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In this study, two novel hybrid intelligent models were developed to evaluate the short-term rockburst 
using the random forest (RF) method and two meta-heuristic algorithms, whale optimization 
algorithm (WOA) and coati optimization algorithm (COA), for hyperparameter tuning. Real-time 
predictive models of this phenomenon were created using a database comprising 93 case histories, 
taking into account various microseismic parameters. The results indicated that the WOA achieved 
the highest overall performance in hyperparameter tuning for the RF model, outperforming the COA. 
RF-WOA model accurately predicted the occurrence of this phenomenon with an accuracy of 0.944. 
Additionally, for this model, precision, recall and F1-score were obtained as 0.950, 0.944 and 0.943, 
respectively, indicating that the proposed model is robust in predicting damage severity of rockburst 
in deep underground projects. Subsequently, the Shapley additive explanations (SHAP) method was 
employed to interpret and explain the prediction process and assess the influence of input features 
based on RF-WOA model. The results showed that three parameters including cumulative seismic 
energy, cumulative microseismic events, and cumulative apparent volume have the greatest impact on 
the occurrence of rockburst events. This study provides an interpretable and transparent resource for 
accurately predicting rockburst events in real time. It can facilitate estimating project costs, selecting a 
suitable support system, and identifying essential ways to limit the danger of rockburst.

Keywords  Short-term rockburst, Microseismic monitoring, Random forest, Whale optimization algorithm, 
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The phenomenon of rockburst (RB) refers to a dynamic failure (seismic event) that occurs due to the violent and 
sudden release of elastic energy accumulated within coal or rock formations. This phenomenon can result in 
significant consequences, including the failure of underground working spaces, potential casualties, deformation 
of supporting systems, damage to machinery, and delays in construction activities1–4. Based on these destructive 
effects, attention needs to be given to predicting of this phenomenon in underground excavation projects. 
There are two types of RB prediction: long-term and short-term5–8. The long-term prediction of RB is typically 
conducted during the early stages of excavation and project design, and it serves as a guide for the subsequent 
excavation phases. Such predictions typically rely on intrinsic rock mechanics parameters (including stiffness, 
strength, energy storage capacity, and brittleness) to assess the occurrence of this phenomenon at a specific site. 
On the other hand, short-term prediction is primarily used during the life of the project to quickly detect the 
occurrence of RB events. This enhances the coordination of industrial activities and reduces the risk of severe 
accidents. Generally, short-term RB prediction involves assessing the risk of RB occurrences in the near future 
based on in situ techniques. Among these techniques, microseismic (MS) monitoring is one of the most widely 
used methods for RB event monitoring due to real-time monitoring, wide detection range, big data scale, and 
no harm to production8,9. In this technique, using sensors laid out spatially with different azimuths, MS waves 
released during rock fracture can be captured. By analyzing the MS waves, some precursory features of RB events 
are discovered that could be used to predict the risk of this phenomenon10–12.

The mechanism of RB occurrence is complex and influenced by a combination of factors. Because of this 
complexity, RB prediction without the aid of computer models is challenging13. Recently, machine learning 
(ML) methods have been employed to predict RB owing to their capacity to tackle complex and nonlinear 
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issues7. These methods mainly focus on the long-term prediction of this phenomenon using unsupervised 
learning, supervised learning, and comparative decision strategies14–43, whereas only a few studies have been 
conducted on short-term prediction using ML methods6,44–48. Based on literature survey, application of ML 
methods has proven to be effective in real time prediction of RB intensity based on MS monitoring data. Despite 
their reliable and precise outputs, most algorithms are not readily applicable in practice owing to their non-
interpretable “black box” nature. Also, development of ML models requires fine-tuning hyperparameters, which 
can drastically affect the performance of a model49. Fine-tuning hyperparameters is a computational challenge 
due to the large size of search space. There are a variety of methods for finding the optimal Hyperparameters. 
In most previously developed models, adjusting of hyperparameters was done manually, which requires a lot of 
time and trial and error50. Recently, to solve this problem, the optimization methods are used as a practical way 
from the perspective of time and performance balance.

