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In order to study the Anti-Penetration Randomness of Metal Protective Structures (APRMPS) for 
the penetration probabilities of Metal Protective Structures under the action of the basic random 
variables, this paper analyzes the candidates for the basic random variables and the random response 
of APRMPS, and, on the basis of the improvement of Genetic Algorithm, proposes Dynamic Lifecycle 
Genetic Algorithm, including its main processes of the optimization of Back Propagation Neural 
Network. And by adopting the Back Propagation Neural Network optimized by Dynamic Lifecycle 
Genetic Algorithm (DLGABPNN) as the surrogate model of APRMPS, this paper presents the technical 
route of DLGABPNN-MCS, the Monte Carlo Simulation with DLGABPNN calculation as repeated 
sampling tests, to addressing APRMPS. Finally, with two applied examples of the anti-penetration 
randomness of metal targets, this paper demonstrates the application procedures for this method, 
proves the higher efficiency of Dynamic Lifecycle Genetic Algorithm than Genetic Algorithm in 
optimizing Back Propagation Neural Network and verifies the effectiveness of DLGABPNN-MCS in 
studying APRMPS. This paper may have some significance in proposing Dynamic Lifecycle Genetic 
Algorithm—the new, universal heuristic algorithm, and providing the common technical method for 
the APRMPS study based on DLGABPNN-MCS, in the hope of promoting the application of Dynamic 
Lifecycle Genetic Algorithm in other optimization problems, and offering reference for the further 
study of APRMPS or the study of other random problems.
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The anti-penetration of protective structures is a typical transient high-strain problem. Since any slight change 
in conditions will lead to those in the penetration results of protective structures, in the anti-penetration tests of 
protective structures, random results will occur as for whether the protective structures at the penetration limit 
state can be penetrated by the fragments. This explains why some researches labeled the ballistic limit velocity 
as V50

1–4, indicating that the fragments, at the ballistic limit velocity, will penetrate the protective structures 
with a 50% probability. Although it has been repeatedly found that there is uncertainty in the mechanical 
behavior of the anti-penetration of protective structures, the anti-penetration of protective structures has been 
taken as a deterministic one, leading to the ignorance about the mechanical behavior uncertainty of the anti-
penetration of protective structures. Under this circumstance, it is necessary to perceive the anti-penetration 
of protective structures as a randomness problem, and to make a stochastic analysis of the randomness of the 
mechanical behavior of the anti-penetration of protective structures, so as to obtain the penetration probabilities 
of protective structures under the action of basic random variables.

What should also be noted is that machine learning has found extensive use in engineering. Khatir et al.5 
employed Firefly Algorith and Genetic Algorithm (GA) to optimize the coordinate modal assurance criterion 
for complex structures, so as to identify multiple local damages in complex structures. Khatir et al.6 used Particle 
Swarm Optimization Algorithm (PSO) and GA in optimizing the gradient boosting for strain prediction in 
near-surface mounted of fiber-reinforced polymer strengthened reinforced concrete beam, thus achieving the 
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accurate result of strain prediction. Khatir et al.7 even applied the Artificial Neural Network (ANN) optimized 
by Grasshopper Optimization Algorithm in predicting multiple damages represented by holes in the aluminum 
plate, and found that the ANNs optimized in this way demonstrated superior performance in damage forecasting. 
Also, Khatir et al.8 constructed the hybrid ANN-RSA model by optimizing ANN with Reptile Search Algorithm 
(RSA) for structural damage detection in steel beams, finding that “the integration of RSA into ANN training 
significantly improves the accuracy and computational efficiency of damage prediction in structural health 
monitoring.” Besides, Khatir et al.9 proposed a new hybrid algorithm by integrating PSO into YUKI, and further 
combined the PSO-YUKI algorithm with radial basis functions for double cracks identification in carbon fiber 
reinforced polymer cantilever beams. Their results show that the PSO-YUKI algorithm shows robustness in 
double cracks depth identification. And Khatir et al.10 proposed another hybrid model, the BOA-ANN algorithm 
optimizing ANN with Butterfly Optimization Algorithm (BOA), applied this model in identifying the crack 
depth in steel beam structures, and found that BOA-ANN can predict crack depth with improved accuracy. 
Furthermore, Achouri et al.11 proposed a novel hybrid swarm optimization algorithm by combining PSO and 
BOA for the ANN optimization, adopted PSO-BOA-ANN for structural damage prediction, and found that 
PSO-BOA-ANN exhibits robust capability in structural damage detection.

The studies above show that machine learning can deliver remarkable benefits in solving complex 
engineering problems such as structural damage detection. Therefore, this paper also take advantage of machine 
learning to study the Anti-Penetration Randomness of Metal Protective Structures (APRMPS). And Back 
Propagation Neural Network (BPNN) based on the error back propagation algorithm is a well-recognized 
ANN with remarkably strong nonlinear mapping ability, and currently among the most widely used ANNs12–14. 
Nevertheless, the initial weights and thresholds of BPNN exert a significant impact on the training effects of the 
network, so if these parameters are not properly set, the training effects will be worse—a disadvantage of BPNN. 
On the other hand, GA is characterized by its strong global optimization ability, so it is effective to offset BPNN’s 
disadvantage by adopting GA to optimize the initial weights and thresholds of BPNN. In fact, GA is often used 
as an optimization algorithm for BPNN15–18. What should be noted is that this optimization method is facing a 
challenge: the adoption of the selection operator for each generation of individuals in the population suggests 
too much human intervention in the process of population evolution, resulting in a low population evolution 
rate and thus reducing the efficiency of GA to optimize the initial weights and thresholds of BPNN. In order 
to address this challenge, this paper, based on the improvement of GA, proposes a new algorithm, Dynamic 
Lifecycle Genetic Algorithm (DLGA), which cancels the selection operation of GA and accordingly provides 
a life cycle for each individual in the population. Each individual automatically follows its development and 
reproduction within its own life cycle, so as to realize the natural evolution of the population, reducing the 
human intervention in the process of population evolution and enhancing the efficiency of optimizing the initial 
weights and thresholds of BPNN. Therefore, this paper investigates APRMPS by taking BPNN optimized by 
DLGA (DLGABPNN) as the surrogate model and adopting DLGABPNN-MCS, the Monte Carlo Simulation 
(MCS) with DLGABPNN calculation as repeated sampling tests.

