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OPEN A study of traveling wave solutions

and modulation instability in
the (3+1)-dimensional Sakovich
equation employing advanced
analytical techniques
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In this paper, we investigate the newly formulated (3+1)-dimensional Sakovich equation, highlighting
its utility in describing the dynamics of nonlinear waves. This novel equation effectively incorporates
increased dispersion and nonlinear effects, thereby enhancing its applicability across various physical
scenarios. This model especially useful when modeling nonlinear phenomena in materials that simpler
linear models would not accurately describe. Also serve as a founding model for numerical simulations
in computational fluid dynamics and solid mechanics. We deploy both the Sardar Sub-Equation
Method (SSEM) and the Simple Equation Method (SEM) to derive a broad spectrum of unique traveling
wave solutions. These solutions have been thoroughly verified with Mathematica and include a wide
variety of mathematical functions such as trigonometric hyperbolic and exponential forms. To provide
a comprehensive visual representation of these solutions, we generate 3D, contour, density, and

2D graphs by meticulously setting the relevant parameters in Wolfram Mathematica. The solutions
obtained illustrate various phenomena, such as dark, bright, kink, singular, periodic, periodic singular,
and compacton solitons. The innovation of this work is in the systematic investigation and description
of several types of soliton solution over a wide variety of nonlinear equations. Not only does this
thorough study advance theoretical insight but also increase practical applications in areas like optical
fiber communication and engineering. Additionally, we investigate the modulation instability (MI) of
the proposed model, further elucidating its significance in the context of nonlinear wave propagation.

Keywords The new (3+1)-dimensional Sakovich equation, the Sardar sub-equation method, the simple
equation method, compactons soliton, modulation instability

Nonlinear partial differential equations (NLPDEs) are essential tools for explaining a broad range of intricate
phenomena in the fields of engineering, physics, and biology?. Their importance rests in their ability to
capture complex behaviors that linear equations are frequently unable to adequately model. A vital class of
NLPDE:s are nonlinear evolution equations (NLEEs). Research on NLEEs has become popular and important
because of the extensive applications of NLEEs in the fields of engineering, physics, and mathematical sciences.
Nonlinear sciences, including optical engineering, condensed matter physics, fluid dynamics, electromagnetic
theory, particle diffusion, nuclear physics, plasma physics, and many more, can benefit from the application of
mathematical models based on NLEEs*%. To enhance our understanding of nonlinear phenomena and their
practical applications, it is imperative to precisely solve the relevant NLEEs. Some essential components of all
NLEEs are lump waves, multi-soliton, rogue waves, breathers, and their dynamical features®~’. It is worthwhile
to carry out additional research on these equations or their different kinds because of their potential applications
in water, Bose-Einstein condensates, the ocean, nonlinear optics, and other fields.
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In the field of nonlinear science, NLPDEs have gained popularity and have been utilized to characterize
issues in numerous domains. NLPDE:s find applications in the fields of medical imaging, population modeling,
electrical nerve communication, and the appropriate delivery of oxygen to healing tissues®-!°. NLPDEs are
widely used in various physical applications. They play a crucial role in areas such as wave propagation and
scattering, magnetic resonance imaging, modeling traffic congestion, fluid dynamics, and the study of ultrasonic
and turbulent flows. Additionally, they are important in understanding magnetohydrodynamic movements in
pipelines and acoustic transmission. Their adaptability and capacity to model intricate behaviors make them
essential resources in both theoretical and practical physics'!. A variety of techniques have been developed
to obtain precise solutions for NLPDEs. These include the extended and modified tanh-function method!?,
the Hirota bilinear method!?, the modified Sardar sub-equation method!4, Hirota’s direct method!®, the newly
enhanced modified generalized sub-ODE method!'¢, the Lie symmetry method!’, the He-Laplace variational
iteration method'®, the homotopy perturbation method?, the exp(—®(7))-expansion method?*-23, the Jacobi
elliptic function expansion method?*, the tanh method?’, the extended tanh method?®, the modified generalized
exponential rational function method?, the sine-Gordon expansion method?3, the modified simple equation
method?, the modified extended tanh method*, the improved F-expansion method?!, the extended hyperbolic
functions technique®?*, the unified tanh approach®!, the new Kudryashov method?®*, the modified extended
auxiliary equation mapping approach®®?’, the new auxiliary equation technique®®*, the modified Khater
(MK) method??, the (% )-expansion approach,*!, the extended hyperbolic function technique??, the variational
iteration method*?, the Backlund transform method*!, the extended auxiliary mapping method** among others.
These diverse approaches offer specialized methods for analyzing the complex structure of nonlinear equations,
greatly enhancing our understanding of intricate wave interactions in various scientific fields.

Optical solitons are a type of electromagnetic wave that maintain a stable propagation pattern in nonlinear
media. This stability arises from a strong balance between the linear effects of diffraction or dispersion and the
nonlinear effects of the medium. In the realm of optical fiber communications, solitons are particularly significant
as they enhance the efficiency and capacity of communication networks. They achieve this by maintaining their
shape and speed over long distances, which is essential for effective data transmission*®*”. Furthermore, one can
conceptualize the genetic system of living organisms as a tripartite unity that encompasses both structural and
functional components. This system includes holographic structures that are capable of transmitting information
via solitons, which can operate similarly to magnetic and sound waves. In acupuncture, solitons manifest
as high-amplitude, nonlinear solitary pulses that efficiently compress and direct the body’s energy*®. Their
mechanism resembles shock waves, particularly due to their hydrophilic jumps, which enable them to influence
the environments of nearby smaller waves. As solitons propagate, they draw in these smaller waves, assimilating
them into their larger potential waves, thereby allowing them to harness and utilize this energy. This complex
interaction highlights the multifaceted role of solitons in both communication technologies and biological
systems?®. The investigation of NLEEs is important because it gives information on a broad array of physical
phenomena, ranging from fluid dynamics to optical communications. This paper points out different types of
exact solutions, such as solitary and periodic waves, that are important in the understanding of these systems.
We present strong methods such as the Sardar sub equation method and the simple equation method, which
are renowned for their effectiveness in revealing exact solutions. By placing our research within the framework
of previous literature, we highlight its novelty and importance. Sakovich equation is a NLPDE formulated by
Sakovich in 1996. It is characterized by having Korteweg-de Vries (KdV)-type solitons and has been a focus of
major research work due to its utility in many applications. This equation is Painlevé integrable, i.e., it can satisfy
the Painlevé test, which is a test for whether a nonlinear partial differential equation is integrable. This equation
is applied to the study of solitary waves, specifically in nonlinear dispersive systems. Some examples include the
examination of rogue waves in oceanography, in which it is utilized to model sudden large waves. This model
find applications in wide areas of physics, mathematics, and other sciences, especially in the theory of waves,
soliton theory, plasma physics, biology and chemistry, and nonlinear phenomena. In various disciplines, the (2
+ 1)-dimensional second-order Sakovich equation is an essential mathematical model that helps to investigate
the behavior of water waves within a long, narrow, hollow tube. A notable study conducted by Wazwaz et al. in
2020 introduced two innovative Painlevé-integrable extended Sakovich equations across both (2 + 1) and (3 +
1) dimensions. This research effectively derived a variety of soliton solutions, as well as multiple complex soliton
solutions corresponding to these models>. Subsequently, in 2022, Sachin Kumar et al. expanded on this work by
examining different analytical wave solutions and analyzing the dynamic behaviors of the newly formulated (2
+ 1)-dimensional Sakovich equation. In a 2025, Aly R. Seadway et al. focused on solitary wave solutions of the
extended Sakovich equation, obtained various types of analytical solutions, including trigonometric, hyperbolic,
exponential, and rational function forms. They established several standard forms of novel and unique closed-
form solutions through the application of two relatively recent techniques: the extended Jacobian elliptic function
expansion method and Lie symmetry analysis. In this context, Lie vectors were employed to construct an
optimal arrangement of the one-dimensional subalgebras, thereby enhancing the understanding of the solutions
in relation to the underlying symmetries of the equations®. The major purpose of employing the Sakovich
equation is to gain a better insight into nonlinear dynamics through investigation of the complicated behavior of
nonlinear systems, especially wave propagation phenomena. This is about creating sound mathematical models
that accurately describe a variety of physical systems like fluid mechanics and applications in optical fibers.