To address the mentioned limitations of traditional ML models, this study proposes two novel hybrid models 
for short-term prediction of RB intensity. Two models are developed in the Python environment using the random 
forest (RF) method, with whale optimization algorithm (WOA) and coati optimization algorithm (COA) applied 
to adjust the hyperparameters. The RF technique was chosen due to its outstanding capability in addressing 
complex and nonlinear problems such as RB prediction. Additionally, the Shapley additive explanations (SHAP) 
method is applied to explain the prediction process and assess the influence of input features.

Database description
The study utilized a database collected from MS monitoring events of the Jinping-II hydropower project in China 
to develop the proposed models51. The Jinping-II hydropower project is located at the Jinping bend on the Yalong 
River and the main characteristics of this case study are presented in Table 1. During construction process of 
this project, RB events occurred frequently and caused significant problems in terms of safety. According to site 
observation and survey, all three types of RB (including strain burst, pillar burst and slip-fault burst) occurred, 
while strain bursts were the most common52. In strain bursts, the location of the seismic event is the same as 
where damage occurs, providing the opportunity to predict the RB using MS monitoring data6. MS monitoring 
system was built based on the Integrated Seismic System (ISS), including a server, smart sensors, geophysical 
seismometer (GS), intelligent uninterruptible power system (UPS), optional communication element (I-Splitter, 
moxa, fiber, DSL, and TP-Link), junction box, cables, etc. A 54-channel MS monitoring system was used and 
the GS had a wide sampling rate (3–48,000 Hz)10,52. The MS sensors had a natural frequency of 14 Hz and an 
approximate usable frequency range that varied from 7 to 2000  Hz. Two groups of MS sensors were set up 
just behind the working face. These were moved with the working face every 30–40 m (i.e. manually removed, 
moved, and set up again). A sectional velocity model was used for MS events location. Details of the MS data 
acquisition system has been discussed in Feng et al.10.

The database includes 93 RB case histories. Based on this database, the input parameters for developing 
hybrid intelligent models are cumulative seismic energy (CE), cumulative microseismic events (ME), cumulative 
apparent volume (CV), event rate (ER), apparent volume rate (AVR), seismic energy rate (LER) and the output is 
RB severity related to each case51. Based on literature survey, these six input parameters are most commonly used 
MS features to predict the severity of RB in real-time. ME denotes the measure of microfracture density, while 
CV and CE denote the extent of damage and the fracture strength to the rock mass, respectively. These three 
parameters are fundamental indicators representing the attributes of microfractures during the development of 
RB events10. To integrate temporal aspects into the process, three parameters related to time (ER, AVR, and LER) 
are considered. ER denotes the rate of MS activity occurrence, the process of rock mass failure, and the average 
response pattern over time. LER indicates the energy emitted by the rock mass through MS radiation during 
a specific time period, while AVR refers to the volume of rock within the deformation region experiencing 
inelastic behavior over the same time frame6. To optimize execution, the values of LER, AVR, CV, and CE are 
chosen on a logarithmic scale. The primary objective of the logarithmic function is to address the skewness 
towards larger numbers in the RB database. Figure 1 shows the histograms, cumulative distributions, and basic 
statistical description of input parameters. The RB severity (output parameter) is classified into four classes 
(including none, light, moderate, and severe) based on the classification by Chen et al.52, the distribution of 
which is shown in Fig. 2.