In a nutshell, in exploring APRMPS by the method of DLGABPNN-MCS for the penetration probabilities of 
metal protective structures under the action of basic random variables, Section “APRMPS analysis” will analyze 
the possible candidates for basic random variables and random responses of APRMPS; Section “APRMPS study 
based on DLGABPNN-MCS” will propose DLGA, an improved version of GA, including its main processes 
of the optimization of BPNN, and the technical route of DLGABPNN-MCS to addressing APRMPS; Section 
“Applied examples”, taking the anti-penetration randomness of two metal targets as an example, attempts to prove 
the higher efficiency of DLGA than GA in optimizing BPNN and verify the effectiveness of DLGABPNN-MCS 
in studying APRMPS. This paper hopes to promote the application of DLGA in other optimization problems and 
to provide reference for further study on APRMPS and study on other randomness problems.

APRMPS analysis
Basic random variables of APRMPS
In the numerical simulation of explosion and shock dynamics, for common metal materials, the principal stress 
is generally calculated by the Mie-Grüneisen equation of state19; the deviatoric stress by the Johnson–Cook 
plasticity model19–21; the damage degree by the Johnson–Cook failure model21.

The Mie-Grüneisen equation of state19 has two two expressions—the compression equation of state and the 
expansion equation of state
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where p is the principal stress, µ = ρ
ρ0

− 1 is the compression degree, with ρ0 being the initial density and ρ 
the current density, c0 is the sound velocity when p = 0, E is the energy in per unit volume, γ0 is the Grüneisen 
coefficient when p = 0, and a, S1, S2 and S3 are material parameters.

In the Johnson–Cook plasticity model19–21, the equation for the Von Mises flow stress σy  is

	 σy =
(
A + Bεn

p

) (
1 + C ln ε̇∗

p

)
(1 − T ∗m)� (2)

where εp is the equivalent plastic strain, ε̇∗
p = ε̇p

ε̇0
 is the dimensionless equivalent plastic strain rate, T ∗ = T −Tr

Tm−Tr
 

is the dimensionless homologous temperature, with T being the current temperature, Tr the room temperature 
and Tm the melting temperature, and A, B, C, n and m are material parameters.
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In the Johnson–Cook failure model21, the equation for the failure strain εf  is

	 εf = [D1 + D2 exp (D3σ∗)]
[
1 + D4 ln ε̇∗

p

]
[1 + D5T ∗]� (3)

where σ∗ = p/σ is the stress triaxiality, with σ being the equivalent stress, and D1, D2, D3, D4, and D5 are 
material parameters.

From Eq. 1 to Eq. 3, γ0, a, S1, S2 and S3 in the Mie-Grüneisen equation of state, A, B, C, n and m in the Johnson–
Cook plasticity model, and D1, D2, D3, D4, and D5 in the Johnson–Cook failure model are material parameters. 
Jiang et al.22 pointed out that even for the same material, the parameters given by different researchers may vary: 
for instance, Holmquist et al.23 gave a different parameter value for the Johnson–Cook failure model of 4340 
steel from the version proposed by Quan et al.24, and Holmquist et al.23 also gave a different parameter value 
for the Johnson–Cook plasticity model of 6061-t6 aluminum alloy from the version of Liu et al.25. Cullis et al.26 
and Normandia et al.27 presented different parameter values for the Mie-Grüneisen equation of state of RHA 
steel. There are numerous examples for this, which shows that there is uncertainty in the determination of the 
parameter values for the performance equation of metal materials, leading to the uncertainty of the properties 
of the materials described by these parameters. What’s more, in the study on the stochastic dynamics of metal 
structures under explosion load, Chen et al.19,28 argued that each parameter for the Mie-Grüneisen equation 
of state, the Johnson–Cook plasticity model and the Johnson–Cook failure model are random, leading to the 
randomness of the principal stress, deviatoric stress and damage degree of metal structures under explosion 
load.

Moreover, errors in metal smelting and changes in environmental temperature will also cause changes in the 
density of metal materials, thus leading to the randomness of the metal material density. In the anti-penetration 
tests of metal protective structures, under the influence of the charge errors of the fragment launcher and the 
errors of the fragment velocity recording device, the penetration velocity of the fragment recorded in each test 
is also random.

Thus, in the study on APRMPS, since the randomness of the density and the performance equation parameters 
above of the materials of metal protective structures and fragments, and the randomness of the penetration 
velocity of fragments, may exert impacts on the penetration performance of fragments and the anti-penetration 
performance of metal protective structures, it is necessary to select from these parameters the ones that have a 
significant effect on the penetration results of metal protective structures as basic random variables.

Random response of APRMPS
In studying APRMPS, in order for ANN to identify the penetration results of metal protective structures under 
various randomness conditions, this paper introduces the penetration-recognizing coefficient δ to determine 
whether metal protective structures are penetrated under the action of basic random variables: if metal protective 
structures are penetrated, δ will be recognized to be 1; if not, δ will be recognized to be 0. This means that the 
randomness of the penetration of metal protective structures under basic random variables can be expressed by 
that of the 0–1 recognition results of δ. In this case, this paper defines δ as the random response of APRMPS, and 
considers APRMPS the problem of estimating the penetration probabilities of metal protective structures under 
basic random variables on the basis of the statistical analysis results of δ.

APRMPS study based on DLGABPNN-MCS
DLGA

	(1)	 Life expectancy function and reproductive chromosome quantity function of individuals

 
In DLGA, an individual’s life expectancy refers to the upper limit of its life. Being not a fixed value, the 

life expectancy needs to be continuously updated in iterative calculations. An individual’s reproductive 
chromosomes refer to the chromosomes for the generation of new individuals through crossover operations 
and mutation operations. Being exactly the same as its own chromosome, the reproductive chromosomes can be 
generated by directly copying the latter. However, the quantity of an individual’s reproductive chromosomes in 
each iteration is not a fixed neither. Therefore, this paper proposes the life expectancy function shown in Eq. 4 
and the reproductive chromosome quantity function in Eq. 5 to determine in each iteration the number of life 
expectancy and reproductive chromosomes of each living individual in the population.

	
Lij = max

{⌈
C1

(
1 − nj

NL

)
Fi

⌉
, 1

}
� (4)

where Lij is the life expectancy of the individual i in the jth iteration calculation, Fi is the fitness of the individual 
i, nj is the quantity of living individuals in the jth iteration calculation (i.e. excluding the unborn and dead 
individuals in the jth iteration calculation), NL is upper limit quantity of living individuals, and C1 is the 
coefficient of the equation.

