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Continuous non-contact vital sign
monitoring of neonates in intensive
care units using RGB-D cameras

Silas Ruhrberg Estévez'™, Alex Grafton®, Lynn Thomson?, Joana Warnecke?,
Kathryn Beardsall?3 & Joan Lasenby?

Neonates in intensive care require continuous monitoring. Current measurement devices are limited
for long-term use due to the fragility of newborn skin and the interference of wires with medical care
and parental interactions. Camera-based vital sign monitoring has the potential to address these
limitations and has become of considerable interest in recent years due to the absence of physical
contact between the recording equipment and the neonates, as well as the introduction of low-cost
devices. We present a novel system to capture vital signs while offering clinical insights beyond current
technologies using a single RGB-D camera. Heart rate and oxygen saturation were measured using
colour and infrared signals with mean absolute errors (MAE) of 7.69 bpm and 3.37%, respectively.
Using the depth signals, an MAE of 4.83 breaths per minute was achieved for respiratory rate.

Tidal volume measurements were obtained with a MAE of 0.61 mL. Flow-volume loops can also be
calculated from camera data, which have applications in respiratory disease diagnosis. Our system
demonstrates promising capabilities for neonatal monitoring, augmenting current clinical recording
techniques to potentially improve outcomes for neonates.

Each year there are approximately 135 million live births globally!. It is estimated that around 3 — 10%
of neonates, depending on their gestational age, receive some level of care on a neonatal intensive care unit
(NICU)**. Common reasons for admission to a NICU include respiratory distress syndrome, bradycardia, and
infection®. Preterm birth, defined as birth occurring before 37 weeks of gestation, is a significant risk factor for
NICU admission. It occurs in up to 10% of all births and is responsible for approximately 1 million neonatal
deaths worldwide each year'>. Monitoring on the NICU can be achieved both using biosensors and examinations
by healthcare professionals. For detailed evaluations, quantitative assessments of vital signs are often performed®.

Vital signs reflect changes in physiological functions and standard clinical care in NICUs involves
monitoring of heart rate, respiratory rate, body temperature, blood glucose levels, and oxygen saturation’.
Notably, bradycardia, characterised by a significantly reduced heart rate, is predictive of sepsis®, while prolonged
hyperventilation has been associated with adverse clinical outcomes®!?. Abnormal respiratory rates are also
linked to increased risks of cardiac arrest, metabolic acidosis, and blood gas imbalances!!. Normal oxygen
saturation target values for newborns range from 90% to 95%?!2. Values higher than this range are harmful,
particularly in preterm infants, as they can lead to increased generation of oxygen free radicals and ischaemia-
reperfusion injury!'®. Lower saturation levels indicate a need for oxygen supplementation to ensure adequate
oxygen delivery to tissues. Continuous monitoring of vital signs allows for early detection of complications and
timely intervention to improve neonatal outcomes in the NICU setting®.

Respiratory function can be characterised by various metrics, ranging from simple respiratory rate to
sophisticated assessments using spirometry, which measures airflow dynamics during breathing cycles to quantify
volume and flow changes!*. In clinical settings, rapid assessment of neonatal breathing can be achieved using the
Silverman-Anderson'® and Downes’ score'®. However, both methods require clinicians to observe the patients
and are thus subject to individual biases. During intensive care unit stays, thoracic impedance is often used to
measure respiratory rate. This approach involves passing a small electrical current through surface electrodes
placed on the chest and measuring the resulting voltage changes, which correlate with chest expansion during
breathing!”. However, non-respiratory movements can interfere with the measurement by altering the voltage,
leading to contamination of the respiratory rate data at an amplitude much larger than the respiratory signal of
interest. In adults, a common method for monitoring respiratory function involves constructing flow-volume
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curves through maximum effort spirometry'®!°. However, this is not a feasible monitoring option for neonates
who cannot perform maximum effort breaths on command. Instead, tidal volumes from normal breaths serve
as an approximate metric?.

