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SpectroFusionNet a CNN approach
utilizing spectrogram fusion for
electric guitar play recognition
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Rakesh Thoppaen Suresh Babu?

Music, a universal language and cultural cornerstone, continues to shape and enhance human
expression and connection across diverse societies. This study introduces SpectroFusionNet, a
comprehensive deep learning framework for the automated recognition of electric guitar playing
techniques. The proposed approach first extracts various spectrograms, including Mel-Frequency
Cepstral Coefficients (MFCC), Continuous Wavelet Transform (CWT), and Gammatone spectrograms,
to capture the intricate audio features. These spectrograms are then individually processed using
lightweight models (MobileNetV2, InceptionV3, ResNet50) to extract discriminative features

of different guitar sounds, with ResNet50 yielding better performance. To further enhance the
classification performance across nine distinct guitar sound classes, two types of fusion strategies
are adopted to provide rich feature representation: One is early fusion where the spectrograms

are combined before the feature extraction and the other one is late fusion approach where the
independent features from spectrograms are concatenated via three approaches: weighted averaging,
max-voting and simple concatenation. Then, the fused features are subsequently fed into nine
machine learning classifiers, including Support Vector Machine (SVM), Multilayer Perceptron (MLP),
Logistic Regression, Random Forest etc., for final classification. Experimental results demonstrate
that MFCC-Gammatone late fusion provided the best classification performance, achieving 99.12%
accuracy, 100% precision, and 100% recall across 9 distinct guitar sound classes. To further assess the
SpectroFusionNet's generalization ability, real-time audio dataset is evaluated, demonstrating an
accuracy of 70.9%, indicating its applicability in real world scenarios.

Keywords Guitar play recognition, Spectrogram fusion, ML classifiers, Lightweight deep learning, Real-time
audio processing

Music stands as an enduring cornerstone of human culture, serving as a universal language of expression
that spans across time and place. From the earliest forms of vocalizations and simple instruments to complex
compositions, music has woven itself into the fabric of society, entertaining, uniting, and enlightening
communities worldwide'. The electric guitar has revolutionized music, particularly in rock, blues, and jazz
genres, with its electrifying sound. Guitar playing encompasses a variety of techniques, each adding its unique
flavor to the music. Techniques such as fingerpicking, strumming, hammer-ons, pull-offs, bending strings,
slides, tapping, and palm muting contribute to the diverse palette of sounds and styles found in the world of
guitar playing. In modern musical analysis, there’s a pressing need to go beyond mere pitch and onset detection.
Particularly in guitar performances, nuances like pull-offs, hammer-ons, and bending techniques offer invaluable
insights for both transcription accuracy and instructional purposes. By delving into these subtleties, novice
players can grasp and master their craft better?.

In the realm of guitar transcription, various methods have been employed over time to capture the intricate
details of guitar performances. Traditionally, manual transcription methods have prevailed, involving skilled
musicians transcribing music by ear or visually observing performances. Tablature notation has been particularly
instrumental, representing guitar music graphically by assigning numbers to indicate frets on each string.
Similarly, standard notation, although less effective in capturing nuances, has provided a standardized format
for representing guitar music. Nonetheless, for solo guitar performances, detailed note-by-note transcription,
including the playing techniques associated with each note, is crucial. The sequence of notes forms the melody,
while techniques like bends and vibrato influence the guitar performance’s expression?. Accurate transcription of
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these elements is essential for capturing the full essence of a guitar performance. Manual transcription requires
significant musical training and time investment. Although automated services are not flawless, they greatly
simplify the process for music enthusiasts and novice guitar players. These tools facilitate understanding and
enjoyment of music, contributing to its educational, recreational, and cultural value.

In recent years, advancements in technology have led to the development of modern techniques for guitar
transcription that go beyond traditional methods. Automatic transcription software now utilizes sophisticated
algorithms and machine learning models to analyse audio recordings and generate accurate transcriptions,
including detailed playing techniques. Signal processing techniques, such as spectral analysis and feature
extraction, help identify specific guitar techniques like hammer-ons, pull-offs, and string bends. Additionally,
interactive learning platforms and apps use real-time audio recognition to provide instant feedback on playing
accuracy and technique. These systems adapt in real-time, incorporating user feedback to refine predictions
dynamically’. With the growing demand for lightweight architectures in guitar transcription applications, pre-
trained models have gained traction due to their computational efficiency and effectiveness in feature extraction
from various spectrograms. Feature fusion, in particular, has emerged as a promising approach to combine
complementary information from different spectrogram modalities, enhancing transcription accuracy. In
our proposed work, spectrograms of audio files, specifically Mel-Frequency Cepstral Coefficients (MFCC),
gammatone, and Continuous Wavelet Transform (CWT), are processed through pre-trained models such as
MobileNetV2, ResNet50 and InceptionV3.

In this work, we introduce SpectroFusionNet, a novel framework for electric guitar technique recognition,
leveraging an innovative approach to spectrogram fusion. To the best of our knowledge, combining early and
late fusion of spectrogram features has not been previously explored. By incorporating spectrogram types
like Gammatone and CWT alongside MFCC, our framework captures unique audio features that enrich the
representation of guitar sounds. We further enhance classification performance through advanced fusion
strategies, utilizing both early and late fusion methods. Lightweight models are employed to achieve high
classification accuracy while avoiding the need for computationally intensive architectures, with ResNet50
demonstrating optimal feature extraction capabilities. The proposed methodology is validated using real-world
data under non-ideal recording conditions, outperforming current state-of-the-art approaches without relying
on computationally expensive deep learning models. Thus, to summarize, the key contributions of proposed
approach is as follows:

o Pairwise Fusion Strategy: Unlike conventional ensemble methods, this paper proposes early and late fusion
strategies for combining features extracted from different spectrogram types (MFCC, Gammatone, CWT).
This novel combination allows the system to leverage complementary information from diverse spectrogram
representations.

o Late Fusion Optimization: Among late fusion techniques, this work explores max voting, weighted averaging,
and concatenation, identifying max voting as the most effective. Such detailed analysis across multiple fusion
strategies is limited in prior work.

o Real-Time Testing Workflow: This work emphasizes the practical applicability of the system by validating it on
real-time audio samples, tailored for real-time scenarios. This ensures that the proposed system is not only
theoretical but also deployable in real-world applications.

