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In this paper, we investigate the newly formulated (3+1)-dimensional Sakovich equation, highlighting 
its utility in describing the dynamics of nonlinear waves. This novel equation effectively incorporates 
increased dispersion and nonlinear effects, thereby enhancing its applicability across various physical 
scenarios. This model especially useful when modeling nonlinear phenomena in materials that simpler 
linear models would not accurately describe. Also serve as a founding model for numerical simulations 
in computational fluid dynamics and solid mechanics. We deploy both the Sardar Sub-Equation 
Method (SSEM) and the Simple Equation Method (SEM) to derive a broad spectrum of unique traveling 
wave solutions. These solutions have been thoroughly verified with Mathematica and include a wide 
variety of mathematical functions such as trigonometric hyperbolic and exponential forms. To provide 
a comprehensive visual representation of these solutions, we generate 3D, contour, density, and 
2D graphs by meticulously setting the relevant parameters in Wolfram Mathematica. The solutions 
obtained illustrate various phenomena, such as dark, bright, kink, singular, periodic, periodic singular, 
and compacton solitons. The innovation of this work is in the systematic investigation and description 
of several types of soliton solution over a wide variety of nonlinear equations. Not only does this 
thorough study advance theoretical insight but also increase practical applications in areas like optical 
fiber communication and engineering. Additionally, we investigate the modulation instability (MI) of 
the proposed model, further elucidating its significance in the context of nonlinear wave propagation.

Keywords  The new (3+1)-dimensional Sakovich equation, the Sardar sub-equation method, the simple 
equation method, compactons soliton, modulation instability

Nonlinear partial differential equations (NLPDEs) are essential tools for explaining a broad range of intricate 
phenomena in the fields of engineering, physics, and biology1,2. Their importance rests in their ability to 
capture complex behaviors that linear equations are frequently unable to adequately model. A vital class of 
NLPDEs are nonlinear evolution equations (NLEEs). Research on NLEEs has become popular and important 
because of the extensive applications of NLEEs in the fields of engineering, physics, and mathematical sciences. 
Nonlinear sciences, including optical engineering, condensed matter physics, fluid dynamics, electromagnetic 
theory, particle diffusion, nuclear physics, plasma physics, and many more, can benefit from the application of 
mathematical models based on NLEEs3,4. To enhance our understanding of nonlinear phenomena and their 
practical applications, it is imperative to precisely solve the relevant NLEEs. Some essential components of all 
NLEEs are lump waves, multi-soliton, rogue waves, breathers, and their dynamical features5–7. It is worthwhile 
to carry out additional research on these equations or their different kinds because of their potential applications 
in water, Bose-Einstein condensates, the ocean, nonlinear optics, and other fields.
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In the field of nonlinear science, NLPDEs have gained popularity and have been utilized to characterize 
issues in numerous domains. NLPDEs find applications in the fields of medical imaging, population modeling, 
electrical nerve communication, and the appropriate delivery of oxygen to healing tissues8–10. NLPDEs are 
widely used in various physical applications. They play a crucial role in areas such as wave propagation and 
scattering, magnetic resonance imaging, modeling traffic congestion, fluid dynamics, and the study of ultrasonic 
and turbulent flows. Additionally, they are important in understanding magnetohydrodynamic movements in 
pipelines and acoustic transmission. Their adaptability and capacity to model intricate behaviors make them 
essential resources in both theoretical and practical physics11. A variety of techniques have been developed 
to obtain precise solutions for NLPDEs. These include the extended and modified tanh-function method12, 
the Hirota bilinear method13, the modified Sardar sub-equation method14, Hirota’s direct method15, the newly 
enhanced modified generalized sub-ODE method16, the Lie symmetry method17, the He-Laplace variational 
iteration method18, the homotopy perturbation method19, the exp(−Φ(η))-expansion method20–23, the Jacobi 
elliptic function expansion method24, the tanh method25, the extended tanh method26, the modified generalized 
exponential rational function method27, the sine-Gordon expansion method28, the modified simple equation 
method29, the modified extended tanh method30, the improved F-expansion method31, the extended hyperbolic 
functions technique32,33, the unified tanh approach34, the new Kudryashov method35, the modified extended 
auxiliary equation mapping approach36,37, the new auxiliary equation technique38,39, the modified Khater 
(MK) method40, the ( w

g
)-expansion approach,41, the extended hyperbolic function technique42, the variational 

iteration method43, the Backlund transform method44, the extended auxiliary mapping method45 among others. 
These diverse approaches offer specialized methods for analyzing the complex structure of nonlinear equations, 
greatly enhancing our understanding of intricate wave interactions in various scientific fields.

Optical solitons are a type of electromagnetic wave that maintain a stable propagation pattern in nonlinear 
media. This stability arises from a strong balance between the linear effects of diffraction or dispersion and the 
nonlinear effects of the medium. In the realm of optical fiber communications, solitons are particularly significant 
as they enhance the efficiency and capacity of communication networks. They achieve this by maintaining their 
shape and speed over long distances, which is essential for effective data transmission46,47. Furthermore, one can 
conceptualize the genetic system of living organisms as a tripartite unity that encompasses both structural and 
functional components. This system includes holographic structures that are capable of transmitting information 
via solitons, which can operate similarly to magnetic and sound waves. In acupuncture, solitons manifest 
as high-amplitude, nonlinear solitary pulses that efficiently compress and direct the body’s energy48. Their 
mechanism resembles shock waves, particularly due to their hydrophilic jumps, which enable them to influence 
the environments of nearby smaller waves. As solitons propagate, they draw in these smaller waves, assimilating 
them into their larger potential waves, thereby allowing them to harness and utilize this energy. This complex 
interaction highlights the multifaceted role of solitons in both communication technologies and biological 
systems49. The investigation of NLEEs is important because it gives information on a broad array of physical 
phenomena, ranging from fluid dynamics to optical communications. This paper points out different types of 
exact solutions, such as solitary and periodic waves, that are important in the understanding of these systems. 
We present strong methods such as the Sardar sub equation method and the simple equation method, which 
are renowned for their effectiveness in revealing exact solutions. By placing our research within the framework 
of previous literature, we highlight its novelty and importance. Sakovich equation is a NLPDE formulated by 
Sakovich in 1996. It is characterized by having Korteweg-de Vries (KdV)-type solitons and has been a focus of 
major research work due to its utility in many applications. This equation is Painlevé integrable, i.e., it can satisfy 
the Painlevé test, which is a test for whether a nonlinear partial differential equation is integrable. This equation 
is applied to the study of solitary waves, specifically in nonlinear dispersive systems. Some examples include the 
examination of rogue waves in oceanography, in which it is utilized to model sudden large waves. This model 
find applications in wide areas of physics, mathematics, and other sciences, especially in the theory of waves, 
soliton theory, plasma physics, biology and chemistry, and nonlinear phenomena. In various disciplines, the (2 
+ 1)-dimensional second-order Sakovich equation is an essential mathematical model that helps to investigate 
the behavior of water waves within a long, narrow, hollow tube. A notable study conducted by Wazwaz et al. in 
2020 introduced two innovative Painlevé-integrable extended Sakovich equations across both (2 + 1) and (3 + 
1) dimensions. This research effectively derived a variety of soliton solutions, as well as multiple complex soliton 
solutions corresponding to these models50. Subsequently, in 2022, Sachin Kumar et al. expanded on this work by 
examining different analytical wave solutions and analyzing the dynamic behaviors of the newly formulated (2 
+ 1)-dimensional Sakovich equation. In a 2025, Aly R. Seadway et al. focused on solitary wave solutions of the 
extended Sakovich equation, obtained various types of analytical solutions, including trigonometric, hyperbolic, 
exponential, and rational function forms. They established several standard forms of novel and unique closed-
form solutions through the application of two relatively recent techniques: the extended Jacobian elliptic function 
expansion method and Lie symmetry analysis. In this context, Lie vectors were employed to construct an 
optimal arrangement of the one-dimensional subalgebras, thereby enhancing the understanding of the solutions 
in relation to the underlying symmetries of the equations51. The major purpose of employing the Sakovich 
equation is to gain a better insight into nonlinear dynamics through investigation of the complicated behavior of 
nonlinear systems, especially wave propagation phenomena. This is about creating sound mathematical models 
that accurately describe a variety of physical systems like fluid mechanics and applications in optical fibers.