Neonatal skin is exceptionally delicate, and prolonged electrode attachment can lead to iatrogenic skin
injuries®!. Furthermore, the presence of monitoring equipment may impede routine clinical care and hinder
parent-infant interactions?'. Balancing accurate monitoring and potential risks to neonatal skin integrity and
parent-child bonding remains a challenge in neonatal intensive care settings. Various sensing devices necessitate
separate attachments, each presenting unique limitations. Heart rate is commonly measured using either an
ECG or a pulse oximeter. Although ECGs offer higher accuracy, they require attaching electrodes to the skin for
extended periods. These electrodes can also be used for thoracic impedance measurements. Oxygen saturation
is estimated from a clip-on pulse oximeter that records the absorbance of light of different wavelengths which
depends on the amount of oxygenated haemoglobin present in arterial blood.

In the past 15 years, various non-contact approaches have been explored for measuring vital signs in
NICUs. RGB cameras have been utilised for heart rate monitoring??~* and oxygen saturation’*. RGB-D
cameras have been trialled for respiratory rate and volume measurements?”-?®, RGB-D cameras capture video
streams containing colour images (red, green, and blue), infrared images, and depth images, the latter of which
measures the distance of objects in the scene from the camera for each pixel using time-of-flight technology.
The increased usage of cameras is facilitated by recent improvements in image quality for portable low-cost
solutions. Despite promising results from non-contact methods, comprehensive frameworks for monitoring all
vital signs simultaneously remain elusive in clinical settings. Many studies have been limited by small sample
sizes, the availability of accurate ground truth signals, or were conducted under controlled conditions that may
not fully represent unaltered and real-world NICU environments. Further research is needed to address these
limitations and develop non-contact monitoring systems capable of accurately and reliably tracking all vital
signs in neonatal intensive care settings.

We conducted a clinical study at the Rosie Hospital in Cambridge to evaluate the feasibility of using
continuous non-contact monitoring for infants in a real-world NICU setting. The primary objective of this
study is to determine whether RGB-D cameras can accurately measure vital signs, such as heart rate, respiratory
rate, and oxygen saturation, which are typically recorded using sensors attached to the skin of the neonates.
Importantly, our method achieves this without physical contact or modifications to the clinical environment.
Additionally, we aim to measure other critical parameters, including tidal volume and flow-volume dynamics,
which cannot be recorded with standard NICU equipment. Furthermore, we will provide a publicly available
dataset of the pose estimations with the resulting depth and colour signals along with the measured ground truth
data and the analysis code to facilitate the development of new algorithms in this field.

To achieve these objectives, we utilised a single RGB-D camera (Microsoft Azure Kinect) mounted on the
incubator in a manner that did not disrupt clinical procedures (see Fig. 1). Ground truth signals from standard
NICU equipment were employed to validate the vital signs derived from the camera data. For respiratory
monitoring, infants receiving mechanical ventilation were selected as ground truth due to the recognised
inaccuracies associated with thoracic impedance measurements?2,

Results

Data were collected from August 2021 to May 2024 as part of a larger collaboration between the University of
Cambridge Engineering Department and the Rosie Hospital NICU. A total of 14 preterm infants were included
in the vital sign monitoring study. The study population consisted of 11 males and 3 females, with 8 infants
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Fig. 1. Recording setup used in the clinical study and resulting images. (a) Mounting of the Azure Kinect
camera to the incubator using a flexible arm. A doll is used for visualisation purposes. (b) RGB image recorded
by the Azure Kinect camera. (c) Infrared image of the same neonate. (d) Depth image derived from the
infrared image using time-of-flight. The facial region of the baby is cropped, while the remaining identifying
features are obscured by a black square in the RGB, infrared, and depth images. The pixel values of the infrared
and depth images have been scaled for visualisation purposes, where darker regions correspond to distances
closer to the camera. Black pixels in both the infrared and depth images indicate areas where insufficient
infrared reflection occurred. Additionally, a phototherapy mask is applied to the left foot to shield the pulse
oximeter from infrared radiation.
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Frequency