Related works

Numerous methods have been explored for recognizing guitar playing techniques. For instance®, describes a two-
stage framework for analyzing electric guitar solos without accompaniment. The first stage uses the MELODIA
tool to identify melody contours, while the second stage detects playing techniques via a pre-trained classifier
using timbre, MFCC, and pitch features. This method, tested on 42 guitar solos, achieved a best average F-score
of 74% in two-fold cross-validation. Another approach in® focuses on the automatic transcription of isolated
polyphonic guitar recordings, extracting parameters like note onset, pitch, and playing styles. Using a robust
partial tracking algorithm with plausibility filtering, it achieved high accuracy in several tasks: 98% for onset
and offset detection, 98% for multipitch estimation, 82% for string number estimation, 93% for plucking style
estimation, and 83% for expression style estimation. Additionally’, explores the classification of electric guitar
playing techniques using features from the magnitude spectrum, cepstrum, and phase derivatives. Evaluating
6,580 clips and 11,928 notes, it found that sparse coding of logarithm cepstrum, group-delay function (GDF),
and instantaneous frequency deviation (IFD) resulted in the highest average F-score of 71.7%.

Modern advancements have introduced deep learning solutions and architectures for guitar effect
classification and parameter estimation. In®, convolutional neural networks (CNNs) were applied to classify
and estimate parameters for 13 different guitar effects, including overdrive, distortion, and fuzz. A novel dataset
was created, consisting of monophonic and polyphonic samples with discrete or continuous settings, totalling
around 250 h of processed samples.

The study achieved over 80% classification accuracy, revealing similarities in timbre and circuit design among
effects. Parameter estimation errors were generally below 0.05 for values ranging from 0.0 to 1.0. In another
study®, CNNs were employed to generate guitar tabs from audio recordings using the constant-Q transform.
This method accurately extracted chord sequences and notes from solo guitar recordings, achieving an 88.7%
accuracy. The study introduced GUITARSET, a dataset with detailed annotations of acoustic guitar recordings,
including string positions, chords, beats, and playing style in JAMS format.

Further, recent developments in signal processing have seen the emergence of pre-trained models for transfer
learning, as demonstrated in'’. It presents a comprehensive study comparing the performance of nine widely
used pre-trained CNN models and a custom-designed CNN model for crop disease detection. The pre-trained
models include EfficientNetB4, EfficientNetB3, InceptionResNetV2, Xception, DenseNet201, ResNetl52,
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ResNet50, MobileNetV2, and VGG16. The results showed that the pre-trained models generally outperformed
the custom CNN in terms of accuracy and F1-score, with models like EfficientNetB4, ResNet152, and Xception
achieving exceptional results. In summary, various CNN frameworks have been proposed in the literature for
guitar play recognition and some of them have been elaborated in Table 1.

Various approaches to feature fusion have also emerged, including early, late, and hybrid fusion techniques.
In early fusion, as demonstrated in!!, combining raw waveform signals and spectrograms via vector stitching
enhances spoofed speech detection by improving classification accuracy while reducing model parameters. This
method also emphasizes the importance of analysing high-frequency waveform components and harmonic
features in spectrograms using SHAP analysis. Late fusion, as shown in'2, applies a multi-modal framework
using separate classifiers for different features (such as MFCC and spectrograms) before combining the results,
achieving an 86.13% accuracy in depression detection. The model integrates MFCC features with a residual-
based deep Spectro-CNN architecture, further refining the classification output. The hybrid approach, as detailed
in!%, employs both feature-level and decision-level fusion, integrating visible and infrared images with speech
features, resulting in a robust automatic emotion recognition (AER) framework with an accuracy of 86.36%. The
two-layer architecture combines the strength of different modalities, enabling light-invariant emotion detection
in real-world environments.

Additionally, other methods for guitar play recognition have been explored, such as motion capture and
note frequency recognition, as described in'%. This approach combines finger motion capture with note
frequency recognition to provide comprehensive feedback on a guitarist’s performance. After testing a number
of classification methods for hand position classification, the random forest algorithm produced the best results,
with an average classification accuracy of 97.5% for each finger and 99% accuracy for overall hand movement.
For note recognition, the harmonic product spectrum (HPS) method achieved the highest accuracy at 95%.
Another study'® introduces a multimodal dataset for recognizing electric guitar playing techniques. This dataset
comprises 549 video samples in MP4 format and corresponding audio samples in WAV format, encompassing
nine distinct electric guitar techniques. These samples were generated by a recruited guitarist using a smartphone
device. This dataset forms the basis for the subsequent analysis in our research.

Methodology

Feature extraction using spectrogram analysis

Feature extraction is a crucial step in audio analysis, and spectrograms like Mel-Frequency Cepstral Coefficients,
Continuous Wavelet Transform, and Gammatone are specifically chosen for their ability to capture detailed
and nuanced representations of audio signals!®~!%. Unlike prosodic or acoustic features, which may not fully
encapsulate the intricacy and variability of musical performances, these spectrograms provide comprehensive
time-frequency representations. This allows for a more precise analysis of the intricate timbral characteristics
and playing techniques of the guitar, leading to enhanced accuracy and reliability in automated recognition
systems.