Both the Sardar Sub-Equation Method (SSEM) and the Simple Equation Method (SEM) are recognized as 
effective approaches for deriving solutions to nonlinear partial differential equations (NLPDEs). One of the key 
advantages of these two methods over existing techniques is their ability to generate a wider array of exact soliton 
solutions, including novel solutions with additional parameters, in a straightforward and intuitive manner. In 
2022, Melih Cinar et al. employed the SSEM to extract a variety of optical solitons from the dimensionless 
Fokas-Lenells equation, which included a perturbation term52. This research led to the identification of several 
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types of solitons, such as periodic solitons, dark solitons, singular periodic solitons, and combined bright-dark 
solitons. The following year, Khalida Faisal et al. utilized the same SSEM to derive pure-cubic optical solitons for 
the Schrödinger equation that featured three different types of nonlinearities. By imposing specific constraints 
on certain parameters related to the nonlinear Schrödinger equation (NLSE), they successfully obtained both 
bright and dark optical soliton solutions53. In 2024, Hamood Ur Rehman et al. applied the SSEM to analyze 
optical solitons within the (2 + 1)-dimensional coupled integrable NLSE. Their study concentrated particularly 
on the propagation and interaction of optical solitons across various media, such as multi-mode fibers and 
fiber arrays54. Previously, in 2016, Taher A. Nofal investigated the application of the SEM for solving NLPDEs 
and explored its practical implications. This research focused on deriving exact solutions for several prominent 
NLPDEs, including the Kadomtsev-Petviashvili (KP) equation, the (2 + 1)-dimensional breaking soliton 
equation, and the modified generalized Vakhnenko equation, using the SEM. Within the framework of SEM, the 
Bernoulli equation or the Riccati equation is utilized as a trial condition, allowing for the systematic derivation 
of exact solutions55.

We would like to point out that our SSEM and SEM has a number of benefits compared to other existing 
methods employed in solving nonlinear equations. First, they are more computationally efficient and allows 
for faster solutions. Second, it yields higher accuracy, particularly in problems involving strong nonlinearities. 
Finally, the approaches are more flexible in modeling various physical phenomena, and hence particularly 
useful in applications within areas like quantum mechanics and nonlinear optics57. Both the SSEM and the SEM 
are recognized as effective analytical techniques for solving NLPDEs, yet they exhibit significant differences 
in complexity, applicability, and methodology56. However, its complexity necessitates greater computational 
resources and a more sophisticated level of mathematical expertise from users. On the other hand, the SEM is 
defined by its straightforward and versatile nature. It utilizes basic functions, such as exponentials or trigonometric 
functions, which allows it to address a wider range of NLPDEs that exhibit moderate levels of nonlinearity. 
This characteristic makes the SEM particularly effective for solving problems related to heat transfer and wave 
propagation. Although the SSEM provides higher accuracy and greater flexibility for modeling complex systems, 
the SEM is generally simpler to implement and places fewer demands on computational resources58. Ultimately, 
the decision to use either the SSEM or the SEM is determined by factors including the complexity of the problem 
at hand, the desired precision of the solution, and the ease of implementation for the analyst. In this context, a 
novel three-dimensional, second-order nonlinear wave equation was introduced by Sakovich59, which can be 
expressed as follows:

	 fxz + fyy + 2ffxy + 6f2fxx + 2(fxx)2 = 0.� (1)

The nonlinear wave equation has multisoliton solutions that simultaneously satisfy the fifth-order KdV equation 
and the KdV equation. Eq.(1) was extended by Wazwaz to produce the subsequent equation60:

	 fxt + fxx + fyy + fxy + fxz + fyz + 2ffxy + 6f2fxx + 2f2
xx = 0.� (2)

Wazwaz et al. developed a brand-new (3+1)-dimensional Sakovich equation to explain the propagation 
of nonlinear waves. The Painlevé integrability of the recently determined equation was verified by using the 
truncation expansion method61.

	 fxt + fxx + fyy + fzz + fxy + fxz + fyz + 2ffxy + 6f2fxx + 2f2
xx + ffxx = 0,� (3)

where two new terms, fzz  and ffxx, have been introduced. The term fzz  represents the second-order dispersion 
effect in the z-direction, capturing the dispersion dynamics that occur as waves propagate along this axis. 
Meanwhile, the term ffxx signifies the second-order dispersion along the x-axis, while also accounting for the 
nonlinear effects represented by the function f . This inclusion allows for a more comprehensive modeling of 
wave behavior, incorporating both dispersive and nonlinear characteristics in different spatial directions.

The (3+1)-dimensional Sakovich equation models the dynamics of nonlinear wave propagation in diverse 
physical systems such as nonlinear media, plasma, and fluid mechanics. With its nonlinear nature, it facilitates 
investigation into effects such as solitons and shock waves that propagate without changing shape. The equation 
models the balance between nonlinearity and dispersion, providing insight into wave stability and interaction 
processes within a four-dimensional space time context.

The structure of this paper is organized as follows: Section "Introduction" provides a detailed introduction 
to the paper. Section "Analysis of the methods" outlines the analysis for both the SSEM and the SEM. In Section 
"Applications", we discuss the applications of both methods. Section "Modulation instability (MI)" analyzes the 
modulation instability associated with the proposed model. Section "Results and discussion" presents the results 
along with graphical representations. Finally, we conclude the paper in Section "Conclusion".

Analysis of the methods
In this article, we aim to examine the soliton solution of Eq. (3) by employing the following two effective 
techniques: the SSEM62,63 and the SEM64. Let us introduce the NLPDEs that follows

	 H(f, ft, fx, fy, fz, fxt, fxx, fyt, fyy, fxz, fzz, ...) = 0,� (4)

where H  be a polynomial that depends on the unknown function f(x, y, z, t) and its partial derivatives. In this 
context, f  represents a function that varies with respect to the spatial variables x, y, z and the time variable t. 
Additionally, we can consider a wave transformation to analyze the propagation of this function.
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	 f(x, y, z, t) = F (ξ), ξ = −κt + αx + βy + γz.� (5)

Eq. (4) is transformed into the following ODE using the transformation.

	 P (F, F ′, F ′′, F ′′′, F ′′′′, ...) = 0,� (6)

where F ′ represents dF
dξ .