Description Value

Total number of patients 14

Total video length (min) 744

Average recording time per patient (min) | 53 4 13

Gestational age at birth (weeks) 27 + 2

Gestational age at recording (weeks) 2043

Weight at birth (grams) 893 + 322

Weight at time of recording (grams) 1033 + 348

Gender Male: 11 Female: 3
Ethnicity White: 8 Non-White: 6

Table 1. Summary of the clinical study population. Average values are presented with their corresponding
standard deviations.
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Fig. 2. Characterisation of ground truth data set. (a) Heart rate from ECG, (b) oxygen saturation from the
pulse oximeter, (c) respiratory rate from ventilator, and (d) tidal volume from ventilator.

from white backgrounds and 6 from non-white backgrounds. Respiratory ground truth measurements from
ventilators were available for 3 neonates. Each neonate was recorded for approximately 1h with the Azure Kinect
RBG-D camera while simultaneously measuring vital signs using the standard equipment available on the NICU.
A summary of patient demographics is provided in Table 1.

The collected valid vital sign data is depicted in Fig. 2, demonstrating consistency with anticipated neonatal
physiological parameters. All video sequences were also manually examined to exclude segments where the
neonates were covered during clinical interventions. We did not exclude video sequences solely due to infant
motion. Regions of interest were then identified using a top-down pose estimation to locate the position of hips
and shoulders?. For colour signals, non-skin pixels were excluded using a skin mask>. Representative examples
showing the performance of the methods are illustrated in Fig. 3. The skin segmentation was found to work
in ambient light conditions only. However, the heart rate and oxygen saturation algorithms assume ambient
lighting and were found to produce inaccurate readings in very low light and phototherapy conditions when no
skin segmentation was used. Therefore, skin segmentation may serve as a safety feature, alerting to conditions
where measurement reliability may be compromised. Notably, respiratory monitoring remains robust under
low light, facilitated by infrared illumination from the camera for time-of-flight recordings, with pose detection
maintaining acceptable performance even in challenging lighting environments.

Respiratory rate and volume

To obtain accurate ground truth data for both respiratory rate and tidal volume, mechanically ventilated babies
were included in our study. The collected RGB-D videos were processed to extract frequency and volume
measurements. It is shown that estimating frequency using a Fourier transform of the signal was more accurate
than counting the number of peaks (see Table 2). On the dataset of 3 ventilated babies, this method achieves
an MAE of 4.83 breaths per minute. A representative example of tidal volume and respiratory rate monitoring
is shown in Fig. 4, along with a detailed statistical analysis of the performance of the Fourier transform-based
respiratory rate estimation in comparison to ventilator ground truth. Since the number of ventilated neonates
was limited, we also evaluated the system’s performance in 6 non-ventilated infants using thoracic impedance as
a reference. The system achieved a mean absolute error (MAE) of 4.99 breaths per minute (see Table 3). A more
detailed analysis is presented in Fig. 5. Note that thoracic impedance cannot measure tidal volumes.

Tidal volumes were derived from the depth signal by analysing peak-to-valley differences. The MAE
compared to the ventilator’s best estimate was found to be 0.85mL (17.46%). Considering potential inaccuracies
in the ventilator measurements to define upper and lower bounds on the ground truth based on inspiratory and
expiratory volumes, the MAE decreased to 0.61mL (12.81%)( see Table 4). The tidal volume measurement
accuracy is analysed in Fig. 6.

Scientific Reports |

(2025) 15:16863 | https://doi.org/10.1038/s41598-025-00539-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

4)

Fig. 3. Region of interest identification in images. (a) Representative examples of hip and shoulder
identification using the pose estimation algorithms for 6 samples. (b) Resulting ROIs using hip and shoulder
key-points. (c) Subsequent skin segmentation for colour signals. Blue light phototherapy (2) and very low light
conditions (4) result in no skin being identified by the segmentation.

