsy and 
(3) patients who did not receive any preoperative cancer-related treatments, such as radiotherapy, endocrine 
therapy, or chemotherapy. The exclusion criteria were as follows: (1) incomplete clinical data (n = 89); (2) patients 
who received radiotherapy, chemotherapy, or other treatments before contrast-enhanced MRI scans (n = 157); 
(3) MRI images with poor quality (n = 51); and (4) cases where the puncture site did not correspond well with 
the image (n = 69). Finally, 251 patients (mean age, 68.1 ± 9.1 years) were included. The dataset was comprised of 
two distinct groups: 171 patients from our institution, which were randomly assigned to a training cohort (70%, 
n = 119; 48 malignant and 71 benign cases) and an internal validation cohort (30%, n = 52; 21 malignant and 
31 benign cases); an additional 80 patients from other collaborating hospitals (an external validation cohort: 29 
malignant and 51 benign cases). Figure 1 shows the patient recruitment pathway and the inclusion and exclusion 
criteria.

Clinical characteristics
Clinical variables were collected from the medical record system, which mainly consisted of age, prostate volume 
(PV), PSA value, total PSA (tPSA), free PSA (fPSA), and the ratio of fPSA to tPSA (fPSA/tPSA). Besides, the 
length, width, and height of the entire prostate and the TZ were measured on the mpMRI. The transverse diameter 
(A) and anteroposterior diameter (B) of the TZ, as well as the transverse diameter (C) and anteroposterior 

Fig. 1.  Pathway for patient recruitment and inclusion/exclusion criteria.
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diameter (D) of the entire prostate, were measured on a horizontal section. The superoinferior diameter of the 
transition zone (E) and the entire prostate (F) were measured on the sagittal plane. The PV was measured at the 
boundary of the prostate capsule, and the TZ volume (TZV) was measured at the boundary of the fibrous layer of 
the TZ. The PV and TZV were calculated as follows: (π/6) × anteroposterior diameter (cm) × transverse diameter 
(cm) × superoinferior diameter (cm). The peripheral zone volume (PZV) was calculated as the difference 
between the PV and TZV. PSA density (PSAD) was calculated as tPSA/PV, TZ-PSAD as tPSA/TZV, and PZ-
PSAD as tPSA/PZV (or tPSA/PV-TZV).

MR imaging and image interpretation
All patients in the two centers were scanned using a 3.0T MR system (Achieva, Philips Medical Systems, Best, 
the Netherlands) with a 16-channel Sense Torso XL coil. The protocol included axial, coronal, and sagittal 
T2-weighted imaging (T2WI), axial T1-weighted imaging (TIWI), axial diffusion-weighted imaging (DWI), 
THRIVE, and post-contrast axial breath-hold dynamic contrast-enhanced (DCE) imaging performed with fat-
suppressed e-THRIVE. A total of 20 dynamic enhanced prostate scans were performed, with a scanning time of 
two minutes. Contrast agent (Gadodiamide, MEDRAD Healthcare, 0.2 mmol/kg body weight) was administered 
intravenously at the end of the first scan, followed by a 20 ml saline flush at the same rate of 3.0 ml/s. The detailed 
acquisition parameters are presented in Table 1.

The images were independently evaluated by two radiologists with 8 years of experience in prostate MRI, 
and by a third radiologist with 10 years of experience in prostate MRI, using the PI-RADS V2.1 criteria. The 
radiologists were unaware of the histopathology results. In cases of disagreement between the two radiologists, a 
third radiologist was consulted to reach a consensus on the final PI-RADS V2.1 score. Specially, the descriptors 
for the third radiologist were moved to where the two radiologists discussed them being the consensus vote. The 
PI-RADS V2.1 scores were assessed based on the T2WI, DWI, and DCE-MRI sequences. If multiple lesions were 
present, the PI-RADS V2.1 score was determined based on the largest or most aggressive lesion.

Parameters T2WI T1WI DWI eTHRIVE

TR/TE (ms)

 ZSHP 3384/120 543/8 2787/61 3.1/1.8

 ZSSYS 3603/110 500/10 1337/82 4.9/1.97

Flip angle (°)

 ZSHP 90 90 90 10

 ZSSYS 90 90 90 10

Slice thickness (mm)

 ZSHP 4 4 4 4/0

 ZSSYS 3 3 4 3/0

Acquisition time

 ZSHP 02:55.9 01:52.4 01:54.3 01:50.6

 ZSSYS 03:29 01:37.0 02:00.0 02:08.8

FOV (mm)