The Sardar sub-equation method
The conditions governing the operation of the SSEM are outlined as follows. One approach to solving Eq. (3) is 
to reformulate it as follows:

	
F (ξ) =

N∑
i=0

δiϕ
i(ξ), δi ̸= 0,� (7)

where

	 ϕ′(ξ) =
√

θ + ρϕ(ξ)2 + ϕ(ξ)4,� (8)

here θ and ρ are real constants. Eq. (8) displays the solutions as
Case-1:
If ρ > 0 and θ = 0, we have

	 ϕ±
1 (ξ) = ±

√
−ρmn sechmn (√ρ ξ) , � (9)

	 ϕ±
2 (ξ) = ±√

ρmn cschmn (√ρ ξ) , � (10)

where sechmn(ξ) = 2
meξ+ne−ξ , cschmn(ξ) = 2

meξ−ne−ξ .
Case-2:
If ρ < 0 and θ = 0, we have

	 ϕ±
3 (ξ) = ±

√
−ρmn secmn

(√
−ρ ξ

)
, � (11)

	 ϕ±
4 (ξ) = ±

√
−ρmn cscmn

(√
−ρ ξ

)
, � (12)

where secmn(ξ) = 2
meιξ+ne−ιξ , cscmn(ξ) = 2ι

meιξ−ne−ιξ .
Case-3:
If ρ < 0 and θ = ρ2

4 , we have

	
ϕ±

5 (ξ) = ±
√

−ρ

2 tanhmn

(√
−ρ

2 ξ
)

, � (13)

	
ϕ±

6 (ξ) = ±
√

−ρ

2 cothmn

(√
−ρ

2 ξ
)

, � (14)

	
ϕ±

7 (ξ) = ±
√

−ρ

2

(
tanhmn

(√
−2ρ ξ

)
+ ι

√
mn sechmn

(√
−2ρ ξ

))
, � (15)

	
ϕ±

8 (ξ) = ±
√

−ρ

2

(
cothmn

(√
−2ρ ξ

)
+

√
mn cschmn

(√
−2ρ ξ

))
, � (16)

	
ϕ±

9 (ξ) = ±
√

−ρ

8

(
cothmn

(√
−ρ

8 ξ
)

+ tanhmn

(√
−ρ

8 ξ
))

, � (17)

where tanhmn = meξ−ne−ξ

meξ+ne−ξ , cothmn = meξ+ne−ξ

meξ−ne−ξ .
Case-4:
If ρ > 0 and θ = ρ2

4 , we have

	
ϕ±

10(ξ) = ±
√

ρ

2 tanmn

(√
ρ

2 ξ
)

, � (18)

	
ϕ±

11(ξ) = ±
√

ρ

2 cotmn

(√
ρ

2 ξ
)

, � (19)

	
ϕ±

12(ξ) = ±
√

ρ

2

(√
mn secmn

(√
2ρ ξ

)
+ tanmn

(√
2ρ ξ

))
, � (20)
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ϕ±

13(ξ) = ±
√

ρ

2

(
cotmn

(√
2ρ ξ

)
+

√
mn cscmn

(√
2ρ ξ

))
, � (21)

	
ϕ±

14(ξ) = ±
√

ρ

8

(
cotmn

(√
ρ

8 ξ
)

+ tanmn

(√
ρ

8 ξ
))

, � (22)

where tanmn = −ι meιξ−ne−ιξ

meιξ+ne−ιξ , cotmn = ι meιξ+ne−ιξ

meιξ−ne−ιξ .

The simple equation method
Suppose the solution of the NLODE of Eq. (3) that can be expanded in series as follows55:

	
F (ξ) =

N∑
i=0

biG
i(ξ).� (23)

In this context, the constants bi take on values from 0 to N ( where i = 0, 1, 2, . . . , N ) and will be defined in 
a future stage of our work. The integer N  is a positive quantity that will be determined through the application 
of the balancing principle to Eq. (3). The function G(ξ) represents a category of functions that satisfy the 
governing equations. For our analysis, we will focus on the Bernoulli and Riccati equations, which will serve as 
the foundational equations for our study. These equations are well-recognized as NLPDEs, and their solutions 
can be expressed using elementary functions. Specifically, the Bernoulli equation can be formulated as follows:

	 G′(ξ) = c2G(ξ)2 + c1G(ξ) + c0.� (24)

where c0, c1, and c2 are constants and when c0 = 0 Eq. (30) converts into a Bernoulli Equation and solutions 
are:

	
G(ξ) = c1 exp (c1 (ξ + ξ0))

1 − c2 exp (c1 (ξ + ξ0)) , c1 > 0, � (25)

	
G(ξ) = − c1 exp (c1 (ξ + ξ0))

c2 exp (c1 (ξ + ξ0)) + 1 , c1 < 0 � (26)

when c1 = 0 Eq. (30) changes into a Riccati Equation and has following exact solutions:

	
G(ξ) =

√
c0c2 tan (√c0c2 (ξ + ξ0))

c2
, ξ0 is a constant, where a0a2 < 0. � (27)

	
G(ξ) = −

√
−c0c2 tanh

(
−√

c0c2
(
ξ − sLog(ξ0)

2

))
c2

, ξ0 > 0, s = ±1, where a0a2 > 0. � (28)

Applications
By applying the transformation presented in Eq. (5), Eq. (3) is converted to

	 F ′′(ξ)
(
α2 + αβ + β2 − ακ + αγ + βγ + γ2 + α(α + 2β)F (ξ) + 6α2F (ξ)2 + 2α4F ′′(ξ)

)
= 0.� (29)

Application of Sardar sub-equation method
By applying the balancing principle to Eq. (29), we find that for N = 2, Eq. (7) simplifies to:

	 F (ξ) = δ0 + δ1ϕ(ξ) + δ2ϕ(ξ)2.� (30)

By substituting Eq. (30) into Eq. (29) while utilizing the information provided in Eq. (8), we establish an algebraic 
system. This is accomplished by equating each of the coefficients derived from the resulting expression to zero. 
This process ensures that we capture the necessary conditions for the equations to hold true, ultimately leading 
to a solvable system of equations based on the coefficients involved.

	D0 + D1ϕ(ξ) + D2ϕ(ξ)2 + D3ϕ(ξ)3 + D4ϕ(ξ)4 + D5ϕ(ξ)5 + D6ϕ(ξ)6 + D7ϕ(ξ)7 + D8ϕ(ξ)8 = 0,

whereD0 = 8α4δ2
2θ2 + 12α2δ2

0δ2θ + 2α2δ2θ + 2α2δ0δ2θ + 2αβδ2θ
+4αβδ0δ2θ + 2αγδ2θ − 2αδ2θκ + 2β2δ2θ + 2βγδ2θ + 2γ2δ2θ ,
D1 = 8α4δ1δ2θρ + 2α2δ1δ2θ + 24α2δ0δ1δ2θ + 6α2δ2

0δ1ρ + α2δ1ρ
+α2δ0δ1ρ + 4αβδ1δ2θ + αβδ1ρ + 2αβδ0δ1ρ + αγδ1ρ − αδ1κρ
+β2δ1ρ + βγδ1ρ + γ2δ1ρ,
D2 = 32α4δ2