	
Qij = max
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where Qij is the quantity of the reproductive chromosomes generated by the individual i in the jth iteration 
calculation, Aij is the age of the individual i in the jth iteration calculation, C2 is the coefficient of the equation, 
and the other parameters are the same as those in Eq. 4.

	(2)	 Crossover operator and mutation operator

The crossover operator and the mutation operator of DLGA are the same as those of GA. Thus in the real number 
coding mode, any two reproductive chromosomes can cross based on the specified crossover probability PC, and 
the crossover operator can be expressed by Eq. 6:

	

{
x′

1 = (1 − a) x1 + ax2

x′
2 = (1 − a) x2 + ax1

� (6)

where x1 and x2 are respectively the genes crossed in any two reproductive chromosomes, x′
1 and x′

2 are 
respectively the newly-formed genes in these two reproductive chromosomes, and a, a random number within 
the interval [0, 1], represents the numeric exchange ratio of the gene x1 to the gene x2 in this crossover.

In the real number coding mode, each reproductive chromosome can mutate with the specified mutation 
probability PM, and the mutation operator can be expressed by Eq. 7:

	
x′ =

{
x + (x − xmax) f (Nj) , r1 > 0.5
x + (xmin − x) f (Nj) , r1 ≤ 0.5

� (7)

where x is the mutant gene in an reproductive chromosome,x′ is the new gene generated after x mutated, xmax 
and xmin are respectively the upper limit and the lower limit to which x mutates, and r1 is a random number 
within the interval [0, 1], which determines the mutation mode of x in this process—from Eq. 7 inferred two 
mutation modes. As shown in Eq. 8, f(Nj) is a function with a range of [0, 1), which can guarantee that the 
variation of x in this mutation won’t be excessively wide.

	 f (Nj) = r2 (1 − Nj/NB)2� (8)

where Nj is the total quantity of having-been-born individuals while reaching the jth iteration calculation (the 
total quantity of the living and dead individuals while reaching the jth iteration calculation), NB is the upper 
limit quantity of having-been-born individuals, and r2 is a random number within the interval [0, 1], which can 
effectively reduce the value of the function f(g).

	(3)	 Life cycle of individuals

 
The life cycle of an individual can be so defined: before its birth, an individual’s age is 0; after its birth, its 

initial age is 1, and its age is increased by 1 in each iteration calculation. Meanwhile, in each iteration calculation, 
an individual’s life expectancy is calculated according to Eq. 4 and the quantity of its reproductive chromosomes 
is calculated according to Eq. 5, on which the replication of the individual’s chromosome is based to become 
the reproductive chromosomes. The reproductive chromosomes will participate in the crossover operations and 
mutation operations to form new individuals. Once the individual’s age reaches the life expectancy in an iterative 
calculation, the individual will die, which means that after that, the individual will no longer participate in the 
iterative calculation, that its age and life expectancy will no longer be updated, and that the individual will no 
longer generate reproductive chromosomes either.

	(4)	 End conditions of DLGA

 
The 4 end conditions of DLGA in the jth iteration calculation are as follows:

Condition 1: No better individual appears in Tend consecutive iteration calculations, where Tend is the iterative 
calculation termination threshold that needs to be set artificially.
Condition 2: nj drops to 0.
Condition 3: nj reaches NL.
Condition 4: Nj reaches NB.

	(5)	 Running process of DLGA

DLGA runs through the following process:
Step 1: Determine the fitness function. An individual’s fitness function is determined by the practical situation 

and specific requirements of the optimization problem.
Step 2: Set parameters. Basic parameters should be set: ① n1, the quantity of the first-generation individuals, 

② NL, ③ NB, ④ Tend, ⑤ C1, the coefficient of life expectancy function, ⑥ C2, the coefficient of reproductive 
chromosome quantity function, ⑦ PC, the crossover probabilities of reproductive chromosomes, and ⑧ PM, the 
mutation probabilities of reproductive chromosomes.
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Step 3: Generate first-generation individuals. The first-generation individuals of the population are generated 
in the same way as GA; the chromosome of each first-generation individual is encoded and the initial age of each 
first-generation individual is 1.

Step 4: Calculate each first-generation individual’s fitness. The fitness function is applied to calculate each 
first-generation individual’s fitness.

Step 5: Calculate the individuals’ life expectancy. The life expectancy of each individual in the current iterative 
calculation is calculated according to Eq. 4.

Step 6: Form the population. Each individual’s age and life expectancy are taken into account to determine 
whether they can continue to survive: If its age does not reach the life expectancy, the individual continues 
to survive; If its age has reached the life expectancy, it dies, and from then on, the iterative calculation will be 
terminated. Then, the individuals that continue to survive are aggregated into a population. The quantity of the 
living individuals and those of individuals in the previous generations in the population are counted.

Step 7: Generate reproductive chromosomes by individuals. The quantity of reproductive chromosomes to be 
generated by each living individual in each iteration is calculated according to Eq. 5, on which the replication of 
the individual’s chromosome is based to become reproductive chromosomes.

Step 8: Update each individual’s age. Each living individual’s age is increased by 1.
Step 9: Generate new individuals. The crossover operations and mutation operations are performed on the 

reproductive chromosomes in the current iterative calculation in turn to generate new individuals, whose initial 
age is 1.

Step 10: Calculate new individuals’ fitness. The fitness function is applied again to calculate each new 
individual’s fitness.

Step 11: Determine whether the optimal individual is updated. If the fitness of each new individual is not 
higher than that of the current optimal individual, the optimal individual is not updated, and tend, the number 
of consecutive iterations without better individuals, is increased by 1; otherwise, the new individual with the 
highest fitness is taken as the optimal, and tend is reduced to 0.

Step 12: Determine whether the iteration calculation should continue. If none of the 4 end conditions of 
iteration calculation is met, optimization has not yet been completed, and Step 5-Step 12 should be repeated. 
If Condition 1 is met, or tend = Tend, the global optimal point has successfully been searched and the iteration 
calculation will be terminated. If any of the other 3 conditions is met, the optimization fails, and it should return 
to Step 1 to start another round of optimization.