 ZSHP 230 × 230 230 × 230 250 × 250 240 × 240

 ZSSYS 200 × 200 200 × 200 200 × 200 240 × 240

Matrix

 ZSHP 250 × 250 250 × 250 116 × 114 200 × 200

 ZSSYS 220 × 220 220 × 220 100 × 100 220 × 220

Reconstruction matrix

 ZSHP 0.57 × 0.57 0.57 × 0.57 1.12 × 1.12 0.58 × 0.58

 ZSSYS 0.39 × 0.39 0.94 × 0.94 1.04 × 1.04 0.94 × 0.94

Bandwidth (Hz/pixel)

 ZSHP 1038.6 225.6 32.2 723.4

 ZSSYS 217.3 1033.1 45.4 1325.7

No. of excitations

 ZSHP 1 1 4 1

 ZSSYS 1.2 1.5 2 1

B value (s/mm2)

 ZSHP 0/1000

 ZSSYS 0/1000

Table 1.  The detailed acquisition parameters of mpMRI.
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Lesion segmentation
Figure 2 illustrates the workflow of this study. The manual segmentation of the prostatic nodule was carried 
out by an experienced radiologist (with 8 years of experience in prostatic disease diagnosis) using ITK-SNAP 
software. The region of interest (ROI) was manually delineated slice-by-slice on axial T2WI and apparent 
diffusion coefficient (ADC) images, encompassing the entire suspicious lesions. As for PCa, the entire lesion 
area, including the peripheral and transitional areas of cancer, was demarcated. As for BPH, the complete 
hyperplasia area was outlined, while avoiding the surrounding prostate capsule, peripheral blood vessels, 
seminal vesicle root, bleeding, calcification, and urethra. Afterwards, the delineated ROIs were transformed 
into three-dimensional volumes of interest (VOIs). To minimize potential bias, the segmentation results were 
independently validated by a radiologist with 10 years of experience in prostatic disease diagnosis.

Image preprocessing
The N4 correction algorithm in the 3D Slicer software was used to eliminate MRI offset field artifacts and 
minimize the impact of RF field inhomogeneities and the MRI equipment itself. Then, the grayscale values of 
the MRI were normalized to a range of 0–255 by applying a min–max scaling technique. This processing step 
is implemented to mitigate variations in grayscale between different patients, acquisition times, and parameter 
settings, ensuring precise and dependable texture analysis. Lastly, the B spline interpolation algorithm was used 
to resample the ROI to a uniform size (1 * 1 * 1).

Radiomic feature extraction
Radiomic features were extracted from the segmented VOI in original images, Laplacian-of-

Gaussian (LoG) filter images, and wavelet filter images using the Pyradiomics v3.0 open source package. 
For the LoG filter, the sigma parameter was set to emphasize different levels of texture roughness, with sigma 
values of 1, 3, and 5 used to obtain filtered images with different textures. A bin width of 10 was selected for 
the wavelet filtering. The types of radiomic features were as follows: (1) shape-based features, (2) gray-level 
histogram-based features, (3) texture features, including gray-level co-occurrence matrix (GLCM), gray-level 
run length matrix (GLRLM), gray-level size zone matrix (GLSZM), gray-level dependence matrix (GLDM), and 
neighborhood gray-tone difference matrix (NGTDM), and (4) wavelet features. A total of 1130 radiomic features 
were extracted from each MRI sequence.

Feature selection and development of radiomic models
Feature selection and model construction were exclusively conducted on the training cohort. Initially, Pearson 
correlation coefficient (PCC) analysis was employed to obtain a feature set with minimal redundancy (correlation 
coefficient threshold set at 0.99). The yielded radiomic feature values were subsequently normalized using the 
Z-score. To further improve the model’s generalization ability and avoid overfitting, we ultimately applied the 
Recursive Feature Elimination (RFE) or Relief algorithm to obtain a subset of stable and reproducible radiomic 
features. After that, seven ML classifiers were compared to construct the radiomic models, that is, Random 
Forest (RF), Support Vector Machine (SVM), Least Absolute Shrinkage and Selection Operator (LASSO), Linear 

Fig. 2.  Workflow of the study.
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Discriminant Analysis (LDA), Naive Bayes (NB), Adaboost, and XGboost. Five-fold cross-validation was used 
for feature selection and optimization of the classification algorithm to identify the optimal radiomics model 
from 14 combinations. The model was evaluated using both the internal validation and external validation 
cohorts. The radiomic signature (ie, rad-score) was yielded by performing logistic regression analysis on the 
predicted probabilities generated by the radiomic model.