Physical characteristics The project includes seven parallel tunnels (four headrace tunnels, two assistant tunnels, and one drainage tunnel)

The average length of each tunnel is 16.67 km

The maximum depth of the tunnels is 2525 m

The maximum, intermediate and minimum principal stresses are 63 MPa, 34 MPa and 26 MPa, respectively

Lithological characteristics The main lithology is marble

The saturated uniaxial compressive strength ranges from 30 to 114 MPa

The elastic modulus ranges from 25 to 40 GPa

The tensile strength ranges from 3 to 6 MPa

The surrounding rock masses are hard and intact

Table 1.  Characteristics of Jinping-II hydropower project45,53,54.
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Development of models
RF is an integrated learning method based on decision trees, which enhances the generalizability and accuracy of 
the model by constructing multiple decision trees and averaging their predictions, or selecting the final prediction 
through majority vote55. The RF algorithm is an extension of the bagging integration method. It utilizes bagging 
and feature randomness to generate a set of uncorrelated decision trees, consequently diminishing correlations 
between them and enhancing model diversity56. This approach mitigates the risk of overfitting, enhances model 
robustness, facilitates feature importance assessment, and enables parallelized training, thereby significantly 
reducing training time. In the development of real-time models, the optimal selection of hyperparameters affects 
the performance and accuracy of the models. In this study, the WOA meta-heuristic algorithm has been utilized 
to optimally adjust hyperparameters. Mirjalili et al.57 introduced WOA, a novel meta-heuristic optimization 
algorithm, in 2016. This algorithm enhances performance by mimicking the hunting behavior of humpback 
whales. The specific implementation method entails replicating the bubble-net feeding technique of humpback 
whales through a spiral pattern58. The bubble-net feeding technique comprises three sequential steps: encircling 
the prey, creating a spiral bubble-net to trap the prey, and then locating the next target59. Since the method and 

Fig. 1.  The histogram, cumulative distribution, and basic statistical description of input parameters.
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mathematical aspects of WOA have already been extensively documented in numerous literature sources59–62, 
this study does not provide an explanation of them. The RF algorithm was utilized in the Python environment 
in this section, and its performance was improved by optimizing it with the WOA. RF serves as the framework 
for developing models, utilizing the WOA to determine the best hyperparameters. To develop the models, the 
train-test (hold out cross validation) method was used. The database has been randomly partitioned into two 
segments: training and testing, in an 8:2 ratio. Initially, the model is trained on 80% of the data and subsequently 
validated using the remaining 20%. It is important to note that the test database is independent of the training 
database and plays no role in the model’s development. Figure 3 shows the algorithm of RF hybrid models. Table 
2 displays the optimal arrangement of RF-WOA hyperparameters.

Another optimization algorithm utilized in this study to adjust the hyperparameters of the RF algorithm is 
the COA. The COA is a novel metaheuristic algorithm introduced in 2023 by Dehghani et al.63, inspired by the 
natural actions of coatis. It imitates two specific behaviors of coatis: hunting iguanas and evading predators. The 
implementation process of this algorithm includes three steps: 1) initialization process, 2) exploration phase, 
and 3) exploitation phase, the details of which have been elucidated by various researchers63,64. Similar to the 
previous one, this algorithm is first developed in the Python environment using the training database and then 
evaluated on the test database. Table 3 displays the optimal arrangement of RF-COA hyperparameters.

Performance evaluation and comparison of models
The RF-WOA and RF-COA hybrid models are evaluated using the testing datasets. The performance of the models 
is thoroughly assessed in this section using precision, accuracy, F1-score, and recall measures65. These values 
can be determined through the confusion matrices of each model (Fig. 4). Figures 5 and 6 show the confusion 
matrices of models RF-WOA and RF-COA (for both train and test datasets), respectively. The evaluation results 
of the created models, using assessment metrics, are displayed in Table 4. Based on the obtained results, the 
WOA optimizer shows superior performance in the RF model for evaluating the occurrence of RB compared to 
the COA optimizer.