MFCC

Mel Frequency Cepstral Coeflicients (MFCC) spectrograms capture the power spectrum of audio signals by
mimicking the human ear’s sensitivity to different frequencies, making them particularly effective for music
analysis'>?’. This attribute is especially suited for guitar play recognition, as it accurately represents the
instrument’s timbral characteristics. MFCCs efficiently distinguish subtle nuances and patterns in guitar playing
styles, and their robustness to noise and variations significantly enhances recognition performance. To extract

Performance measure
in terms of accuracy | Guitar
Refs. Year | AI model Classes (%) database
- . Plucking styles—fingerstyle, picked and muted .
Sthzﬁlgnan Kehling 2014 | Novel algorithm Expression styles—bending, slide, vibrato, harmonics, 96% g:t::i
’ and dead notes
. 7 Normal, hammer-on, pull-off, sliding, bending, vibrato, o Private
LiSuetal. 2014 | SC+SG and SC+{CL, GDE, IFD} muting 71.70% Dataset
. . . Studio On
Z;Hallc 7e nt Lostanlen 2018 if:ttrtiecrllrgr:ia;mfmm and supervised 16 musical instruments with their playing techniques 61.00% Line (SOL)
’ & dataset
. Deep Salience multiple f0 estimation JAMS file contains annotations such as tempo, key,
Q. Xi’ 2018 al oIrJithm 12 instructed chords, performed chords and note level 46% Guitar Set
8 transcriptions
SetNet 40.30%
MultiNet 40.88% B‘ast‘::etf
Ie‘fj%o Comunita 2021 | FxNet + SetNetCond 13 overdrive, distortion, and fuzz plugins. 57.30%
FxNet(Monocontinuous dataset) 90.09% Continuous
FxNet(Polycontinuous dataset) 91.40% Dataset
; SVM Alternate picking, hammer-on, pull-off, slide, bend., 84.20% Guitar style
— 8 8 s 8 ,
Alexandros Mitsou” | 2024 CNN vibrato, legato, tapping, sweep picking 81.10% Dataset

Table 1. Overview of the state-of-the-art research for guitar play recognition.
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MFCC from an audio signal « (t), the audio frames are converted into overlapping frames z,, followed by
computing the Fourier transform to obtain the power spectrum for each frame. This spectrum is then passed
through a series of Mel-scaled triangular filter banks, which map the frequencies f to the Mel scale Fiser, to
better align with human auditory perception as described in Eq. (1).

Frer (f) = 2595.log10 (1 + %) (1)

Finally, Discrete Cosine Transform (DCT) (represented in Eq. (2)) is applied to the log Mel-filtered values
log (M [m]), to decorrelate and reduce dimensionality, producing a compact set of coeflicients known as
MFCCs.

MFCC[n]= Y N }log(M [m]).cos (W) o

where 7 indexes the cepstral coefficients, M is the number of Mel filters and M [m)] is the Mel Spectrum.

CWT

Continuous Wavelet Transform (CWT) spectrograms?! depict how audio signals evolve across different
frequencies and time intervals, providing a detailed multi-resolution view essential for music analysis. This feature
accurately captures the instrument’s varied timbral nuances and transient dynamics, crucial for distinguishing
playing techniques and styles. CWT spectrograms excel in identifying subtle variations in pitch, timbre, and
dynamics inherent to guitar performances, enhancing the accuracy and reliability of automated recognition
systems in diverse audio contexts. In this study, we utilize the Morlet wavelet function for the CWT due to its
effective time-frequency localization. The Morlet wavelet ¢ (t) described in Eq. (3) is given as,

—t2

o t)=m £ ejwot.eT 3)

where wg is the central frequency of the wavelet, (typically set to 6 in this work) for a balance between time and
frequency resolution. The Continuous Wavelet Transform of an audio signal z (¢) is computed as,

CWT, (a,b) = %/:x(tm* (%) dt @)

In Eq. (4), a represents the scale parameter, controlling the wavelet’s frequency, b represents translation factor,

o (ﬂ) is the scaled Morlet transform, and % is a normalization factor.

a

Gammatone
A Gammatone spectrogram analyses audio signal using a series of bandpass filters that mimic the human
auditory system’s response, providing a representation of the signal’s frequency components®%.

This approach is ideal as it closely mirrors the ear’s sensitivity to different frequencies and helps in accurately
representing the instrument’s timbral characteristics. The Gammatone spectrogram’s ability to analyse signals in
amanner akin to human perception enables it to distinguish subtle nuances in guitar playing styles. Gammatone
filter bank is employed due to its effectiveness in capturing the intricate details of musical performances,
enhancing the accuracy of automated recognition systems. The Gammatone filter in time domain g (t), is
defined in Eq. (5).

g(t) =t""te > Peos (2m ft+ @) (5)

where n is the filter order, b is the bandwidth of the filter, @ denotes the phase and f represents the center
frequency of the filter. Figure 1 shows the nine classes of guitar sounds and the corresponding spectrograms.
From Fig. 1, it is understood that the spectrograms provide rich detailed information which will be very useful
for analysing the key patterns of different guitar sounds.

