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Interpretable real-time monitoring
of short-term rockbursts in
underground spaces based on
microseismic activities

Mohammad Hossein Kadkhodaei®™ & Ebrahim Ghasemi

In this study, two novel hybrid intelligent models were developed to evaluate the short-term rockburst
using the random forest (RF) method and two meta-heuristic algorithms, whale optimization
algorithm (WOA) and coati optimization algorithm (COA), for hyperparameter tuning. Real-time
predictive models of this phenomenon were created using a database comprising 93 case histories,
taking into account various microseismic parameters. The results indicated that the WOA achieved

the highest overall performance in hyperparameter tuning for the RF model, outperforming the COA.
RF-WOA model accurately predicted the occurrence of this phenomenon with an accuracy of 0.944.
Additionally, for this model, precision, recall and F1-score were obtained as 0.950, 0.944 and 0.943,
respectively, indicating that the proposed model is robust in predicting damage severity of rockburst
in deep underground projects. Subsequently, the Shapley additive explanations (SHAP) method was
employed to interpret and explain the prediction process and assess the influence of input features
based on RF-WOA model. The results showed that three parameters including cumulative seismic
energy, cumulative microseismic events, and cumulative apparent volume have the greatest impact on
the occurrence of rockburst events. This study provides an interpretable and transparent resource for
accurately predicting rockburst events in real time. It can facilitate estimating project costs, selecting a
suitable support system, and identifying essential ways to limit the danger of rockburst.

Keywords Short-term rockburst, Microseismic monitoring, Random forest, Whale optimization algorithm,
Coati optimization algorithm

The phenomenon of rockburst (RB) refers to a dynamic failure (seismic event) that occurs due to the violent and
sudden release of elastic energy accumulated within coal or rock formations. This phenomenon can result in
significant consequences, including the failure of underground working spaces, potential casualties, deformation
of supporting systems, damage to machinery, and delays in construction activities'*. Based on these destructive
effects, attention needs to be given to predicting of this phenomenon in underground excavation projects.
There are two types of RB prediction: long-term and short-term®-8. The long-term prediction of RB is typically
conducted during the early stages of excavation and project design, and it serves as a guide for the subsequent
excavation phases. Such predictions typically rely on intrinsic rock mechanics parameters (including stiffness,
strength, energy storage capacity, and brittleness) to assess the occurrence of this phenomenon at a specific site.
On the other hand, short-term prediction is primarily used during the life of the project to quickly detect the
occurrence of RB events. This enhances the coordination of industrial activities and reduces the risk of severe
accidents. Generally, short-term RB prediction involves assessing the risk of RB occurrences in the near future
based on in situ techniques. Among these techniques, microseismic (MS) monitoring is one of the most widely
used methods for RB event monitoring due to real-time monitoring, wide detection range, big data scale, and
no harm to production®’. In this technique, using sensors laid out spatially with different azimuths, MS waves
released during rock fracture can be captured. By analyzing the MS waves, some precursory features of RB events
are discovered that could be used to predict the risk of this phenomenon!®-12,

The mechanism of RB occurrence is complex and influenced by a combination of factors. Because of this
complexity, RB prediction without the aid of computer models is challenging!®. Recently, machine learning
(ML) methods have been employed to predict RB owing to their capacity to tackle complex and nonlinear
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issues’. These methods mainly focus on the long-term prediction of this phenomenon using unsupervised
learning, supervised learning, and comparative decision strategies'"*3, whereas only a few studies have been
conducted on short-term prediction using ML methods®*4*8, Based on literature survey, application of ML
methods has proven to be effective in real time prediction of RB intensity based on MS monitoring data. Despite
their reliable and precise outputs, most algorithms are not readily applicable in practice owing to their non-
interpretable “black box” nature. Also, development of ML models requires fine-tuning hyperparameters, which
can drastically affect the performance of a model®. Fine-tuning hyperparameters is a computational challenge
due to the large size of search space. There are a variety of methods for finding the optimal Hyperparameters.
In most previously developed models, adjusting of hyperparameters was done manually, which requires a lot of
time and trial and error. Recently, to solve this problem, the optimization methods are used as a practical way
from the perspective of time and performance balance.