2θρ + 2α4δ2
1ρ2 + 2α2δ2

2θ + 24α2δ0δ2
2θ + 12α2δ2

1δ2θ
+α2δ2

1ρ + 12α2δ0δ2
1ρ + 24α2δ2

0δ2ρ + 4α2δ2ρ + 4α2δ0δ2ρ
+4αβδ2

2θ + 2αβδ2
1ρ + 4αβδ2ρ + 8αβδ0δ2ρ + 4αγδ2ρ

−4αδ2κρ + 4β2δ2ρ + 4βγδ2ρ + 4γ2δ2ρ,
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D3 = 16α4δ1δ2θ + 16α4δ1δ2ρ2 + 24α2δ1δ2
2θ + 6α2δ3

1ρ + 5α2δ1δ2ρ
+60α2δ0δ1δ2ρ + 12α2δ2

0δ1 + 2α2δ0δ1 + 2α2δ1 + 10αβδ1δ2ρ
+2αβδ1 + 4αβδ0δ1 + 2αγδ1 − 2αδ1κ + 2β2δ1 + 2βγδ1 + 2γ2δ1,
D4 = 48α4δ2

2θ + 32α4δ2
2ρ2 + 8α4δ2

1ρ + 12α2δ3
2θ + 4α2δ2

2ρ
+48α2δ0δ2

2ρ + 36α2δ2
1δ2ρ + 24α2δ0δ2

1 + 2α2δ2
1 + 36α2δ2

0δ2
+6α2δ0δ2 + 6α2δ2 + 8αβδ2

2ρ + 4αβδ2
1 + 6αβδ2 + 12αβδ0δ2

+6αγδ2 − 6αδ2κ + 6β2δ2 + 6βγδ2 + 6γ2δ2,

D5 = 56α4δ1δ2ρ + 54α2δ1δ2
2ρ + 12α2δ3

1 + 96α2δ0δ1δ2 + 8α2δ1δ2 + 16αβδ1δ2,
D6 = 96α4δ2

2ρ + 8α4δ2
1 + 24α2δ3

2ρ + 72α2δ0δ2
2 + 6α2δ2

2 + 60α2δ2
1δ2 + 12αβδ2

2 ,
D7 = 48α4δ1δ2 + 84α2δ1δ2

2 ,
D8 = 72α4δ2

2 + 36α2δ3
2 .

By setting all coefficients equal to zero

	

{
D0 = 0, D1 = 0, D2 = 0,
D3 = 0, D4 = 0, D5 = 0,
D6 = 0, D7 = 0, D8 = 0.

� (31)

When these algebraic equations are solved, we obtain

	

{
β = 1

2

(
−8α3ρ − 12αδ0 − α

)
, δ2 = −2α2, δ1 = 0,

κ = −32α6θ+64α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2

4α
.

� (32)

Using the cases described in Eqs. (9-22), we obtain distinct solutions, and the results are as follows:
Case-1:
If ρ > 0 and θ = 0, we have

	

f1(x, y, z, t) = δ0 + 2α2mnρSechmn(
−

√
ρ(t(−32α6(θ−2ρ2)−16α3γρ+3α2+2αγ+4γ2)+8αδ0(20α3ρt+15αδ0t−3γt+3αy)+2α(−2αx+8α3ρy+αy−2γz))

4α

)2
,

� (33)

	

f2(x, y, z, t) = δ0 − 2α2mnρCschmn(
−

√
ρ(t(64α6ρ2−16α3γρ+3α2+2αγ+4γ2)+8αδ0(20α3ρt+15αδ0t−3γt+3αy)+2α(−2αx+8α3ρy+αy−2γz))

4α

)2
.

� (34)

Case-2:
If ρ < 0 and θ = 0, we have

	

f3(x, y, z, t) = δ0 + 2α2mnρ secmn(√
−ρ

(
− t(64α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+ αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

))2
,

� (35)

	

f4(x, y, z, t) = 2α2mnρ cscmn(√
−ρ

(
− t(64α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+ αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

))2
+ δ0.

� (36)

Case-3:
If ρ < 0 and θ = ρ2

4 , we have

	

f5(x, y, z, t) = δ0 + α2ρ tanhmn


√
−ρ

(
−

t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+αx+ 1

2 y(−8α3ρ−12αδ0−α)+γz

)
√

2




2

,
� (37)

	

f6(x, y, z, t) = α2ρ cothmn


√
−ρ

(
−

t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+αx+ 1

2 y(−8α3ρ−12αδ0−α)+γz

)
√

2




2

+ δ0,
� (38)
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f7(x, y, z, t) = δ0 + α2ρ(
tanhmn

(
√

2
√

−ρ

(
− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

))

+ι
√

mn sechmn

(
√

2
√

−ρ

(
− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

)))2

� (39)

	

f8(x, y, z, t)

= α2ρ

(
cothmn

(
√

2
√

−ρ

(
− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+αx + 1
2 y(−8α3ρ − 12αδ0 − α) + γz

))

+
√

mn cschmn

(
√

2
√

−ρ

(
− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

)))2

+ δ0,

� (40)

	

f9(x, y, z, t)

= 1
4 α2ρ

(
cothmn

( √
−ρ

(
−

t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+αx+ 1

2 y(−8α3ρ−12αδ0−α)+γz

)

2
√

2

)

+tanhmn

( √
−ρ

(
−

t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+αx+ 1

2 y(−8α3ρ−12αδ0−α)+γz

)

2
√

2

))2

+ δ0.

� (41)

Case-4:
If ρ > 0 and θ = ρ2

4 , we have

	

f10(x, y, z, t) = δ0 − α2ρ tanmn




√
ρ

(
− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+ αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

)
√

2




2

,

� (42)

	

f11(x, y, z, t) = δ0 − α2ρ cotmn




√
ρ

(
− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2

0+3α2−24αγδ0+2αγ+4γ2)
4α

+ αx + 1
2 y

(
−8α3ρ − 12αδ0 − α

)
+ γz

)
√

2




2

,

� (43)

	

f12(x, y, z, t) =
δ0 − α2ρ

(√
mn secmn

(√
2√

ρ
(

− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+ αx + 1

2 y
(
−8α3ρ − 12αδ0 − α

)
+ γz

))

+tanmn

(√
2√

ρ
(

− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+ αx + 1

2 y
(
−8α3ρ − 12αδ0 − α

)
+ γz

)))2
,

� (44)

	

f13(x, y, z, t) =
δ0 − α2ρ

(
cotmn

(√
2√

ρ
(

− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+ αx + 1

2 y
(
−8α3ρ − 12αδ0 − α

)
+ γz

))

+
√

mn cscmn

(√
2√

ρ
(

− t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+ αx + 1

2 y
(
−8α3ρ − 12αδ0 − α

)
+ γz

)))2
,

� (45)
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f14(x, y, z, t) =

δ0 − 1
4 α2ρ


cotmn




√
ρ

(
−

t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+αx+ 1

2 y(−8α3ρ−12αδ0−α)+γz

)

2
√

2




+tanmn




√
ρ

(
−

t(56α6ρ2+160α4δ0ρ−16α3γρ+120α2δ2
0+3α2−24αγδ0+2αγ+4γ2)

4α
+αx+ 1

2 y(−8α3ρ−12αδ0−α)+γz

)

2
√

2







2
� (46)

Application of simple equation method
By applying the balancing principle to Eq. (29), we find that for N = 2, Eq. (23) simplifies to:

	 F (ξ) = b0 + b1G(ξ) + b2G(ξ)2.� (47)

By substituting Eq. (47) into Eq. (29) and utilizing Eq. (24), we form an algebraic system by setting all coefficients 
equal to zero.

