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Biparametric MRI-based radiomics
for noninvastive discrimination

of benign prostatic hyperplasia
nodules (BPH) and prostate cancer
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AngYang*, Xuehong Xiao*, Zhaogqi Lai*%" & Yongxin Zhang*®**

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate
cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental
value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and
Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was
performed on a total of 251 patients (training cohort, n=119; internal validation cohort, n=52; and
external validation cohort, n =80) with prostatic nodules who underwent biparametric MRI at two
hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted
from each MRI sequence, including shape-based features, gray-level histogram-based features,
texture features, and wavelet features. The clinical model was constructed using logistic regression
analysis. Radiomic models were created by comparing seven machine learning classifiers. The useful
clinical variables and radiomic signature were integrated to develop the combined model. Model
performance was assessed by receiver operating characteristic curve, calibration curve, decision curve,
and clinical impact curve. The ratio of free PSA to total PSA, PSA density, peripheral zone volume,

and PI-RADS score were independent determinants of malignancy. The clinical model based on these
factors achieved an AUC of 0.814 (95% Cl: 0.763-0.865) and 0.791 (95% Cl: 0.742-840) in the internal
and external validation cohorts, respectively. The clinical-radiomic nomogram yielded the highest
accuracy, with an AUC of 0.925 (95% Cl: 0.894—0.956) and 0.872 (95% Cl: 0.837-0.907) in the internal
and external validation cohorts, respectively. DCA and CIC further confirmed the clinical usefulness

of the nomogram. Biparametric MRI-based radiomics has the potential to noninvasively discriminate
between—BPH and malignant PCa nodules, which outperforms screening strategies based on PSA and
PI-RADS.

Keywords Prostate cancer, Magnetic resonance imaging, Radiomics, Nomogram

Abbreviations
PSA Prostate-specific antigen

1Department of Urology, Zhongshan City People’s Hospital, Shigi District, No. 2, Sunwen East Road, Zhongshan
528403, Guangdong, China. 2Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University,
NO.107, Yanjiang West Road, Guangzhou 510120, China. *Department of Radiology, State Key Laboratory of
Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy,
Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No. 651,
Dongfeng East Road, Guangzhou 510060, China. “Department of MRI, Zhongshan City People’s Hospital, No. 2,
Sunwen East Road, Shiqi District, Zhongshan 528403, Guangdong, China. *Yangbai Lu, Rungiang Yuan and Yun
Su contributed equally to this work. ®Yongxin Zhang and Zhaogi Lai contributed equally to this work. Zemail:
823949979@0qq.com; yoyozhang202204@163.com

Scientific Reports | (2025) 15:654 | https://doi.org/10.1038/s41598-024-84908-w nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-84908-w&domain=pdf&date_stamp=2025-1-3

www.nature.com/scientificreports/

PI-RADS Prostate imaging reporting and data system

MRI Magnetic resonance imaging

PCa Prostate cancer

CsPCa Clinically significant PCa

ML Machine learning

TRUS Transrectal ultrasound

TZ Transitional zone

ROC Receiver operating characteristic curves
AUC Area under the curve

DCA Decision curve analysis

CIC Clinical inpact curve

mpMRI Multiparametric magnetic resonance
PV Prostate volume

tPSA Total PSA

fPSA Free PSA

fPSA/tPSA  Ratio of fPSA to tPSA

PZV Peripheral zone volume

PSAD PSA density

T2WI T2-weighted imaging

TIWI T1-weighted imaging

DWI Diffusion-weighted imaging

DCE Dynamic contrast-enhanced imaging
ADC Apparent diffusion coefficient

ROI Region of interest

BPH Benign prostatic hyperplasia

VOIS Volumes of interest

Prostate cancer (PCa) is the most common cancer and the second most deadly cancer in males worldwide!.
An early diagnosis of prostate cancer is crucial for improving its prognosis. Currently, prostate-specific antigen
(PSA) testing is the most widely used screening approach, while invasive prostate biopsy is still the gold standard
for PCa?. However, PSA screening has limitations despite significantly improving the diagnosis of PCa. Clinical
studies have shown that PSA testing has a predictive value of 25-40%, with limited specificity and sensitivity,
resulting in overdiagnosis and overtreatment®?. Moreover, many of these lesions are less invasive and their
clinical significance remains unclear. PCa is characterized by strong heterogeneity and multifocal features, and
treatment decisions are typically based on the lesion with the largest volume or the highest gleason score®.
Therefore, early and accurate detection of clinically significant PCa (CsPCa), is important for effective treatment”.