To address the mentioned limitations of traditional ML models, this study proposes two novel hybrid models
for short-term prediction of RB intensity. Two models are developed in the Python environment using the random
forest (RF) method, with whale optimization algorithm (WOA) and coati optimization algorithm (COA) applied
to adjust the hyperparameters. The RF technique was chosen due to its outstanding capability in addressing
complex and nonlinear problems such as RB prediction. Additionally, the Shapley additive explanations (SHAP)
method is applied to explain the prediction process and assess the influence of input features.

Database description

The study utilized a database collected from MS monitoring events of the Jinping-IIT hydropower project in China
to develop the proposed models®'. The Jinping-1I hydropower project is located at the Jinping bend on the Yalong
River and the main characteristics of this case study are presented in Table 1. During construction process of
this project, RB events occurred frequently and caused significant problems in terms of safety. According to site
observation and survey, all three types of RB (including strain burst, pillar burst and slip-fault burst) occurred,
while strain bursts were the most common®2. In strain bursts, the location of the seismic event is the same as
where damage occurs, providing the opportunity to predict the RB using MS monitoring data®. MS monitoring
system was built based on the Integrated Seismic System (ISS), including a server, smart sensors, geophysical
seismometer (GS), intelligent uninterruptible power system (UPS), optional communication element (I-Splitter,
moxa, fiber, DSL, and TP-Link), junction box, cables, etc. A 54-channel MS monitoring system was used and
the GS had a wide sampling rate (3-48,000 Hz)!%2. The MS sensors had a natural frequency of 14 Hz and an
approximate usable frequency range that varied from 7 to 2000 Hz. Two groups of MS sensors were set up
just behind the working face. These were moved with the working face every 30-40 m (i.e. manually removed,
moved, and set up again). A sectional velocity model was used for MS events location. Details of the MS data
acquisition system has been discussed in Feng et al.!’.

The database includes 93 RB case histories. Based on this database, the input parameters for developing
hybrid intelligent models are cumulative seismic energy (CE), cumulative microseismic events (ME), cumulative
apparent volume (CV), event rate (ER), apparent volume rate (AVR), seismic energy rate (LER) and the output is
RB severity related to each case®!. Based on literature survey, these six input parameters are most commonly used
MS features to predict the severity of RB in real-time. ME denotes the measure of microfracture density, while
CV and CE denote the extent of damage and the fracture strength to the rock mass, respectively. These three
parameters are fundamental indicators representing the attributes of microfractures during the development of
RB events!?. To integrate temporal aspects into the process, three parameters related to time (ER, AVR, and LER)
are considered. ER denotes the rate of MS activity occurrence, the process of rock mass failure, and the average
response pattern over time. LER indicates the energy emitted by the rock mass through MS radiation during
a specific time period, while AVR refers to the volume of rock within the deformation region experiencing
inelastic behavior over the same time frame®. To optimize execution, the values of LER, AVR, CV, and CE are
chosen on a logarithmic scale. The primary objective of the logarithmic function is to address the skewness
towards larger numbers in the RB database. Figure 1 shows the histograms, cumulative distributions, and basic
statistical description of input parameters. The RB severity (output parameter) is classified into four classes
(including none, light, moderate, and severe) based on the classification by Chen et al.”2, the distribution of
which is shown in Fig. 2.

Physical characteristics The project includes seven parallel tunnels (four headrace tunnels, two assistant tunnels, and one drainage tunnel)

The average length of each tunnel is 16.67 km

The maximum depth of the tunnels is 2525 m

The maximum, intermediate and minimum principal stresses are 63 MPa, 34 MPa and 26 MPa, respectively

Lithological characteristics | The main lithology is marble

The saturated uniaxial compressive strength ranges from 30 to 114 MPa

The elastic modulus ranges from 25 to 40 GPa

The tensile strength ranges from 3 to 6 MPa

The surrounding rock masses are hard and intact

Table 1. Characteristics of Jinping-II hydropower project?>>34,
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Fig. 1. The histogram, cumulative distribution, and basic statistical description of input parameters.