	E0 + E1G(ξ) + E2G(ξ)2 + E3G(ξ)3 + E4G(ξ)4 + E5G(ξ)5 + E6G(ξ)6 + E7G(ξ)7 + E8G(ξ)8 = 0,

where

E0 = 8α4b2
2c4

0 + 2α4b2
1c2

0c2
1 + 8α4b1b2c3

0c1 + 12α2b2
0b2c2

0 + 2α2b0b2c2
0

+2α2b2c2
0 + 6α2b2

0b1c0c1 + α2b0b1c0c1 + α2b1c0c1 + 2αβb2c2
0

+4αβb0b2c2
0 + αβb1c0c1 + 2αβb0b1c0c1 + 2αb2γc2

0 + αb1γc0c1
−2αb2c2

0κ − αb1c0c1κ + 2β2b2c2
0 + β2b1c0c1 + 2βb2γc2

0 + βb1γc0c1
+2b2γ2c2

0 + b1γ2c0c1 ,
E1 = 4α4b2

1c0c3
1 + 32α4b1b2c2

0c2
1 + 48α4b2

2c3
0c1 + 16α4b1b2c3

0c2 + 8α4b2
1c2

0c1c2
+24α2b0b1b2c2

0 + 2α2b1b2c2
0 + 6α2b2

0b1c2
1 + α2b0b1c2

1 + α2b1c2
1 + 12α2b0b2

1c0c1
+α2b2

1c0c1 + 36α2b2
0b2c0c1 + 6α2b0b2c0c1 + 6α2b2c0c1 + 12α2b2

0b1c0c2
+2α2b0b1c0c2 + 2α2b1c0c2 + 4αβb1b2c2

0 + αβb1c2
1 + 2αβb0b1c2

1 + 2αβb2
1c0c1

+6αβb2c0c1 + 12αβb0b2c0c1 + 2αβb1c0c2 + 4αβb0b1c0c2 + αb1γc2
1 + 6αb2γc0c1

+2αb1γc0c2 − αb1c2
1κ − 6αb2c0c1κ − 2αb1c0c2κ + β2b1c2

1 + 6β2b2c0c1
+2β2b1c0c2 + βb1γc2

1 + 6βb2γc0c1 + 2βb1γc0c2 + b1γ2c2
1 + 6b2γ2c0c1

+2b1γ2c0c2,

E2 = 2b2
1c4

1α4 + 40b1b2c0c3
1α4 + 104b2

2c2
0c2

1α4 + 8b2
1c2

0c2
2α4 + 64b2

2c3
0c2α4

+20b2
1c0c2

1c2α4 + 104b1b2c2
0c1c2α4 + 24b0b2

2c2
0α2 + 2b2

2c2
0α2 + 12b2

1b2c2
0α2

+12b0b2
1c2

1α2 + b2
1c2

1α2 + 24b2
0b2c2

1α2 + 4b0b2c2
1α2 + 4b2c2

1α2 + 6b3
1c0c1α2

+84b0b1b2c0c1α2 + 7b1b2c0c1α2 + 24b0b2
1c0c2α2 + 2b2

1c0c2α2 + 48b2
0b2c0c2α2

+8b0b2c0c2α2 + 8b2c0c2α2 + 18b2
0b1c1c2α2 + 3b0b1c1c2α2 + 3b1c1c2α2

+4βb2
2c2

0α + 2βb2
1c2

1α + 4βb2c2
1α + 4γb2c2

1α − 4κb2c2
1α + 8βb0b2c2

1α
+14βb1b2c0c1α + 4βb2

1c0c2α + 8βb2c0c2α + 8γb2c0c2α − 8κb2c0c2α
+16βb0b2c0c2α + 3βb1c1c2α + 3γb1c1c2α − 3κb1c1c2α + 6βb0b1c1c2α
+4β2b2c2

1 + 4γ2b2c2
1 + 4βγb2c2

1 + 8β2b2c0c2 + 8γ2b2c0c2 + 8βγb2c0c2
+3β2b1c1c2 + 3γ2b1c1c2 + 3βγb1c1c2,

E3 = 16α4b1b2c4
1 + 96α4b2

2c0c3
1 + 80α4b1b2c2

0c2
2 + 32α4b2

1c0c1c2
2 + 12α4b2

1c3
1c2

+176α4b1b2c0c2
1c2 + 272α4b2

2c2
0c1c2 + 24α2b1b2

2c2
0 + 6α2b3

1c2
1 + 60α2b0b1b2c2

1
+5α2b1b2c2

1 + 12α2b2
0b1c2

2 + 2α2b0b1c2
2 + 2α2b1c2

2 + 72α2b0b2
2c0c1 + 6α2b2

2c0c1
+48α2b2

1b2c0c1 + 12α2b3
1c0c2 + 120α2b0b1b2c0c2 + 10α2b1b2c0c2 + 36α2b0b2

1c1c2
+3α2b2

1c1c2 + 60α2b2
0b2c1c2 + 10α2b0b2c1c2 + 10α2b2c1c2 + 10αβb1b2c2

1
+2αβb1c2

2 + 4αβb0b1c2
2 + 12αβb2

2c0c1 + 20αβb1b2c0c2 + 6αβb2
1c1c2

+10αβb2c1c2 + 20αβb0b2c1c2 + 2αb1γc2
2 + 10αb2γc1c2 − 2αb1c2

2κ
−10αb2c1c2κ + 2β2b1c2

2 + 10β2b2c1c2 + 2βb1γc2
2 + 10βb2γc1c2 + 2b1γ2c2

2
+10b2γ2c1c2,

E4 = 32α4b2
2c4

1 + 16α4b2
1c0c3

2 + 176α4b2
2c2

0c2
2 + 26α4b2

1c2
1c2

2 + 248α4b1b2c0c1c2
2

+88α4b1b2c3
1c2 + 368α4b2

2c0c2
1c2 + 12α2b3

2c2
0 + 48α2b0b2

2c2
1 + 4α2b2

2c2
1

+36α2b2
1b2c2

1 + 24α2b0b2
1c2

2 + 2α2b2
1c2

2 + 36α2b2
0b2c2

2 + 6α2b0b2c2
2

+6α2b2c2
2 + 78α2b1b2

2c0c1 + 96α2b0b2
2c0c2 + 8α2b2

2c0c2 + 72α2b2
1b2c0c2

+18α2b3
1c1c2 + 156α2b0b1b2c1c2 + 13α2b1b2c1c2 + 8αβb2

2c2
1 + 4αβb2

1c2
2

+6αβb2c2
2 + 12αβb0b2c2

2 + 16αβb2
2c0c2 + 26αβb1b2c1c2 + 6αb2γc2

2
−6αb2c2

2κ + 6β2b2c2
2 + 6βb2γc2

2 + 6b2γ2c2
2,

E5 = 112α4b1b2c0c3
2 + 24α4b2

1c1c3
2 + 176α4b1b2c2

1c2
2 + 464α4b2

2c0c1c2
2

+160α4b2
2c3

1c2 + 54α2b1b2
2c2

1 + 12α2b3
1c2

2 + 96α2b0b1b2c2
2 + 8α2b1b2c2

2
+36α2b3

2c0c1 + 108α2b1b2
2c0c2 + 120α2b0b2

2c1c2 + 10α2b2
2c1c2

+96α2b2
1b2c1c2 + 16αβb1b2c2

2 + 20αβb2
2c1c2,
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E6 = 8α4b2
1c4

2 + 192α4b2
2c0c3

2 + 152α4b1b2c1c3
2 + 296α4b2

2c2
1c2

2
+24α2b3

2c2
1 + 72α2b0b2

2c2
2 + 6α2b2

2c2
2 + 60α2b2

1b2c2
2 + 48α2b3

2c0c2
+138α2b1b2

2c1c2 + 12αβb2
2c2

2,

E7 = 48α4b1b2c4
2 + 240α4b2

2c1c3
2 + 84α2b1b2

2c2
2 + 60α2b3

2c1c2,
E8 = 72α4b2

2c4
2 + 36α2b3

2c2
2.