Both the Sardar Sub-Equation Method (SSEM) and the Simple Equation Method (SEM) are recognized as
effective approaches for deriving solutions to nonlinear partial differential equations (NLPDEs). One of the key
advantages of these two methods over existing techniques is their ability to generate a wider array of exact soliton
solutions, including novel solutions with additional parameters, in a straightforward and intuitive manner. In
2022, Melih Cinar et al. employed the SSEM to extract a variety of optical solitons from the dimensionless
Fokas-Lenells equation, which included a perturbation term®2. This research led to the identification of several
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types of solitons, such as periodic solitons, dark solitons, singular periodic solitons, and combined bright-dark
solitons. The following year, Khalida Faisal et al. utilized the same SSEM to derive pure-cubic optical solitons for
the Schrodinger equation that featured three different types of nonlinearities. By imposing specific constraints
on certain parameters related to the nonlinear Schrodinger equation (NLSE), they successfully obtained both
bright and dark optical soliton solutions®®. In 2024, Hamood Ur Rehman et al. applied the SSEM to analyze
optical solitons within the (2 + 1)-dimensional coupled integrable NLSE. Their study concentrated particularly
on the propagation and interaction of optical solitons across various media, such as multi-mode fibers and
fiber arrays®®. Previously, in 2016, Taher A. Nofal investigated the application of the SEM for solving NLPDEs
and explored its practical implications. This research focused on deriving exact solutions for several prominent
NLPDEs, including the Kadomtsev-Petviashvili (KP) equation, the (2 + 1)-dimensional breaking soliton
equation, and the modified generalized Vakhnenko equation, using the SEM. Within the framework of SEM, the
Bernoulli equation or the Riccati equation is utilized as a trial condition, allowing for the systematic derivation
of exact solutions™.

We would like to point out that our SSEM and SEM has a number of benefits compared to other existing
methods employed in solving nonlinear equations. First, they are more computationally efficient and allows
for faster solutions. Second, it yields higher accuracy, particularly in problems involving strong nonlinearities.
Finally, the approaches are more flexible in modeling various physical phenomena, and hence particularly
useful in applications within areas like quantum mechanics and nonlinear optics®’. Both the SSEM and the SEM
are recognized as effective analytical techniques for solving NLPDEs, yet they exhibit significant differences
in complexity, applicability, and methodology®®. However, its complexity necessitates greater computational
resources and a more sophisticated level of mathematical expertise from users. On the other hand, the SEM is
defined by its straightforward and versatile nature. It utilizes basic functions, such as exponentials or trigonometric
functions, which allows it to address a wider range of NLPDEs that exhibit moderate levels of nonlinearity.
This characteristic makes the SEM particularly effective for solving problems related to heat transfer and wave
propagation. Although the SSEM provides higher accuracy and greater flexibility for modeling complex systems,
the SEM is generally simpler to implement and places fewer demands on computational resources. Ultimately,
the decision to use either the SSEM or the SEM is determined by factors including the complexity of the problem
at hand, the desired precision of the solution, and the ease of implementation for the analyst. In this context, a
novel three-dimensional, second-order nonlinear wave equation was introduced by Sakovich®, which can be
expressed as follows:

fxz+fyy+2ff:cy+6f2fm+2(fm)2 =0. 6))

The nonlinear wave equation has multisoliton solutions that simultaneously satisfy the fifth-order KdV equation
and the KdV equation. Eq.(1) was extended by Wazwaz to produce the subsequent equation®®:

Wazwaz et al. developed a brand-new (3+1)-dimensional Sakovich equation to explain the propagation
of nonlinear waves. The Painlevé integrability of the recently determined equation was verified by using the
truncation expansion method®.

fot + foz + fyy + foo & foy + oo + fuz + 2f foy + 65 fow + 2f20 4 ffoz = 0, 3)

where two new terms, f-. and f f., have been introduced. The term f. . represents the second-order dispersion
effect in the z-direction, capturing the dispersion dynamics that occur as waves propagate along this axis.
Meanwhile, the term f f.. signifies the second-order dispersion along the z-axis, while also accounting for the
nonlinear effects represented by the function f. This inclusion allows for a more comprehensive modeling of
wave behavior, incorporating both dispersive and nonlinear characteristics in different spatial directions.

The (3+1)-dimensional Sakovich equation models the dynamics of nonlinear wave propagation in diverse
physical systems such as nonlinear media, plasma, and fluid mechanics. With its nonlinear nature, it facilitates
investigation into effects such as solitons and shock waves that propagate without changing shape. The equation
models the balance between nonlinearity and dispersion, providing insight into wave stability and interaction
processes within a four-dimensional space time context.