Combined model construction and evaluation
Univariate and multivariate analyses were conducted to identify independent risk factors (with both P < 0.05), 
which were then used to develop a clinical model. The combined model (or clinical-radiomic model) was 
established and visualized as a nomogram by incorporating significant clinical factors and rad-score based on 
a stepwise logistic regression model, with the Akaike information criterion (AIC) as the criterion for model 
selection. The models were developed on the training cohort and verified in both the held-out validation 
and external validation cohorts. The performance of the combined models was evaluated from three aspects: 
discrimination, calibration, and clinical validity. The discrimination ability was evaluated through receiver 
operating characteristic (ROC) analysis, which included calculations of the area under the curve (AUC), 
sensitivity, and specificity. Calibration curves with the Hosmer–Lemeshow (H–L) test were applied to assess 
the goodness of fit between the model-predicted probabilities and the observed event proportions. The clinical 
usefulness was evaluated using decision curve analysis (DCA) and clinical impact curve (CIC)23. DCA provides 
a visual representation of the net benefit of the model at various thresholds. The CIC was used to assess the 
clinical impact of the combined model by estimating the proportion of patients whose treatment plan would be 
altered based on the predictive results.

Statistical analysis
The characteristics of the patients were compared between the training and internal validation cohorts. Statistical 
differences were assessed using the Student’s t-test or the Mann–Whitney U test for normally distributed or 
non-normally distributed continuous variables, respectively. Categorical variables were analyzed using the Chi-
squared test or Fisher’s exact test. Delong test was used to compare AUCs between models. All statistical analyses 
were conducted using SPSS (version 25.0; IBM, Armonk, NY, USA) and Python 3.7. A two-sided p-value less 
than 0.05 was considered statistically significant.

Ethics approval and consent to participate
Tis study complied with the declaration of Helsinki and was approved by the Human Research Ethics Committee 
of the Zhongshan City People’s Hospital. Informed consent was waived owing to the retrospective nature of the 
study and approved by the Human Research Ethics Committee of the Zhongshan City People’s Hospital.

Results
Patient characteristics
A total of 251 patients diagnosed with BPH or PCa were included in the study. Among them, 153 patients (61%) 
had benign target lesions, with an average age of 67.1 ± 8.8 years. The remaining 98 patients (39%) had malignant 
target lesions, with an average age of 69.7 ± 9.4 years. Table 2 shows there was no significant difference observed 
between the training and internal validation cohorts (all P > 0.05).

Clinical and radiomic models
Univariate logistic regression analysis revealed that PSA level (P = 0.004), fPSA (P = 0.044), fPSA/tPSA 
(P = 0.006), PZV (P = 0.024), PSAD (P = 0.001), TZ-PSAD (P = 0.001), PZ-PSAD (P = 0.031), and PI-RADS 
score (P = 0.002) were identified as potential factors. After multivariate analysis, fPSA/tPSA (P = 0.045), PZV 
(P = 0.041), PSAD (P = 0.002), and PI-RADS score (P = 0.003) were determined to be independent risk factors 
for malignant nodules. The clinical model was constructed based on these independent factors achieved an AUC 
of 0.857 (95%CI: 0.812- 0.902) in the training cohort, 0.814 (95%CI: 0.763–0.865) in the internal validation 
cohort, and 0.791 (95% CI: 0.742–840) in the external validation cohort (Table 3 and Fig. 3).

A total of 705 radiomic features derived from T2WI images were retained after PCC analysis. The optimal 
T2WI-based radiomic model was constructed by combining the RFE filter and Adaboost classifier, utilizing 12 
selected features (Table 4). In the internal and external validation cohorts, the T2WI radiomic model yielded an 
AUC of 0.825 (95% CI: 0.768–0.882) and 0.753 (95% CI: 0.700–0.806), respectively (Table 3 and Fig. 3). Similarly, 
for ADC-derived features, 706 features were preliminarily screened by PCC analysis. The best-performing ADC-
based radiomic model was built by combining the Relief filter and LDA classifier, using 16 selected features 
(Table 4). This combined model achieved an AUC of 0.896 (95% CI: 0.859–0.933) and 0.818 (95% CI: 0.773–
0.863) in the internal and external validation cohorts, respectively. The fusion radiomic model, which integrated 
T2WI and ADC rad-scores, obtained a higher accuracy with an AUC of 0.908 (95% CI: 0.871–0.945) and 0.841 
(95% CI: 0.800–0.882) in the internal and external validation cohorts, respectively (Table 3 and Fig. 3).