By setting all coefficients equal to zero

	

{
E0 = 0, E1 = 0, E2 = 0,
E3 = 0, E4 = 0, E5 = 0,
E6 = 0, E7 = 0, E8 = 0.

� (48)

The solution set we obtain is

	

{
α = 0, γ = − 1

2 i
(√

3β − iβ
)

,

b1 = − 5b2c1
4c2

.
� (49)

For Bernoulli Equation when c0 = 0
Case-1:

	

f1(x, y, z, t) =
− 5b2c2

1 exp(c1(−κt+(−κt+αx+βy+γz0)+αx+βy+γz))
4c2(1−c2 exp(c1(−κt+(−κt+αx+βy+γz0)+αx+βy+γz)))

+ b2c2
1 exp(2c1(−κt+(−κt+αx+βy+γz0)+αx+βy+γz))

(1−c2 exp(c1(−κt+(−κt+αx+βy+γz0)+αx+βy+γz)))2 + b0.

� (50)

Case-2:
When p < 0

	

f2(x, y, z, t)

= b0 +
b2c2

1 exp
(
c1

(
βy +

(
−κt + βy − 1

2 i
(√

3 − i
)

βz0
))) (

9c2 exp
(
c1

(
βy +

(
−κt + βy − 1

2 i
(√

3 − i
)

βz0
)))

+ 5e
1
2 c1(2κt+βz+i

√
3βz)

)

4c2

(
c2 exp

(
c1

(
βy +

(
−κt + βy − 1

2 i
(√

3 − i
)

βz0
)))

+ e
1
2 c1(2κt+βz+i

√
3βz)

)2 .

� (51)

For Riccati equation, when c1 = 0 the solutions we obtain are
Case-3:

	

f3(x, y, z, t)

= b0 +
b2c0 tan2 (√

c0c2
(
−κt +

(
−κt + βy − 1

2 i
(√

3β − iβ
)

z0
)

+ βy − 1
2 i

(√
3β − iβ

)
z
))

c2
.
� (52)

Case-4:

	

f4(x, y, z, t)

= b0 −
b2c0 tanh2 (√

c0c2
(
− 1

2 sLog
(
−κt + βy − 1

2 i
(√

3β − iβ
)

z0
)

− κt + βy − 1
2 i

(√
3β − iβ

)
z
))

c2
.
� (53)

Modulation instability (MI)
modulation instability (MI) refers to the tendency of a steady-state solution to become unstable in the presence of 
small perturbations. In essence, while the system may initially appear to be in a stable state, any small disturbance 
can grow exponentially over time, leading to significant changes in the system’s behavior. This instability arises 
when the dispersion, which tends to smooth out disturbances, is counteracted by the nonlinearities present in 
the system, which can amplify these disturbances. In analyzing the governing equation through linear stability 
methods, we examine how disturbances evolve and identify conditions under which MI occurs. By studying 
eigenvalues and the associated growth rates of perturbations, we can ascertain the stability of the steady-state 
solutions and understand the critical roles that nonlinearity and dispersion play in instigating modulation 
instability. This detailed exploration of MI enables us to predict the potential development of complex structures 
and patterns within the system, further enriching our understanding of nonlinear dynamics. In the context of 
steady-state modulation, certain nonlinear systems can demonstrate instability as a result of the interaction 
between nonlinearity and dispersive effects. This section of the analysis utilizes a linear stability approach to 
investigate the phenomenon of MI associated with the governing equation65.

	 v(x, y, z, t) = λ0 + ρP (x, y, z, t),� (54)

Here P denotes the normalized optical power. Now, putting Eq. (54) in Eq. (3), we get,

Scientific Reports |        (2025) 15:23332 9| https://doi.org/10.1038/s41598-025-00503-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

ρ
(
(2ρP + 2λ0 + 1) (Pxx (3ρP + 3λ0 + 1) + Pxy) + 4ρ(P 2

x ) + Pzz + Pyz + Pyy + PxtPxz)
)

ρ (Px (ρσP + λ0σ + ρ) + τPxxx + Pt)) = 0.
� (55)

Assume that the solution to Eq. (55) has the following form

	 P (x, y, z, t) = pei(κt+η1x+η2y+η3z).� (56)

In this context, κ denotes the frequency of the perturbation, while p represents the normalized wave number. By 
substituting Eq. (56) into Eq. (55), we derive the following dispersion relation.

	 η1κ + 5η2
1λ0 + 2η2η1λ0 + η2

1 + η2η1 + η3η1 + η2
2 + η2

3 + η2η3 = 0.� (57)

By analyzing the dispersion relation for the variable κ, Eq. (57) produces

	
κ = −5η2

1λ0 − 2η2η1λ0 − η2
1 − η2η1 − η3η1 − η2

2 − η2
3 − η2η3

η1
.� (58)

The dispersion relation obtained is expected to predict the stable steady state solution. In case of a real value for 
κ, the influence of small perturbation makes the steady state stable. However, in case κ is not real, the steady state 
becomes unstable and gradually grows the perturbation.

Results and discussion
In this research, we have utilized two novel approaches, namely the SSEM and the SEM, to address the 
(3+1)-dimensional Sakovich equation. This section provides visual representations of a range of soliton 
solutions that emerge within the system under investigation. 3D, 2D, contour, and density plots have been used 
to graphically present the outcomes, offering a detailed visualization of the data. Every type of plot is used for a 
different purpose: 3D plots show relationships in a spatial manner, while 2D plots make intricate data easier to 
interpret. Contour plots depict the interactions and gradients between variables, while density plots highlight 
the distribution and density of data. Together, these plots give a better and more complete picture of the data by 
presenting both value interactions and underlying patterns. The newly formulated (3+1)-dimensional Sakovich 
equation has been the subject of extensive examination through various methodologies. In this segment, we aim 
to compare our results with those obtained from previous studies that employed different techniques. Specifically, 
we juxtapose our findings with those derived from the exp(−ψ(η)) expansion method66 and the New Modified 
Extended Direct Algebraic (NMEDA) technique. This comparison will highlight the effectiveness and insights 
provided by our approaches in relation to these alternative methods in solving the Sakovich equation67.

•	 Khalid K. Ali et al.68 investigated soliton solutions for the (3+1)-dimensional Sakovich equation, utilizing the 
exp(−ψ(η)) expansion method in conjunction with the Bernoulli sub-ODE method. Their analysis resulted 
in a diverse array of solution types, encompassing bright solitons, dark solitons, periodic solitons, exponential 
solitons, and singular solitons. Furthermore, they provided visual representations of these soliton solutions, 
which are depicted in both two-dimensional and three-dimensional formats. These graphical illustrations fa-
cilitate a comprehensive understanding of the different behaviors and characteristics of the solitons identified 
in their study.