Baseline model selection
Selecting an appropriate baseline model is crucial for developing an efficient and effective system for recognizing
electric guitar playing techniques. The choice of baseline models impacts both the accuracy and the computational
efficiency of the system, particularly when considering deployment in real-life applications where resources
may be limited. These models were chosen for their balance of speed, accuracy, and efficiency, making them
ideal for real-time music applications. Compared to heavier CNN models like VGG16, ImageNet and AlexNet,
the chosen models (highlighted in Bold) have significantly fewer trainable parameters, which is illustrated in
Table 2. This reduction in parameters not only decreases the computational cost but also enhances the feasibility
of deploying these models in practical scenarios, such as mobile or embedded systems.

So, in this study, MobileNetV2, InceptionV3 and ResNet50 are selected as our baseline models due to their
lightweight architecture and proven performance in various computer vision and audio analysis tasks.
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Fig. 1. Guitar sounds and their spectrograms. (c1) Nine classes of guitar sounds (c2) MFCC Spectrograms (c3)
CWT Spectrograms (c4) Gammatone Spectrograms.
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Model Trainable parameters (in millions)
MobileNetv2 | 3.4
InceptionV3 | 24
ResNet50 26

ImageNet 60
AlexNet 62.3
VGG16 138

Table 2. Number of trainable parameters of CNN models.
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Fig. 2. MobileNetV2 architecture.

MobileNetV2

MobileNetV2% s a lightweight and efficient CNN architecture specifically designed for mobile and embedded
vision applications. It incorporates an inverted residual structure and linear bottlenecks, along with depth-wise
separable convolutions, which together optimize both speed and accuracy (displayed in Fig. 2). As a result, this
architecture is particularly well-suited for real-time processing of audio features extracted from guitar sounds.
Let X (¢,7,m) represents the input spectrogram in the m-th channel having pixel coordinates at (z, )
and F', (m,n) denotes the 1 x 1 point wise filter Then, the output feature map Y, (¢, j, n)for the m-th
channel by performing point-wise convolution is defined as,

Yo (in) = Y W2 X (i,5,m) Fy (m, n) (©6)
Now, the depth wise convolution Yy (7, j, m) which is another critical component is defined by Eq. (6).
Ya(iogom) =Y 050 > 250 Ve (i+u,j +v,m) Fa (u,0,m) )

where N denotes the size of the filter. In this paper, [V is fixed to 3. To preserve the rich feature information with
reduced information loss, inverted residual block with linear bottleneck is used. It is described by,

IRB = X + PW (DS (PW (T (X)))) (8)

where T is the expansion factor, PW is pointwise convolution, and DS is depth-wise convolution Finally, the
extracted features are mapped using the fully connected layer with the final class predictions as given in Eq. (8).

Z=FC(IRB(... IRB(IRB(C1(X)))...)) ©)
where C'1 is the initial convolution layer.

InceptionV3

InceptionV3 is a deep CNN architecture (shown in Fig. 3) notorious for its high performance and efficiency.
It employs a combination of factorized convolutions and aggressive regularization to achieve high accuracy
with fewer parameters®*. InceptionV3 can be utilized to analyse and classify complex audio features extracted
from guitar sounds. Its depth and architectural innovations allow it to capture intricate patterns in the audio
data, making it well-suited for tasks such as recognizing chords, notes, and playing styles with high precision.
Inception Module ( I M), a core component of InceptionV3 architecture applies various convolution filters and
pooling operations in parallel on the input spectrogram X to capture the information at multiple scales.
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Fig. 3. InceptionV3 architecture.

IM = Concat (Branchl (X), Branch2 (X), Branch3 (X), Branch4 (X)) (10)

In Eq. (9), each branch applies different convolution operations (1 x 1, 3 x 3, 5 x 5, etc.) and pooling
operations. An Auxiliary Classifier, used to improve training with an auxiliary loss is given in Eq. (10).

Auziliary Loss = Softmax (FC (GAP (Conv (IM (X))))) (11)

where G AP is global average pooling, and F'C'is the fully connected layer. Finally, the overall architecture of
InceptionV3, integrating multiple Inception modules, is described in Eq. (11).

InceptionV3(X) = Softmax (FC (GAP (... IM (... IM (X))...))) (12)
This design makes InceptionV3 a valuable tool for precise, real-time music analysis and interactive applications.

ResNet50

ResNet50, a deep CNN model shown in Fig. 4 applies the concept of residual learning to mitigate the effect
of vanishing gradient problem?®. To enhance the feature extraction capability, this model stacks 50 layers
with the residual blocks to learn residual mappings. Each residual block ( RB) consists of convolution layers
(1 x 1, 3 x 3)and shortcut connections to extract the deeper details at various scales. The final classification
output ResNet50 (X) is described by,

ResNet50 (X) = Softmax (FC (GAP (... RB(... RB(X))...))) (13)

where G AP is global average pooling reduces the feature dimensions and F'C'is the fully connected layer used
in combination with Softmax for final classification.

Proposed spectrofusionnet

The flow diagram of the SpectroFusionNet is shown in Fig. 5. Firstly, the raw audio signal z (¢) is processed to
obtain different type of spectrograms-MFCC, Continuous Wavelet Transform (CWT), and Gammatone which
serves as input to the CNN models.

Let the spectrograms be denoted as Sis, Sc, Sg. Now, two types of fusion strategies are introduced,
one is Early fusion Feqriy and the other one is late fusion Fia¢e. In the first approach, the spectrograms
are initially pairwise combined {Si + Sc,Sc + Sa, Sa + Sm} to produce a fused spectrogram
Stused,p where p € {1,2,3} represents the three pairwise combinations. Each pair of spectrograms Sfused,p
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Fig. 4. ResNet50 architecture.

is processed through lightweight models M; where j € {MobileNetV2, InceptionV3, ResNet50} to obtain the
feature vectors as described in Eq. (13).

