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Music, a universal language and cultural cornerstone, continues to shape and enhance human 
expression and connection across diverse societies. This study introduces SpectroFusionNet, a 
comprehensive deep learning framework for the automated recognition of electric guitar playing 
techniques. The proposed approach first extracts various spectrograms, including Mel-Frequency 
Cepstral Coefficients (MFCC), Continuous Wavelet Transform (CWT), and Gammatone spectrograms, 
to capture the intricate audio features. These spectrograms are then individually processed using 
lightweight models (MobileNetV2, InceptionV3, ResNet50) to extract discriminative features 
of different guitar sounds, with ResNet50 yielding better performance. To further enhance the 
classification performance across nine distinct guitar sound classes, two types of fusion strategies 
are adopted to provide rich feature representation: One is early fusion where the spectrograms 
are combined before the feature extraction and the other one is late fusion approach where the 
independent features from spectrograms are concatenated via three approaches: weighted averaging, 
max-voting and simple concatenation. Then, the fused features are subsequently fed into nine 
machine learning classifiers, including Support Vector Machine (SVM), Multilayer Perceptron (MLP), 
Logistic Regression, Random Forest etc., for final classification. Experimental results demonstrate 
that MFCC-Gammatone late fusion provided the best classification performance, achieving 99.12% 
accuracy, 100% precision, and 100% recall across 9 distinct guitar sound classes. To further assess the 
SpectroFusionNet’s generalization ability, real-time audio dataset is evaluated, demonstrating an 
accuracy of 70.9%, indicating its applicability in real world scenarios.

Keywords  Guitar play recognition, Spectrogram fusion, ML classifiers, Lightweight deep learning, Real-time 
audio processing

Music stands as an enduring cornerstone of human culture, serving as a universal language of expression 
that spans across time and place. From the earliest forms of vocalizations and simple instruments to complex 
compositions, music has woven itself into the fabric of society, entertaining, uniting, and enlightening 
communities worldwide1. The electric guitar has revolutionized music, particularly in rock, blues, and jazz 
genres, with its electrifying sound. Guitar playing encompasses a variety of techniques, each adding its unique 
flavor to the music. Techniques such as fingerpicking, strumming, hammer-ons, pull-offs, bending strings, 
slides, tapping, and palm muting contribute to the diverse palette of sounds and styles found in the world of 
guitar playing. In modern musical analysis, there’s a pressing need to go beyond mere pitch and onset detection. 
Particularly in guitar performances, nuances like pull-offs, hammer-ons, and bending techniques offer invaluable 
insights for both transcription accuracy and instructional purposes. By delving into these subtleties, novice 
players can grasp and master their craft better2.

In the realm of guitar transcription, various methods have been employed over time to capture the intricate 
details of guitar performances. Traditionally, manual transcription methods have prevailed, involving skilled 
musicians transcribing music by ear or visually observing performances. Tablature notation has been particularly 
instrumental, representing guitar music graphically by assigning numbers to indicate frets on each string3. 
Similarly, standard notation, although less effective in capturing nuances, has provided a standardized format 
for representing guitar music. Nonetheless, for solo guitar performances, detailed note-by-note transcription, 
including the playing techniques associated with each note, is crucial. The sequence of notes forms the melody, 
while techniques like bends and vibrato influence the guitar performance’s expression4. Accurate transcription of 
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these elements is essential for capturing the full essence of a guitar performance. Manual transcription requires 
significant musical training and time investment. Although automated services are not flawless, they greatly 
simplify the process for music enthusiasts and novice guitar players. These tools facilitate understanding and 
enjoyment of music, contributing to its educational, recreational, and cultural value.

In recent years, advancements in technology have led to the development of modern techniques for guitar 
transcription that go beyond traditional methods. Automatic transcription software now utilizes sophisticated 
algorithms and machine learning models to analyse audio recordings and generate accurate transcriptions, 
including detailed playing techniques. Signal processing techniques, such as spectral analysis and feature 
extraction, help identify specific guitar techniques like hammer-ons, pull-offs, and string bends. Additionally, 
interactive learning platforms and apps use real-time audio recognition to provide instant feedback on playing 
accuracy and technique. These systems adapt in real-time, incorporating user feedback to refine predictions 
dynamically5. With the growing demand for lightweight architectures in guitar transcription applications, pre-
trained models have gained traction due to their computational efficiency and effectiveness in feature extraction 
from various spectrograms. Feature fusion, in particular, has emerged as a promising approach to combine 
complementary information from different spectrogram modalities, enhancing transcription accuracy. In 
our proposed work, spectrograms of audio files, specifically Mel-Frequency Cepstral Coefficients (MFCC), 
gammatone, and Continuous Wavelet Transform (CWT), are processed through pre-trained models such as 
MobileNetV2, ResNet50 and InceptionV3.

In this work, we introduce SpectroFusionNet, a novel framework for electric guitar technique recognition, 
leveraging an innovative approach to spectrogram fusion. To the best of our knowledge, combining early and 
late fusion of spectrogram features has not been previously explored. By incorporating spectrogram types 
like Gammatone and CWT alongside MFCC, our framework captures unique audio features that enrich the 
representation of guitar sounds. We further enhance classification performance through advanced fusion 
strategies, utilizing both early and late fusion methods. Lightweight models are employed to achieve high 
classification accuracy while avoiding the need for computationally intensive architectures, with ResNet50 
demonstrating optimal feature extraction capabilities. The proposed methodology is validated using real-world 
data under non-ideal recording conditions, outperforming current state-of-the-art approaches without relying 
on computationally expensive deep learning models. Thus, to summarize, the key contributions of proposed 
approach is as follows:

•	 Pairwise Fusion Strategy: Unlike conventional ensemble methods, this paper proposes early and late fusion 
strategies for combining features extracted from different spectrogram types (MFCC, Gammatone, CWT). 
This novel combination allows the system to leverage complementary information from diverse spectrogram 
representations.