From the above fundamental principle of DLGA, it can be found that the essential difference between DLGA 
and GA lies in this fact: without the selection operation in GA, DLGA introduces parameters like an individual’s 
age, life expectancy and reproductive chromosomes. An individual produces reproductive chromosomes during 
its survival, and once its age reaches life expectancy, it will die, thus forming its life cycle. Through the crossover 
operation and mutation operation in GA, each reproductive chromosome will develop a new individual, which 
starts its own life cycle. In this way, each individual in the population can automatically complete the replacement 
of the old with the new in its own life cycle, hence the natural evolution of the population. In short, DLGA can 
reduce human intervention in the process of population evolution, thereby enhancing the population evolution 
speed.

BPNN
BPNN is a typical multi-layer forward artificial neural network, and the following takes single-hidden-layer 
BPNN as an example to give a brief introduction to the principles of BPNN training29.

The training of BPNN includes input information forward-propagation and error information back-
propagation, and the process of the input information forward-propagation can be illustrated as follows:

It is assumed that the neuron quantities of the input layer, hidden layer and output layer of the BPNN are 
respectively n, m and l. Then, with the input of the training sample information into the BPNN, the output 
values of the neurons in the hidden layer and output layer of the BPNN can be respectively calculated by Eq. 9 
and Eq. 10:

	
yj = f

(
n∑

i=1

vijxi − αj

)
� (9)

	
ok = f

(
m∑

j=1

wjkyj − βk

)
� (10)

where vij and wjk are the weights of neurons, αj and βk are the thresholds of neurons, xi is the input information, 
and yj and ok are respectively the output values of the neurons in the hidden layer and output layer. And the 
function f(net) is the activation function of neuron. If the f(net) is a bipolar Sigmoid function, it can be expressed 
by Eq. 11:

	
f (net) = 1 − exp (−net)

1 + exp (−net) � (11)

The process of the error information back-propagation can be demonstrated as follows:
Firstly, the current iteration error information is calculated according to Eq. 12:
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E = 1

2

l∑
k=1

(dk − ok)2� (12)

where E is error information, dk is the expected output value of each neuron in the output layer. Then, the 
corrected values of the weight and threshold of each neuron in the BPNN can be respectively calculated by 
Eq. 13–Eq. 16:

	 ∆wjk = η (dk − ok) ok (1 − ok) yj � (13)

	 ∆βk = η (dk − ok) ok (1 − ok)� (14)

	
∆vij = η

(
l∑

k=1

(dk − ok) ok (1 − ok) wjk

)
yj (1 − yj) xi� (15)

	
∆αj = η

(
l∑

k=1

(dk − ok) ok (1 − ok) wjk

)
yj (1 − yj)� (16)

where η is network training rate.

BPNN optimized by DLGA
Similar to the optimization of BPNN by GA15–18, the optimization of BPNN by DLGA in this paper refers to 
the optimization of the initial weights and thresholds of BPNN by applying DLGA. Since each new individual 
generated by DLGA will give BPNN a complete set of initial weights and thresholds, and call BPNN for 
a complete training and testing process, the population evolution of DLGA is the optimization of the initial 
weights and thresholds of BPNN. When the genetic calculation is completed, the initial weights and thresholds 
corresponding to the optimal individuals are those of BPNN optimization, and the trained and tested BPNN 
corresponding to the optimal individuals is the optimized BPNN (DLGABPNN). The main process of the 
optimization of BPNN by DLGA is presented in Fig. 1 in the following.

APRMPS study based on DLGABPNN-MCS
DLGABPNN-MCS in this paper refers to the MCS that takes the DLGABPNN calculation as repeated sampling 
tests. The process of the APRMPS study based on DLGABPNN-MCS is presented in the following.

	(1)	 Constructing DLGABPNN

 
First, the parameters that can exert a significant effect on the penetration results of metal protective structures 

are selected from the ones discussed in Section “Basic random variables of APRMPS” as basic random variables, 
and δ is taken as random response. After this, the sample points of the basic random variables are extracted and 
called in turn to perform repeated numerical simulations on APRMPS, so as to obtain the 0–1 recognition result 
of δ corresponding to each sample point. With the data being standardized, the standardized sample points 
of the basic random variables are used as the input data, and the 0–1 recognition results of δ are taken as the 
expected output data, thereby constructing the training sample sets and the test sample sets of DLGABPNN. 
Then, with the two types of sample sets, BPNN is optimized by applying DLGA, from which the optimal BPNN, 
or DLGABPNN, is developed for the APRMPS study.

	(2)	 Applying DLGABPNN-MCS in APRMPS study

Firstly, the sample points are randomly selected based on the statistical distribution of basic random variables 
and are standardized to construct the prediction sample sets of APRMPS, which are later used for DLGABPNN-
MCS, so as to quickly find the 0–1 recognition results of δ corresponding to the prediction sample sets. Finally, 
the 0–1 recognition results of δ are statistically analyzed to obtain the estimates of the penetration probabilities 
of metal protective structures.

The technical route shown in Fig. 2 summarizes the operation process of the APRMPS study with LCABPNN-
MCS.

Applied examples
Example 1
This example adopted the anti-penetration tests of the metal targets reported in Reference 20, in which 
the targets were 12  mm-thick plane steel plates, and the fragments were tungsten alloy cubes of a size of 
7.5 mm × 7.5 mm × 7.5 mm, with the measured result of V50 = 821 m/s and shear plugging.

Numerical model
In the repeated numerical simulations of the randomness study, this example took the generalized interpolation 
material point method (GIMPM)30 for its numerical calculation, and applied a numerical calculation program 
based on a self-complied GIMPM program in the Fortran language, to which a self-developed material point 
free outflow boundary condition31 was added, so that the fragments and the plugs could freely go beyond the 
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background grid boundaries. In this way, a numerical model was constructed as shown in Fig. 3, and Tables 1, 
2 and 3 show the deterministic parameter values for the Mie-Grüneisen equation of state, the Johnson–Cook 
plasticity model and the Johnson–Cook failure model of the steel and the tungsten alloy, with a density of 7.85 g/
cm3 and 17.3 g/cm3 respectively.

For the accuracy of the basic random variables selected by the repeated numerical simulations of the 
GIMPM program, and that of the training sample set and the test sample sets of ANNs constructed in the same 
procedures, it is necessary to verify the accuracy of the GIMPM program to simulate the test results of this 
example in advance. Thus, the penetration velocity of the fragments was set at V = V50 ± 10 m/s (i.e. 811 m/s 
and 831 m/s) and the numerical simulation results by the GIMPM program are shown in Fig. 4.