Evaluation of the clinical-radiomic model
Multivariate analysis using the stepwise regression method was conducted on fPSA/tPSA, PZV, PSAD, PI-RADS 
score, and fusion rad-score. The results demonstrated that fPSA/tPSA (P = 0.023), PSAD (P = 0.016), PI-RADS 
score (P = 0.048), and fusion rad-score (P = 1.38e-07) were identified as independent risk factors (Table 5). The 
clinical-radiomic nomogram was developed using the following formula:

− 4.541 − 5.512 ∗ fPSA/TPSA + 0.996 ∗ PSAD + 0.546 ∗ PI − RADSscore + 5.785 ∗ fusion rad - score
The combined model produced an AUC of 0.925 (95% CI: 0.894–0.956) and 0.872 (95% CI: 0.837–0.907) in the 
internal and external validation cohorts, respectively (Table 3). In the internal validation cohort, the sensitivity 
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and specificity values were 76.2% and 90.3%, while in the external validation cohort, they were 82.8% and 76.5% 
(Table 3). The calibration curves suggested strong concordance between the predicted probabilities from the 
model and the actual event proportions in both the internal validation cohort (H–L test, P = 0.476) and the 
external validation cohort (H–L test, P = 0.210) (Fig. 4). The higher position of our model’s curve relative to 
the “All” line across a wide range of threshold probabilities in Fig. 5a indicates a more accurate discrimination 
between those who will benefit from the intervention and those who will not. CIC plot in Fig. 5b showed that at 
the selected risk threshold of 0.49, ∼419 out of 1000 patients were considered to have a high risk of developing 
disease progression and ∼310 developed disease progression. The results further confirmed the clinical 
usefulness of the nomogram.

Dicussion
In this current study, we developed multiple models for diagnosing malignant prostate nodules, including a 
clinical model, ADC-radiomic model, T2WI-radiomic model, fusion radiomic model, and clinical-radiomic 
model. Ultimately, the clinical-radiomic model, which incorporated fPSA/tPSA, PSAD, PI-RADS score, and 
fusion rad-core (combining ADC and T2WI-based rad-score), demonstrated the highest performance. The 

Cohorts Models AUC P-value Sensitivity Specificity

Training cohort

Clinical model 0.857 (0.812–0.902) 0.011 0.854 0.718

ADC-radiomic model 0.874 (0.831–0.917) < 0.001 0.667 0.944

T2-radiomic model 0.998 (0.981–1.000) < 0.001 0.979 0.986

Radiomic model 0.924 (0.893–0.955) Ref 0.854 0.789

Clinical-radiomic model 0.938 (0.909–0.967) 0.204 0.833 0.887

Internal validation cohort

Clinical model 0.814 (0.763–0.865) 0.001* 0.714 0.774

ADC-radiomic model 0.896 (0.859–0.933) 0.131 0.667 0.903

T2Wi-radiomic model 0.825 (0.768–0.882) 0.002 0.714 0.839

Radiomic model 0.908 (0.871–0.945) Ref 0.857 0.806

Clinical-radiomic model 0.925 (0.894–0.956) 0.126 0.762 0.903

External validation cohort

Clinical model 0.791 (0.742–840) 0.092 0.655 0.843

ADC-radiomic model 0.818 (0.773–0.863) 0.008* 0.931 0.451

T2Wi-radiomic model 0.753 (0.700–0.806) 0.001* 0.655 0.745

Radiomic model 0.841 (0.800–0.882) Ref 0.931 0.314

Clinical-radiomic model 0.872 (0.837–0.907) 0.036 0.828 0.765

Table 3.  Performance comparison of the clinical, radiomic, and clinical-radiomic models. Significant values 
are in bold.

 

Variables Training cohort Internal validation cohort p-value

Age (years) 69.5 ± 9.4 69.3 ± 7.2 0.903

tPSA 16.6 (9.3, 31.5) 15.4 (8.0, 33.5) 0.393

fPSA 1.6 (0.9, 4.8) 1.9 (0.9, 5.7) 0.609

fPSA/tPSA 0.13 (0.07, 0.23) 0.15 (0.11, 0.25) 0.119

PV 55.5 (41.6, 75.8) 64.25 (47.91,92.07) 0.098

TZV 28.2 (16.0, 45.7) 35.86 (18.0, 49.2) 0.310

PZV 26.2 (18.5, 34.6) 30.0 (18.6, 47.0) 0.086

PSAD 0.31 (0.15, 0.62) 0.22 (0.12, 0.44) 0.098

TZ-PSAD 0.65 (0.28, 1.79) 0.42 (0.24, 1.19) 0.141

PZ-PSAD 0.8 (0.36, 1.7) 0.53 (0.26, 1.53) 0.079

PI-RADS 0.754

 1 5 (4.2%) 0

 2 15 (12.6%) 9 (17.3%)