The structure of this paper is organized as follows: Section "Introduction” provides a detailed introduction
to the paper. Section "Analysis of the methods" outlines the analysis for both the SSEM and the SEM. In Section
"Applications”, we discuss the applications of both methods. Section "Modulation instability (MI)" analyzes the
modulation instability associated with the proposed model. Section "Results and discussion” presents the results
along with graphical representations. Finally, we conclude the paper in Section "Conclusion".

Analysis of the methods
In this article, we aim to examine the soliton solution of Eq. (3) by employing the following two effective
techniques: the SSEM®*%% and the SEM®, Let us introduce the NLPDEs that follows

H(f7 ftvfmfyvfmfzhfzzv fyt7fyy7fIZ7fZZ7 ) = 07 (4)

where H be a polynomial that depends on the unknown function f(z, y, z,t) and its partial derivatives. In this
context, f represents a function that varies with respect to the spatial variables x, y, z and the time variable ¢.
Additionally, we can consider a wave transformation to analyze the propagation of this function.
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[y, 2,t) = F(§), §=—rt+ar+Py+z ()
Eq. (4) is transformed into the following ODE using the transformation.
P(F,F' F", F" F" .)=0, (6)

/ aF
where F' represents G

The Sardar sub-equation method
The conditions governing the operation of the SSEM are outlined as follows. One approach to solving Eq. (3) is
to reformulate it as follows:

N
F(&) =) 6:6'(€), 6 #0, )
i=0
where
¢'(€) = /0 + pp(€)? + p(€)4, ®)

here 6 and p are real constants. Eq. (8) displays the solutions as
Case-1:
If p > 0 and 0 = 0, we have

¢1 (&) = £v/—pmn sechimn (\/p €), ©)
05 (€) = £/pmn cschmn (VP ) | (10)

2 2
where $€chmn (§) = met tne—€’ eschmn (§) = et —mne—€.

Case-2:
If p < 0 and 6 = 0, we have

65 (&) = £v/—pmn secmn (V=p €) , (11)
01 (&) = £v/—pmn csemn (V=p €), (12)

2 2
where S€Cmn (§) = mett tne—:gr C8Cmn ©) = o,

Case-3: )
If p < 0and § = Z-, we have

+ _ p p
o5 (&) ==+ ~3 tanhmn ( —5 f) , (13)

680 =%/~ cothnn (1/-L ¢), (14)

PE(6) =+ —g (tanhmn (J—Tp 5) + 1v/mn sechmn (\/—Tp g)) , (15)
¢§:(§) =4+ fg (cothmn (\/T2p §) + vmn cschmn (\/T2p .f)) , (16)

0E(€) =+/-E (cothmn (\/% g) + tanhmn ( -2 g)) , (17)

meg +nef£

me€ —ne—¢€.

€ _pe—t
where tanhmn = %, cothmn =

Case-4:

Ifp>0andf = é,wehave

05(&) = £1/£ tanmn (/2 €) (19)

#5(6) = £4/2 cotmn (/5 €). (19)
$12(€) = i\/g (W 5€Cmn (\/% 5) + tanmn (\/27) f)) : (20)
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5 (6) = :t\/g (cotmn (@ {) +v/mn cscmn (@ {)) , (21)
0= E ot () e (E9)

_ me*S —ne ¢ _ meSq4ne €
where tanmn = _LmeLg_‘_neng ; COtmn = meLE—ne*LE .

The simple equation method
Suppose the solution of the NLODE of Eq. (3) that can be expanded in series as follows>>:

N
F(&) =) biG'(8). (23)

i=0
In this context, the constants b; take on values from 0 to N( where i = 0,1,2,..., N) and will be defined in

a future stage of our work. The integer N is a positive quantity that will be determined through the application
of the balancing principle to Eq. (3). The function G(§) represents a category of functions that satisfy the
governing equations. For our analysis, we will focus on the Bernoulli and Riccati equations, which will serve as
the foundational equations for our study. These equations are well-recognized as NLPDEs, and their solutions
can be expressed using elementary functions. Specifically, the Bernoulli equation can be formulated as follows:

G'(€) = 2G(&)* + a1G (&) + co. (24)

where co, ¢, and cz are constants and when cop = 0 Eq. (30) converts into a Bernoulli Equation and solutions
are:

_caexp(e (£+&))
G(f) - 1—co exp (Cl (5 + 50))7

e (a (64 &)
crexp (c1 (€ +€0) + 1

c1 >0, (25)

G = c1 <0 (26)

when ¢; = 0 Eq. (30) changes into a Riccati Equation and has following exact solutions:

= \/coicQtam(\/Coiw(54'50))7

G(¢ c &o is a constant, where apaz < 0. (27)
2
V/—coca tanh (—/cocs (€ — Skeglto)
G(&) = - Rl ( CO 2 (‘S 2 )) , &0 >0, s = £1, where apaz > 0. (28)
2

Applications
By applying the transformation presented in Eq. (5), Eq. (3) is converted to

F'(€) (o + aB+ B —ar+ay+ By +7" + ala+28)F(§) + 6a° F(£)* + 22 F"(€)) = 0. (29)

Application of Sardar sub-equation method
By applying the balancing principle to Eq. (29), we find that for )y — 92, Eq. (7) simplifies to:

F(€) = 8o+ 616(€) + 820(€)°. (30)

By substituting Eq. (30) into Eq. (29) while utilizing the information provided in Eq. (8), we establish an algebraic
system. This is accomplished by equating each of the coefficients derived from the resulting expression to zero.
This process ensures that we capture the necessary conditions for the equations to hold true, ultimately leading
to a solvable system of equations based on the coeflicients involved.

Do + D1¢(€) + D2¢(€)* + Dsd(€)” + Da(€)" + Dsp(€)° + Deop(€)® + Dr¢p(€)" + Ds(€)® = 0,

wher®Po = 8054(5392 + 12&268529 + 20¢2(520 =+ 2042(50529 + 20&ﬂ(529
+4o¢ﬁ(50629 + 20[’}/(529 — 200020k + 252529 + 257529 + 2"}/2(520 )
Dy = 8a451529p + 20281820 + 240285061820 + 6a25851p + a261p
+028001p + 40361520 4+ aBd1p + 2083081 p + aydip — adikp
+B%61p+ Byb1p +7*61p,
Dy = 32a%620p + 20162 p? + 202626 + 240260026 + 120262620
+a26fp + 12a2606fp + 24a26§52p + 4a252p + 4a2605gp
+403620 4 20862 p + 4aB02p + 8 B8002p + 4arydap
—4dabdakp + 48262p + 48v82p + 472 5ap,
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D3 = 160&451520 =+ 160&45162p2 =+ 240&251(530 + 60(2(5?,0 =+ 50(2(5162/)
+600¢25o(5152p + 120(2(5(2)(51 + 20(250(51 + 2a251 + 10&55152p
+2ap61 + 4aBdodr + 2av61 — 2ad1k + 2,3261 + 28701 + 27261,
Dy = 4825260 + 320163 p% + 882 p + 1202636 + 4a262p
+48a26005p + 36026262p + 24028007 + 20267 + 362625,
+6028002 + 60282 + Saﬂ(?%p + 4o¢ﬂ5f + 6862 + 12a86002
+6ayds — 6ad2k + 65262 + 68792 + 67252,
D5 = 560&4(5152,0 + 540&251(5§p + 120&2(53% + 960&2(5051(52 + 80(2(5152 + 160&5(5152,
Ds = 96002 + 86?2 + 240263 p + 72026003 + 60262 + 60026262 + 120362,
D7 = 48&4(5152 + 84&2(51657
Dg = 72062 + 36a255.
By setting all coefficients equal to zero