With the continuous advancement of imaging technology, it is possible to enhance the specificity and
sensitivity of PSA. Multiparametric magnetic resonance imaging MRI (mpMRI) has been widely used in the
detection and staging of prostate lesions, as well as in guiding prostate biopsies, informing treatment options,
and facilitating active surveillance’. Currently, mpMRI plays central role in the diagnostic pathway for suspected
PCa®. The Prostate Imaging Reporting and Data System (PI-RADS) has greatly contributed to achieving these
goals by enabling reliable identification of CsPCa requiring biopsy and facilitating lesion localization®. The PI-
RADS 2.1 serves as the reference for risk stratification of PCa based on mpMRI. Suspected lesions are assigned
scores ranging from 1 to 5 based on lesion location and image characteristics'’. However, the interpretation of
images based on the PI-RADS guidelines remains challenging due to interobserver variability, particularly for
PI-RADS-3 lesions. Lesions with a PI-RADS score of 3 or higher usually undergo biopsy. However, PI-RADS-3
corresponds to CsPCa in less than 15% of patients'’. Therefore, using mpMRI only to determine which patients
should undergo biopsy is suboptimal'!. Previous studies have shown that biparametric MRI, with its lower
cost, no need of contrast agent, and shorter scanning time, is not inferior to, and even superior to, mpMRI in
detecting PCa!?1%. Consequently, there is an urgent need for clinical tools that can accurately identify PCa and
minimize unnecessary biopsies.

Tumor risk stratification remains a challenging task due to the difficulties in interpreting mpMRI images.
Machine learning (ML) has the potential to assist radiologists in assessing the invasiveness of indistinct
lesions, reducing variability between observers. Previous studies have demonstrated the successful utilization
of ML in prostate volume segmentation, lesion segmentation, and detection'®. Accurate segmentation and
volume estimation of the prostate can provide valuable information for the diagnosis and clinical treatment
of hyperplasia and PCa. This can improve the treatment of hyperplasia, surgical planning and prognosis of
PCa. Prostate segmentation is increasingly utilized for the diagnosis of PCa, particularly for MRI transrectal
ultrasound (MRI/TRUYS) fusion biopsy, as accurate prostate segmentation on MRI images is crucial for the
interpretation of MRI/TRUS fusion biopsy results'”. In addition to segmentation, prostate volume estimation is
a useful indicator, especially in the context of BPH treatment, surgical planning, and PCa prognosis'®. ML can
serve as a valuable tool to address the high variability among readers in certain areas, such as the transitional
zone (TZ). Previous studies have compared ML models with the PI-RADS score in evaluating the performance
of lesion classification, but consensus has not been reached'’-1°. Some previous studies have combined the
results of the PI-RADS score with ML models to distinguish PCa in a clinical setting, but these approaches still
rely on subjective PI-RADS scoring and are not sufficient for clinical practice?*-22.

Radiomics enables the extraction of high-throughput and quantitative image features from medical images.
By employing ML algorithms, the radiomic features can be utilized to construct models that uncover information
pertaining to tumor pathophysiology. This, in turn, aids in medical decision-making and enhances diagnostic
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capabilities. This study aimed to develop a clinical-radiomic model that integrates clinical variables and radiomic
features to differentiate between—BPH and malignant PCa nodules.