Feale,p - M] (Sfused,p) (14)

For each model, three sets of fused vectors will be obtained. Now, the feature vectors Feqriy,p are passed to
various machine learning classifiers C}, where k is one of the classifiers (as described in Sect. 3.3) for final
classification of guitar sounds.

outy = Ck (Feu,'rly,p) (15)

In the late fusion approach, initially the feature vectors Fj ar, Fj,c, Fj,c of each spectrogram Sir, Sc, Sa
is obtained and then the features are fused via three strategies, Weighted Averaging, Max-voting and Simple
concatenation®. These strategies are described in Eq. (15)-Eq. (17).

Eate,wavg = Z i€ {Sp,Sc, SG}wiFj,’i (16)

Equation (15) linearly combines each spectrogram with predefined weights while ensuring the sum of weights is
equalto 1 (Y w; = 1). To extract the dominant features, the maximum value from corresponding dimensions
of each feature vector across the spectrograms is selected via the maximum voting strategy. It is given as,

Flate,maz = Imnax (FjJWv Fj,C; Fj»G) (17)

In order to create a comprehensive feature vector, the third fusion strategy (as given in Eq. (17)) simply
concatenates the features of all spectrograms before the final classification.

Eata,concat = concat (Fj,]\/I, Fj,C, Fj G) (18)

Once the fused features are obtained, these features are subsequently fed into machine learning classifiers for
classification of guitar play sounds.

ML classifiers

For classifying guitar playing techniques, this paper employs a diverse set of machine learning classifiers, each
with unique strengths?”-?°. Random Forest leverages an ensemble of decision trees to improve prediction
accuracy and control overfitting by averaging multiple trees. Support Vector Machine (SVM) and Linear
SVM are powerful for their ability to find the optimal hyperplane in high-dimensional space for classification.
k-Nearest Neighbours (k-NN) is a straightforward algorithm that classifies samples based on the majority vote
of their k-nearest neighbours, making it intuitive for multi-class classification. Logistic Regression models the
probability of a discrete outcome and is particularly effective for binary and multi-class classification problems.
Naive Bayes applies Bayes theorem with robust independence assumptions between features, often used for its
simplicity and efficiency. Multi-layer Perceptron (MLP), a type of artificial neural network, excels in learning

Scientific Reports|  (2025) 15:16842 | https://doi.org/10.1038/s41598-025-00287-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

INPUT : Audio Wave
i Gammatone
»|{ Spectrogram

EARLY FUSION ‘ LATE FUSION
...................................... S S —
MFCC CWT Gammatone ‘ MFCC CWT Gammatone
Spectrogram Spectrogram Spectrogram ' i P Tel

LTJLTJEE lll

! | ) !
[ Flatten J

Feature Extraction

Pre-Trained Model

Data
Splitting

Sweep picking
(Tapping Vibrato

: Random SVM

H Forest

E Hyperparameter Tuning )

- : KNN Luee e

Classification i Regression

: Qf:“lf:lgz [ MLP }Q——»[Linear SVM]

: 5 Performance Evaluation

s . [ Decision —b[Naive Bayes]

H Tree

: (Alternate Picking Gradient Adabooat

: Bend Booster

] Hammer on

H Legato

: Pull off

s Slide

S G e e e e S T e S S e S S S T e S R S A G e S e A SR T e e R S H

Fig. 5. Flow diagram of proposed SpectroFusionNet.

intricate patterns through its layered architecture. Logistic Model Trees (LMT) combine logistic regression and
decision trees to capture both linear and non-linear patterns. Decision Tree classifiers provide a tree-like model
for decision making by dividing the data into subsets according to feature values.

Gradient Booster builds an ensemble of weak learners, typically decision trees, to optimize performance
by minimizing loss in a sequential manner. AdaBoost (Adaptive Boosting) improves accuracy by focusing on
misclassified instances, adjusting the weights iteratively to create a strong classifier from weak learners. This
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Model category | Hyperparameter Possible settings Best setting
Number of trees 10, 50, 100, 200 200

Random forest Maximum depth None, 10, 20, 30 None
Bootstrap True, false True
Kernel Linear, RBF RBF

SVM C (regularization) 0.1,1,10 10
Gamma Scale, auto Scale

NN Number of neighbors | 3,5,7 3
Weights Uniform, Distance Distance

LMT Class weights 1:1,1:2,1:3 1:1

Naive Bayes Var smoothing le-09, 1e-08 le-09
Hidden layer sizes (50,), (100,) 100

MLP Activation ReLU, Tanh ReLU
Solver LBFGS, Adam Adam

Decision tree Criterion Gini, Entropy Gini
Maximum depth None, 10, 20 None

Gradient booster Number of estimators | 50, 100 100
Learning rate 0.01,0.1 0.1

AdaBoost Number of estimators | 50, 100 100
Algorithm SAMME, SAMME.R | SAMME.R

Table 3. Hyperparameters of ML classifiers.

Class type Number of audio files-training set | Number of audio files-test set

Alternate picking | 64 17

Bend 43 11

Hammer on 43 11

Legato 64 17

Pull off 43 11

Slide 43 11

Sweep picking 28 8

Tapping 64 17

Vibrato 43 11

Table 4. Train-test split ratio across 9 classes of guitar sounds.

combination of classifiers allows for robust and flexible analysis, capturing both linear and complex relationships
in the feature space for accurate recognition of guitar techniques. To ensure optimal performance for each
classifier, extensive hyperparameter tuning was conducted. Hyperparameter tuning is crucial as it involves
selecting the set of parameters that provides the best model performance on the validation set. For this purpose,
a grid search strategy was employed, where a predefined set of hyperparameters was systematically evaluated
to identify the combination that maximizes model performance. The comprehensive set of hyperparameters
trained and tested for each classifier can be found in Table 3, which details the possible settings and best settings,
along with their corresponding values for each hyperparameter.