Do=0, D1 =0, Dy =0,
D3=0, Dy=0, D5 =0,
D=0, D; =0, Ds =0.

When these algebraic equations are solved, we obtain

_ —32a%0+4640°p% +160a* 50 p—160>vp+12002 52 +3a% —240y80 +2ay+4~>
- 4o .

{ B = % (—8a3p — 1200 — a) , 02 = —2a2%, 61 =0,

Using the cases described in Eqgs. (9-22), we obtain distinct solutions, and the results are as follows:
Case-1:
If p > 0 and 6 = 0, we have

filz, y, 2, t) = do + 2a*mnpSechmn

( Vo(t(=32a° (0—2p2)—16a3’yp+3a2+2a'y+472)+8a60 (20a3pt+15a50t—3'yt+3ay)+2a(—2az+8a3py+ay—2'yz)) ) 2
— 1 b

fo(z, y, 2, t) = 0o — 2O¢anpCschmn
( \/ﬁ(t(64a6p2—16&37p+3a2+2aw+4'\/2)+8a60 (20a3pt+15a60t—3'yt+3ay)+2a(—2az+8a3py+ay—2'yz)) ) 2

e

Case-2:
If p < 0and 0 = 0, we have

2
f3(z, y, z, t) = do + 2a°mnp secmn
£(64a5p?+160a 50 p— 160 vp+120a2 53 +3a” — 24080 +2a7+4+7)

2
(\/—p (— ia + ax + %y (—8a3p — 12ad0 — a) + 72)) s

falz, y, 2, t) = 2a*mnp cscmn
t(64a°p?+160a 60 p—16a°vp+1200262+30a% —24av60 +2ay+47>

2
(\/—p< T ) + azx + %y (—8a3p—12a60 —a) +’yz)> + do.

Case-3: )
If p < Oand § = Z-, we have

f5(z, y, 2, t) = 60 + & p tanhmn

6,2 45 3 252, 9.2 2
t(56a8p2+160a?50p—16a3vp+120a262+3a2 —24aysg+2av+4y
/_p<_ ( i 0 )+ax+%y(—8a3p—l2a60—a)+'yz

\/5 ’

2

fe(z, y, z, t) = a?p cothmn

2 2

t(56a6p2+160a45[)ﬂ—16a3’yp+120a26; +3a2—24a’75[)+2a'y+4'y2)

«/7;)( Ia ) +az+%y(78a3p712a607a)+'yz)
7 + do,

(32)

(33)

(34)

(37)

(38)
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fr(z, y, 2, ) =+ a’p

t(56a6p2+16()o<450p—16a37p+120a253+302 —24a’y50+2a'y+4'y2)

tanhnLn \/5\/_70 - 4o

+az + %y (78a3p — 12ad0 — a) + vz

(39)
t(56a6p2+160a450p—16a3wp+120a258+3a2—24a'yéo+2(1'\/+4'y?)
“+iv/mn sechmn ﬁ\/—p — T
2
+az + %y (78a3p — 12a60 — a) + vz
fs(x7 y7 Z7 t)
92 t(560° p2 +160a* 50 p— 160> yp+1200262 +30% — 24080 +2ay+472)
=a“p| cothmn ﬂ\/—p — o
1 3
+ax + 3y(—8a’p — 12ad0 — @) + vz
2
(40)
h NG (5608 p2 +160a150p—16a°~p+120a2 52 +3a% —24av80+2ay+472)
++v/mn cschmn V=Pl — Ia
2
+az+ 3y (—8013,0 — 1200 — a) + vz + do,
fo(z, y, 2, t)
56002 atsgp—16a3 252 +3a2 —24a o 2
V=r <t(6 i L WHAT Sot8eT Zendot 2ty )+w+§y(8a3p12a§0a)+wz>
1.2
= 3a°p| cothmn o7
(41)
abp2 ot —16a3 200252 +3a2 —24a~y o 2 .
p(m(ss p2+160a%spp—16 "{p+142{? 543 24a~y3g+2ay+4~ )+ax+§y(8a“p]2aéoa)+~/z> )
Ftanhmn ( 375 >> + do.
Case-4: )
If p > 0and 6 = Z-, we have
2
(5600 p2+160a* 60 p—16a°7p+120a? 62 +3a% —24av50+2av+477) 1 3
, N/4 (7 v +azr+ 3y (7804 p— 1260 — a) + vz
flO(Iv Y, z, t) = 50 —ap tanmn \/i }
(42)
t(5606pz+160a450p—160‘5'yp+120a265+3az724a4{60+2a7+4w2) 1 3
) N (7 T +azr+ 5y (78(1 p — 12ad0 — a) + vz
fu(z, y, z, t) =80 — & p cotmn = 7
(43)
fe(z, y, 2 1) = e . v a ) N
o — oz‘zp (\/ﬁ SeCon (\/i\/ﬁ (71‘,(‘,1;‘1 p2+160atsyp—160 'yp+lj(i)a 53+30 —24avbu+2mr+4y~) Tart %y (78043/) 1200 — a) +’YZ>) (44)
5605 p2+160a%50p—16a3~p 02524302 24076, o 2 1 2
tanm, (\/iﬁ (71(06M p%+160a*50p— 16 ‘w+142;) 5343 2day80+2: w+4n) tard %y (—81)(“/)— 1208y — a) +WZ))) 7
flg(ﬂ&, v % t) = 6 2 4 3 252 2 2
S0 — an (cotmn (\f?\/ﬁ (_t(SGu p2+160a8yp—16a 7{)+14Z:n4 58 +3a% —24avd0+2a7+477) taz+ 57,' (—8a3p— 12080 — a) +722) (45)
5605 p2 500t 1603~ 2002824302 —24a~ » 2 .
S esemn (\/5\//3 (_L(Gv P2 +1600 150 p— 160 w+14z: 53 +3a” —24av80+2a7+47%) toz+ly (_8a3p_ 12080 _a) +’YZ))) 7
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f14(m7 y, 27 t) - 6 2 4 3 2452 2 2
t \/;<,'(56“ p2+160a%55p—16a° w+142ﬂua 53+3a2 —24ay50+2av+4y )+az+%y(78a3p71201607&)+’Yz>
do — %azp cotmn 375
] (46)
ﬁ( 1(5Ga°ﬂ2+160a460p 160 ‘yp+142:(1252+3a — 240450 +2ay+4y )+ww+%y(78a3p712a507(¥)+72>
Ftanmn V3
Application of simple equation method
By applying the balancing principle to Eq. (29), we find that for y — 92, Eq. (23) simplifies to:
F(€) = bo +b1G(€) + b2G(€)”. (47)