Development of models

RF is an integrated learning method based on decision trees, which enhances the generalizability and accuracy of
the model by constructing multiple decision trees and averaging their predictions, or selecting the final prediction
through majority vote™. The RF algorithm is an extension of the bagging integration method. It utilizes bagging
and feature randomness to generate a set of uncorrelated decision trees, consequently diminishing correlations
between them and enhancing model diversity®®. This approach mitigates the risk of overfitting, enhances model
robustness, facilitates feature importance assessment, and enables parallelized training, thereby significantly
reducing training time. In the development of real-time models, the optimal selection of hyperparameters affects
the performance and accuracy of the models. In this study, the WOA meta-heuristic algorithm has been utilized
to optimally adjust hyperparameters. Mirjalili et al.>’ introduced WOA, a novel meta-heuristic optimization
algorithm, in 2016. This algorithm enhances performance by mimicking the hunting behavior of humpback
whales. The specific implementation method entails replicating the bubble-net feeding technique of humpback
whales through a spiral pattern®®. The bubble-net feeding technique comprises three sequential steps: encircling
the prey, creating a spiral bubble-net to trap the prey, and then locating the next target®. Since the method and

Scientific Reports | (2025) 15:911 | https://doi.org/10.1038/s41598-024-85042-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

I None

[ Light

I Moderate
13.98% I Severe

36.56%

26.88%

22.58%

None: No obvious surface failure; nearly no cracking sound; no damaged support system

Light: Light spalling or slabbing; 10-30 cm ejected rock fragment size; light cracking
sound; failure depth less than 0.5 m; no damaged support system

Moderate: Severe spalling and slabbing; 30-80 cm ejected rock fragment size with;
cracking sound like a detonator blasting; 0.5-1.0 m failure depth: damaged shotcrete lining
between rock bolts

Severe: Large volume of rock mass ejected; 80—150 cm ejected rock fragment size; fresh
fracture planes in the failure zone; lasting sound like an explosive with an impact wave;
1.0-3.0 m failure depth; support system destroyed

Fig. 2. Distribution of the RB severity classes.

mathematical aspects of WOA have already been extensively documented in numerous literature sources™ -2,

this study does not provide an explanation of them. The RF algorithm was utilized in the Python environment
in this section, and its performance was improved by optimizing it with the WOA. RF serves as the framework
for developing models, utilizing the WOA to determine the best hyperparameters. To develop the models, the
train-test (hold out cross validation) method was used. The database has been randomly partitioned into two
segments: training and testing, in an 8:2 ratio. Initially, the model is trained on 80% of the data and subsequently
validated using the remaining 20%. It is important to note that the test database is independent of the training
database and plays no role in the model’s development. Figure 3 shows the algorithm of RF hybrid models. Table
2 displays the optimal arrangement of RE-WOA hyperparameters.

Another optimization algorithm utilized in this study to adjust the hyperparameters of the RF algorithm is
the COA. The COA is a novel metaheuristic algorithm introduced in 2023 by Dehghani et al.%%, inspired by the
natural actions of coatis. It imitates two specific behaviors of coatis: hunting iguanas and evading predators. The
implementation process of this algorithm includes three steps: 1) initialization process, 2) exploration phase,
and 3) exploitation phase, the details of which have been elucidated by various researchers®*®%, Similar to the
previous one, this algorithm is first developed in the Python environment using the training database and then
evaluated on the test database. Table 3 displays the optimal arrangement of RE-COA hyperparameters.

Performance evaluation and comparison of models

The RF-WOA and RF-COA hybrid models are evaluated using the testing datasets. The performance of the models
is thoroughly assessed in this section using precision, accuracy, F1-score, and recall measures®®. These values
can be determined through the confusion matrices of each model (Fig. 4). Figures 5 and 6 show the confusion
matrices of models RE-WOA and RF-COA (for both train and test datasets), respectively. The evaluation results
of the created models, using assessment metrics, are displayed in Table 4. Based on the obtained results, the
WOA optimizer shows superior performance in the RF model for evaluating the occurrence of RB compared to
the COA optimizer.