According to Fig. 4, when V = 811 m/s, the fragment failed to penetrate the target and was embedded in it, 
leaving a large depression of the target; when V = 831 m/s, the fragment successfully penetrated the target and 
caused shear plugging. These simulation results are entirely consistent with the test results20. Therefore, the 
GIMPM program is capable of conducting accurate numerical simulations of this example, thus ensuring that 
the basic random variables selected, and the training sample set and the test sample sets of ANNs are accurate, 
meeting the demand from the APRMPS study.

Fig. 1.  Main process of the optimization of BPNN by DLGA.
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Selection of basic random variables
In order to make clear the parameters discussed in Section “Basic random variables of APRMPS”, the APRMPS 
study labeled the density of, and the parameters in the Mie-Grüneisen equation of state, the Johnson–Cook 
plasticity model and the Johnson–Cook failure model of the fragment material (tungsten alloy) respectively 
as ρF 0, γF 0, aF, SF1, SF2, SF3, AF, BF, CF, nF, mF, DF1, DF2, DF3, DF4 and DF5, and labeled the density of, and the 
parameters in the three equations/models of the target material (steel) respectively as ρT 0, γT 0, aT, ST1, ST2, 
ST3, AT, BT, CT, nT, mT, DT1, DT2, DT3, DT4 and DT5. In order to reveal the common and universal aspects of the 
APRMPS study, it was assumed that the 33 parameters were all independent of each other and subject to the 
normal distribution. By changing the values of these 33 parameters one by one and repeating the numerical 
simulation shown in section “Numerical model”, it was found that changing the values of the parameters V, ρF 0, 
AF, ρT 0, γT 0, AT, BT, CT, nT, DT1 and DT2 could change the numerical simulation results. That is, when changing 
the values of these 11 parameters, it can lead the targets to be penetrated under the mean V  of V is 811 m/s, and 
not be penetrated under V  is 831 m/s. Thus it is justified to believe that these 11 parameters exert a significant 
influence on the penetration results of the targets in this study, and to take these 11 parameters as the basic 
random variables of the APRMPS in this example.

Fig. 2.  Technical route to addressing APRMPS with DLGABPNN-MCS.
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APRMPS study
In order to reveal the common and universal aspects of the APRMPS study, it was assumed that the 11 basic 
random variables were all independent of each other and subject to the normal distribution, so the means of 
these basic random variables were their deterministic parameter values as shown in Tables 1, 2 and 3. Then, 
DLGABPNN-MCS was adopted to study APRMPS under the 4 randomness conditions that the values of 
the coefficients of variation (CVs) of these basic random variables were respectively 0.01, 0.03, 0.05 and 0.07. 
Additionally, in the ANN training and testing phases of this example, BPNN and the BPNN optimized by GA 
(GABPNN) worked as the performance comparison objects of DLGABPNN in order to explore the advantages 
of DLGABPNN as a surrogate model for numerical models.

	(1)	 Constructing the training sample set and the test sample set

For the generalization capabilities of DLGABPNN, GABPNN and BPNN, under the randomness conditions 
that the CVs of basic random variables were all 0.1 and that V  = V50 (821 m/s), 2000 sample points were selected 
by applying the Latin Hypercube Sampling, and then underwent the repeated numerical simulations based 
on the GIMPM program discussed in Section “Numerical model” to obtain the 0–1 recognition results of δ 
corresponding to these sample points, so as to construct a 2000-point training sample set for training the 3 
ANNs. Further, in the interval of V50 ± 100 m/s, being gradually increased by 10 m/s each time, each value 
of V  worked as the center, and under the 4 randomness conditions that the values of the CVs of basic random 
variables were respectively 0.01, 0.03, 0.05 and 0.07, 20 sample points were randomly selected for each value of 
V , on which the repeated numerical simulations were conducted for the 0–1 recognition results of δ. Thus, the 

Material D1 D2 D3 D4 D5

Steel 0.05 3.44 -2.12 0.002 1.61

Tungsten alloy 2.0 1.77 -3.4 0.0 0.0

Table 3.  Parameters for the Johnson–Cook failure model in Example 128,34.

 

Material A (MPa) B (MPa) n C m

Steel 1086.0 510.0 0.26 0.014 1.03

Tungsten alloy 1500.0 177.0 0.12 0.016 1.0

Table 2.  Parameters for the Johnson–Cook plasticity model in Example 120.

 

Material γ0 S1 S2 S3 a

Steel 2.17 1.49 0.0 0.0 0.0

Tungsten alloy 1.58 1.44 0.0 0.0 0.0

Table 1.  Parameters for the Mie-Grüneisen equation of state in Example 132,33.

 

Fig. 3.  Numerical model in Example 1.
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Fig. 4.  Numerical simulation results when V = 811 m/s, and V = 831 m/s.
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1680-point test sample set was constructed in order to test the accuracy of the 3 ANNs in predicting the 0–1 
recognition results of δ.

	(2)	 Determining the fitness function

 
This example took Eq. 17 as the fitness function of DLGABPNN and GABPNN.

	 Fi = C3Ri + C4� (17)

where Fi is the fitness of the individual i, Ri is the test accuracy of ANN corresponding to the individual i, both 
C3 and C4 are the coefficients of this equation, and C3 > 0.

In Eq. 17, Fi is proportional to Ri. It ensures that DLGA and GA can optimize BPNN while improving the test 
accuracy of the BPNN, and thus obtain the surrogate model that can accurately predict the penetration results 
of the targets.

	(3)	 Determining the structure of and key parameters for ANNs

 
Since Cotter35 and Castro et al.36 have proven that the 3-layer forward ANNs can solve the majority of the 

nonlinear mapping problems, the DLGABPNN in this example adopted the single hidden-layer ANNs. Besides, 
with 11 basic random variables and an random response (δ) in this example, the quantity of the input-layer 
neurons of DLGABPNN was set to 11; that of the output-layer neurons 1; that of the hidden-layer neurons 15, 
thus constructing an DLGABPNN structure of 11 × 15 × 1. Then, the maximum number of network training 
times Tmax was set to 20,000, the network training rate St 0.05, the allowable error Ea of network training 0.001, 
n1 10, NL 500, NB 10,000, Tend 5, PC 0.8, PM 0.1, and the coefficients C1, C2, C3 and C4 in Eq. 4, Eq. 5 and Eq. 17 
were 0.2, 0.3, 120.0 and -100.0, respectively.