By substituting Eq. (47) into Eq. (29) and utilizing Eq. (24), we form an algebraic system by setting all coefficients
equal to zero.

Eo + E\G(€) + B2G(€)* + EsG(€)° + EaG(€)" + EsG(€)° + EsG(€)° + E7G(§)" + EsG(£)° =0,

where

Eo = 8ab3chy + 2a'b3cic? + 8atbibacicr + 12a2b3bact + 202 bobac
+2a2bgc§ + 6a2b8blcocl + a?bobicoct + albicoct + 2aﬂbzc§
+4o¢ﬁbob2cg 4+ aBbicoci + 2a8bobicoct + 2ab2'yc(2) + abiycoct
—2abgcg/<; — abicocik + 2,6’2bgcg + /32610001 + 2,6’b2'yc% + Bbiycoct
+2bav’ch + by cocs ,

E; = 40* blcocl + 32a4b1b20001 —|— 48a4b20001 + 16a* blbgc(]@ + 8a? blcoclcz
+24a2b0b1bgco + 202 bleCO + 6a? b0b1cl + boblcl +« b161 + 1202 boblcocl
+a2b%coc1 —+ 36a2bgb26061 =+ 6a2b0b26001 —+ 60(2b26061 =+ 120[2b%b10002
+2a2b0b1cocz + 2a2b16062 + 4aﬂb1bgc(2) + aﬂblcf + 2a,8b0blcf + 2a,Bb%cocl
+6aBbacocr + 12a8bobacoct + 2a8bicoca + daBbobicoca + ozbyyc? + 6abaycoct
+2abiycoce — ablcffi — 6abacocik — 2abicocak + ﬁ2b1c§ + 6ﬁ2bgcocl
+2B%b1cocs + Bbiyel + 68baycoct + 2Bbiycocs + biy el + 6bay coca
+2b17%coca,

FE>=2b c‘foz4 + 4Ob1bgcoc1a + 104b3c3Ea’ + 8b3ckciat + 64b20002a4
+2061000102a + 104blbzcoclcga + 24b0b200a2 + 26200a2 —|— 1262bgc
+1260b cla +b c%oz2 + 24bob2cla + 4b0bgcla + 4b201a + 66?00c1a2
+84b0b1b26061a -+ 7b1l)26001a2 + 24b0b%0002a2 -+ Qb%CoCQCM2 =+ 48b%b2c002a2
+8b0bgcocza2 + 8b20062a2 + 18bgb1c1cza2 + 3boblclcga2 + 3bicica®
+48b3cta + 28b3c2 o + 4Bbacia + dybacia — dkbacia + 8Bbobacia
+148b1b2cocra + 46b30002a + 88bacocea + 8ybacocaar — 8kbacocacx
+16ﬂb0b200620¢ + 38bicicoar + 3"}/1)1(21(2204 — 3xbicicaar + GBboblclczoc
+4B2b20% + 4721720% + 45’7()26% + 852b20002 + 8’721720002 + 8Bvbacoca
+38%b1c1ca + 372bicica + 3Bvbicica,

E; = 16a* blbgcl + 9602 coc1 + 80a4b1bgc 02 + 3204 b1000102 +12a% b10102
+176a* b162000102 + 272002 006102 + 2402 b1b200 + 6a2b101 + 60a? bob1b201
+5a2b1b201 + 12a2b0b162 + 20?2 bob102 + 2a2b102 + 7202 bob26061 + 602 b20001
+48O&2b%b20001 + 12a2bi’c002 + 120a2b0b1b26062 =+ 10a2b1b20002 + 36a2b0b%6162
+3a2b§6162 + 600[21731)26162 -+ 10a2b0b20102 + 10a2b26102 + 10&5[)11)26%
+208b1¢3 + 4aBbobica + 12a6b3coc1 + 20a8bibacoca + 6afbicics
+10aBbacica + 20aBbobacica + 2abiyces + 10abayeicy — 2abicak
—10abacicak + 2ﬂ2blc§ + 10ﬂ2b20102 + 261)1703 + 108b2ycic2 + 2b172c§
+1Obz’}/201027

Ey = 320z4b201 + 16ab? coc2 + 176a4b20002 + 26a4b10102 + 2480 b1 bacocr 3
+88a* b1b20102 + 368a* bQC(]ClCQ +12a%b cg + 4802 bob 01 + 4a26201
+36a2b%b2cf + 24a2b0b%c§ + 20426?0% + 36a2bgbgc§ + 6a2b0bgc§

+6a2b2c2 + 787 blb 0001 + 9602 bob26002 + 8a? b20002 + 7207 b b26062

+18a? b10102 + 15602 bobi1bacico + 13a®bibacics + 8aﬁb201 + 4a6b102
+6a5b202 + 12aﬂbob202 + 16aﬁb coc2 + 26a8b1bacica + 6ab2'yc2

—6abacik + 66%back + 68baycs + 6bay?cl,

Es = 1120 b1bacocs + 24a*b3e1cd + 176atbibac? 2 + 464a4b2c0c1c2
+160a4b C%CQ + 54a261b cf + 122203 c% + 96a2b0b1b202 + 8a? b1b202
+360ch§cocl + 1080426117300122 + 120a2b0b§clcg + 1Oa2b§clcg

+96a2b§bzclcg + 16a,6’b1bgc§ + 2Oa/6'b%c162,
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FEg = 8a4b20 +192a%b2 0002 + 152a4b1b20102 + 296a4b201c2
+2402b5¢2 4+ T202bob2c3 + 602b2c3 4 6002b3bac3 + 4802 bscoca
+138a2blb§clcz + 12a[3b§c%,

FEr; = 48a4b1b202 + 240044172610‘;’ + 84a2b1b§c% + 60a2b§c102,

Es = 72ab2ch + 3602b3c3.