•	 Late Fusion Optimization: Among late fusion techniques, this work explores max voting, weighted averaging, 
and concatenation, identifying max voting as the most effective. Such detailed analysis across multiple fusion 
strategies is limited in prior work.

•	 Real-Time Testing Workflow: This work emphasizes the practical applicability of the system by validating it on 
real-time audio samples, tailored for real-time scenarios. This ensures that the proposed system is not only 
theoretical but also deployable in real-world applications.

Related works
Numerous methods have been explored for recognizing guitar playing techniques. For instance4, describes a two-
stage framework for analyzing electric guitar solos without accompaniment. The first stage uses the MELODIA 
tool to identify melody contours, while the second stage detects playing techniques via a pre-trained classifier 
using timbre, MFCC, and pitch features. This method, tested on 42 guitar solos, achieved a best average F-score 
of 74% in two-fold cross-validation. Another approach in6 focuses on the automatic transcription of isolated 
polyphonic guitar recordings, extracting parameters like note onset, pitch, and playing styles. Using a robust 
partial tracking algorithm with plausibility filtering, it achieved high accuracy in several tasks: 98% for onset 
and offset detection, 98% for multipitch estimation, 82% for string number estimation, 93% for plucking style 
estimation, and 83% for expression style estimation. Additionally7, explores the classification of electric guitar 
playing techniques using features from the magnitude spectrum, cepstrum, and phase derivatives. Evaluating 
6,580 clips and 11,928 notes, it found that sparse coding of logarithm cepstrum, group-delay function (GDF), 
and instantaneous frequency deviation (IFD) resulted in the highest average F-score of 71.7%.

Modern advancements have introduced deep learning solutions and architectures for guitar effect 
classification and parameter estimation. In8, convolutional neural networks (CNNs) were applied to classify 
and estimate parameters for 13 different guitar effects, including overdrive, distortion, and fuzz. A novel dataset 
was created, consisting of monophonic and polyphonic samples with discrete or continuous settings, totalling 
around 250 h of processed samples.

The study achieved over 80% classification accuracy, revealing similarities in timbre and circuit design among 
effects. Parameter estimation errors were generally below 0.05 for values ranging from 0.0 to 1.0. In another 
study9, CNNs were employed to generate guitar tabs from audio recordings using the constant-Q transform. 
This method accurately extracted chord sequences and notes from solo guitar recordings, achieving an 88.7% 
accuracy. The study introduced GUITARSET, a dataset with detailed annotations of acoustic guitar recordings, 
including string positions, chords, beats, and playing style in JAMS format.

Further, recent developments in signal processing have seen the emergence of pre-trained models for transfer 
learning, as demonstrated in10. It presents a comprehensive study comparing the performance of nine widely 
used pre-trained CNN models and a custom-designed CNN model for crop disease detection. The pre-trained 
models include EfficientNetB4, EfficientNetB3, InceptionResNetV2, Xception, DenseNet201, ResNet152, 
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ResNet50, MobileNetV2, and VGG16. The results showed that the pre-trained models generally outperformed 
the custom CNN in terms of accuracy and F1-score, with models like EfficientNetB4, ResNet152, and Xception 
achieving exceptional results. In summary, various CNN frameworks have been proposed in the literature for 
guitar play recognition and some of them have been elaborated in Table 1.

Various approaches to feature fusion have also emerged, including early, late, and hybrid fusion techniques. 
In early fusion, as demonstrated in11, combining raw waveform signals and spectrograms via vector stitching 
enhances spoofed speech detection by improving classification accuracy while reducing model parameters. This 
method also emphasizes the importance of analysing high-frequency waveform components and harmonic 
features in spectrograms using SHAP analysis. Late fusion, as shown in12, applies a multi-modal framework 
using separate classifiers for different features (such as MFCC and spectrograms) before combining the results, 
achieving an 86.13% accuracy in depression detection. The model integrates MFCC features with a residual-
based deep Spectro-CNN architecture, further refining the classification output. The hybrid approach, as detailed 
in13, employs both feature-level and decision-level fusion, integrating visible and infrared images with speech 
features, resulting in a robust automatic emotion recognition (AER) framework with an accuracy of 86.36%. The 
two-layer architecture combines the strength of different modalities, enabling light-invariant emotion detection 
in real-world environments.

Additionally, other methods for guitar play recognition have been explored, such as motion capture and 
note frequency recognition, as described in14. This approach combines finger motion capture with note 
frequency recognition to provide comprehensive feedback on a guitarist’s performance. After testing a number 
of classification methods for hand position classification, the random forest algorithm produced the best results, 
with an average classification accuracy of 97.5% for each finger and 99% accuracy for overall hand movement. 
For note recognition, the harmonic product spectrum (HPS) method achieved the highest accuracy at 95%. 
Another study15 introduces a multimodal dataset for recognizing electric guitar playing techniques. This dataset 
comprises 549 video samples in MP4 format and corresponding audio samples in WAV format, encompassing 
nine distinct electric guitar techniques. These samples were generated by a recruited guitarist using a smartphone 
device. This dataset forms the basis for the subsequent analysis in our research.