To thoroughly assess the established models, they were compared with the recently created models in the
literature for prediction of short-term RB potential (Table 5). This comparison, as part of the performance
evaluation of the models, showed that the proposed RE-WOA model can accurately predict the RB severity with
outstanding accuracy. This model overcomes the limitations of previous ML models applying WOA optimization
algorithm for hyperparameters tuning of RF model and SHAP method to assess the influence of input features
on RB severity (which is described in the next section). On the other hand, this model not only exhibits high
prediction performance but also promotes transparency in the prediction process. Therefore, project managers
can use this model to predict this phenomenon and implement the necessary control measures to increase safety
and productivity.

Finally, to prove the applicability and practicability, RF-WOA model (as the best developed model) was
utilized to predict 19 new RB cases, which were not included in the original 93 cases. These new validation
cases were collected from the MS monitoring technique from the Jinping-II hydropower project in China, the
Ashele Copper Mine in China, the Neelum-Jhelum Hydroelectric Tunnel in Pakistan and the Qinling Water
Conveyance Tunnel in China’>73. Table 6 presents the MS monitoring parameters with real and predicted RB
severity for each case. As shown in Table 6, the prediction results of RF-WOA model are coincided with real RB
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Fig. 3. The RF-WOA/COA hybrid architecture.
n_estimators number of trees in the foreset 6 200 100
max_depth max number of levels in each decision tree 1 100 22
min_samples_split | min number of data points placed in a node before the node is split | 2 20 2
min_samples_leaf | min number of data points allowed in a leaf node 1 20 1
max_features max number of features considered for splitting a node 0.100 1 0.100
max_leaf_nodes maximum number of leaf nodes 2 20 10

Table 2. The optimal arrangement of RF-WOA hyperparameters.
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Hyperparameter | Description Min_range | Max_range | Optimum value
n_estimators number of trees in the foreset 6 200 53
max_depth max number of levels in each decision tree 1 100 44
min_samples_split | min number of data points placed in a node before the node is split | 2 20 8
min_samples_leaf | min number of data points allowed in a leaf node 1 20 4
max_features max number of features considered for splitting a node 0.100 1 0.600
max_leaf_nodes maximum number of leaf nodes 2 10 9
Table 3. The optimal arrangement of RF-COA hyperparameters.
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Fig. 4. Performance evaluation measures for classification problems*®.
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Fig. 5. Confusion matrix of RF-WOA model: (a) Training, (b) Testing.
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Performance index
Model | Accuracy | Precision | Recall | F1-score
RF-
WOA 0.944 0.950 0.944 | 0.943
RF-COA | 0.833 0.851 0.788 | 0.786
Table 4. The performance indices for the developed models.
Number | Accuracy
Researcher ML method Hyperparameter tuning ofdata | (%) Year
Zhou et al.** Stochastic gradient boosting tenfold cross validation 254 61.22 2016
Liang et al Randpm foresF, adaptwg boostmg, gradient boosted decision tree, extreme gradient boosting, fivefold cross validation 93 $0.0 2020
and light gradient boosting machine
Lietal Artificial neural network - 254 71.0 2020
Jietal.®® Support vector machine Genetic optimization 132 88.0 2020
Liang ct al.% Logistic regression, naive Bayes, Gaussian process, multilayer perceptron neural network, fivefold cross validation o1 86.6 2021
support vector machines, and decision tree
Adaptive moment
Yin et al.%’ Convolutional neural network optimization and Bayes 400 91.67 2021
optimization
Maxutov and .
Adokofs Bayesian network - 254 78.0 2021
Kamran etal.®” | K-Nearest neighbor - 93 96.0 2022
Ullah et al.* Extreme gradient boosting Grid search 93 88.0 2022
Jin et al.'® Categorical gradient boosting Grid search 99 89.5 2023
Qiu and Zhou® Light gradient boosting machine, extreme gradient boosting, random forest, support vector LévyFlight-Jaya optimization | 91 893 2023
machine, and logistic regression
Qiu and Zhou®® | Extreme gradient boosting Sand cat swarm optimization | 254 88.4 2023
Sun et al.”! Random forest - 105 85.7 2023
Sun et al.”? Weighted probability stacking Bayesian optimization 114 91.3 2024
This study Random forest Coati optimization 93 83.3 2025
This study Random forest Whale optimization 93 94.4 2025