 3 44 (37%) 18 (34.6%)

 4 23 (19.3%) 16 (30.8%)

 5 32 (26.9%) 9 (17.3%)

Pathologic diagnosis 0.995

 Benign 71 (59.7%) 31 (59.6%)

 Malignant 48 (40.3%) 21 (40.4%)

Table 2.  Comparison of clinical features between the training and internal validation cohorts.
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model yielded an AUC of 0.925, sensitivity of 76.2%, and specificity of 90.3% in the internal validation cohort. 
In the external validation cohort, the combined model achieved an AUC of 0.872, sensitivity of 82.8%, and 
specificity of 76.5%.

Several studies have used clinical, radiological, or radiomic features to diagnose prostate lesions. However, 
consensus on clinical and radiographic indicators has not been reached in previous studies8,9,17–22. This lack of 
consensus may be attributed to different target populations, random sampling bias, and limited sample sizes. 
In our work, we have identified four clinico-radiological features that aid in diagnosing PCa, which can help 
mitigate overdiagnosis and overtreatment24,25. Accumulated evidence suggests that tumors derived from the 
TZ exhibit distinct cytohistological characteristics, resulting in a lower incidence of Gleason score, prostate 
extravasation, seminal vesicle invasion, and biochemical recurrence in this region26–30. TZ-PSAD is calculated 
using a comprehensive formula that includes PSA, TZV, and PZV. Aurelia F et al. concluded that TZ-PSAD was 
more closely associated with tumor aggressiveness than PSAD31. In our study, TZ-PSAD had higher diagnostic 
efficiency compared to PSAD and PZ-PSAD. PI-RADS is a standardized MRI assessment method widely 
utilized for evaluating prostate lesions and is highly effective in diagnosing PCa32. While the PI-RADS score is 
commonly used in clinical practice, it cannot be used as the sole basis for biopsy or follow-up evaluation. The PI-
RADS score exhibits advantages in diagnosing CsPCa, but its accuracy is dependent on observer experience and 
expertise. Therefore, relying solely on the PI-RADS score for predicting biopsy results has certain limitations33.

With the advancements in computer-assisted methods, radiomic analysis has been employed to diagnose 
prostate lesions. MRI allows for multimodal and multidirectional evaluation of prostate lesions. MRI can 
provide a more comprehensive description of soft tissue characteristics, atomic density, and lesion enhancement 
compared to CT. Contrast enhanced imaging can offer additional functional information. Min et al. utilized 
radiomic signature to differentiate between CsPCa and clinically insignificant PCa34. Woźnicki et al. added 
the PI-RADS score into a radiomic model for PCa detection and classification20. Despite the high diagnostic 
performance of the final models derived from these studies, achieving standardization and uniformity remains 
challenging due to the diversity of research methods. This is one of the major obstacles currently faced by 
radiomics. Until the issue of standardization is resolved, widespread implementation of radiomics for disease 
diagnosis will be highly challenging.

Optimizing the diagnostic efficacy of the radiomic model is crucial for accurately identifying BPH and PCa—
lesions preoperatively, which holds great significance for PCa patients and directly impacts the disease prognosis. 
The primary advantage of radiomics lies in its ability to reduce subjectivity and reliance on empirical knowledge, 

Fig. 3.  Performance of clinical, radiomic, and clinical-radiomic models for the diagnosis of malignant prostate 
nodules. (a) T2WI radiomic model and ADC radiomic model based on various combinations of feature 
selection and classification methods. (b–d) ROC curves of the clinical model, radiomic model, and clinical-
radiomic model in the training cohort, internal validation cohort, and external validation cohort, respectively.
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enabling efficient automatic identification of benign and malignant prostate nodules. To construct the radiomic 
model, only MRI images and other relevant variables are required as inputs. This remarkable efficacy, coupled 
with high efficiency, serves as the primary driving force behind the integration of artificial intelligence in the 
field of medicine. Additionally, we assessed the added value of clinical variables and radiological features to 
the fusion radiomic model based on T2WI and ADC, and the results were satisfactory. This indicates that the 
explainable features utilized in routine clinical practice provide valuable information for diagnosing PCa.

Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Age 1.022 (0.982–1.064) 0.285

tPSA 1.027 (1.009–1.046) 0.004

fPSA 1.068 (1.002–1.139) 0.044

fPSA/tPSA 0.008 (0.000–0.259) 0.006 0.027 (0.001–0.917) 0.045

PV 1.000 (0.992–1.008) 0.962

TZV 0.988 (0.974–1.003) 0.108

PZV 1.028 (1.004–1.053) 0.024 1.027 (1.001–1.054) 0.041

PSAD 5.273 (1.932–14.390) 0.001 5.607 (1.851–16.984) 0.002

TZ-PSAD 1.904 (1.288–2.814) 0.001 17.908 (3.448, 93.001) 0.001

PZ-PSAD 1.227 (1.018–1.478) 0.031

PI-RADS 1.739 (1.216–2.487) 0.002 1.975 (1.262–3.091) 0.003

Table 5.  Univariate and multivariate logistic regression analysis of risk factors for malignant nodules. 
Significant values are in bold.

 

ADC-based radiomic features

wavelet-HHH_firstorder_Mean

wavelet-HHH_firstorder_Median

wavelet-LLL_gldm_LargeDependenceLowGrayLevelEmphasis

original_gldm_LargeDependenceLowGrayLevelEmphasis

original_glszm_ZoneEntropy

log-sigma-3-0-mm-3D_ngtdm_Busyness

wavelet-LLL_firstorder_Skewness

log-sigma-1-0-mm-3D_firstorder_Kurtosis

original_glrlm_LongRunLowGrayLevelEmphasis

wavelet-LLH_firstorder_Mean

wavelet-HLL_gldm_DependenceEntropy

wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis

original_glszm_SizeZoneNonUniformityNormalized

log-sigma-5-0-mm-3D_gldm_SmallDependenceEmphasis

original_glcm_Imc2

wavelet-HHH_glszm_ZonePercentage

T2WI-based radiomic features

original_shape_Sphericity

original_gldm_LargeDependenceLowGrayLevelEmphasis

log-sigma-1-0-mm-3D_firstorder_Skewness

log-sigma-3-0-mm-3D_glcm_ClusterProminence

log-sigma-3-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis

log-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformityNormalized

wavelet-HLL_firstorder_Skewness

wavelet-HLL_gldm_DependenceVariance

wavelet-HLH_glcm_DifferenceEntropy

wavelet-HLH_glszm_GrayLevelNonUniformityNormalized

wavelet-LLL_glrlm_LongRunLowGrayLevelEmphasis

wavelet-LLL_gldm_LargeDependenceLowGrayLevelEmphasis

Table 4.  The radiomic features included in the ADC- and T2WI-based models.
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Some limitations of this study should be noted. First, due to its retrospective design, patients who were 
clinically suspected to have “malignant nodules” in the prostate but did not undergo needle biopsy were 
excluded, which may introduce potential selection bias and compromise the reproducibility and comparability 
of the results. Larger cohorts are needed to validate our findings. Second, the Glesson score was not considered 

Fig. 5.  Clinical usefulness of the clinical-radiomic nomogram. (a) clinical decision curve; (b) clinical impact 
curve.

 

Fig. 4.  The clinical-radiomic nomogram and calibration curves. (a) Nomogram integrates fPSA/tPSA, PSAD, 
PI-RADS score, and rad-score; (b–d) Calibration curves for the training, internal validation, and external 
validation cohorts.
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in this study, but it is the focus of our future research. Third, this study only analyzed several commonly used 
dimensionality reduction modeling methods and did not comprehensively investigate existing dimensionality 
reduction modeling methods.

Conclusion
In conclusion, we have established several models for preoperative diagnosis of prostate lesions and have 
compared the diagnostic effects of these models, thereby providing a preferred method for clinical application. 
Additionally, we have derived an optimal rad-score for the clinical-radiomic nomogram. This study not only 
demonstrates the feasibility of applying radiomics to noninvasive preoperative diagnosis of the prostate but also 
aims to determine the best modeling method and systematic research approach in radiomic research, thereby 
providing a foundation for the standardization of radiomics. Moving forward, further relevant studies are 
needed to explore the standardization of radiomics, enabling the translation of radiomics as a non-invasive and 
useful tool into clinical practice.

Data availability
No datasets were generated or analysed during the current study.