Materials and methods

Patients

This retrospective study was approved by the Ethics committee of Zhongshan City People’s Hospital and
the requirement for written informed consent was waived by the Human Research Ethics Committee of the
Zhongshan City People’s Hospital. A total of 617 patients with prostatic nodules who underwent contrast-
enhanced MRI at two tertiary hospitals between January 2018 and December 2020 were reviewed. The inclusion
criteria were as follows: (1) patients with histologically confirmed hyperplasia or PCa identified through needle
systematic biopsy underwent a technique known as cognitive fusion, in which the urologist performing the
biopsy would estimate the location of regions of interest (ROIs) based on the imaging reviewed during the
procedure; (2) patients who underwent contrast-enhanced MRI within one week prior to surgery or biopsy and
(3) patients who did not receive any preoperative cancer-related treatments, such as radiotherapy, endocrine
therapy, or chemotherapy. The exclusion criteria were as follows: (1) incomplete clinical data (n=89); (2) patients
who received radiotherapy, chemotherapy, or other treatments before contrast-enhanced MRI scans (n=157);
(3) MRI images with poor quality (n=>51); and (4) cases where the puncture site did not correspond well with
the image (n=69). Finally, 251 patients (mean age, 68.1 +9.1 years) were included. The dataset was comprised of
two distinct groups: 171 patients from our institution, which were randomly assigned to a training cohort (70%,
n=119; 48 malignant and 71 benign cases) and an internal validation cohort (30%, n=>52; 21 malignant and
31 benign cases); an additional 80 patients from other collaborating hospitals (an external validation cohort: 29
malignant and 51 benign cases). Figure 1 shows the patient recruitment pathway and the inclusion and exclusion
criteria.

Clinical characteristics

Clinical variables were collected from the medical record system, which mainly consisted of age, prostate volume
(PV), PSA value, total PSA (tPSA), free PSA (fPSA), and the ratio of fPSA to tPSA (fPSA/tPSA). Besides, the
length, width, and height of the entire prostate and the TZ were measured on the mpMRI. The transverse diameter
(A) and anteroposterior diameter (B) of the TZ, as well as the transverse diameter (C) and anteroposterior

A total of 617 patients who were suspected with prostate cancer or hyperplasia
underwent MR examinations between January 2018 and December 2020.

Inclusion criteria Exclusion criteria

(1) patients with histologically confirmed (1) Incomplete clinical data (n=89);

hyperplasia or cancer of the prostate after (2) Patients received radiotherapy, chemotherapy, or
needle biopsy of prostate; other treatments before contrast-enhanced MR
(2) patients who underwent contrast-enhanced scans (n=157);

MR imaging within one week prior to surgery; (3) MRI images with poor image (n=51);

(3) patients received no preoperative cancer- (4) The puncture site did not correspond well with
related treatments, including radiotherapy, the images (n=69).

endocrine therapy and chemotherapy.

Final included patients (n=251)

Training cohort (n=119) Internal validation cohort (n=52) External validation cohort (n=80)
(48 malignant and 71 benign cases) (21 malignant and 31 benign cases) (29 malignant and 51 benign cases)

Seven machine learning algorithms

Best radiomic model Clinical data

Clinical-radiomic model

Fig. 1. Pathway for patient recruitment and inclusion/exclusion criteria.
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diameter (D) of the entire prostate, were measured on a horizontal section. The superoinferior diameter of the
transition zone (E) and the entire prostate (F) were measured on the sagittal plane. The PV was measured at the
boundary of the prostate capsule, and the TZ volume (TZV) was measured at the boundary of the fibrous layer of
the TZ. The PV and TZV were calculated as follows: (11/6) X anteroposterior diameter (cm) X transverse diameter
(cm) X superoinferior diameter (cm). The peripheral zone volume (PZV) was calculated as the difference
between the PV and TZV. PSA density (PSAD) was calculated as tPSA/PV, TZ-PSAD as tPSA/TZV, and PZ-
PSAD as tPSA/PZV (or tPSA/PV-TZV).

MR imaging and image interpretation

All patients in the two centers were scanned using a 3.0T MR system (Achieva, Philips Medical Systems, Best,
the Netherlands) with a 16-channel Sense Torso XL coil. The protocol included axial, coronal, and sagittal
T2-weighted imaging (T2WI), axial T1-weighted imaging (TIWI), axial diffusion-weighted imaging (DWI),
THRIVE, and post-contrast axial breath-hold dynamic contrast-enhanced (DCE) imaging performed with fat-
suppressed e-THRIVE. A total of 20 dynamic enhanced prostate scans were performed, with a scanning time of
two minutes. Contrast agent (Gadodiamide, MEDRAD Healthcare, 0.2 mmol/kg body weight) was administered
intravenously at the end of the first scan, followed by a 20 ml saline flush at the same rate of 3.0 ml/s. The detailed
acquisition parameters are presented in Table 1.