Table 5. The comparison between the models generated in this study and the models developed in previous
studies.
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No | ME (unit) | CE (J) | CV (m?) | ER (unit/day) | LER (J/day) | AVR (m%day) | RB severity
Actual Predicted
1 23 6.419 | 4.995 5.750 5.817 4.390 Severe Severe
2 10 4.886 | 4.105 1.660 4.107 3.326 Moderate | Moderate
3 11 3.712 | 4.635 2.200 3.013 3.936 Moderate | Light
4 18 3.828 |4.703 3.000 3.046 3.924 Moderate | Light
5 |21 5.848 | 4.834 1.900 4.806 3.792 Moderate | Moderate
6 2 1.940 |3.250 2.000 1.920 3.250 None None
7 13 5.348 | 4.780 0.920 4.201 3.633 None None
8 15 3.486 |5.030 2.140 2.640 4.180 None None
9 2 4.061 |3.576 0.660 3.583 3.098 Light None
10 |5 5170 |4.594 0.833 4.391 3.815 Light Light
11 |17 3.172 | 5.015 1.700 2.172 4.015 Light Light
12 |25 4381 |4.848 2.500 3.381 3.848 Light Light
13 |25 3.367 | 4.964 3.125 2.463 4.060 Light Light
14 |25 4.730 | 4.310 1.923 3.616 3.196 Light Light
15 | 60 5.860 |4.730 4.286 4.714 3.584 Moderate | Moderate

Table 6. Validation results of RE-WOA model for 19 new RB cases.
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Fig. 7. The SHAP plot of RE-WOA model.

severity expect for cases 3 and 4, which yields the accuracy of 86.667%. This proves the good generalization and
effectiveness of the proposed RF-WOA model.

Model interpretability and parameters importance
Despite the high performance of the developed model, it cannot interpret the effects of local samples on the
model output or quantify the correlations between different features, resulting in insufficient explanations for
the prediction process. Furthermore, due to its complexity, the model lacks interpretability’*. Therefore, an
integrated model interpretation framework called SHAP is introduced to enhance the understanding of the RB
risk prediction mechanism. The framework integrates the Shapley values derived from cooperative game theory
with the locally explainable model explanation method. The SHAP method is a recently discovered technique
that uses Shapley values to provide explanations for predictions generated by machine learning algorithms”*.
Using the SHAP method, it is possible to determine the specific contributions of the input parameters to the
predictive outputs in the model, as well as whether their effects on the results are positive or negative. Although
SHAP is generally used for providing local explanations, it is also feasible to get an overall view by analyzing the
Shapley values, as shown in Fig. 7. The horizontal axis of Fig. 7 represents the SHAP values, whereas the vertical
axis denotes the properties that are pivotal for the prediction made by the model. The color bar represents the
feature’s precise value. The attributes representing the features along the y-axis are presented in a descending
order, where the attribute with the highest mean absolute SHAP value is positioned initially.