Methodology
Feature extraction using spectrogram analysis
Feature extraction is a crucial step in audio analysis, and spectrograms like Mel-Frequency Cepstral Coefficients, 
Continuous Wavelet Transform, and Gammatone are specifically chosen for their ability to capture detailed 
and nuanced representations of audio signals16–18. Unlike prosodic or acoustic features, which may not fully 
encapsulate the intricacy and variability of musical performances, these spectrograms provide comprehensive 
time-frequency representations. This allows for a more precise analysis of the intricate timbral characteristics 
and playing techniques of the guitar, leading to enhanced accuracy and reliability in automated recognition 
systems.

MFCC
Mel Frequency Cepstral Coefficients (MFCC) spectrograms capture the power spectrum of audio signals by 
mimicking the human ear’s sensitivity to different frequencies, making them particularly effective for music 
analysis19,20. This attribute is especially suited for guitar play recognition, as it accurately represents the 
instrument’s timbral characteristics. MFCCs efficiently distinguish subtle nuances and patterns in guitar playing 
styles, and their robustness to noise and variations significantly enhances recognition performance. To extract 

Refs. Year AI model Classes

Performance measure 
in terms of accuracy 
(%)

Guitar 
database

Christian Kehling 
et al.6 2014 Novel algorithm

Plucking styles—fingerstyle, picked and muted
Expression styles—bending, slide, vibrato, harmonics, 
and dead notes

96% Private 
dataset

Li Su et al.7 2014 SC + SG and SC + {CL, GDF, IFD} Normal, hammer-on, pull-off, sliding, bending, vibrato, 
muting 71.70% Private 

Dataset

Vincent Lostanlen 
et al.7 2018 Scattering transform and supervised 

metric learning 16 musical instruments with their playing techniques 61.00%
Studio On 
Line (SOL) 
dataset

Q. Xi7 2018 Deep Salience multiple f0 estimation 
algorithm

JAMS file contains annotations such as tempo, key, 
instructed chords, performed chords and note level 
transcriptions

46% Guitar Set

Marco Comunità 
et al.7 2021

SetNet

13 overdrive, distortion, and fuzz plugins.

40.30%
Discrete 
DatasetMultiNet 40.88%

FxNet + SetNetCond 57.30%

FxNet(Monocontinuous dataset) 90.09% Continuous 
DatasetFxNet(Polycontinuous dataset) 91.40%

Alexandros Mitsou7 2024
SVM Alternate picking, hammer-on, pull-off, slide, bend, 

vibrato, legato, tapping, sweep picking
84.20% Guitar style 

DatasetCNN 81.10%

Table 1.  Overview of the state-of-the-art research for guitar play recognition.
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MFCC from an audio signal x (t), the audio frames are converted into overlapping frames xn followed by 
computing the Fourier transform to obtain the power spectrum for each frame. This spectrum is then passed 
through a series of Mel-scaled triangular filter banks, which map the frequencies f to the Mel scale FMel, to 
better align with human auditory perception as described in Eq. (1).

	
FMel (f) = 2595.log10

(
1 + f

700

)
� (1)

Finally, Discrete Cosine Transform (DCT) (represented in Eq.  (2)) is applied to the log Mel-filtered values 
log (M [m]) , to decorrelate and reduce dimensionality, producing a compact set of coefficients known as 
MFCCs.

	
MF CC [n] =

∑
M−1
m=0 log (M [m]) .cos

(
π n (m + 0.5)

M

)
� (2)

where n indexes the cepstral coefficients, M is the number of Mel filters and M [m] is the Mel Spectrum.

CWT
Continuous Wavelet Transform (CWT) spectrograms21 depict how audio signals evolve across different 
frequencies and time intervals, providing a detailed multi-resolution view essential for music analysis. This feature 
accurately captures the instrument’s varied timbral nuances and transient dynamics, crucial for distinguishing 
playing techniques and styles. CWT spectrograms excel in identifying subtle variations in pitch, timbre, and 
dynamics inherent to guitar performances, enhancing the accuracy and reliability of automated recognition 
systems in diverse audio contexts. In this study, we utilize the Morlet wavelet function for the CWT due to its 
effective time-frequency localization. The Morlet wavelet ϕ (t) described in Eq. (3) is given as,

	
ϕ (t) = π

−1
4 . ejw0t.e

−t2

2
� (3)

where w0​ is the central frequency of the wavelet, (typically set to 6 in this work) for a balance between time and 
frequency resolution. The Continuous Wavelet Transform of an audio signal x (t) is computed as,

	
CW T ϕ (a, b) = 1√

a

∫ ∞

−∞
x (t) ϕ ∗

(
t − b

a

)
dt� (4)

In Eq. (4), a represents the scale parameter, controlling the wavelet’s frequency, b represents translation factor, 
ϕ ∗ (

t−b
a

)
 is the scaled Morlet transform, and 1√

a
 is a normalization factor.

Gammatone
A Gammatone spectrogram analyses audio signal using a series of bandpass filters that mimic the human 
auditory system’s response, providing a representation of the signal’s frequency components22.

This approach is ideal as it closely mirrors the ear’s sensitivity to different frequencies and helps in accurately 
representing the instrument’s timbral characteristics. The Gammatone spectrogram’s ability to analyse signals in 
a manner akin to human perception enables it to distinguish subtle nuances in guitar playing styles. Gammatone 
filter bank is employed due to its effectiveness in capturing the intricate details of musical performances, 
enhancing the accuracy of automated recognition systems. The Gammatone filter in time domain g (t) , is 
defined in Eq. (5).

	 g (t) = tn−1e−2π btcos (2π ft + ∅ )� (5)

where n is the filter order, b is the bandwidth of the filter, ∅  denotes the phase and f  represents the center 
frequency of the filter. Figure 1 shows the nine classes of guitar sounds and the corresponding spectrograms. 
From Fig. 1, it is understood that the spectrograms provide rich detailed information which will be very useful 
for analysing the key patterns of different guitar sounds.