GABPNN had the same structure as DLGABPNN, with the population size Mp being 50 and the maximum 
reproduction generation Gmax being 60. The rest of the parameters were the same as their counterparts in 
DLGABPNN. And BPNN also had the same structure and parameters as DLGABPNN.

	(4)	 Performance comparison between DLGA and GA for BPNN optimization

 
Given the stochastic nature of DLGA and GA in optimizing BPNN, a rigorous comparative analysis was 

conducted for assessing their performances. Specifically, each was used to optimize BPNN in 200 random and 
independent trials. Also, BPNN was trained and tested 200 times randomly and independently as a comparison. 
The test accuracy values and their statistical characteristics of the 3 ANNs are shown in Fig. 5 and Table 4, and 
the serial numbers and statistical characteristics of the optimal individuals in the DLGA and GA populations are 
presented in Fig. 6 and Table 5.

As shown in Fig. 5 and Table 4, the 200 DLGABPNNs and 200 GABPNNs have very close mean test accuracy, 
both of which are significantly higher than the mean test accuracy of the 200 BPNNs. Also, the standard 
deviations of the test accuracy of DLGABPNNs and GABPNNs are similar and markedly lower than those 
of BPNNs. This means that DLGA and GA have comparable optimization effects on BPNN, and that each 
optimization yields the best-performing BPNN, with test accuracy stably around 0.98. In contrast, unoptimized 
BPNNs show substantially lower accuracy and greater variability, reflecting inherent instability and sub-optimal 
generalization.

Fig. 5.  Comparison of the test accuracies of the ANNs in Example 1.
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Figure 6 and Table 5 indicate that the mean serial number of the 200 optimal individuals in DLGA populations 
is smaller than that in GA populations, while the standard deviation of these serial numbers for DLGA is 
comparable to that of GA. This suggests that DLGA generally achieves higher optimization efficiency than GA 
for BPNN, while the stability of its optimization efficiency remains statistically comparable to that of GA.

The comparative analysis of DLGA and GA in optimizing BPNN reveals the following key findings: both 
DLGA and GA demonstrate comparable performance in optimizing BPNN, consistently yielding optimal 
BPNN capable of accurately predicting the 0–1 recognition results of δ for APRMPS; however, DLGA exhibits 
superior optimization efficiency over GA. Thus, it is more reasonable to use DLGA in optimizing BPNN for 
the construction the surrogate model of APRMPS, and subsequent application of DLGABPNN-MCS reliably 
estimates the P’s of targets, meeting the accuracy requirements.

	(5)	 Estimating the P’s of the targets based on DLGABPNN-MCS

 
First, in the interval of V50 ± 300 m/s, being gradually increased by 10 m/s each time, each value of V  worked 

as the center, and under the 4 randomness conditions discussed above, 10,000 sample points were randomly 
selected for each value of V  to construct four 610,000-point prediction sample sets. Then, DLGABPNN-MCS 
was employed to obtain the 0–1 recognition results of δ of the 4 prediction sample sets, so as to obtain the 
estimates of the P’s of the targets corresponding to each value of V  under the 4 randomness conditions. Finally, 
4 relation curves between P and V  (the P-V  curves) are drawn as shown in Fig. 7, on which the data in Table 6 
are based.

Three observations can be obtained from Fig.  7 and Table 6. First, the V 50 of the targets calculated by 
DLGABPNN-MCS under the above 4 randomness conditions is consistently 819 m/s, nearly the same with the 
V50 (821 m/s) measured in the test20. This proves that DLGABPNN-MCS was perfectly accurate in estimating 
the P’s of the targets. Second, the P–V  curves are monotonically increasing curves that converge to 0% and 
100% respectively at the left and right ends. This shows that under the action of basic random variables, when 
V ≤ V 0, P = 0%, and the targets will definitely not be penetrated, that when V ≥ V 100, P = 100%, and the targets 
will certainly be penetrated, and that when V 0 < V < V 100, whether the targets can be penetrated is random, 

Statistical characteristic of serial numbers of optimal individuals Mean Standard deviation

DLGA 942.7750 319.2522

GA 1702.1801 346.5127

Table 5.  The statistical characteristics of the serial numbers of optimal individuals in Example 1.

 

Fig. 6.  Comparison of the serial numbers of optimal individuals in Example 1.

 

Statistical characteristic of test accuracy Mean Standard deviation

DLGABPNN 0.9805 5.9706 × 10–4

GABPNN 0.9797 5.8186 × 10–4

BPNN 0.9392 1.8620 × 10–2

Table 4.  The statistical characteristics of the test accuracy of the ANNs in Example 1.
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with P increasing with V . Last, the larger the CVs of basic random variables, the stronger the randomness of the 
APRMPS, and the smaller the value of V 0 and the larger the value of V 100, which leads to a longer increasing 
interval of [V 0, V 100] of the P–V  curves, where the curves increase more steadily.

Example 2
This example employed the anti-penetration tests of the metal targets reported in Reference 21, in which 
the targets were 15  mm-thick plane aluminum alloy plates, and the fragments were steel cubes of a size of 
10 mm × 10 mm × 8 mm, with the measured result of V50 = 595.3 m/s and shear plugging.

Numerical model
For the repeated numerical simulations of the randomness study, this example adopted the same numerical 
simulation method and program as Example 1, and constructed a numerical model shown in Fig. 8. In addition, 
the steel had a density of 7.85 g/cm3 and the aluminum alloy 2.78 g/cm3. The deterministic parameter values for 
the Mie–Grüneisen equation of state, the Johnson–Cook plasticity model and the Johnson–Cook failure model 
of the latter are shown in Tables 7, 8 and 9, and the deterministic parameter values of the three performance 
equations of steel are the same as those in Example 1 (See Tables 1, 2 and 3).

In order to verify the accuracy of the test results simulated by the GIMPM program, the penetration velocity 
of the fragments was set at V = V50 ± 10 m/s (i.e. 585.3 m/s and 605.3 m/s) and the numerical simulation 
results by the GIMPM program are shown in Fig. 9.

It can be seen from Fig. 9 that when V = 585.3 m/s, the fragment failed to penetrate the target, leaving a 
large depression of the target, and that when V = 605.3 m/s, the fragment successfully penetrated the target and 
caused shear plugging. These results are fully consistent with the test results21. Therefore, the GIMPM program 
is qualified to conduct accurate numerical simulations of this example.