Experiments

About the dataset

This study was conducted on a guitar style dataset, which contains 549 audio files across 9 different classes
such as Alternate Picking, Bend, Hammer-on, Legato, Pull-off, Slide, Sweep Picking, Tapping, and Vibrato.
These classes were carefully curated to ensure diversity in terms of playing styles, guitar tones, and recording
conditions, making the dataset closely aligned with real-world guitar performances. The split ratio used in this
work is 80% for training and 20% for testing. The class-wise split ratio for the guitar sounds is detailed in Table 4.
All models of SpectroFusionNet were trained on Google Colab using the PyTorch and Tensorflow library. The
Google Colab specifications adopted here include a 16GB Tesla T4 GPU and 16GB of high RAM.

Performance evaluation

To investigate the performance of the proposed work, the following objective metrics such as precision, recall/
sensitivity, F1-score and Accuracy were considered*. The supporting equations for the above metrics are given
in Eq. (18) - Eq. (21). Let us assume « denotes the number of true positive samples, 3 denotes the number
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of true negative samples, v denotes the number of false positive samples and J denotes the number of false

negative samples. To understand the number of misclassifications predicted by the model, precision ( P) measure

the ratio of precisely predicted positive samples out of all predictions made for the positive class. It is given by,
o

P=———
a +vy (19)

Recall ( R) measures the correctly identified true positive samples out of the total samples available for that class.
It is described as,
e

R=277 (20)

F1-score is another statistical metric that combines precision and recall. This metric will be particularly useful
when there is a class imbalanced dataset. It is defined in Eq. (20) as,

P
F1— score=2x %}5 (21)
Finally, Accuracy ( A) measures the proportion of true samples out of total number of samples available.
o +p
A= —" 22
o +y 22)

Simulation results and discussions

In the first phase of the proposed work, the spectrograms are individually processed by lightweight models and
then classified using various machine learning classifiers to analyze the contribution of spectrograms and deep
learning models to guitar play recognition. Table 5 lists the accuracy scores for the above context. Based on
Table 5, the following interpretations are made.

+ ResNet50 outperforms MobileNetV2 and InceptionV3 (values are highlighted in italics) for all spectrogram
types.

o Compared to CWT and Gammatone, MFCC achieves better accuracy scores.

« Among the machine learning classifiers, LMT (highlighted in bold) performs better than the others.

To further analyze performance, a confusion matrix illustrating class-wise performance for different guitar
sounds is shown in Fig. 6. From Fig. 6, it is evident that all three spectrograms provide comparable performance
for the alternate picking and bend classes. For hammer-on and pull-off, MFCC performs best, while for
legato and tapping, CWT shows superior performance. Finally, for vibrato and sweep picking, both MFCC
and Gammatone demonstrate comparable effectiveness. These findings suggest that each spectrogram excels
in recognizing specific guitar sound classes. If these spectrograms are integrated effectively, the class-wise
performance can be enhanced, ultimately improving the overall recognition accuracy. Therefore, in the second
phase of the proposed work, early spectrogram fusion and late spectrogram fusion strategies with ResNet50
model are employed.

Tables 6 and 7 details the accuracy scores and F1-scores of early fusion and late fusion strategies for pairwise
spectrogram combinations. From Tables 6 and 7, it is evident that late fusion strategies outperform early fusion
(highlighted in bold). Specifically, the pairwise combination of MFCC and Gammatone achieves the highest
accuracy (highlighted in italics) across most classifiers. Furthermore, late fusion approaches using max voting
and weighted averaging perform significantly better compared to the simple concatenation method.

Among the classifiers, Logistic Regression and Linear SVM consistently demonstrate superior performance.
To further evaluate the effectiveness of individual classes for the S M + S G combination, P, R, and F1-

Sm Sc Sa
ML classifiers MobileNetV2 | Inception V3 | ResNet50 | MobileNetV2 | Inception V3 | ResNet50 | MobileNetV2 | Inception V3 | ResNet50
Random forest 89.47 83.33 93.49 81.58 78.07 80.70 78.95 78.95 85.09
SVM 93.86 89.47 95.37 82.46 86.24 83.33 87.72 86.84 89.47
KNN 94.74 85.96 92.11 73.68 69.30 76.32 85.09 79.82 78.07
LMT 95.59 92.11 96.49 85.09 84.21 87.72 85.09 89.35 90.35
Naive Bayes 71.93 78.07 70.18 56.14 62.28 50.00 54.39 63.16 59.65
Linear SVM 95.61 92.98 94.37 81.58 86.47 85.96 90.35 88.60 87.72
MLP 92.11 88.60 96.25 83.33 85.09 82.46 85.09 87.72 89.47
Decision tree 60.53 63.16 84.21 48.25 57.02 58.77 55.26 52.63 58.77
Gradient booster | 83.33 83.33 90.35 71.05 78.07 78.95 67.54 64.91 78.07
Adaboost 24.56 22.81 44.74 24.56 28.07 31.58 31.58 24.56 24.56

Table 5. Accuracy scores (in %) comparison of spectrograms and hybrid models.
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Fig. 6. Confusion matrices of ResNet50-logistic regression combination on different spectrograms.

score metrics are presented in Table 8. Table 8 clearly shows that late fusion using the max voting strategy
achieves the highest objective scores in terms of precision, recall, and Fl-score for all nine classes of guitar
sounds. This demonstrates the excellent performance of the proposed SpectroFusionNet approach. To further
validate these findings, K-fold cross-validation (K=5) is applied to the feature extraction and classification
pipeline®!. Table 9 presents the performance of the proposed late fusion approach across various ML classifiers
using 5-fold cross-validation. The mean accuracy and mean Fl-scores across the five folds are highlighted in
italics, while the highest accuracy and F1-score of 98.79% (highlighted in bold) are achieved by both Logistic
Regression and SVM classifiers using the max voting fusion strategy. Random Forest is another alternative that
provides competitive results. On the other hand, Naive Bayes and AdaBoost perform poorly, indicating that
these classifiers struggle to handle the fused features effectively.