Method IMAE (/min) | {MSE (/min) |+ CP£10%(%) |1+ CP120%(%)
Peak counting | 23.14 651.30 2.83 12.64
Fourier 4.84 39.47 62.30 90.74

Table 2. Comparison of respiratory rate estimation methods against ventilator ground truth. Total number of
subjects: 3. Arrows indicate whether higher or lower values signify increased accuracy. Fourier analysis results
in significantly more accurate respiratory rate estimation. The peak counting algorithm is very sensitive to
movements.

Due to the limited availability of ventilated babies in the NICU, our algorithms were also tested on neonates
not receiving respiratory support. For these babies, established ground truth values were not available. Instead,
the 9 neonates recorded for approximately 1 h each were divided into two groups based on their clinical outcomes
after their NICU stay. The poor outcome group comprised babies who either required supplementary oxygen
at home or unfortunately did not survive until 36 weeks. Conversely, all babies in the normal breathing group
survived and did not require supplementary oxygen after 36 weeks. Babies who exhibited normal breathing at 36
weeks were found to have significantly higher tidal volumes (p = 0.016) than their counterparts using a Mann-
Whitney U-test (see Fig. 6). However, the tidal volume per kg of body weight standardisation for neonates, did
not differ significantly between groups (p = 0.905). This suggests that the algorithms are capable of identifying
the higher tidal volumes in the normal group.

Respiratory dynamics

Flow-volume loops were successfully constructed both from camera and ventilator data. A representative
example is shown in Fig. 7. The loops from the two modalities show similar characteristics. Small differences in
shape are likely attributed to air leakage in the ventilator-constructed loop. As seen in Fig. 4, the magnitude of
this leakage is approximately (). 5 [,- During examination of single breaths, it was noted that the camera system
was sensitive enough to capture subtle variations in breathing such as interrupted breaths. Interruptions occur
when a neonate attempts to breathe during a ventilator-induced breath, which is then terminated prematurely.
Examples of a representative normal breath and a prematurely terminated breath followed by a second
autonomous breath are shown in Supplementary Information Figures 1 & 2. The flow-volume construction was
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Fig. 4. Respiratory rate analysis compared to ventilator ground truth. (a) Representative 1h recording of
respiratory rate. (b) Representative 1h recording of tidal volume, illustrating the ventilator ground truth for
tidal volumes with the best estimate and associated upper and lower bounds derived from inspiratory and
expiratory volumes. Temporary deviations from the ground truth, likely due to infant hand movements, are
observed. (c) Bland-Altman plot showing respiratory rate errors. (d) Correlation between camera-derived and
ventilator-derived respiratory rates. For clarity, only one sample per minute is displayed in the correlation and
Bland-Altman plots. (e) Histogram of error distribution for the camera measurements compared to the ground
truth. (f) Coverage Probability (CP) plot showing the proportion of camera-derived values lying within specific
absolute error thresholds relative to the ground truth.

Method JIMAE (/min) | {MSE (/min) |+ CP£10%(%) |1+ CP320%(%)
Peak counting | 24.16 660.20 1.07 4.39
Fourier 4.99 36.45 58.25 94.86

Table 3. Comparison of respiratory rate estimation methods against thoracic impedance measurements. Total
number of subjects: 6. Arrows indicate whether higher or lower values signify increased accuracy. Fourier
analysis results in significantly more accurate respiratory rate estimation.

also trialled on non-ventilated neonates, revealing more variable loops characterised by a less smooth pattern
(see Fig. 7). In comparing the loops obtained in non-ventilated neonates of the normal breathing group with
those of the poor outcome group, the former exhibited larger loops, consistent with the observed differences
in tidal volumes. The presented loop from the normal breathing group also has a shape resembling convex
expiratory loops documented in the literature. This loop form has been observed in about 1 in 4 neonates that
are healthy or suffer from chronic lung disease?.

Using the spatial information gained from the imaging system, it was also possible to examine regional
variations in breathing. For this, the tidal volumes were calculated using the spatial average of the defined region
only. The sensitivity of this approach was demonstrated by showing that the measured regional tidal volumes
are higher in uncovered regions than in regions partially occluded by medical equipment (see Supplementary
Information Figure 3).