•	 Muhammad Younis et al.69 conducted a comprehensive investigation into various wave structures associated 
with the Sakovich equation. Their research uncovered a range of wave configurations, including singular soli-
tary waves and their combinations such as shock waves, shock-singular waves, complex solitary-shock waves, 
and periodic-singular waves. Notably, the derivation process also revealed rational solutions, which further 
contributed to the breadth of solutions identified. These findings were achieved through the application of 
the NMEDA technique, demonstrating the method’s versatility and effectiveness in tackling the intricate na-
ture of the Sakovich equation. The results underscore the ability of the NMEDA technique to yield a diverse 
spectrum of wave solutions, thereby enhancing the understanding of the dynamics described by the Sakovich 
equation.

•	 In this research paper, we have successfully derived a broad spectrum of soliton solutions encompassing var-
ious forms, including bright solitons, dark solitons, kink solitons, cuspon solitons, singular solitons, singular 
periodic solitons, and periodic solitons. These solutions are effectively illustrated through a variety of visual 
representations, including three-dimensional plots, contour plots, density plots, and two-dimensional plots. 
The methodologies employed in this study include both the SSEM and SEM techniques. Notably, while some 
of our findings exhibit differences compared to those documented in52, we discovered that modifications 
to certain parameters could yield results that are more consistent with the previous study. It is important to 
highlight that the contributions presented in this article are not only practical and succinct but are also artic-
ulated in a clear manner. This clarity enhances their understanding, particularly in the context of applications 
involving nonlinear waves. The comprehensive approach taken in this study facilitates a deeper insight into 
the behavior of soliton solutions within the framework of nonlinear dynamics.

The soliton solutions are illustrated in Figs. (1-14). Fig. (1) displays the bright soliton derived from Eq. (33). Fig. 
(2) showcases the dark soliton resulting from Eq. (34). In Fig. (3), the singular soliton originating from Eq. (37) 
is presented. Figs (4) and (5) illustrate the periodic bright soliton resulting from Eqs. (38) and (39), respectively. 
Fig. (15) reveals the singular periodic soliton derived from Eq. (40). Fig. (7) displays another bright soliton 
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originating from Eq. (41). Fig. (8) depicts the cuspons that arise from Eq. (42). Fig. (9) shows the bright soliton 
that emerges from Eq. (44), while Fig. (10) illustrates the periodic from the same equation. Fig. (11) showcases 
another bright soliton resulting from Eq. (46). Fig. (12) presents the compacton soliton originating from Eq. 
(50). Fig. (13) depicts the anti-kink waves arising from Eq. (51), and finally, Fig. (14) illustrates the dark soliton 
derived from Eq. (53).

Solitons are remarkable for their unique capability to maintain their amplitude, velocity, and shape as they 
propagate through a medium. The solutions discussed in this study hold considerable physical significance and 
exhibit a variety of characteristics. For example, a dark soliton is defined by having an intensity that is lower 
than that of the surrounding background. In contrast to conventional pulses, which carry energy, a dark soliton 
represents a localized area within a continuous temporal beam where energy density is effectively reduced 
to zero70. On the other hand, periodic wave solutions are characterized by their repetitive and continuous 
waveform patterns, which define key properties such as wavelength and frequency71. Specifically, the period 
of a waveform refers to the duration required to complete a full cycle, while frequency describes the number 
of cycles that occur in a given time frame, typically measured in cycles per second. The concept of singular 
solitons is intrinsically linked to solitary waves, especially when the peak of the solitary wave is situated at an 
imaginary position72. This makes the investigation of singular solitons particularly significant, as these solutions, 
characterized by pronounced spikes, may offer valuable insights into the mechanisms that contribute to the 
formation of rogue waves. Dark solitons are particularly distinctive due to their localized dips within a stable 
continuous-wave background, demonstrating a unique interplay between energy levels. In comparison to bright 
solitons, dark solitons generated in fiber lasers are noted for their enhanced stability against noise and exhibit 
a lower sensitivity to energy losses. Kink waves, by contrast, are defined by their transitions between specific 
asymptotic states. These waves can either ascend or descend and ultimately reach a steady value as they extend 
to infinitely large distances73. Moreover, cuspon solutions are identified by the presence of sharp cusps at their 
peaks74. Compactons, on the other hand, are characterized by having finite spatial support; each compacton 
behaves as a soliton that is confined within a specific spatial core75. Given these characteristics, the various 
soliton solutions highlighted in this study not only showcase the diversity of wave behavior but also underscore 
their potential relevance in understanding complex nonlinear phenomena.

Advantages and limitations of the methods presented in this paper
Sardar Sub Equation Method (SSEM) and Simple Equation Method (SEM) are both useful tools to tackle 
nonlinear evolution equations (NLEEs). SSEM is effective in producing various solutions such as solitary and 

Fig. 1.  Visual representation of the bright soliton solution by using 3D, contour, density, and 2D 
graphs respectively, that correspond to Eq. (33) using the SSEM at ρ = 0.9, α = 0.8, γ = 1.5,
δ0 = 0.5, θ = 2.8, m = 1.3, n = 0.99, y = 0.9 m = 1.3, n = 0.99, y = 0.9, and z = 0.3.
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periodic waves, while SEM is simple and easy to use for scientists at all levels. They provide a potent method for 
investigation of complicated physical phenomena, the deepening of knowledge on nonlinear dynamics.

Advantages
Unlike the generalized projective Riccati and improved tan( φ(η)

2 )-expansion methods, which are effective only 
for ODEs of order three or lower, the SSEM handles equations up to fourth order by introducing more arbitrary 
constants. This overcomes the issue of having more equations than unknowns, simplifies computation, and 
ensures consistency. The method’s efficiency is demonstrated by obtaining new soliton solutions for higher-order 
nonlinear models, with potential applications in optical fiber technology. The SEM has a number of advantages, 
such as simplicity, allowing researchers of any proficiency to use it successfully. SEM gives precise solutions to 
nonlinear evolution equations with minimal computational effort, making it easily applicable for regular use. 
SEM can also distinguish between various forms of solutions, like solitary waves, making it useful in different 
fields.

Limitations
Analytical approaches may become difficult or unfeasible when FCNLSEs exhibit significant nonlinearities 
or intricate boundary conditions. Numerical methods may be more suitable in these situations. The choice of 
parameters and starting conditions can have a significant impact on the methods’ efficacy; therefore, careful 
adjustment is necessary because the outcomes may differ depending on these decisions.