Selection of basic random variables
The density of, and the parameters in the Mie-Grüneisen equation of state, the Johnson–Cook plasticity model 
and the Johnson–Cook failure model of the fragment material (steel) were labeled respectively as ρF 0,γF 0, aF, 
SF1, SF2, SF3, AF, BF, CF, nF, mF, DF1, DF2, DF3, DF4 and DF5, and the density of, and the parameters in the three 
performance equations of the target material (aluminum alloy) were marked respectively as ρT 0, γT 0, aT, ST1, 
ST2, ST3, AT, BT, CT, nT, mT, DT1, DT2, DT3, DT4 and DT5. It was also assumed that the 33 parameters were all 
independent of each other and subject to the normal distribution. By changing the values of these 33 parameters 
one by one and repeating the numerical simulation shown in section “Numerical model”, it was found that 
changing the values of the parameters V, ρF 0, ρT 0, AT, BT, nT, DT1 and DT2 could change the numerical simulation 
results. That is, when changing the values of these 8 parameters, it can lead the targets to be penetrated under the 
mean V  of V is 585.3 m/s, and not be penetrated under V  is 605.3 m/s. Thus it proves that these 8 parameters 

Randomness condition V 0(m/s) V 50(m/s) V 100(m/s)

CV = 0.01 792 819 849

CV = 0.03 741 819 911

CV = 0.05 696 819 975

CV = 0.07 652 819 1048

Table 6.  V 0, V 50 and V 100 of the targets under the 4 randomness conditions in Example 1.

 

Fig. 7.  P-V  curves in Example 1.

 

Scientific Reports |        (2025) 15:16506 13| https://doi.org/10.1038/s41598-025-00174-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


exert a significant influence on the penetration results of the targets in this study, so these 8 parameters were 
taken as the basic random variables of the APRMPS in this example.

APRMPS study
It was also assumed that the 8 basic random variables were all independent of each other and subject to the 
normal distribution, so the means of these basic random variables were their deterministic parameter values. 
And DLGABPNN-MCS was also employed to study the APRMPS under the 4 randomness conditions that the 
values of the CVs of these basic random variables were respectively 0.02, 0.04, 0.06 and 0.08. Like Example 1, 
in the ANN training and testing phases, BPNN and GABPNN worked as the performance comparison objects 
of DLGABPNN in order to discuss the advantages of DLGABPNN as a surrogate model for numerical models.

	(1)	 Constructing the training sample set and the test sample sets

 
First, under the randomness conditions that the CVs of basic random variables were all 0.1 and that 

V  = V50 (595.3  m/s), 2000 sample points were withdrawn by applying the Latin Hypercube Sampling, and 
then underwent the repeated numerical simulations for the 0–1 recognition results of δ, so as to construct a 
2000-point training sample set for training the 3 ANNs. Then, in the interval of V50 ± 100 m/s, being gradually 
increased by 10 m/s each time, each value of V  worked as the center, and under the 4 randomness conditions 
that the values of the CVs of basic random variables were respectively 0.02, 0.04, 0.06 and 0.08, 20 sample points 
were randomly selected for each value of V , on which the repeated numerical simulations were conducted 
for the 0–1 recognition results of δ. Thus, the 1680-point test sample set was constructed in order to test the 
accuracy of the 3 ANNs in predicting the 0–1 recognition results of δ.

Material D1 D2 D3 D4 D5

Aluminum alloy 0.13 0.13 − 1.5 0.011 0.0

Table 9.  Parameters for the Johnson–Cook failure model in Example 237.

 

Material A (MPa) B (MPa) n C m

Aluminum alloy 369.0 684.0 0.73 0.0083 1.7

Table 8.  Parameters for the Johnson–Cook plasticity model in Example 237.

 

Material γ0 S1 S2 S3 a

Aluminum alloy 2.0 1.338 0.0 0.0 0.0

Table 7.  Parameters for the Mie–Grüneisen equation of state in Example 237.

 

Fig. 8.  Numerical model in Example 2.
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Fig. 9.  Numerical simulation results when V = 585.3 m/s, and V = 605.3 m/s.
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	(2)	 Determining the fitness function

 
This example also took Eq. 17 as the fitness function of DLGABPNN and GABPNN.

	(3)	 Determining the structure of and key parameters for ANNs

 
DLGABPNN, GABPNN and BPNN in this example adopted the single hidden-layer ANNs. Besides, with 8 

basic random variables and an random response (δ) in this example, the quantities of the input-layer neurons 
of the 3 ANNs were set to 8; those of the output-layer neurons 1; those of the hidden-layer neurons 15, thus 
constructing the 3 ANNs with a structure of 8 × 15 × 1. Then, the parameters of the ANNs in this example were 
the same as their counterparts in Example 1.

	(4)	 Performance comparison between DLGA and GA for BPNN optimization

 
A comparative analysis of DLGA and GA in optimizing BPNN was also conducted for assessing their 

performances. Similarly, each was used to optimize BPNN in 200 random and independent trials. Also, BPNN 
was trained and tested 200 times randomly and independently as a comparison. The test accuracy values and 
their statistical characteristics of the 3 ANNs are shown in Fig. 10 and Table 10, and the serial numbers and 
statistical characteristics of the optimal individuals in the DLGA and GA populations are presented in Fig. 11 
and Table 11.

From Fig. 10 and Table 10, it can be seen that the 200 DLGABPNNs and 200 GABPNNs have very close mean 
test accuracy, both of which are significantly higher than the mean test accuracy of the 200 BPNNs. Also, the 
standard deviations of the test accuracy of DLGABPNNs and GABPNNs are similar and markedly lower than 
those of BPNNs. This means that DLGA and GA have comparable optimization effects on BPNN, and that each 
optimization yields the best-performing BPNN, with test accuracy stably around 0.97. In contrast, unoptimized 
BPNNs show substantially lower accuracy and greater variability, resulting in low and highly random test 
accuracy each time.

Figure 11 and Table 11 show that the mean of the serial numbers of the 200 optimal individuals of DLGA is 
smaller than that of GA, and the standard deviation of these serial numbers of the optimal individuals of DLGA 
is also smaller than that of GA. This means that DLGA generally achieves higher and more stable optimization 
efficiency than GA for BPNN.