Baseline model selection
Selecting an appropriate baseline model is crucial for developing an efficient and effective system for recognizing 
electric guitar playing techniques. The choice of baseline models impacts both the accuracy and the computational 
efficiency of the system, particularly when considering deployment in real-life applications where resources 
may be limited. These models were chosen for their balance of speed, accuracy, and efficiency, making them 
ideal for real-time music applications. Compared to heavier CNN models like VGG16, ImageNet and AlexNet, 
the chosen models (highlighted in Bold) have significantly fewer trainable parameters, which is illustrated in 
Table 2. This reduction in parameters not only decreases the computational cost but also enhances the feasibility 
of deploying these models in practical scenarios, such as mobile or embedded systems.

So, in this study, MobileNetV2, InceptionV3 and ResNet50 are selected as our baseline models due to their 
lightweight architecture and proven performance in various computer vision and audio analysis tasks.

Scientific Reports |        (2025) 15:16842 4| https://doi.org/10.1038/s41598-025-00287-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 1.  Guitar sounds and their spectrograms. (c1) Nine classes of guitar sounds (c2) MFCC Spectrograms (c3) 
CWT Spectrograms (c4) Gammatone Spectrograms.
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MobileNetV2
MobileNetV223 is a lightweight and efficient CNN architecture specifically designed for mobile and embedded 
vision applications. It incorporates an inverted residual structure and linear bottlenecks, along with depth-wise 
separable convolutions, which together optimize both speed and accuracy (displayed in Fig. 2). As a result, this 
architecture is particularly well-suited for real-time processing of audio features extracted from guitar sounds. 
Let X (i, j, m) represents the input spectrogram in the m-th channel having pixel coordinates at (i, j)
and F p (m, n) denotes the 1 × 1 point wise filter  Then, the output feature map Yp (i, j, n)for the m-th 
channel by performing point-wise convolution is defined as,

	
YP (i, j, n) =

∑
M−1
m=1 X (i, j, m) .Fp (m, n)� (6)

Now, the depth wise convolution Yd (i, j, m) which is another critical component is defined by Eq. (6).

	
Yd (i, j, m) =

∑
N−1
u=0

∑
N−1
v=0 YP (i + u, j + v, m) .Fd (u, v, m)� (7)

where N  denotes the size of the filter. In this paper, N  is fixed to 3. To preserve the rich feature information with 
reduced information loss, inverted residual block with linear bottleneck is used. It is described by,

	 IRB = X + P W (DS (P W (T (X))))� (8)

where T  is the expansion factor, P W  is pointwise convolution, and DS is depth-wise convolution Finally, the 
extracted features are mapped using the fully connected layer with the final class predictions as given in Eq. (8).

	 Z = F C (IRB (. . . IRB (IRB (C1 (X))) . . . ))� (9)

where C1 is the initial convolution layer.

InceptionV3
InceptionV3 is a deep CNN architecture (shown in Fig. 3) notorious for its high performance and efficiency. 
It employs a combination of factorized convolutions and aggressive regularization to achieve high accuracy 
with fewer parameters24. InceptionV3 can be utilized to analyse and classify complex audio features extracted 
from guitar sounds. Its depth and architectural innovations allow it to capture intricate patterns in the audio 
data, making it well-suited for tasks such as recognizing chords, notes, and playing styles with high precision. 
Inception Module ( IM ), a core component of InceptionV3 architecture applies various convolution filters and 
pooling operations in parallel on the input spectrogram X  to capture the information at multiple scales.

Fig. 2.  MobileNetV2 architecture.

 

Model Trainable parameters (in millions)

MobileNetv2 3.4

InceptionV3 24

ResNet50 26

ImageNet 60

AlexNet 62.3

VGG16 138

Table 2.  Number of trainable parameters of CNN models.

 

Scientific Reports |        (2025) 15:16842 6| https://doi.org/10.1038/s41598-025-00287-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 IM = Concat (Branch1 (X) , Branch2 (X) , Branch3 (X) , Branch4 (X))� (10)

In Eq.  (9), each branch applies different convolution operations ( 1 × 1, 3 × 3, 5 × 5, etc.) and pooling 
operations. An Auxiliary Classifier, used to improve training with an auxiliary loss is given in Eq. (10).

	 Auxiliary Loss = Softmax (F C (GAP (Conv (IM (X)))))� (11)

where GAP  is global average pooling, and F C  is the fully connected layer. Finally, the overall architecture of 
InceptionV3, integrating multiple Inception modules, is described in Eq. (11).

	 InceptionV 3 (X) = Softmax (F C (GAP (. . . IM (. . . IM (X)) . . . )))� (12)

This design makes InceptionV3 a valuable tool for precise, real-time music analysis and interactive applications.

ResNet50
ResNet50, a deep CNN model shown in Fig. 4 applies the concept of residual learning to mitigate the effect 
of vanishing gradient problem25. To enhance the feature extraction capability, this model stacks 50 layers 
with the residual blocks to learn residual mappings. Each residual block ( RB) consists of convolution layers 
( 1 × 1, 3 × 3) and shortcut connections to extract the deeper details at various scales. The final classification 
output ResNet50 (X) is described by,

	 ResNet50 (X) = Softmax (F C (GAP (. . . RB (. . . RB (X)) . . . )))� (13)

where GAP  is global average pooling reduces the feature dimensions and F C  is the fully connected layer used 
in combination with Softmax for final classification.