Conclusion
In this paper, we investigate the application of the SSEM and the SEM to extract soliton solutions from the 
novel three-and-a-half-dimensional Sakovich equation. Our aim is to evaluate the equation’s effectiveness in 
capturing additional dispersion and nonlinear phenomena that can be applied in various practical contexts. By 
utilizing these methodologies, we have successfully identified a diverse array of solitary wave solutions, which 
include exponential, trigonometric, and hyperbolic forms. These findings contribute to a deeper understanding 
of the nonlinear dynamics associated with this newly formulated equation. The transformation of this significant 
physical model into an ODE is achieved through a wave transformation, which facilitates further analytical 
exploration. The techniques we used have several advantages, such as ease of use, accuracy, and ability to reduce 
computational requirements, showing their utility in various areas. By applying these methods, we were able to 
produce many new soliton solutions through symbolic computation using Mathematica. The solutions exhibit 
various wave patterns, i.e., dark solitons, bright solitons, singular solitons, compactons, periodic solitons, kink 

Fig. 2.  Visual representation of the dark soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (34) using the SSEM at ρ = 0.5, α = 0.66, γ = 1.9, δ0 = 1.2, θ = 1.8,
m = 1.5, n = 0.6, y = 1.1, and z = 1.2.
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solitons, cuspons, and singular periodic solitons76. To analyze the dynamics of these solutions, we conducted 
comprehensive examinations utilizing three-dimensional, two-dimensional, contour, and density plots. 
Additionally, we assessed the MI of the governing model to provide insights into the stability characteristics 
of the wave solutions. The groundbreaking discoveries presented in this study offer substantial motivation for 
future research that explores a wide range of advanced nonlinear concepts. This methodological approach not 
only demonstrates its reliability but also significantly reduces computational complexity, thereby enhancing its 
applicability across diverse domains. The implementation of these techniques has uncovered a rich variety of 
solitonic wave structures, which function as traveling wave solutions, and opens avenues for further investigations 
into the intricate nature of nonlinear wave phenomena.

Soliton theory has found broad application in many areas of science and engineering, including fluid 
mechanics, plasma physics, nonlinear optics, astrophysics, and molecular biology, where it plays a crucial role 
in solving sophisticated real-world issues. In fiber optics, for example, solitons play a key role in guaranteeing 
the long-distance, distortion-free transmission of digital information77. Dark solitons, which are intensity dips 
localized on a continuous wave background, are finding more and more applications in fields such as optical 
sensing, high-speed optical communication, and nonlinear optical systems, testifying to their versatility and 
technological importance78. Bright soliton solutions, which are intensity peaks localized, have been found to 
be crucial in physical systems like plasma environments and Bose-Einstein condensates. Specifically, periodic 
bright solitons play a critical role in oceanography and coastal engineering by assisting in rogue wave formation 
modeling and shallow water wave dynamics analysis79. Our study is valuable because it can help guide future 
investigations, particularly when applying these soliton solutions to enhance more effective communication 
systems and gain a better understanding of complex wave dynamics. Future studies will focus on examining 
these soliton forms in practical settings, such as enhancing data reliability in nonlinear optical devices and 
optical networks. This study contributes to the body of theory and opens up new avenues for creative engineering 
ideas in nonlinear dynamics. Based on our present results, our future work will investigate some specific issues 
to further reveal the dynamics of solitons. First, we will study the stability and dynamics of solitons in the 
framework of dispersive hydrodynamics, specially with emphasis on rogue waves and their applications to 
ocean engineering and safety of navigation. This entails exploring collisions of multi-solitons and how they 
might produce sudden changes in amplitude that could be harmful in aquatic ecosystems. We also intend to 
explore interactions between solitons in higher dimensions with the focus on applications in nonlinear optics 
where propagation of light in intricate media may cause emergent behavior to compromise signal integrity. We 

Fig. 3.  Visual representation of the singular soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (37) using the SSEM at ρ = 0.4, α = 1.3, γ = 0.9, δ0 = 1.7, θ = 0.55,
m = 0.8, n = 0.7, y = 1.9, and z = 2.3.
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will also discuss the effects of external disturbances on soliton stability in Bose-Einstein condensates, especially 
under the influence of temperature fluctuations or external potentials, and these are particularly important for 
improvements in quantum technologies.

Fig. 4.  Visual representation of the periodic bright soliton solution by using 3D, contour, density, and 
2D graphs respectively, that correspond to Eq. (38) using the SSEM at ρ = 0.4, α = 0.55, γ = 0.77,
δ0 = 1.5, θ = 2.1, m = 2.3, n = 1.9, y = 0.9, and z = 0.3.
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Fig. 5.  Visual representation of the periodic bright soliton solution by using 3D, contour, density, and 
2D graphs respectively, that correspond to Eq. (39) using the SSEM at ρ = 0.3, α = 0.2, γ = 0.5,
δ0 = 0.9, θ = 0.2, m = 0.5, n = 0.8, y = 0.3, and z = 0.6.
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Fig. 6.  Visual representation of the singular periodic soliton solution by using 3D, contour, density, and 
2D graphs respectively, that correspond to Eq. (40) using the SSEM at ρ = 0.9, α = 1.2, γ = 0.7,
δ0 = 1.1, θ = 1.2, m = 0.9, n = 0.8, y = 1.6, and z = 1.4.
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Fig. 7.  Visual representation of the bright soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (41) using the SSEM at ρ = 0.1, α = 0.3, γ = 0.8, δ0 = 1.3, θ = 0.2,
m = 1.2, n = 1.5, y = 0.6, and z = 0.4.
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Fig. 8.  Visual representation of the cuspons soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (42) using the SSEM at ρ = 1.4, α = 0.5, γ = 0.6, δ0 = 1.1, θ = 0.6,
m = 1.1, n = 1.3, y = 1.1, and z = 0.4.

 

Scientific Reports |        (2025) 15:23332 18| https://doi.org/10.1038/s41598-025-00503-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9.  Visual representation of the bright soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (44) using the SSEM at ρ = 0.4, α = 0.6, γ = 0.8, δ0 = 0.5, θ = 0.2,
m = 0.1, n = 0.3, y = 0.8, and z = 0.7.
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Fig. 10.  Visual representation of the periodic soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (45) using the SSEM at ρ = 0.1, α = 0.9, γ = 1.2, δ0 = 2.7, θ = 0.2,
m = 1.8, n = 2.7, y = 0.6, and z = 0.7.
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Fig. 11.  Visual representation of the periodic bright soliton solution by using 3D, contour, density, and 
2D graphs respectively, that correspond to Eq. (46) using the SSEM at ρ = 0.2, α = 0.5, γ = 1.5,
δ0 = 1.5, θ = 1.5, m = 2.5, n = 1.8, y = 0.4, and z = 0.9.
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Fig. 12.  Visual representation of the compacton soliton by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (50) using the SEM at b0 = 0.6, c1 = 1.1, c2 = 0.7, b2 = 1.5,
ξ0 = 0.8, α = 0.5, β = 1.2, γ = 2.2, κ = 0.9, z = 0.5, and y = 0.8.
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Fig. 13.  Visual representation of the anti kink waves by using 3D, contour, density, and 2D graphs respectively, 
that correspond to Eq. (??) using the SEM at b0 = 0.9, c1 = 2.1, c2 = 0.3, b2 = 1.1, ξ0 = 0.9, α = 0.8,
β = 0.2, γ = 0.3, κ = 1.1, z = 0.9, and y = 0.3.
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Fig. 15.  Modulation instability (MI) varies with different values of η1 = {0.3, 0.2, 0.3}, η2 = {0.6, 0.4, 0.1},
η3 = {0.2, 0.3, 0.4}, and λ0 = {0.3, 0.1, 0.6}.

 

Fig. 14.  Visual representation of the dark soliton solution by using 3D, contour, density, and 2D graphs 
respectively, that correspond to Eq. (53) using the SEM at b0 = 0.8, c2 = 1.7, b2 = 0.1, ξ0 = 0.8,
c0 = 0.78, α = 0.66, β = 1.2, γ = 0.7, κ = 1.4, z = 1.5, y = 0.55, and s = 1.0.
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