To thoroughly assess the established models, they were compared with the recently created models in the 
literature for prediction of short-term RB potential (Table 5). This comparison, as part of the performance 
evaluation of the models, showed that the proposed RF-WOA model can accurately predict the RB severity with 
outstanding accuracy. This model overcomes the limitations of previous ML models applying WOA optimization 
algorithm for hyperparameters tuning of RF model and SHAP method to assess the influence of input features 
on RB severity (which is described in the next section). On the other hand, this model not only exhibits high 
prediction performance but also promotes transparency in the prediction process. Therefore, project managers 
can use this model to predict this phenomenon and implement the necessary control measures to increase safety 
and productivity.

Finally, to prove the applicability and practicability, RF-WOA model (as the best developed model) was 
utilized to predict 19 new RB cases, which were not included in the original 93 cases. These new validation 
cases were collected from the MS monitoring technique from the Jinping-II hydropower project in China, the 
Ashele Copper Mine in China, the Neelum–Jhelum Hydroelectric Tunnel in Pakistan and the Qinling Water 
Conveyance Tunnel in China72,73. Table 6 presents the MS monitoring parameters with real and predicted RB 
severity for each case. As shown in Table 6, the prediction results of RF-WOA model are coincided with real RB 

Fig. 2.  Distribution of the RB severity classes.
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Hyperparameter Description Min_range Max_range Optimum value

n_estimators number of trees in the foreset 6 200 100

max_depth max number of levels in each decision tree 1 100 22

min_samples_split min number of data points placed in a node before the node is split 2 20 2

min_samples_leaf min number of data points allowed in a leaf node 1 20 1

max_features max number of features considered for splitting a node 0.100 1 0.100

max_leaf_nodes maximum number of leaf nodes 2 20 10

Table 2.  The optimal arrangement of RF-WOA hyperparameters.

 

Fig. 3.  The RF-WOA/COA hybrid architecture.
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Fig. 5.  Confusion matrix of RF-WOA model: (a) Training, (b) Testing.

 

Fig. 4.  Performance evaluation measures for classification problems4,6.

 

Hyperparameter Description Min_range Max_range Optimum value

n_estimators number of trees in the foreset 6 200 53

max_depth max number of levels in each decision tree 1 100 44

min_samples_split min number of data points placed in a node before the node is split 2 20 8

min_samples_leaf min number of data points allowed in a leaf node 1 20 4

max_features max number of features considered for splitting a node 0.100 1 0.600

max_leaf_nodes maximum number of leaf nodes 2 10 9

Table 3.  The optimal arrangement of RF-COA hyperparameters.
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Researcher ML method Hyperparameter tuning
Number 
of data

Accuracy 
(%) Year

Zhou et al.44 Stochastic gradient boosting tenfold cross validation 254 61.22 2016

Liang et al.6 Random forest, adaptive boosting, gradient boosted decision tree, extreme gradient boosting, 
and light gradient boosting machine fivefold cross validation 93 80.0 2020

Li et al.47 Artificial neural network - 254 71.0 2020

Ji et al.46 Support vector machine Genetic optimization 132 88.0 2020

Liang et al.66 Logistic regression, naive Bayes, Gaussian process, multilayer perceptron neural network, 
support vector machines, and decision tree fivefold cross validation 91 86.6 2021

Yin et al.67 Convolutional neural network
Adaptive moment 
optimization and Bayes 
optimization

400 91.67 2021

Maxutov and 
Adoko68 Bayesian network - 254 78.0 2021

Kamran et al.69 K-Nearest neighbor - 93 96.0 2022

Ullah et al.4 Extreme gradient boosting Grid search 93 88.0 2022

Jin et al.13 Categorical gradient boosting Grid search 99 89.5 2023

Qiu and Zhou70 Light gradient boosting machine, extreme gradient boosting, random forest, support vector 
machine, and logistic regression LévyFlight-Jaya optimization 91 89.3 2023

Qiu and Zhou48 Extreme gradient boosting Sand cat swarm optimization 254 88.4 2023

Sun et al.71 Random forest - 105 85.7 2023

Sun et al.72 Weighted probability stacking Bayesian optimization 114 91.3 2024

This study Random forest Coati optimization 93 83.3 2025

This study Random forest Whale optimization 93 94.4 2025

Table 5.  The comparison between the models generated in this study and the models developed in previous 
studies.