By setting all coefficients equal to zero

Ey=0, E; =0, E; =0,
E3;=0, E; =0, E5 =0, (48)
Es =0, By =0, Es = 0.

The solution set we obtain is

{ oy 21 (V37 209). (49)

4co

For Bernoulli Equation when ¢o = 0

Case-1:
fl(xa ya Z, t) =
5bac? exp(cy (—rt+(—rt+az+By+yzo)taz+By+yz))
T Zea(L=ca expler (—Rt+(—ri+aatAy+yzo) fa+Ay+72)) (50)
+ bgcl exp(2c1 (—rt+(—rtt+az+By+vyzo)+az+By+vz)) +b
(1—c2 exp(c1(—rt+(—rt+az+By+v20)+az+By+72)))? 0
Case-2:
Whenp <0

fQ(x7 y7 Z7 t)
bac? exp (01 (ﬁy + (—mt + By — Li (\/5 - z) Bzo))) (902 exp (01 (ﬂy + (—mt + By —Li ( - z) Bzo))) + 5eze 2“*62*7‘[52))
> .

=bo +
4eo <02 exp (cl (ﬁy + (*K,t + By — %z (\/g — z) ﬁzo))) + 62”(2"'+Bz“fﬁz)>

(51)
For Riccati equation, when ¢; = 0 the solutions we obtain are
Case-3:
f3(m7 y’ Z’ t)
b+ baco tan? (\/COCQ (—mf + (—mf + By — %z (\/gﬁ — zﬁ) zo) + By — %z (\/3/3 — zﬁ) z)) (52)
= by o .
Case-4:
f4(£, Y, 2, t)
baco tanh? (\/(3002 (f%sLog (fmt + By — %z (\/gﬁ — zﬂ) zo) — Kkt + By — %z (\/gﬁ — iﬂ) z)) (53)
= by — .
C2

Modulation instability (MI)

modulation instability (MI) refers to the tendency of a steady-state solution to become unstable in the presence of
small perturbations. In essence, while the system may initially appear to be in a stable state, any small disturbance
can grow exponentially over time, leading to significant changes in the system’s behavior. This instability arises
when the dispersion, which tends to smooth out disturbances, is counteracted by the nonlinearities present in
the system, which can amplify these disturbances. In analyzing the governing equation through linear stability
methods, we examine how disturbances evolve and identify conditions under which MI occurs. By studying
eigenvalues and the associated growth rates of perturbations, we can ascertain the stability of the steady-state
solutions and understand the critical roles that nonlinearity and dispersion play in instigating modulation
instability. This detailed exploration of MI enables us to predict the potential development of complex structures
and patterns within the system, further enriching our understanding of nonlinear dynamics. In the context of
steady-state modulation, certain nonlinear systems can demonstrate instability as a result of the interaction
between nonlinearity and dispersive effects. This section of the analysis utilizes a linear stability approach to
investigate the phenomenon of MI associated with the governing equation®.

’U(:'E7y’z7t) :)\O+pP(ZL‘7y7Z7t)’ (54)

Here P denotes the normalized optical power. Now, putting Eq. (54) in Eq. (3), we get,
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(55)
Assume that the solution to Eq. (55) has the following form
P (I,y, Z,t) — pei(m+mz+n2y+n32). (56)

In this context, x denotes the frequency of the perturbation, while p represents the normalized wave number. By
substituting Eq. (56) into Eq. (55), we derive the following dispersion relation.

me + 577%)\0 + 2n2m1 Ao + 77? + n2m + 3 + T]S + 775 + n2m3 = 0. (57)

By analyzing the dispersion relation for the variable ., Eq. (57) produces

o — —5ni Ao — 2m2mido — i — Mam — N3N — M3 — N5 — 273 (58)
m

The dispersion relation obtained is expected to predict the stable steady state solution. In case of a real value for
> the influence of small perturbation makes the steady state stable. However, in case & is not real, the steady state
becomes unstable and gradually grows the perturbation.

Results and discussion

In this research, we have utilized two novel approaches, namely the SSEM and the SEM, to address the
(3+1)-dimensional Sakovich equation. This section provides visual representations of a range of soliton
solutions that emerge within the system under investigation. 3D, 2D, contour, and density plots have been used
to graphically present the outcomes, offering a detailed visualization of the data. Every type of plot is used for a
different purpose: 3D plots show relationships in a spatial manner, while 2D plots make intricate data easier to
interpret. Contour plots depict the interactions and gradients between variables, while density plots highlight
the distribution and density of data. Together, these plots give a better and more complete picture of the data by
presenting both value interactions and underlying patterns. The newly formulated (3+1)-dimensional Sakovich
equation has been the subject of extensive examination through various methodologies. In this segment, we aim
to compare our results with those obtained from previous studies that employed different techniques. Specifically,
we juxtapose our findings with those derived from the exp(—1(n)) expansion method® and the New Modified
Extended Direct Algebraic (NMEDA) technique. This comparison will highlight the effectiveness and insights
provided by our approaches in relation to these alternative methods in solving the Sakovich equation®”.

« Khalid K. Ali et al.%® investigated soliton solutions for the (3+1)-dimensional Sakovich equation, utilizing the
exp(—1(n)) expansion method in conjunction with the Bernoulli sub-ODE method. Their analysis resulted
in a diverse array of solution types, encompassing bright solitons, dark solitons, periodic solitons, exponential
solitons, and singular solitons. Furthermore, they provided visual representations of these soliton solutions,
which are depicted in both two-dimensional and three-dimensional formats. These graphical illustrations fa-
cilitate a comprehensive understanding of the different behaviors and characteristics of the solitons identified
in their study.

« Muhammad Younis et al.®% conducted a comprehensive investigation into various wave structures associated
with the Sakovich equation. Their research uncovered a range of wave configurations, including singular soli-
tary waves and their combinations such as shock waves, shock-singular waves, complex solitary-shock waves,
and periodic-singular waves. Notably, the derivation process also revealed rational solutions, which further
contributed to the breadth of solutions identified. These findings were achieved through the application of
the NMEDA technique, demonstrating the method’s versatility and effectiveness in tackling the intricate na-
ture of the Sakovich equation. The results underscore the ability of the NMEDA technique to yield a diverse
spectrum of wave solutions, thereby enhancing the understanding of the dynamics described by the Sakovich
equation.