Received: 30 June 2024; Accepted: 30 December 2024

References
	 1.	 Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73(1), 17–48 (2023).
	 2.	 Merdan, S. et al. Toward better use of bone scans among men with early-stage prostate cancer. Urology 84(4), 793–798 (2014).
	 3.	 Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360(13), 1310–1319 

(2009).
	 4.	 Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 

375(15), 1415–1424 (2016).
	 5.	 Arora, R. et al. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Cancer 100(11), 2362–2366 (2004).
	 6.	 van den Bergh, R., Loeb, S. & Roobol, M. J. Impact of early diagnosis of prostate cancer on survival outcomes. Eur. Urol. Focus 1(2), 

137–146 (2015).
	 7.	 Stabile, A. et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat. Rev. Urol. 17(1), 

41–61. https://doi.org/10.1038/s41585-019-0212-4 (2020).
	 8.	 Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378(19), 1767–1777. 

https://doi.org/10.1056/NEJMoa1801993 (2018).
	 9.	 Cuocolo, R. et al. Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur. J. Radiol. 116, 

144–149 (2019).
	10.	 Turkbey, B. et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data 

system version 2. Eur. Urol. 76(3), 340–351 (2019).
	11.	 Santoro, A. A. et al. Multiparametric magnetic resonance imaging of the prostate: Lights and shadows. Urol. J. 88(4), 280–286. 

https://doi.org/10.1177/03915603211019982 (2021).
	12.	 Greenberg, J. W. et al. A narrative review of biparametric MRI (bpMRI) implementation on screening, detection, and the overall 

accuracy for prostate cancer. Ther. Adv. Urol. 14, 175 (2022).
	13.	 Wallstrom, J. et al. Bi- or multiparametric MRI in a sequential screening program for prostate cancer with PSA followed by MRI? 

Results from the Goteborg prostate cancer screening 2 trial. Eur. Radiol. 31(11), 8692–8702 (2021).
	14.	 Cutaia, G. et al. Radiomics and prostate MRI: current role and future applications. J. Imaging 7(2), 34. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​j​i​m​

a​g​i​n​g​7​0​2​0​0​3​4​​​​ (2021).
	15.	 Sparks, R., Bloch, B. N., Feleppa, E., Barratt, D. Madabhushi, A. Fully automated prostate magnetic resonance imaging and 

transrectal ultrasound fusion via a probabilistic registration metric. Proc. SPIE Int. Soc. Opt. Eng. 8671 (2013).
	16.	 Lim, K. B. Epidemiology of clinical benign prostatic hyperplasia. Asian J. Urol. 4(3), 148–151 (2017).
	17.	 Ushinsky, A. et al. A 3D–2D hybrid U-net convolutional neural network approach to prostate organ segmentation of multiparametric 

MRI. AJR Am. J. Roentgenol. 216(1), 111–116 (2021).
	18.	 Mehrtash, A., Sedghi, A., Ghafoorian, M., Taghipour, M., Tempany, C. M., Wells, W. M. et al. Classification of clinical significance 

of MRI prostate findings using 3D convolutional neural networks. Proc. SPIE Int. Soc. Opt. Eng. 10134 (2017).
	19.	 Chen, T. et al. Prostate cancer differentiation and aggressiveness: Assessment with a radiomic-based model vs. PI-RADS v2. J. 

Magn. Reson. Imaging 49(3), 875–884 (2019).
	20.	 Woźnicki, P. et al. Multiparametric MRI for prostate cancer characterization: combined use of radiomics model with PI-RADS and 

clinical parameters. Cancers 12(7), 1767. https://doi.org/10.3390/cancers12071767 (2020).
	21.	 Bernatz, S. et al. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone 

with multiparametric MRI using clinical assessment categories and radiomic features. Eur. Radiol. 30(12), 6757–6769 (2020).
	22.	 Litjens, G. J., Barentsz, J. O., Karssemeijer, N. & Huisman, H. J. Clinical evaluation of a computer-aided diagnosis system for 

determining cancer aggressiveness in prostate MRI. Eur. Radiol. 25(11), 3187–3199 (2015).
	23.	 Alba, A. C. et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA 

318(14), 1377–1384 (2017).
	24.	 Benson, M. C. et al. Prostate specific antigen density: a means of distinguishing benign prostatic hypertrophy and prostate cancer. 

J. Urol. 147(3 Pt 2), 815–816 (1992).
	25.	 Stefano, D. L. et al. Prostate health index and prostate cancer gene 3 score but not percent-free prostate specific antigen have a 

predictive role in differentiating histological prostatitis from PCa and other nonneoplastic lesions (BPH and HG-PIN) at repeat 
biopsy. Urol. Oncol. 424e(33), 17–23 (2015).

	26.	 Grignon, D. J. & Sakr, W. A. Zonal origin of prostatic adenocarcinoma: Are there biologic differences between transition zone and 
peripheral zone adenocarcinomas of the prostate gland?. J. Cell Biochem. Suppl. 19, 267–269 (1994).

	27.	 McNeal, J. E. Cancer volume and site of origin of adenocarcinoma in the prostate: Relationship to local and distant spread. Hum. 
Pathol. 23(3), 258–266 (1992).