The comparison above indicates that both DLGA and GA demonstrate comparable performance in optimizing 
BPNN, consistently yielding optimal BPNN capable of accurately predicting the 0–1 recognition results of δ for 
APRMPS, with DLGA exhibiting superior optimization efficiency over GA. Therefore, it is more reasonable 

Statistical characteristic of test accuracy Mean Standard Deviation

DLGABPNN 0.9711 8.2253 × 10–4

GABPNN 0.9702 6.3276 × 10–4

BPNN 0.9362 1.8001 × 10–2

Table 10.  The statistical characteristics of the test accuracy of the ANNs in Example 2.

 

Fig. 10.  Comparison of the test accuracy of the ANNs in Example 2.
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to use DLGA in optimizing BPNN for the construction the surrogate model of APRMPS, and subsequent 
application of DLGABPNN-MCS reliably estimates the P’s of targets, meeting the accuracy requirements.

	(5)	 Estimating the P’s of the targets based on DLGABPNN-MCS

 
First, in the interval of V50 ± 300 m/s, being gradually increased by 10 m/s each time, each value of V  worked 

as the center, and under the 4 randomness conditions discussed above, 10,000 sample points are randomly 
selected for each value of V  to construct four 610,000-point prediction sample sets. Then, DLGABPNN-MCS 
was employed to obtain the 0–1 recognition results of δ of the 4 prediction sample sets, so as to obtain the 
estimates of the P’s of the targets corresponding to each value of V  under the 4 randomness conditions. Finally, 
4 P-V  curves are drawn in Fig. 12, on which the data in Table 12 are based.

Figure 12 and Table 12 lead to three conclusions similar to those of Fig. 7 and Table 6 in Example 1. First, 
the V 50 of the targets calculated by DLGABPNN-MCS under the above 4 randomness conditions is consistently 
597 m/s, nearly the same with the V50 (595.3 m/s) measured in the test21, which proves that DLGABPNN-MCS 

Fig. 12.  P-V  curves in Example 2.

 

Statistical characteristic of serial numbers of optimal individuals Mean Standard deviation

DLGA 503.4100 174.5481

GA 1150.6200 267.6031

Table 11.  The statistical characteristics of the serial numbers of optimal individuals in Example 2.

 

Fig. 11.  Comparison of the serial numbers of optimal individuals in Example 2.
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was perfectly accurate in estimating the P’s of the targets. Second, the P–V  curves are monotonically increasing 
curves that converge to 0% and 100% respectively at both ends. The last conclusion is that the larger CVs of basic 
random variables the longer increasing interval of [V 0, V 100] of the P–V  curves.

Discussion
This paper contributes 2 primary innovations. First, it analyzes APRMPS and systematically investigates its 
potential candidates for basic random variables, introducing δ as the random response of APRMPS. Second, 
it proposes DLGA by improving GA, and presents the main process of optimizing BPNN using DLGA and 
the technical route to addressing APRMPS with DLGABPNN-MCS. By applying this method, the penetration 
probabilities of metal protective structures under the action of basic random variables can be obtained.

However, 3 aspects of this paper still need improvement in future study. First, the randomness of parameters 
in the Mie-Grüneisen equation of state, the Johnson–Cook plasticity model, and the Johnson–Cook failure 
model for metallic materials requires extensive experimental validation. Future studies may conduct systematic 
experiments by employing Bayesian sampling to quantify statistical distributions of these parameters for the 
three equations and to investigate their impact on the stochasticity of metallic material dynamics. Second, this 
paper focuses on the anti-penetration randomness of single metallic structures under fragment impact, while 
composite material structures are also commonly used in armor protection in engineering. Thus, it is necessary 
to further investigate the anti-penetration randomness of composite material structures in future research. 
Third, this paper proposes DLGA based on the improvement of GA and applies it to optimize BPNN for the 
surrogate model, while emerging artificial intelligence and machine learning offer promising alternatives, as 
suggested in References5–11. Therefore, future studies will explore other state-of-the-art ANNs as surrogate 
models to investigate engineering problems such as the anti-penetration randomness of protective structures 
and structural health monitoring.

Conclusion
It is necessary to extend the anti-penetration of metal protective structures to APRMPS and to apply ANN-MCS 
in the APRMPS study for the penetration probabilities of metal protective structures under the action of basic 
random variables. From the density of, and the parameters for the Mie-Grüneisen equation of state, the Johnson–
Cook plasticity model and the Johnson–Cook failure model of the materials of the metal protective structures 
and the fragments, this method also selects the parameters exerting significant effects on the penetration results 
of metal protective structures as the basic random variables of APRMPS. It takes δ, which represents whether 
metal protective structures are penetrated, as the random response of APRMPS.

Moreover, DLGA proposed in this paper removes the selection operation and constructs the life cycles of 
individuals, in which each individual automatically follows its development and reproduction, so as to reduce the 
human intervention and ensure the natural evolution of the population, hence a higher optimization efficiency 
of DLGA, compared to GA. Also, this paper presents the main processes of the optimization of BPNN by DLGA 
and the technical route of DLGABPNN-MCS to addressing APRMPS, demonstrates the specific procedures 
for this method in the two applied examples of the anti-penetration randomness of metal targets, proves the 
higher efficiency of DLGA than GA in optimizing BPNN, and verifies the effectiveness of DLGABPNN-MCS in 
studying APRMPS.

In addition, Like GA, DLGA is also a universal heuristic algorithm for resolving various optimization 
problems, including optimizing ANNs, it is advisable to extend its application in follow-up study for the 
exploration of other optimization problems. Besides, since this is the debut of DLGA, there is still much room for 
the improvement of the technical details, such as life expectancy function, reproductive chromosome quantity 
function and specific procedures of DLGA.

Furthermore, future studies should conduct in-depth research into the randomness of parameters in the 
Mie–Grüneisen equation of state, the Johnson–Cook plasticity model and the Johnson–Cook failure model 
to uncover their statistical patterns and impacts on the stochastic dynamic behavior of these materials. It is 
also essential to explore the anti-penetration randomness of composite material protective structures and other 
complex structures. Additionally, more advanced ANNs should be employed as surrogate models to investigate 
engineering problems such as the anti-penetration randomness of protective structures and structural health 
monitoring.

Data availability
The datasets used and analysed during the current study available from the corresponding authors on reasonable 
request.

Randomness condition V 0  (m/s) V 50  (m/s) V 100  (m/s)

CV = 0.02 557 597 640

CV = 0.04 526 597 682

CV = 0.06 495 597 737

CV = 0.08 465 597 794

Table 12.  V 0, V 50 and V 100 of the targets under the 4 randomness conditions in Example 2.
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