Real time testing

To evaluate the efficacy of proposed approach, real-time datasets were tested for all the classes of guitar sounds.
For real-time testing, we used audio clips extracted from YouTube videos of guitar performances. The audio clips
are pre-processed by adjusting their playback speed. For samples shorter than 10 s, we slowed them down to 0.5x
speed, and for those longer than 10 s, we sped them up to 2x speed (without changing the natural characteristics
of the audio) before testing them using our proposed method. The overall accuracy scores for all the classifiers
with late fusion strategy is shown in Fig. 7. From Fig. 7, it is evident that the late fusion via max voting attains
the highest accuracy score of 70. 9% with Linear SVM classifier and the second-best score of 65. 49% by LMT
classifier for the S M + S G combination. To analyze class-wise performance, each class contained nine
real-time samples, and the corresponding statistical scores are displayed in Table 10. The results from Table 10
illustrate that, certain classes, such as Bend, Sweep Picking, and Slide, exhibit high precision and F1-scores,
confirming that the majority of the samples are correctly classified. However, other classes, including pull off
and Vibrato, show lower F1-scores due to their overlapping spectral characteristics, leading to misclassification
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errors. This suggests that guitar techniques relying on temporal variations®? pose a greater challenge for the
model.

Table 11 compares state-of-the-art methods with the proposed work. Publicly available datasets were
simulated using the proposed method, and the results are displayed in Table 11. It is evident from Table 11 that
the proposed study statistically outperforms existing approaches, implying that SpectroFusionNet is adaptable
to any dataset of interest. Among the evaluated fusion strategies, max voting achieved the highest performance
by retaining the most discriminative spectrograms features. Additionally, max voting mitigates individual model
biases by leveraging multiple decision boundaries, effectively enhancing the robustness of the classification
process.