The images were independently evaluated by two radiologists with 8 years of experience in prostate MRI,
and by a third radiologist with 10 years of experience in prostate MRI, using the PI-RADS V2.1 criteria. The
radiologists were unaware of the histopathology results. In cases of disagreement between the two radiologists, a
third radiologist was consulted to reach a consensus on the final PI-RADS V2.1 score. Specially, the descriptors
for the third radiologist were moved to where the two radiologists discussed them being the consensus vote. The
PI-RADS V2.1 scores were assessed based on the T2ZWTI, DWI, and DCE-MRI sequences. If multiple lesions were
present, the PI-RADS V2.1 score was determined based on the largest or most aggressive lesion.

Parameters | T2WI TIWI DWI eTHRIVE
TR/TE (ms)

ZSHP 3384/120 | 543/8 2787/61 3.1/1.8
ZSSYS 3603/110 500/10 1337/82 4.9/1.97
Flip angle (°)

ZSHP 90 90 90 10

ZSSYS 90 90 90 10

Slice thickness (mm)

ZSHP 4 4 4 4/0
ZSSYS 3 3 4 3/0
Acquisition time

ZSHP 02:55.9 01:52.4 01:54.3 01:50.6
ZSSYS 03:29 01:37.0 02:00.0 02:08.8
FOV (mm)

ZSHP 230x230 | 230x230 |250x250 |240x240
ZSSYS 200200 | 200x200 |200x200 | 240x240
Matrix

ZSHP 250%250 | 250250 |116x114 |200x200
ZSSYS 220220 |220%x220 |100x100 |220%220

Reconstruction matrix

ZSHP 0.57%0.57 | 0.57%0.57 | 1.12x1.12 | 0.58%0.58
ZSSYS 0.39%0.39 | 0.94x0.94 | 1.04x1.04 | 0.94%0.94
Bandwidth (Hz/pixel)

ZSHP 1038.6 225.6 322 7234
ZSSYS 217.3 1033.1 45.4 1325.7
No. of excitations

ZSHP 1 1 4 1

ZSSYS 1.2 1.5 2 1

B value (s/mm?)

ZSHP 0/1000
ZSSYS 0/1000

Table 1. The detailed acquisition parameters of mpMRI.
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Feature selection

Manual segmentation

Lesion segmentation

Figure 2 illustrates the workflow of this study. The manual segmentation of the prostatic nodule was carried
out by an experienced radiologist (with 8 years of experience in prostatic disease diagnosis) using ITK-SNAP
software. The region of interest (ROI) was manually delineated slice-by-slice on axial T2WT and apparent
diffusion coefficient (ADC) images, encompassing the entire suspicious lesions. As for PCa, the entire lesion
area, including the peripheral and transitional areas of cancer, was demarcated. As for BPH, the complete
hyperplasia area was outlined, while avoiding the surrounding prostate capsule, peripheral blood vessels,
seminal vesicle root, bleeding, calcification, and urethra. Afterwards, the delineated ROIs were transformed
into three-dimensional volumes of interest (VOIs). To minimize potential bias, the segmentation results were
independently validated by a radiologist with 10 years of experience in prostatic disease diagnosis.

Image preprocessing

The N4 correction algorithm in the 3D Slicer software was used to eliminate MRI offset field artifacts and
minimize the impact of RF field inhomogeneities and the MRI equipment itself. Then, the grayscale values of
the MRI were normalized to a range of 0-255 by applying a min-max scaling technique. This processing step
is implemented to mitigate variations in grayscale between different patients, acquisition times, and parameter
settings, ensuring precise and dependable texture analysis. Lastly, the B spline interpolation algorithm was used
to resample the ROI to a uniform size (1*1*1).

Radiomic feature extraction
Radiomic features were extracted from the segmented VOI in original images, Laplacian-of-

Gaussian (LoG) filter images, and wavelet filter images using the Pyradiomics v3.0 open source package.
For the LoG filter, the sigma parameter was set to emphasize different levels of texture roughness, with sigma
values of 1, 3, and 5 used to obtain filtered images with different textures. A bin width of 10 was selected for
the wavelet filtering. The types of radiomic features were as follows: (1) shape-based features, (2) gray-level
histogram-based features, (3) texture features, including gray-level co-occurrence matrix (GLCM), gray-level
run length matrix (GLRLM), gray-level size zone matrix (GLSZM), gray-level dependence matrix (GLDM), and
neighborhood gray-tone difference matrix (NGTDM), and (4) wavelet features. A total of 1130 radiomic features
were extracted from each MRI sequence.