« In this research paper, we have successfully derived a broad spectrum of soliton solutions encompassing var-
ious forms, including bright solitons, dark solitons, kink solitons, cuspon solitons, singular solitons, singular
periodic solitons, and periodic solitons. These solutions are effectively illustrated through a variety of visual
representations, including three-dimensional plots, contour plots, density plots, and two-dimensional plots.
The methodologies employed in this study include both the SSEM and SEM techniques. Notably, while some
of our findings exhibit differences compared to those documented in*?, we discovered that modifications
to certain parameters could yield results that are more consistent with the previous study. It is important to
highlight that the contributions presented in this article are not only practical and succinct but are also artic-
ulated in a clear manner. This clarity enhances their understanding, particularly in the context of applications
involving nonlinear waves. The comprehensive approach taken in this study facilitates a deeper insight into
the behavior of soliton solutions within the framework of nonlinear dynamics.

The soliton solutions are illustrated in Figs. (1-14). Fig. (1) displays the bright soliton derived from Eq. (33). Fig.
(2) showcases the dark soliton resulting from Eq. (34). In Fig. (3), the singular soliton originating from Eq. (37)
is presented. Figs (4) and (5) illustrate the periodic bright soliton resulting from Egs. (38) and (39), respectively.
Fig. (15) reveals the singular periodic soliton derived from Eq. (40). Fig. (7) displays another bright soliton
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Fig. 1. Visual representation of the bright soliton solution by using 3D, contour, density, and 2D
graphs respectively, that correspond to Eq. (33) using the SSEM at p = 0.9, a = 0.8, v = 1.5,
6o=0.5,0=28 m=13, n=0.99, y=09m =13, n=0.99, y =0.9,and z = 0.3.

originating from Eq. (41). Fig. (8) depicts the cuspons that arise from Eq. (42). Fig. (9) shows the bright soliton
that emerges from Eq. (44), while Fig. (10) illustrates the periodic from the same equation. Fig. (11) showcases
another bright soliton resulting from Eq. (46). Fig. (12) presents the compacton soliton originating from Eq.
(50). Fig. (13) depicts the anti-kink waves arising from Eq. (51), and finally, Fig. (14) illustrates the dark soliton
derived from Eq. (53).

Solitons are remarkable for their unique capability to maintain their amplitude, velocity, and shape as they
propagate through a medium. The solutions discussed in this study hold considerable physical significance and
exhibit a variety of characteristics. For example, a dark soliton is defined by having an intensity that is lower
than that of the surrounding background. In contrast to conventional pulses, which carry energy, a dark soliton
represents a localized area within a continuous temporal beam where energy density is effectively reduced
to zero’®. On the other hand, periodic wave solutions are characterized by their repetitive and continuous
waveform patterns, which define key properties such as wavelength and frequency’’. Specifically, the period
of a waveform refers to the duration required to complete a full cycle, while frequency describes the number
of cycles that occur in a given time frame, typically measured in cycles per second. The concept of singular
solitons is intrinsically linked to solitary waves, especially when the peak of the solitary wave is situated at an
imaginary position’?. This makes the investigation of singular solitons particularly significant, as these solutions,
characterized by pronounced spikes, may offer valuable insights into the mechanisms that contribute to the
formation of rogue waves. Dark solitons are particularly distinctive due to their localized dips within a stable
continuous-wave background, demonstrating a unique interplay between energy levels. In comparison to bright
solitons, dark solitons generated in fiber lasers are noted for their enhanced stability against noise and exhibit
a lower sensitivity to energy losses. Kink waves, by contrast, are defined by their transitions between specific
asymptotic states. These waves can either ascend or descend and ultimately reach a steady value as they extend
to infinitely large distances”*. Moreover, cuspon solutions are identified by the presence of sharp cusps at their
peaks’. Compactons, on the other hand, are characterized by having finite spatial support; each compacton
behaves as a soliton that is confined within a specific spatial core’. Given these characteristics, the various
soliton solutions highlighted in this study not only showcase the diversity of wave behavior but also underscore
their potential relevance in understanding complex nonlinear phenomena.

Advantages and limitations of the methods presented in this paper
Sardar Sub Equation Method (SSEM) and Simple Equation Method (SEM) are both useful tools to tackle
nonlinear evolution equations (NLEEs). SSEM is effective in producing various solutions such as solitary and
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Fig. 2. Visual representation of the dark soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (34) using the SSEM at p = 0.5, a = 0.66, v =1.9,60 = 1.2, 0 = 1.8,
m=15 n=06, y=11,andz=1.2.

periodic waves, while SEM is simple and easy to use for scientists at all levels. They provide a potent method for
investigation of complicated physical phenomena, the deepening of knowledge on nonlinear dynamics.

Advantages
Unlike the generalized projective Riccati and improved tan( @)—expansion methods, which are effective only

for ODEs of order three or lower, the SSEM handles equations up to fourth order by introducing more arbitrary
constants. This overcomes the issue of having more equations than unknowns, simplifies computation, and
ensures consistency. The method’s efficiency is demonstrated by obtaining new soliton solutions for higher-order
nonlinear models, with potential applications in optical fiber technology. The SEM has a number of advantages,
such as simplicity, allowing researchers of any proficiency to use it successfully. SEM gives precise solutions to
nonlinear evolution equations with minimal computational effort, making it easily applicable for regular use.
SEM can also distinguish between various forms of solutions, like solitary waves, making it useful in different
fields.

Limitations

Analytical approaches may become difficult or unfeasible when FCNLSEs exhibit significant nonlinearities
or intricate boundary conditions. Numerical methods may be more suitable in these situations. The choice of
parameters and starting conditions can have a significant impact on the methods’ efficacy; therefore, careful
adjustment is necessary because the outcomes may differ depending on these decisions.