	28.	 McNeal, J. E., Redwine, E. A., Freiha, F. S. & Stamey, T. A. Zonal distribution of prostatic adenocarcinoma. Correlation with 
histologic pattern and direction of spread. Am. J. Surg. Pathol. 12(12), 897–906 (1988).

	29.	 Steuber, T. et al. Transition zone cancers undermine the predictive accuracy of Partin table stage predictions. J. Urol. 173(3), 
737–741 (2005).

Scientific Reports |          (2025) 15:654 11| https://doi.org/10.1038/s41598-024-84908-w

www.nature.com/scientificreports/

https://doi.org/10.1038/s41585-019-0212-4
https://doi.org/10.1056/NEJMoa1801993
https://doi.org/10.1177/03915603211019982
https://doi.org/10.3390/jimaging7020034
https://doi.org/10.3390/jimaging7020034
https://doi.org/10.3390/cancers12071767
http://www.nature.com/scientificreports


	30.	 Shannon, B. A., McNeal, J. E. & Cohen, R. J. Transition zone carcinoma of the prostate gland: a common indolent tumour type that 
occasionally manifests aggressive behavior. Pathology 35, 467–471 (2003).

	31.	 Schneider, A. F. et al. Comparison of PSA-density of the transition zone and whole gland for risk stratification of men with 
suspected prostate cancer: A retrospective MRI-cohort study. Eur. J. Radiol. 120, 108660 (2019).

	32.	 Bjurlin, M. A. et al. Update of the standard operating procedure on the use of multiparametric magnetic resonance imaging for the 
diagnosis, staging and management of prostate cancer. J. Urol. 203(4), 706–712 (2020).

	33.	 Wei, X. et al. Diagnostic value of combining PI-RADS v2.1 with PSAD in clinically significant prostate cancer. Abdom. Radiol. 
47(10), 3574–3582. https://doi.org/10.1007/s00261-022-03592-4 (2022).

	34.	 Min, X. et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant 
prostate cancer: Cross-validation of a machine learning method. Eur. J. Radiol. 115, 16–21 (2019).

Author contributions
Guarantors of integrity of entire study, Y.-X.Z. andY.-B.L.; manuscript drafting or manuscript revision for im-
portant intellectual content, all authors; approval of final version of submitted manuscript, all authors; clinical 
studies, Y.-B.L., Z.-Q.L., Y.-X.Z,, Z.-Y.L., R.-Q.Y and H.-X.H.; Acquisition of data: Y.-B.L.,Y.S,Q.L., R.-Q.Y and 
A.Y.. Sequence debugging and data processing Y.-B.L. , X.-H.X,  and Y.-X.Z

Funding
Yang-Bai Lu was supported by Guangdong Basic and Applied Basic Research Foundation (2022A1515220032), 
Guangdong Medical Science and Technology Research Foundation (B2023195, 2023B3006),Science and 
Technology Project of Zhongshan City (2020B1073), Zhongshan city people’s hospital Major Project of Sci-
entific Research Foundation (BG20228249) and Zhongshan City People’s Hospital Outstanding Youth Pro-
ject (SG2023106). Yong-xin Zhang was supported by Science and Technology Project of Zhongshan City 
(2020B1070).

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
Tis study complied with the declaration of Helsinki and was approved by the Human Research Ethics 
Committee of the Zhongshan City People’s Hospital. Informed consent was waived owing to the retrospective 
nature of the study and approved by the Human Research Ethics Committee of the Zhongshan City People’s 
Hospital.

Consent for publication
Publication was approved by all authors and tacitly or explicitly by the responsible authorities where the work 
was carried out.

Additional information
Correspondence and requests for materials should be addressed to Z.L. or Y.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |          (2025) 15:654 12| https://doi.org/10.1038/s41598-024-84908-w

www.nature.com/scientificreports/

https://doi.org/10.1007/s00261-022-03592-4
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Biparametric MRI-based radiomics for noninvastive discrimination of benign prostatic hyperplasia nodules (BPH) and prostate cancer nodules: a bio-centric retrospective cohort study
	﻿Materials and methods
	﻿Patients
	﻿Clinical characteristics
	﻿MR imaging and image interpretation
	﻿Lesion segmentation
	﻿Image preprocessing
	﻿Radiomic feature extraction
	﻿Feature selection and development of radiomic models
	﻿Combined model construction and evaluation
	﻿Statistical analysis
	﻿Ethics approval and consent to participate

	﻿Results
	﻿Patient characteristics
	﻿Clinical and radiomic models
	﻿Evaluation of the clinical-radiomic model

	﻿Dicussion
	﻿Conclusion
	﻿References