Feature selection and development of radiomic models

Feature selection and model construction were exclusively conducted on the training cohort. Initially, Pearson
correlation coefficient (PCC) analysis was employed to obtain a feature set with minimal redundancy (correlation
coefficient threshold set at 0.99). The yielded radiomic feature values were subsequently normalized using the
Z-score. To further improve the model’s generalization ability and avoid overfitting, we ultimately applied the
Recursive Feature Elimination (RFE) or Relief algorithm to obtain a subset of stable and reproducible radiomic
features. After that, seven ML classifiers were compared to construct the radiomic models, that is, Random
Forest (RF), Support Vector Machine (SVM), Least Absolute Shrinkage and Selection Operator (LASSO), Linear
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Fig. 2. Workflow of the study.
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Discriminant Analysis (LDA), Naive Bayes (NB), Adaboost, and XGboost. Five-fold cross-validation was used
for feature selection and optimization of the classification algorithm to identify the optimal radiomics model
from 14 combinations. The model was evaluated using both the internal validation and external validation
cohorts. The radiomic signature (ie, rad-score) was yielded by performing logistic regression analysis on the
predicted probabilities generated by the radiomic model.

Combined model construction and evaluation

Univariate and multivariate analyses were conducted to identify independent risk factors (with both P <0.05),
which were then used to develop a clinical model. The combined model (or clinical-radiomic model) was
established and visualized as a nomogram by incorporating significant clinical factors and rad-score based on
a stepwise logistic regression model, with the Akaike information criterion (AIC) as the criterion for model
selection. The models were developed on the training cohort and verified in both the held-out validation
and external validation cohorts. The performance of the combined models was evaluated from three aspects:
discrimination, calibration, and clinical validity. The discrimination ability was evaluated through receiver
operating characteristic (ROC) analysis, which included calculations of the area under the curve (AUC),
sensitivity, and specificity. Calibration curves with the Hosmer-Lemeshow (H-L) test were applied to assess
the goodness of fit between the model-predicted probabilities and the observed event proportions. The clinical
usefulness was evaluated using decision curve analysis (DCA) and clinical impact curve (CIC)?*. DCA provides
a visual representation of the net benefit of the model at various thresholds. The CIC was used to assess the
clinical impact of the combined model by estimating the proportion of patients whose treatment plan would be
altered based on the predictive results.

Statistical analysis

The characteristics of the patients were compared between the training and internal validation cohorts. Statistical
differences were assessed using the Student’s t-test or the Mann-Whitney U test for normally distributed or
non-normally distributed continuous variables, respectively. Categorical variables were analyzed using the Chi-
squared test or Fisher’s exact test. Delong test was used to compare AUCs between models. All statistical analyses
were conducted using SPSS (version 25.0; IBM, Armonk, NY, USA) and Python 3.7. A two-sided p-value less
than 0.05 was considered statistically significant.

Ethics approval and consent to participate

Tis study complied with the declaration of Helsinki and was approved by the Human Research Ethics Committee
of the Zhongshan City People’s Hospital. Informed consent was waived owing to the retrospective nature of the
study and approved by the Human Research Ethics Committee of the Zhongshan City People’s Hospital.

Results

Patient characteristics

A total of 251 patients diagnosed with BPH or PCa were included in the study. Among them, 153 patients (61%)
had benign target lesions, with an average age of 67.1 + 8.8 years. The remaining 98 patients (39%) had malignant
target lesions, with an average age of 69.7 + 9.4 years. Table 2 shows there was no significant difference observed
between the training and internal validation cohorts (all P> 0.05).

Clinical and radiomic models

Univariate logistic regression analysis revealed that PSA level (P=0.004), fPSA (P=0.044), fPSA/tPSA
(P=0.006), PZV (P=0.024), PSAD (P=0.001), TZ-PSAD (P=0.001), PZ-PSAD (P=0.031), and PI-RADS
score (P=0.002) were identified as potential factors. After multivariate analysis, fPSA/tPSA (P=0.045), PZV
(P=0.041), PSAD (P=0.002), and PI-RADS score (P=0.003) were determined to be independent risk factors
for malignant nodules. The clinical model was constructed based on these independent factors achieved an AUC
of 0.857 (95%CI: 0.812- 0.902) in the training cohort, 0.814 (95%CI: 0.763-0.865) in the internal validation
cohort, and 0.791 (95% CI: 0.742-840) in the external validation cohort (Table 3 and Fig. 3).