 

Model

Performance index

Accuracy Precision Recall F1-score

RF-
WOA 0.944 0.950 0.944 0.943

RF-COA 0.833 0.851 0.788 0.786

Table 4.  The performance indices for the developed models.

 

Fig. 6.  Confusion matrix of RF-COA model: (a) Training, (b) Testing..
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severity expect for cases 3 and 4, which yields the accuracy of 86.667%. This proves the good generalization and 
effectiveness of the proposed RF-WOA model.

Model interpretability and parameters importance
Despite the high performance of the developed model, it cannot interpret the effects of local samples on the 
model output or quantify the correlations between different features, resulting in insufficient explanations for 
the prediction process. Furthermore, due to its complexity, the model lacks interpretability74. Therefore, an 
integrated model interpretation framework called SHAP is introduced to enhance the understanding of the RB 
risk prediction mechanism. The framework integrates the Shapley values derived from cooperative game theory 
with the locally explainable model explanation method. The SHAP method is a recently discovered technique 
that uses Shapley values to provide explanations for predictions generated by machine learning algorithms74. 
Using the SHAP method, it is possible to determine the specific contributions of the input parameters to the 
predictive outputs in the model, as well as whether their effects on the results are positive or negative. Although 
SHAP is generally used for providing local explanations, it is also feasible to get an overall view by analyzing the 
Shapley values, as shown in Fig. 7. The horizontal axis of Fig. 7 represents the SHAP values, whereas the vertical 
axis denotes the properties that are pivotal for the prediction made by the model. The color bar represents the 
feature’s precise value. The attributes representing the features along the y-axis are presented in a descending 
order, where the attribute with the highest mean absolute SHAP value is positioned initially.

Based on the importance of input parameters, ME, CE, and CV have been identified as the most effective 
parameters in the occurrence of the RB phenomenon. These parameters are fundamental indicators representing 

Fig. 7.  The SHAP plot of RF-WOA model.

 

No ME (unit) CE (J) CV (m3) ER (unit/day) LER (J/day) AVR (m3/day) RB severity

Actual Predicted

1 23 6.419 4.995 5.750 5.817 4.390 Severe Severe

2 10 4.886 4.105 1.660 4.107 3.326 Moderate Moderate

3 11 3.712 4.635 2.200 3.013 3.936 Moderate Light

4 18 3.828 4.703 3.000 3.046 3.924 Moderate Light

5 21 5.848 4.834 1.900 4.806 3.792 Moderate Moderate

6 2 1.940 3.250 2.000 1.920 3.250 None None

7 13 5.348 4.780 0.920 4.201 3.633 None None

8 15 3.486 5.030 2.140 2.640 4.180 None None

9 2 4.061 3.576 0.660 3.583 3.098 Light None

10 5 5.170 4.594 0.833 4.391 3.815 Light Light

11 17 3.172 5.015 1.700 2.172 4.015 Light Light

12 25 4.381 4.848 2.500 3.381 3.848 Light Light

13 25 3.367 4.964 3.125 2.463 4.060 Light Light

14 25 4.730 4.310 1.923 3.616 3.196 Light Light

15 60 5.860 4.730 4.286 4.714 3.584 Moderate Moderate

Table 6.  Validation results of RF-WOA model for 19 new RB cases.