Conclusion

In summary, this research focuses on developing a spectrogram-based fusion approach for a multiclass guitar
play sound recognition system using a hybrid combination of deep learning and machine learning classifiers.
When processing individual spectrograms, the ResNet50 model outperforms MobileNetV2 and InceptionV3,
according to the experimental results. Additionally, different spectrograms perform better for specific classes;
some classes are better recognized by one spectrogram, while others benefit from another. To address this,
spectrograms are combined pairwise using early fusion and late fusion strategies. The results reveal that late
fusion strategies significantly outperform early fusion, achieving evaluation scores of 100% across all nine
classes. Additionally, the proposed method was validated on other datasets to evaluate its efficacy in recognizing
guitar play sounds. Once again, the method demonstrated superior performance, highlighting its robustness and
generalization capability. To further assess the proposed method’s applicability in real-time scenarios, audio files
representing all nine classes were tested. The proposed system achieved an accuracy of 70.9%, demonstrating its
potential for real-time applications. To further enhance the performance, future work can incorporate temporal
modeling approaches like LSTMs or transformers to capture sequential dependencies. Additionally, adaptive
fusion strategies tailored for challenging classes could further improve model robustness in real-world scenarios.
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F‘late,mam F‘late,wavg Flate,concat
F1 — score F1 — score F1 — score
Guitar sound classes | P(%) | R(%) | (%) P(%) | R(%) | (%) P(%) | R(%) | (%)
Alternate Picking 100 100 100 100 100 100 100 100 100
Bend 100 100 100 100 100 100 100 100 100
Hammer on 100 100 100 100 100 100 100 91 95
Legato 100 100 100 94 100 97 100 100 100
Pull off 100 100 100 100 100 100 100 100 100
Slide 100 100 100 100 100 100 100 100 100
Sweep Picking 100 100 100 100 100 100 100 100 100
Tapping 100 100 100 100 100 100 100 100 100
Vibrato 100 100 100 100 91 95 92 100 96
Table 8. Class-wise performance of nine classes of guitar sounds.
F‘late,concat F‘late,'wa'vg F‘Late,maw
Mean F1-Score
Classifier | Mean Accuracy (%) Mean F1-Score (%) | Mean Accuracy (%) Mean F1-Score (%) | Mean Accuracy (%) (%)
95.12 97.68 97.83 97.83
Random | 96.55 97.70
(94.50, 93.20, 96.00, (98.83, 97.69, 98.85, | (100, 96.39, 96.39, (100, 95.15, 97.58,
forest (96.55, 94.25, 95.40, 98.85, 97.70) 97.80,98.10) (98.85, 97.70, 98.85, 95.40, 97.70) 95.36, 97.66) 97.59, 98.78) 97.61,98.79)
95.10 94.30 96.09 96.07 97.34 97.33
SVM . (90.40, 91.50, 95.00, . (96.53, 96.61, 95.38, | (100, 93.98, 98.80, (100, 93.97, 98.80,
(91.26, 92.40, 96.09, 97.14, 98.00) 96.80, 97.80) (96.55, 96.55, 95.40, 95.40, 96.55) 95.37, 96.49) 96.39, 97.56) 96.37,97.52)
90.10 89.20 90.80 90.77 91.07 91.01
KNN . (85.60, 86.80, 89.30, - (95.40, 95.42, 85.03, | (98.80, 89.16, 81.93, (98.83, 89.16,
(86.67, 87.50, 90.80, 92.30, 93.24) 91.10, 92.30) (95.40, 95.40, 85.06, 87.36, 90.80) 87.28, 90.73) 90.36, 95.12) 81.57, 90.59, 94.89)
96.92 96.10 97.47 97.45 98.79 98.78
LMT - (94.80, 95.40, 96.70, o (98.83, 100.00, (100, 97.59, 100, 98.80, | (100, 97.60, 100,
(95.40, 96.00, 97.47, 98.20, 99.00) 97.90, 98.50) (98.85, 100.00, 95.40, 95.40, 97.70) 95.38,95.36,97.66) | 97.56) 98.79, 97.52)
. 77.80 78.32 67.65 67.42
Naive 79.20 78.39
(76.50, 75.60, 77.10, (77.57,77.84, 74.11, | (73.49, 57.83, 63.86, (71.39, 58.54,
Bayes (79.08, 77.50, 78.39, 80.00, 81.20) 78.90, 79.90) (77.01, 78.16, 74.71, 81.61, 80.46) 81.52, 80.57) 67.47,75.61) 64.60, 66.69, 75.91)
. 97.40 98.15 98.79 98.79
Linear 98.02 98.16
(96.10, 97.00, 97.80, (98.83, 100.00, (100, 96.39, 100, 100, (100, 96.36, 100,
SVM (96.55, 97.20, 98.16, 99.00, 99.04) 98.50, 99.00) (98.85, 100.00, 97.70, 96.55, 97.70) 97.69,96.55,97.66) | 97.56) 100, 97.59)
97.50 96.80 97.70 97.68 97.34 97.12
MLP g (96.10, 96.50, 97.20, o (98.83, 100.00, (100, 93.98, 98.80, (98.83, 97.60,
(96.55, 96.80, 97.70, 98.50, 99.00) 98.10, 98.90) (98.85, 100.00, 95.40, 96.55, 97.70) 95.37, 96.55,97.66) | 97.59, 96.34) 96.44, 96.39, 96.35)
L. 79.80 79.91 83.58 81.60
Decision | 80.93 80.00
(77.50, 78.20, 79.00, (83.53, 80.85, 80.05, | (79.52, 86.75, 87.95, (78.74, 83.81,
tree (78.39, 79.50, 80.00, 82.10, 82.56) 81.00, 82.20) (83.91, 80.46, 80.46, 77.01, 78.16) 76.81,78.33) 7831, 85.37) 80.46, 80.70, 84.34)
. 91.90 91.69 90.35 89.80
Gradient | 92.60 91.72
. (90.00, 89.50, 91.30, (92.96, 93.17, 93.00, | (96.39, 83.13, 84.34, (96.31, 83.28,
boosting | (91.26, 90.50, 91.72, 93.40, 94.40) 92.70, 93.80) (93.10, 93.10, 93.10, 89.66, 89.66) 89.75, 89.54) 91.57, 96.34) 84.22,91.24, 93.95)
74.88 73.40 73.56 72.97 75.37 74.52
AdaBoost . (69.80, 71.20, 72.50, . (81.90, 70.83, 69.68, | (77.11, 74.70, 69.88, (77.28,75.18,
(70.34, 72.50, 73.56, 76.20, 76.98) 74.80, 75.90) (81.61, 75.86, 67.82, 62.07, 80.46) 6131, 81.13) 75.90, 79.27) 67.51,75.33, 77.34)

Table 9. Quantitative analysis of K- fold cross validation of spectrofusionnet on ML classifiers.
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% Accuracy Scores (%) comparison for Real-Time Audio Data
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Fig. 7. Accuracy scores comparison of the proposed work on real time data.

Alternate Picking 64 78 70 47 89 62 38 100 55
Bend 100 78 88 100 100 100 100 100 100
Hammer on 83 56 67 75 67 71 20 11 15
Legato 42 89 57 20 30 27 78 78 78
Pull off 62 56 59 33 33 33 50 33 40
Slide 100 56 71 78 78 78 78 78 78
Sweep Picking 90 100 95 88 78 82 75 100 86
Tapping 100 56 71 50 22 31 56 56 56
Vibrato 50 44 47 33 56 42 20 30 27

Table 10. Real time testing on nine classes of guitar sounds. Significant values are in bold.
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State-of-the art ‘ ‘ Accuracy (%) | F1-score (%)
Guitar aataset

Deep Salience multiple-f0 estimation algorithm | 2 | 46 90
SpectroFusionNet-Early Fusion 85.09 91.32
SpectroFusionNet-Late Fusion-simple concat 89.47 92.71
SpectroFusionNet-Late Fusion-max voting 90.35 96.1
SpectroFusionNet-Late Fusion-weighted average 88.60 92.9
Guitar Style Dataset

SVM 15 184.20 81.9
CNN 15 |81.10 83.1
SpectroFusionNet-Early Fusion 97.14 97.27
SpectroFusionNet-Late Fusion-simple concat 99.12 99
SpectroFusionNet-Late Fusion-max voting 100 100
SpectroFusionNet-Late Fusion-weighted average 100 99.11

Table 11. State-of-the-art comparison with spectrofusionnet method.

Data availability
The Guitar style dataset analysed in this study are available in https://zenodo.org/records/10075352.
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