A total of 705 radiomic features derived from T2WI images were retained after PCC analysis. The optimal
T2WI-based radiomic model was constructed by combining the RFE filter and Adaboost classifier, utilizing 12
selected features (Table 4). In the internal and external validation cohorts, the T2WTI radiomic model yielded an
AUC 0f 0.825 (95% CI: 0.768-0.882) and 0.753 (95% CI: 0.700-0.806), respectively (Table 3 and Fig. 3). Similarly,
for ADC-derived features, 706 features were preliminarily screened by PCC analysis. The best-performing ADC-
based radiomic model was built by combining the Relief filter and LDA classifier, using 16 selected features
(Table 4). This combined model achieved an AUC of 0.896 (95% CI: 0.859-0.933) and 0.818 (95% CI: 0.773-
0.863) in the internal and external validation cohorts, respectively. The fusion radiomic model, which integrated
T2WT and ADC rad-scores, obtained a higher accuracy with an AUC of 0.908 (95% CI: 0.871-0.945) and 0.841
(95% CI: 0.800-0.882) in the internal and external validation cohorts, respectively (Table 3 and Fig. 3).

Evaluation of the clinical-radiomic model
Multivariate analysis using the stepwise regression method was conducted on fPSA/tPSA, PZV, PSAD, PI-RADS
score, and fusion rad-score. The results demonstrated that fPSA/tPSA (P=0.023), PSAD (P=0.016), PI-RADS
score (P=0.048), and fusion rad-score (P=1.38e-07) were identified as independent risk factors (Table 5). The
clinical-radiomic nomogram was developed using the following formula:

—4.541 — 5.512 * fPSA/TPSA + 0.996 « PSAD + 0.546 * PI — RADSscore + 5.785 « fusion
The combined model produced an AUC of 0.925 (95% CI: 0.894-0.956) and 0.872 (95% CI: 0.837-0.907) in the
internal and external validation cohorts, respectively (Table 3). In the internal validation cohort, the sensitivity
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Variables Training cohort | Internal validation cohort | p-value
Age (years) 69.5+9.4 69.3+7.2 0.903
tPSA 16.6 (9.3, 31.5) 15.4 (8.0, 33.5) 0.393
fPSA 1.6 (0.9, 4.8) 1.9(0.9,5.7) 0.609
fPSA/tPSA 0.13(0.07,0.23) | 0.15(0.11, 0.25) 0.119
PV 55.5(41.6,75.8) | 64.25 (47.91,92.07) 0.098
TZV 28.2(16.0,45.7) | 35.86(18.0,49.2) 0.310
PZV 26.2 (18.5,34.6) | 30.0 (18.6,47.0) 0.086
PSAD 0.31(0.15,0.62) |0.22(0.12, 0.44) 0.098
TZ-PSAD 0.65(0.28,1.79) | 0.42 (0.24, 1.19) 0.141
PZ-PSAD 0.8(0.36,1.7) | 0.53(0.26, 1.53) 0.079
PI-RADS 0.754
1 5(4.2%) 0

2 15 (12.6%) 9 (17.3%)

3 44 (37%) 18 (34.6%)

4 23 (19.3%) 16 (30.8%)

5 32 (26.9%) 9(17.3%)

Pathologic diagnosis 0.995
Benign 71 (59.7%) 31 (59.6%)

Malignant 48 (40.3%) 21 (40.4%)

Table 2. Comparison of clinical features between the training and internal validation cohorts.