Proposed spectrofusionnet
The flow diagram of the SpectroFusionNet is shown in Fig. 5. Firstly, the raw audio signal x (t) is processed to 
obtain different type of spectrograms-MFCC, Continuous Wavelet Transform (CWT), and Gammatone which 
serves as input to the CNN models.

Let the spectrograms be denoted as SM , SC , SG. Now, two types of fusion strategies are introduced, 
one is Early fusion Fearly  and the other one is late fusion Flate. In the first approach, the spectrograms 
are initially pairwise combined { SM + SC , SC + SG, SG + SM } to produce a fused spectrogram 
Sfused,p where p ∈ {1,2, 3} represents the three pairwise combinations. Each pair of spectrograms Sfused,p 

Fig. 3.  InceptionV3 architecture.
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is processed through lightweight models Mj where j ∈ {MobileNetV2, InceptionV3, ResNet50} to obtain the 
feature vectors as described in Eq. (13).

	 Fearly,p = Mj (Sfused,p)� (14)

For each model, three sets of fused vectors will be obtained. Now, the feature vectors Fearly,p are passed to 
various machine learning classifiers Ck, where k is one of the classifiers (as described in Sect. 3.3) for final 
classification of guitar sounds.

	 outk = Ck (Fearly,p)� (15)

In the late fusion approach, initially the feature vectors Fj,M , Fj,C , Fj,G of each spectrogram SM , SC , SG 
is obtained and then the features are fused via three strategies, Weighted Averaging, Max-voting and Simple 
concatenation26. These strategies are described in Eq. (15)-Eq. (17).

	
Flate,wavg =

∑
i∈ {SM ,SC , SG}wiFj,i� (16)

Equation (15) linearly combines each spectrogram with predefined weights while ensuring the sum of weights is 
equal to 1 (

∑
wi = 1). To extract the dominant features, the maximum value from corresponding dimensions 

of each feature vector across the spectrograms is selected via the maximum voting strategy. It is given as,

	 Flate,max = max (Fj,M , Fj,C , Fj,G)� (17)

In order to create a comprehensive feature vector, the third fusion strategy (as given in Eq.  (17)) simply 
concatenates the features of all spectrograms before the final classification.

	 Flate,concat = concat (Fj,M , Fj,C , Fj,G)� (18)

Once the fused features are obtained, these features are subsequently fed into machine learning classifiers for 
classification of guitar play sounds.

ML classifiers
For classifying guitar playing techniques, this paper employs a diverse set of machine learning classifiers, each 
with unique strengths27–29. Random Forest leverages an ensemble of decision trees to improve prediction 
accuracy and control overfitting by averaging multiple trees. Support Vector Machine (SVM) and Linear 
SVM are powerful for their ability to find the optimal hyperplane in high-dimensional space for classification. 
k-Nearest Neighbours (k-NN) is a straightforward algorithm that classifies samples based on the majority vote 
of their k-nearest neighbours, making it intuitive for multi-class classification. Logistic Regression models the 
probability of a discrete outcome and is particularly effective for binary and multi-class classification problems. 
Naive Bayes applies Bayes theorem with robust independence assumptions between features, often used for its 
simplicity and efficiency. Multi-layer Perceptron (MLP), a type of artificial neural network, excels in learning 

Fig. 4.  ResNet50 architecture.
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intricate patterns through its layered architecture. Logistic Model Trees (LMT) combine logistic regression and 
decision trees to capture both linear and non-linear patterns. Decision Tree classifiers provide a tree-like model 
for decision making by dividing the data into subsets according to feature values.

Gradient Booster builds an ensemble of weak learners, typically decision trees, to optimize performance 
by minimizing loss in a sequential manner. AdaBoost (Adaptive Boosting) improves accuracy by focusing on 
misclassified instances, adjusting the weights iteratively to create a strong classifier from weak learners. This 

Fig. 5.  Flow diagram of proposed SpectroFusionNet.
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combination of classifiers allows for robust and flexible analysis, capturing both linear and complex relationships 
in the feature space for accurate recognition of guitar techniques. To ensure optimal performance for each 
classifier, extensive hyperparameter tuning was conducted. Hyperparameter tuning is crucial as it involves 
selecting the set of parameters that provides the best model performance on the validation set. For this purpose, 
a grid search strategy was employed, where a predefined set of hyperparameters was systematically evaluated 
to identify the combination that maximizes model performance. The comprehensive set of hyperparameters 
trained and tested for each classifier can be found in Table 3, which details the possible settings and best settings, 
along with their corresponding values for each hyperparameter.

Experiments
About the dataset
This study was conducted on a guitar style dataset, which contains 549 audio files across 9 different classes 
such as Alternate Picking, Bend, Hammer-on, Legato, Pull-off, Slide, Sweep Picking, Tapping, and Vibrato. 
These classes were carefully curated to ensure diversity in terms of playing styles, guitar tones, and recording 
conditions, making the dataset closely aligned with real-world guitar performances. The split ratio used in this 
work is 80% for training and 20% for testing. The class-wise split ratio for the guitar sounds is detailed in Table 4. 
All models of SpectroFusionNet were trained on Google Colab using the PyTorch and Tensorflow library. The 
Google Colab specifications adopted here include a 16GB Tesla T4 GPU and 16GB of high RAM.