 

Scientific Reports |          (2025) 15:911 8| https://doi.org/10.1038/s41598-024-85042-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the attributes of microfractures during the development of RB events, as stated in Feng et al.10. According to 
the SHAP values of these three parameters (Fig. 7), their dependency plots can be presented to interpret the 
behavior of this phenomenon. Figure  8 presents the SHAP force plot and waterfall plot. This figure visually 
demonstrates how the RF-WOA model is gradually adjusted from the base value to the final predicted value 
through various parameters. In Fig. 8b, the value of E[f(x)] represents the model’s baseline (the average predicted 
output without considering specific parameters), while f(x) indicates the final predicted value for this sample75–77. 
It can be observed that the CE parameter has a value of + 0.09, making it the largest positive contributor to 
the prediction. As shown in Figs. 8a and 8b, the predicted value matches the actual value, highlighting the 
high accuracy of the developed model. By quantifying the contribution of features using SHAP values and 
providing local explanations for individual samples, one can thoroughly investigate the feature-specific effects 
on a given predictor value, thereby significantly enhancing the model’s interpretability. Figure 9 shows the three-
dimensional dependency plot of these three parameters. Based on this figure, the behavior of RB (relative to 
the most effective parameters in the occurrence of this phenomenon) follows a parabolic pattern. According to 
this figure, when the values of these parameters are low, the risk of RB is also low. Clearly, as the microfracture 
density, extent of damage, and fracture strength of the rock mass decrease, the burst power of the rock mass 
decreases as well. Gradually, with the increase in the values of these parameters, the risk of this phenomenon 
occurring increases. However, when these values surpass a certain limit, the strength of the rock mass increases 
to a point where the risk of this phenomenon occurring decreases. By identifying this limit, appropriate control 
measures can be implemented to reduce the potential risk of this phenomenon. This may entail reinforcing the 
rock mass, implementing ground support systems, or adjusting mining techniques to minimize the likelihood of 
RB53,78. Understanding the relationship between these parameters and the risk of RB is crucial for ensuring the 
safety of workers in underground mining operations.

Summary and conclusions
Microseismic activity, mining disturbances, and geological factors influence the occurrence and consequences 
of RB. Hence, it is crucial to take these influential factors into account when issuing early risk warnings. 
Furthermore, it is essential to create precise and easily understandable prediction models to improve the 
dependability and practicality of ML in predicting RB threats. In this study, real-time models for predicting 
short-term RB have been developed using the powerful RF algorithm and two meta-heuristic algorithms (WOA 
and COA) to optimally set hyperparameters. To develop the models and implement the algorithm, a database 
comprising 93 RB case histories was used, taking into account the MS parameters affecting the occurrence of 
this phenomenon. Finally, to interpret the model, the SHAP method was employed. The performance results of 
the developed models showed that the RF-WOA model outperformed the RF-COA model (Accuracy = 0.944, 

Fig. 8.  The SHAP force and waterfall plot.

 

Scientific Reports |          (2025) 15:911 9| https://doi.org/10.1038/s41598-024-85042-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Precision = 0.950, Recall = 0.944, and F1-score = 0.943). Additionally, comparing the performance of the RF-
WOA model with other previously developed models demonstrated that this model evaluates this phenomenon 
with high accuracy and low uncertainty. The results of examining the importance of input parameters on the 
occurrence of this phenomenon showed that three parameters including ME, CE, and CV have the greatest 
impact on the occurrence of this phenomenon. Finally, by analyzing the SHAP values of these three parameters, 
it was found that the behavior of this phenomenon follows a parabolic-like pattern. Specifically, at low values of 
these three parameters, the risk of RB is low. As the values of these parameters increase, the risk of occurrence 
also increases and finally, after surpassing a certain limit, the risk of occurrence begins to decrease. The obtained 
results can be a valuable resource for accurately predicting the occurrence of short-term RB in operational 
conditions. Project managers can implement the necessary control and management measures based on these 
results to reduce the risk of this phenomenon. However, this study has limitations, such as the number of cases 
in the database and the lack of examination of geological and mining parameters. The authors are currently 
studying these parameters, and their inclusion will ensure the comprehensiveness of the models, as investigating 
this phenomenon thoroughly is essential.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding au-
thor on reasonable request.
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