Cohorts Models AUC P-value | Sensitivity | Specificity
Clinical model 0.857 (0.812-0.902) | 0.011 0.854 0.718
ADC-radiomic model 0.874 (0.831-0.917) | <0.001 | 0.667 0.944
Training cohort T2-radiomic model 0.998 (0.981-1.000) | <0.001 | 0.979 0.986
Radiomic model 0.924 (0.893-0.955) | Ref 0.854 0.789
Clinical-radiomic model | 0.938 (0.909-0.967) | 0.204 0.833 0.887
Clinical model 0.814 (0.763-0.865) | 0.001* | 0.714 0.774
ADC-radiomic model 0.896 (0.859-0.933) | 0.131 0.667 0.903
Internal validation cohort | T2Wi-radiomic model 0.825 (0.768-0.882) | 0.002 0.714 0.839
Radiomic model 0.908 (0.871-0.945) | Ref 0.857 0.806
Clinical-radiomic model | 0.925 (0.894-0.956) | 0.126 0.762 0.903
Clinical model 0.791 (0.742-840) 0.092 0.655 0.843
ADC-radiomic model 0.818 (0.773-0.863) | 0.008* | 0.931 0.451
External validation cohort | T2Wi-radiomic model 0.753 (0.700-0.806) | 0.001* | 0.655 0.745
Radiomic model 0.841 (0.800-0.882) | Ref 0.931 0.314
Clinical-radiomic model | 0.872 (0.837-0.907) | 0.036 0.828 0.765

Table 3. Performance comparison of the clinical, radiomic, and clinical-radiomic models. Significant values
are in bold.

and specificity values were 76.2% and 90.3%, while in the external validation cohort, they were 82.8% and 76.5%
(Table 3). The calibration curves suggested strong concordance between the predicted probabilities from the
model and the actual event proportions in both the internal validation cohort (H-L test, P=0.476) and the
external validation cohort (H-L test, P=0.210) (Fig. 4). The higher position of our model’s curve relative to
the “All” line across a wide range of threshold probabilities in Fig. 5a indicates a more accurate discrimination
between those who will benefit from the intervention and those who will not. CIC plot in Fig. 5b showed that at
the selected risk threshold of 0.49, ~419 out of 1000 patients were considered to have a high risk of developing
disease progression and ~310 developed disease progression. The results further confirmed the clinical
usefulness of the nomogram.

Dicussion

In this current study, we developed multiple models for diagnosing malignant prostate nodules, including a
clinical model, ADC-radiomic model, T2WI-radiomic model, fusion radiomic model, and clinical-radiomic
model. Ultimately, the clinical-radiomic model, which incorporated fPSA/tPSA, PSAD, PI-RADS score, and
fusion rad-core (combining ADC and T2WI-based rad-score), demonstrated the highest performance. The
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Fig. 3. Performance of clinical, radiomic, and clinical-radiomic models for the diagnosis of malignant prostate
nodules. (a) T2WI radiomic model and ADC radiomic model based on various combinations of feature
selection and classification methods. (b-d) ROC curves of the clinical model, radiomic model, and clinical-
radiomic model in the training cohort, internal validation cohort, and external validation cohort, respectively.

model yielded an AUC of 0.925, sensitivity of 76.2%, and specificity of 90.3% in the internal validation cohort.
In the external validation cohort, the combined model achieved an AUC of 0.872, sensitivity of 82.8%, and
specificity of 76.5%.

Several studies have used clinical, radiological, or radiomic features to diagnose prostate lesions. However,
consensus on clinical and radiographic indicators has not been reached in previous studies®!7-22, This lack of
consensus may be attributed to different target populations, random sampling bias, and limited sample sizes.
In our work, we have identified four clinico-radiological features that aid in diagnosing PCa, which can help
mitigate overdiagnosis and overtreatment?»*. Accumulated evidence suggests that tumors derived from the
TZ exhibit distinct cytohistological characteristics, resulting in a lower incidence of Gleason score, prostate
extravasation, seminal vesicle invasion, and biochemical recurrence in this region?¢-. TZ-PSAD is calculated
using a comprehensive formula that includes PSA, TZV, and PZV. Aurelia F et al. concluded that TZ-PSAD was
more closely associated with tumor aggressiveness than PSAD?!. In our study, TZ-PSAD had higher diagnostic
efficiency compared to PSAD and PZ-PSAD. PI-RADS is a standardized MRI assessment method widely
utilized for evaluating prostate lesions and is highly effective in diagnosing PCa2. While the PI-RADS score is
commonly used in clinical practice, it cannot be used as the sole basis for biopsy or follow-up evaluation. The PI-
RADS score exhibits advantages in diagnosing CsPCa, but its accuracy is dependent on observer experience and
expertise. Therefore, relying solely on the PI-RADS score for predicting biopsy results has certain limitations®.