Performance evaluation
To investigate the performance of the proposed work, the following objective metrics such as precision, recall/
sensitivity, F1-score and Accuracy were considered30. The supporting equations for the above metrics are given 
in Eq. (18) - Eq. (21). Let us assume α  denotes the number of true positive samples, β  denotes the number 

Class type Number of audio files-training set Number of audio files-test set

Alternate picking 64 17

Bend 43 11

Hammer on 43 11

Legato 64 17

Pull off 43 11

Slide 43 11

Sweep picking 28 8

Tapping 64 17

Vibrato 43 11

Table 4.  Train-test split ratio across 9 classes of guitar sounds.

 

Model category Hyperparameter Possible settings Best setting

Random forest

Number of trees 10, 50, 100, 200 200

Maximum depth None, 10, 20, 30 None

Bootstrap True, false True

SVM

Kernel Linear, RBF RBF

C (regularization) 0.1, 1, 10 10

Gamma Scale, auto Scale

k-NN
Number of neighbors 3, 5, 7 3

Weights Uniform, Distance Distance

LMT Class weights 1:1, 1:2, 1:3 1:1

Naive Bayes Var smoothing 1e − 09, 1e − 08 1e − 09

MLP

Hidden layer sizes (50,), (100,) 100

Activation ReLU, Tanh ReLU

Solver LBFGS, Adam Adam

Decision tree
Criterion Gini, Entropy Gini

Maximum depth None, 10, 20 None

Gradient booster
Number of estimators 50, 100 100

Learning rate 0.01, 0.1 0.1

AdaBoost
Number of estimators 50, 100 100

Algorithm SAMME, SAMME.R SAMME.R

Table 3.  Hyperparameters of ML classifiers.
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of true negative samples, γ denotes the number of false positive samples and δ  denotes the number of false 
negative samples. To understand the number of misclassifications predicted by the model, precision ( P ) measure 
the ratio of precisely predicted positive samples out of all predictions made for the positive class. It is given by,

	
P = α

α + γ
� (19)

Recall ( R) measures the correctly identified true positive samples out of the total samples available for that class. 
It is described as,

	
R = α

α + δ
� (20)

F1-score is another statistical metric that combines precision and recall. This metric will be particularly useful 
when there is a class imbalanced dataset. It is defined in Eq. (20) as,

	
F 1 − score = 2 × P × R

P + R
� (21)

Finally, Accuracy ( A) measures the proportion of true samples out of total number of samples available.

	
A = α + β

δ + γ
� (22)

Simulation results and discussions
In the first phase of the proposed work, the spectrograms are individually processed by lightweight models and 
then classified using various machine learning classifiers to analyze the contribution of spectrograms and deep 
learning models to guitar play recognition. Table 5 lists the accuracy scores for the above context. Based on 
Table 5, the following interpretations are made.

•	 ResNet50 outperforms MobileNetV2 and InceptionV3 (values are highlighted in italics) for all spectrogram 
types.

•	 Compared to CWT and Gammatone, MFCC achieves better accuracy scores.
•	 Among the machine learning classifiers, LMT (highlighted in bold) performs better than the others.

To further analyze performance, a confusion matrix illustrating class-wise performance for different guitar 
sounds is shown in Fig. 6. From Fig. 6, it is evident that all three spectrograms provide comparable performance 
for the alternate picking and bend classes. For hammer-on and pull-off, MFCC performs best, while for 
legato and tapping, CWT shows superior performance. Finally, for vibrato and sweep picking, both MFCC 
and Gammatone demonstrate comparable effectiveness. These findings suggest that each spectrogram excels 
in recognizing specific guitar sound classes. If these spectrograms are integrated effectively, the class-wise 
performance can be enhanced, ultimately improving the overall recognition accuracy. Therefore, in the second 
phase of the proposed work, early spectrogram fusion and late spectrogram fusion strategies with ResNet50 
model are employed.

Tables 6 and 7 details the accuracy scores and F1-scores of early fusion and late fusion strategies for pairwise 
spectrogram combinations. From Tables 6 and 7, it is evident that late fusion strategies outperform early fusion 
(highlighted in bold). Specifically, the pairwise combination of MFCC and Gammatone achieves the highest 
accuracy (highlighted in italics) across most classifiers. Furthermore, late fusion approaches using max voting 
and weighted averaging perform significantly better compared to the simple concatenation method.

Among the classifiers, Logistic Regression and Linear SVM consistently demonstrate superior performance. 
To further evaluate the effectiveness of individual classes for the S_M + S_G combination, P , R, and F1-

ML classifiers
SM SC SG

MobileNetV2 Inception V3 ResNet50 MobileNetV2 Inception V3 ResNet50 MobileNetV2 Inception V3 ResNet50