Based on the importance of input parameters, ME, CE, and CV have been identified as the most effective
parameters in the occurrence of the RB phenomenon. These parameters are fundamental indicators representing
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the attributes of microfractures during the development of RB events, as stated in Feng et al.!°. According to
the SHAP values of these three parameters (Fig. 7), their dependency plots can be presented to interpret the
behavior of this phenomenon. Figure 8 presents the SHAP force plot and waterfall plot. This figure visually
demonstrates how the RF-WOA model is gradually adjusted from the base value to the final predicted value
through various parameters. In Fig. 8b, the value of E[f(x)] represents the model’s baseline (the average predicted
output without considering specific parameters), while f(x) indicates the final predicted value for this sample”>~"".
It can be observed that the CE parameter has a value of +0.09, making it the largest positive contributor to
the prediction. As shown in Figs. 8a and 8b, the predicted value matches the actual value, highlighting the
high accuracy of the developed model. By quantifying the contribution of features using SHAP values and
providing local explanations for individual samples, one can thoroughly investigate the feature-specific effects
on a given predictor value, thereby significantly enhancing the model’s interpretability. Figure 9 shows the three-
dimensional dependency plot of these three parameters. Based on this figure, the behavior of RB (relative to
the most effective parameters in the occurrence of this phenomenon) follows a parabolic pattern. According to
this figure, when the values of these parameters are low, the risk of RB is also low. Clearly, as the microfracture
density, extent of damage, and fracture strength of the rock mass decrease, the burst power of the rock mass
decreases as well. Gradually, with the increase in the values of these parameters, the risk of this phenomenon
occurring increases. However, when these values surpass a certain limit, the strength of the rock mass increases
to a point where the risk of this phenomenon occurring decreases. By identifying this limit, appropriate control
measures can be implemented to reduce the potential risk of this phenomenon. This may entail reinforcing the
rock mass, implementing ground support systems, or adjusting mining techniques to minimize the likelihood of
RB*78, Understanding the relationship between these parameters and the risk of RB is crucial for ensuring the
safety of workers in underground mining operations.

Summary and conclusions

Microseismic activity, mining disturbances, and geological factors influence the occurrence and consequences
of RB. Hence, it is crucial to take these influential factors into account when issuing early risk warnings.
Furthermore, it is essential to create precise and easily understandable prediction models to improve the
dependability and practicality of ML in predicting RB threats. In this study, real-time models for predicting
short-term RB have been developed using the powerful RF algorithm and two meta-heuristic algorithms (WOA
and COA) to optimally set hyperparameters. To develop the models and implement the algorithm, a database
comprising 93 RB case histories was used, taking into account the MS parameters affecting the occurrence of
this phenomenon. Finally, to interpret the model, the SHAP method was employed. The performance results of
the developed models showed that the RF-WOA model outperformed the RF-COA model (Accuracy=0.944,

>
higher <  lower
base value f(x)

0.52
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

ER =125 AVR =2.639 ME=20.0 CE=4.76 LER = 3.556 CV=33843

(a) Force plot
fix)

cv
:

:

ER . .01

025 0.30 0.35 0.40 0.45 0.50 0.55

ETA(X)]
(b) Waterfall plot

Fig. 8. The SHAP force and waterfall plot.
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Fig. 9. 3D dependency plot obtained from SHAP analysis for the most effective RB parameters.

Precision =0.950, Recall =0.944, and F1-score=0.943). Additionally, comparing the performance of the RF-
WOA model with other previously developed models demonstrated that this model evaluates this phenomenon
with high accuracy and low uncertainty. The results of examining the importance of input parameters on the
occurrence of this phenomenon showed that three parameters including ME, CE, and CV have the greatest
impact on the occurrence of this phenomenon. Finally, by analyzing the SHAP values of these three parameters,
it was found that the behavior of this phenomenon follows a parabolic-like pattern. Specifically, at low values of
these three parameters, the risk of RB is low. As the values of these parameters increase, the risk of occurrence
also increases and finally, after surpassing a certain limit, the risk of occurrence begins to decrease. The obtained
results can be a valuable resource for accurately predicting the occurrence of short-term RB in operational
conditions. Project managers can implement the necessary control and management measures based on these
results to reduce the risk of this phenomenon. However, this study has limitations, such as the number of cases
in the database and the lack of examination of geological and mining parameters. The authors are currently
studying these parameters, and their inclusion will ensure the comprehensiveness of the models, as investigating
this phenomenon thoroughly is essential.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding au-
thor on reasonable request.
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