With the advancements in computer-assisted methods, radiomic analysis has been employed to diagnose
prostate lesions. MRI allows for multimodal and multidirectional evaluation of prostate lesions. MRI can
provide a more comprehensive description of soft tissue characteristics, atomic density, and lesion enhancement
compared to CT. Contrast enhanced imaging can offer additional functional information. Min et al. utilized
radiomic signature to differentiate between CsPCa and clinically insignificant PCa*!. Woznicki et al. added
the PI-RADS score into a radiomic model for PCa detection and classification?. Despite the high diagnostic
performance of the final models derived from these studies, achieving standardization and uniformity remains
challenging due to the diversity of research methods. This is one of the major obstacles currently faced by
radiomics. Until the issue of standardization is resolved, widespread implementation of radiomics for disease
diagnosis will be highly challenging.

Optimizing the diagnostic efficacy of the radiomic model is crucial for accurately identifying BPH and PCa—
lesions preoperatively, which holds great significance for PCa patients and directly impacts the disease prognosis.
The primary advantage of radiomics lies in its ability to reduce subjectivity and reliance on empirical knowledge,
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ADC-based radiomic features
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Table 4. The radiomic features included in the ADC- and T2WI-based models.

Univariate analysis Multivariate analysis

OR (95% CI) p-value | OR (95% CI) p-value
Age 1.022 (0.982-1.064) | 0.285
tPSA 1.027 (1.009-1.046) | 0.004
fPSA 1.068 (1.002-1.139) | 0.044
fPSA/tPSA | 0.008 (0.000-0.259) | 0.006 0.027 (0.001-0.917) 0.045
PV 1.000 (0.992-1.008) | 0.962
TZV 0.988 (0.974-1.003) | 0.108
PZV 1.028 (1.004-1.053) | 0.024 1.027 (1.001-1.054) 0.041
PSAD 5.273 (1.932-14.390) | 0.001 5.607 (1.851-16.984) | 0.002
TZ-PSAD | 1.904 (1.288-2.814) | 0.001 17.908 (3.448, 93.001) | 0.001
PZ-PSAD |1.227(1.018-1.478) | 0.031
PI-RADS 1.739 (1.216-2.487) | 0.002 1.975 (1.262-3.091) 0.003

Table 5. Univariate and multivariate logistic regression analysis of risk factors for malignant nodules.
Significant values are in bold.

enabling efficient automatic identification of benign and malignant prostate nodules. To construct the radiomic
model, only MRI images and other relevant variables are required as inputs. This remarkable efficacy, coupled
with high efficiency, serves as the primary driving force behind the integration of artificial intelligence in the
field of medicine. Additionally, we assessed the added value of clinical variables and radiological features to
the fusion radiomic model based on T2WI and ADC, and the results were satisfactory. This indicates that the
explainable features utilized in routine clinical practice provide valuable information for diagnosing PCa.
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Fig. 4. The clinical-radiomic nomogram and calibration curves. (a) Nomogram integrates fPSA/tPSA, PSAD,
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Fig. 5. Clinical usefulness of the clinical-radiomic nomogram. (a) clinical decision curve; (b) clinical impact

curve.

Some limitations of this study should be noted. First, due to its retrospective design, patients who were
clinically suspected to have “malignant nodules” in the prostate but did not undergo needle biopsy were
excluded, which may introduce potential selection bias and compromise the reproducibility and comparability
of the results. Larger cohorts are needed to validate our findings. Second, the Glesson score was not considered
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in this study, but it is the focus of our future research. Third, this study only analyzed several commonly used
dimensionality reduction modeling methods and did not comprehensively investigate existing dimensionality
reduction modeling methods.

Conclusion

In conclusion, we have established several models for preoperative diagnosis of prostate lesions and have
compared the diagnostic effects of these models, thereby providing a preferred method for clinical application.
Additionally, we have derived an optimal rad-score for the clinical-radiomic nomogram. This study not only
demonstrates the feasibility of applying radiomics to noninvasive preoperative diagnosis of the prostate but also
aims to determine the best modeling method and systematic research approach in radiomic research, thereby
providing a foundation for the standardization of radiomics. Moving forward, further relevant studies are
needed to explore the standardization of radiomics, enabling the translation of radiomics as a non-invasive and
useful tool into clinical practice.
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