Conclusion

In this paper, we investigate the application of the SSEM and the SEM to extract soliton solutions from the
novel three-and-a-half-dimensional Sakovich equation. Our aim is to evaluate the equations effectiveness in
capturing additional dispersion and nonlinear phenomena that can be applied in various practical contexts. By
utilizing these methodologies, we have successfully identified a diverse array of solitary wave solutions, which
include exponential, trigonometric, and hyperbolic forms. These findings contribute to a deeper understanding
of the nonlinear dynamics associated with this newly formulated equation. The transformation of this significant
physical model into an ODE is achieved through a wave transformation, which facilitates further analytical
exploration. The techniques we used have several advantages, such as ease of use, accuracy, and ability to reduce
computational requirements, showing their utility in various areas. By applying these methods, we were able to
produce many new soliton solutions through symbolic computation using Mathematica. The solutions exhibit
various wave patterns, i.e., dark solitons, bright solitons, singular solitons, compactons, periodic solitons, kink
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Fig. 3. Visual representation of the singular soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (37) using the SSEM at p = 0.4, « = 1.3, v =0.9,60 = 1.7, 6 = 0.55,
m=0.8, n=0.7, y=1.9,and z = 2.3.

solitons, cuspons, and singular periodic solitons’®. To analyze the dynamics of these solutions, we conducted
comprehensive examinations utilizing three-dimensional, two-dimensional, contour, and density plots.
Additionally, we assessed the MI of the governing model to provide insights into the stability characteristics
of the wave solutions. The groundbreaking discoveries presented in this study offer substantial motivation for
future research that explores a wide range of advanced nonlinear concepts. This methodological approach not
only demonstrates its reliability but also significantly reduces computational complexity, thereby enhancing its
applicability across diverse domains. The implementation of these techniques has uncovered a rich variety of
solitonic wave structures, which function as traveling wave solutions, and opens avenues for further investigations
into the intricate nature of nonlinear wave phenomena.

Soliton theory has found broad application in many areas of science and engineering, including fluid
mechanics, plasma physics, nonlinear optics, astrophysics, and molecular biology, where it plays a crucial role
in solving sophisticated real-world issues. In fiber optics, for example, solitons play a key role in guaranteeing
the long-distance, distortion-free transmission of digital information’”. Dark solitons, which are intensity dips
localized on a continuous wave background, are finding more and more applications in fields such as optical
sensing, high-speed optical communication, and nonlinear optical systems, testifying to their versatility and
technological importance’®. Bright soliton solutions, which are intensity peaks localized, have been found to
be crucial in physical systems like plasma environments and Bose-Einstein condensates. Specifically, periodic
bright solitons play a critical role in oceanography and coastal engineering by assisting in rogue wave formation
modeling and shallow water wave dynamics analysis”®. Our study is valuable because it can help guide future
investigations, particularly when applying these soliton solutions to enhance more effective communication
systems and gain a better understanding of complex wave dynamics. Future studies will focus on examining
these soliton forms in practical settings, such as enhancing data reliability in nonlinear optical devices and
optical networks. This study contributes to the body of theory and opens up new avenues for creative engineering
ideas in nonlinear dynamics. Based on our present results, our future work will investigate some specific issues
to further reveal the dynamics of solitons. First, we will study the stability and dynamics of solitons in the
framework of dispersive hydrodynamics, specially with emphasis on rogue waves and their applications to
ocean engineering and safety of navigation. This entails exploring collisions of multi-solitons and how they
might produce sudden changes in amplitude that could be harmful in aquatic ecosystems. We also intend to
explore interactions between solitons in higher dimensions with the focus on applications in nonlinear optics
where propagation of light in intricate media may cause emergent behavior to compromise signal integrity. We
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Fig. 4. Visual representation of the periodic bright soliton solution by using 3D, contour, density, and
2D graphs respectively, that correspond to Eq. (38) using the SSEM at p = 0.4, « = 0.55, v = 0.77,
So=15 0=21,m=23, n=19, y=0.9,andz = 0.3.

will also discuss the effects of external disturbances on soliton stability in Bose-Einstein condensates, especially
under the influence of temperature fluctuations or external potentials, and these are particularly important for
improvements in quantum technologies.
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Fig. 5. Visual representation of the periodic bright soliton solution by using 3D, contour, density, and
2D graphs respectively, that correspond to Eq. (39) using the SSEM at p = 0.3, a = 0.2, v = 0.5,
60 =0.9, 0 =02,m=0.5, n=0.8, y=0.3,and z = 0.6.
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Fig. 6. Visual representation of the singular periodic soliton solution by using 3D, contour, density, and
2D graphs respectively, that correspond to Eq. (40) using the SSEM at p = 0.9, a = 1.2, v = 0.7,
So=11,60=12,m=09, n=08, y=1.6andz = 1.4.

Scientific Reports|  (2025) 15:23332 | https://doi.org/10.1038/s41598-025-00503-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1.315
1.305
1.295
1.285

-2 ]
-2 -1 0 1 2 -2 -1 1 2

X

Fig. 7. Visual representation of the bright soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (41) using the SSEM at p = 0.1, « = 0.3, v =0.8,60 = 1.3, 6 = 0.2,
m=12 n=15 y=0.6,and z = 0.4.
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Fig. 8. Visual representation of the cuspons soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (42) using the SSEM at p = 1.4, a = 0.5, v =0.6,60 = 1.1, 6 = 0.6,
m=11, n=13, y=11,and z = 0.4.
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Fig. 9. Visual representation of the bright soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (44) using the SSEM at p = 0.4, a« = 0.6, v = 0.8,60 = 0.5, 6 = 0.2,
m=0.1, n=0.3, y=0.8,and z = 0.7.
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Fig. 10. Visual representation of the periodic soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (45) using the SSEM at p = 0.1, « = 0.9, vy =1.2,60 = 2.7, 6 = 0.2,
m=18, n=27, y=0.6,and z = 0.7.
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Fig. 11. Visual representation of the periodic bright soliton solution by using 3D, contour, density, and
2D graphs respectively, that correspond to Eq. (46) using the SSEM at p = 0.2, o = 0.5, v = 1.5,
So=15 0=15m=25 n=18, y=0.4,andz = 0.9.
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Fig. 12. Visual representation of the compacton soliton by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (50) using the SEM at bp = 0.6, c1 = 1.1, c2 = 0.7, b2 = 1.5,
£ =08, a=05, =12,7v=22 k=09, 2z=0.5,andy = 0.8.
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Fig. 13. Visual representation of the anti kink waves by using 3D, contour, density, and 2D graphs respectively,
that correspond to Eq. (??) using the SEM at bop = 0.9, ¢1 = 2.1, c2 =0.3,b2 = 1.1, {§, = 0.9, a =0.8,
8=02 v=0.3, k=11, 2z=0.9,andy = 0.3.
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Fig. 14. Visual representation of the dark soliton solution by using 3D, contour, density, and 2D graphs
respectively, that correspond to Eq. (53) using the SEM at bp = 0.8, c2 = 1.7, b2 = 0.1, & = 0.8,
co=0.78 a=0.66, =12,vy=0.7, k=14, z=1.5, y =0.55,and s = 1.0.
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Fig. 15. Modulation instability (MI) varies with different values of n; = {0.3,0.2,0.3}, 72 = {0.6,0.4,0.1},
ns = {0.2,0.3,0.4}, and Ao = {0.3,0.1,0.6}.
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