Random forest 89.47 83.33 93.49 81.58 78.07 80.70 78.95 78.95 85.09

SVM 93.86 89.47 95.37 82.46 86.24 83.33 87.72 86.84 89.47

KNN 94.74 85.96 92.11 73.68 69.30 76.32 85.09 79.82 78.07

LMT 95.59 92.11 96.49 85.09 84.21 87.72 85.09 89.35 90.35

Naive Bayes 71.93 78.07 70.18 56.14 62.28 50.00 54.39 63.16 59.65

Linear SVM 95.61 92.98 94.37 81.58 86.47 85.96 90.35 88.60 87.72

MLP 92.11 88.60 96.25 83.33 85.09 82.46 85.09 87.72 89.47

Decision tree 60.53 63.16 84.21 48.25 57.02 58.77 55.26 52.63 58.77

Gradient booster 83.33 83.33 90.35 71.05 78.07 78.95 67.54 64.91 78.07

Adaboost 24.56 22.81 44.74 24.56 28.07 31.58 31.58 24.56 24.56

Table 5.  Accuracy scores (in %) comparison of spectrograms and hybrid models.
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score metrics are presented in Table  8. Table  8 clearly shows that late fusion using the max voting strategy 
achieves the highest objective scores in terms of precision, recall, and F1-score for all nine classes of guitar 
sounds. This demonstrates the excellent performance of the proposed SpectroFusionNet approach. To further 
validate these findings, K-fold cross-validation (K=5) is applied to the feature extraction and classification 
pipeline31. Table 9 presents the performance of the proposed late fusion approach across various ML classifiers 
using 5-fold cross-validation. The mean accuracy and mean F1-scores across the five folds are highlighted in 
italics, while the highest accuracy and F1-score of 98.79% (highlighted in bold) are achieved by both Logistic 
Regression and SVM classifiers using the max voting fusion strategy. Random Forest is another alternative that 
provides competitive results. On the other hand, Naïve Bayes and AdaBoost perform poorly, indicating that 
these classifiers struggle to handle the fused features effectively.

Real time testing
To evaluate the efficacy of proposed approach, real-time datasets were tested for all the classes of guitar sounds. 
For real-time testing, we used audio clips extracted from YouTube videos of guitar performances. The audio clips 
are pre-processed by adjusting their playback speed. For samples shorter than 10 s, we slowed them down to 0.5x 
speed, and for those longer than 10 s, we sped them up to 2x speed (without changing the natural characteristics 
of the audio) before testing them using our proposed method. The overall accuracy scores for all the classifiers 
with late fusion strategy is shown in Fig. 7. From Fig. 7, it is evident that the late fusion via max voting attains 
the highest accuracy score of 70. 9% with Linear SVM classifier and the second-best score of 65. 49% by LMT 
classifier for the S_M + S_G combination. To analyze class-wise performance, each class contained nine 
real-time samples, and the corresponding statistical scores are displayed in Table 10. The results from Table 10 
illustrate that, certain classes, such as Bend, Sweep Picking, and Slide, exhibit high precision and F1-scores, 
confirming that the majority of the samples are correctly classified. However, other classes, including pull off 
and Vibrato, show lower F1-scores due to their overlapping spectral characteristics, leading to misclassification 

Fig. 6.  Confusion matrices of ResNet50-logistic regression combination on different spectrograms.
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errors. This suggests that guitar techniques relying on temporal variations32 pose a greater challenge for the 
model.

Table  11 compares state-of-the-art methods with the proposed work. Publicly available datasets were 
simulated using the proposed method, and the results are displayed in Table 11. It is evident from Table 11 that 
the proposed study statistically outperforms existing approaches, implying that SpectroFusionNet is adaptable 
to any dataset of interest. Among the evaluated fusion strategies, max voting achieved the highest performance 
by retaining the most discriminative spectrograms features. Additionally, max voting mitigates individual model 
biases by leveraging multiple decision boundaries, effectively enhancing the robustness of the classification 
process.

Conclusion
In summary, this research focuses on developing a spectrogram-based fusion approach for a multiclass guitar 
play sound recognition system using a hybrid combination of deep learning and machine learning classifiers. 
When processing individual spectrograms, the ResNet50 model outperforms MobileNetV2 and InceptionV3, 
according to the experimental results. Additionally, different spectrograms perform better for specific classes; 
some classes are better recognized by one spectrogram, while others benefit from another. To address this, 
spectrograms are combined pairwise using early fusion and late fusion strategies. The results reveal that late 
fusion strategies significantly outperform early fusion, achieving evaluation scores of 100% across all nine 
classes. Additionally, the proposed method was validated on other datasets to evaluate its efficacy in recognizing 
guitar play sounds. Once again, the method demonstrated superior performance, highlighting its robustness and 
generalization capability. To further assess the proposed method’s applicability in real-time scenarios, audio files 
representing all nine classes were tested. The proposed system achieved an accuracy of 70.9%, demonstrating its 
potential for real-time applications. To further enhance the performance, future work can incorporate temporal 
modeling approaches like LSTMs or transformers to capture sequential dependencies. Additionally, adaptive 
fusion strategies tailored for challenging classes could further improve model robustness in real-world scenarios.
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Classifier

Flate,concat Flate,wavg Flate,max

Mean Accuracy (%) Mean F1-Score (%) Mean Accuracy (%) Mean F1-Score (%) Mean Accuracy (%)
Mean F1-Score 
(%)

Random 
forest

96.55
(96.55, 94.25, 95.40, 98.85, 97.70)

95.12
(94.50, 93.20, 96.00, 
97.80, 98.10)

97.70
(98.85, 97.70, 98.85, 95.40, 97.70)

97.68
(98.83, 97.69, 98.85, 
95.36, 97.66)

97.83
(100, 96.39, 96.39, 
97.59, 98.78)

97.83
(100, 95.15, 97.58, 
97.61, 98.79)

SVM 95.10
(91.26, 92.40, 96.09, 97.14, 98.00)

94.30
(90.40, 91.50, 95.00, 
96.80, 97.80)

96.09
(96.55, 96.55, 95.40, 95.40, 96.55)

96.07
(96.53, 96.61, 95.38, 
95.37, 96.49)

97.34
(100, 93.98, 98.80, 
96.39, 97.56)

97.33
(100, 93.97, 98.80, 
96.37, 97.52)

KNN 90.10
(86.67, 87.50, 90.80, 92.30, 93.24)

89.20
(85.60, 86.80, 89.30, 
91.10, 92.30)

90.80
(95.40, 95.40, 85.06, 87.36, 90.80)

90.77
(95.40, 95.42, 85.03, 
87.28, 90.73)

91.07
(98.80, 89.16, 81.93, 
90.36, 95.12)

91.01
(98.83, 89.16, 
81.57, 90.59, 94.89)

LMT 96.92
(95.40, 96.00, 97.47, 98.20, 99.00)

96.10
(94.80, 95.40, 96.70, 
97.90, 98.50)

97.47
(98.85, 100.00, 95.40, 95.40, 97.70)

97.45
(98.83, 100.00, 
95.38, 95.36, 97.66)

98.79
(100, 97.59, 100, 98.80, 
97.56)

98.78
(100, 97.60, 100, 
98.79, 97.52)

Naive 
Bayes

79.20
(79.08, 77.50, 78.39, 80.00, 81.20)

77.80
(76.50, 75.60, 77.10, 
78.90, 79.90)

78.39
(77.01, 78.16, 74.71, 81.61, 80.46)

78.32
(77.57, 77.84, 74.11, 
81.52, 80.57)

67.65
(73.49, 57.83, 63.86, 
67.47, 75.61)

67.42
(71.39, 58.54, 
64.60, 66.69, 75.91)

Linear 
SVM

98.02
(96.55, 97.20, 98.16, 99.00, 99.04)

97.40
(96.10, 97.00, 97.80, 
98.50, 99.00)

98.16
(98.85, 100.00, 97.70, 96.55, 97.70)

98.15
(98.83, 100.00, 
97.69, 96.55, 97.66)

98.79
(100, 96.39, 100, 100, 
97.56)

98.79
(100, 96.36, 100, 
100, 97.59)

MLP 97.50
(96.55, 96.80, 97.70, 98.50, 99.00)

96.80
(96.10, 96.50, 97.20, 
98.10, 98.90)

97.70
(98.85, 100.00, 95.40, 96.55, 97.70)

97.68
(98.83, 100.00, 
95.37, 96.55, 97.66)

97.34
(100, 93.98, 98.80, 
97.59, 96.34)

97.12
(98.83, 97.60, 
96.44, 96.39, 96.35)

Decision 
tree

80.93
(78.39, 79.50, 80.00, 82.10, 82.56)

79.80
(77.50, 78.20, 79.00, 
81.00, 82.20)

80.00
(83.91, 80.46, 80.46, 77.01, 78.16)

79.91
(83.53, 80.85, 80.05, 
76.81, 78.33)

83.58
(79.52, 86.75, 87.95, 
78.31, 85.37)

81.60
(78.74, 83.81, 
80.46, 80.70, 84.34)

Gradient 
boosting

92.60
(91.26, 90.50, 91.72, 93.40, 94.40)

91.90
(90.00, 89.50, 91.30, 
92.70, 93.80)

91.72
(93.10, 93.10, 93.10, 89.66, 89.66)

91.69
(92.96, 93.17, 93.00, 
89.75, 89.54)

90.35
(96.39, 83.13, 84.34, 
91.57, 96.34)

89.80
(96.31, 83.28, 
84.22, 91.24, 93.95)

AdaBoost 74.88
(70.34, 72.50, 73.56, 76.20, 76.98)

73.40
(69.80, 71.20, 72.50, 
74.80, 75.90)

73.56
(81.61, 75.86, 67.82, 62.07, 80.46)

72.97
(81.90, 70.83, 69.68, 
61.31, 81.13)

75.37
(77.11, 74.70, 69.88, 
75.90, 79.27)

74.52
(77.28, 75.18, 
67.51, 75.33, 77.34)

Table 9.  Quantitative analysis of K- fold cross validation of spectrofusionnet on ML classifiers.

 

Guitar sound classes

Flate,max Flate,wavg Flate,concat

P ( %) R(%)
F 1 − score
(%) P ( %) R(%)

F 1 − score
(%) P ( %) R(%)

F 1 − score
(%)

Alternate Picking 100 100 100 100 100 100 100 100 100

Bend 100 100 100 100 100 100 100 100 100

Hammer on 100 100 100 100 100 100 100 91 95

Legato 100 100 100 94 100 97 100 100 100

Pull off 100 100 100 100 100 100 100 100 100

Slide 100 100 100 100 100 100 100 100 100

Sweep Picking 100 100 100 100 100 100 100 100 100

Tapping 100 100 100 100 100 100 100 100 100

Vibrato 100 100 100 100 91 95 92 100 96

Table 8.  Class-wise performance of nine classes of guitar sounds.
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Guitar sound classes

Flate,max Flate,wavg Flate,concat

P ( %) R(%)
F 1 − score
(%) P ( %) R(%)

F 1 − score
(%) P ( %) R(%)

F 1 − score
(%)

Alternate Picking 64 78 70 47 89 62 38 100 55

Bend 100 78 88 100 100 100 100 100 100

Hammer on 83 56 67 75 67 71 20 11 15

Legato 42 89 57 20 30 27 78 78 78

Pull off 62 56 59 33 33 33 50 33 40

Slide 100 56 71 78 78 78 78 78 78

Sweep Picking 90 100 95 88 78 82 75 100 86

Tapping 100 56 71 50 22 31 56 56 56

Vibrato 50 44 47 33 56 42 20 30 27

Table 10.  Real time testing on nine classes of guitar sounds. Significant values are in bold.

 

Fig. 7.  Accuracy scores comparison of the proposed work on real time data.
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Data availability
The Guitar style dataset analysed in this study are available in https://zenodo.org/records/10075352.
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