Heart rate

Five different methods for estimating heart rate from generated colour signals using the CHROM and POS
algorithms were trialled (see Table 5). The signals generated using each algorithm were analysed for frequency
using both peak counting and Fourier analysis of the frequency spectrum. Fourier analysis was found to be more
accurate than peak counting. Fourier-based methods achieved good accuracy for both the POS and CHROM
algorithms, but the best performance was achieved by averaging the heart rate estimations of the two methods.
A representative 1h recording and estimates from all methods are presented in Fig. 8. Across our dataset of 11
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Fig. 5. Respiratory rate analysis compared to thoracic impedance. (a) Representative 1h recording of
respiratory rate. (b) Representative 1h recording of tidal volume. Thoracic impedance cannot measure tidal
volumes. (¢) Bland-Altman plot showing respiratory rate errors. (d) Correlation between camera-derived and
impedance-derived respiratory rates. For clarity, only one sample per minute is displayed in the correlation and
Bland-Altman plots. (e) Histogram of error distribution for the camera measurements compared to the ground
truth. (f) Coverage Probability (CP) plot showing the proportion of camera-derived values lying within specific
absolute error thresholds relative to the ground truth.

Ground truth IMAE (ml) | {MSE (ml) |+ CP£10%(%) |1 CP£20%(%)
Best estimate 0.85 1.04 31.31 61.84
Upper lower bound | 0.61 0.63 52.27 75.68

Table 4. Performance of tidal volume measurement. Total number of subjects: 3. Arrows indicate whether
higher or lower values signify increased accuracy. The system demonstrates good agreement with the
ventilator’s best estimate. This agreement is notably improved when accounting for potential inaccuracies in
the ventilator measurements.

neonates the average of the CHROM and POS algorithms with Fourier analysis achieved an MAE of 7.69bpm.
A detailed statistical analysis of the heart rate estimates is provided in Fig. 8.

Oxygen saturation

For our study we evaluated four different non-contact algorithms that have been reported in the literature.
Among these methods, the infrared-based algorithm demonstrated the highest accuracy, as detailed in Table 6.
A representative 1h recording comparing all methods is shown in Fig. 9. Across our dataset of 7 neonates, a MAE
of 3.37% and a MSE of 15.89% were achieved. Notably, the YCgCr colour method also achieved a MAE below
4%, and unlike the infrared-based method, it can be achieved using regular RGB cameras. The RGB method
performed slightly worse, likely due to the challenging lighting conditions. The calibration-free method was
found to introduce significant errors into the measurements. A detailed statistical analysis of the infrared-based
method is presented in Fig. 9.

Discussion

This study introduces the first system for continuous non-contact estimation of all vital signs considered standard
of care. Importantly, unlike Villaroel et al.?2, our method does not require any permanent modification to the
incubator. Monitoring was undertaken using a single low-cost RGB-D camera placed above the incubators. The
camera is able to record respiratory rate, heart rate, and oxygen saturation in line with clinical standards. For the
recorded tidal volumes and flow dynamics there are no clinical standards to the best of our knowledge but our
results are in good agreement with ground truth. All algorithms were validated in a clinical study in a NICU.
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Fig. 6. Tidal volume analysis. (a) The normal breathing group has significantly higher (p = 0.016) raw

tidal volumes than the poor outcome group. (b) Corrected tidal volumes are not significantly different

(p = 0.905).( c) Bland-Altman plot showing tidal volume errors. (d) Correlation between camera-derived and
ventilator-derived tidal volumes. For clarity, only one sample per minute is displayed in the correlation and
Bland-Altman plots. (e) Histogram of error distribution for the camera measurements compared to the ground
truth. (f) Coverage Probability (CP) plot showing the proportion of camera-derived values lying within specific
absolute error thresholds relative to the ground truth.

Over the past decade, there have been multiple attempts to develop a non-contact RGB-D camera-based
respiratory monitoring system for neonates. Cenci et al.>! used RGB-D cameras to monitor respiratory rates of
NICU patients and compared these values against reference standards. Their study involved 3 infants, each of
which was recorded for a total of 1 5(g. Respiratory rate was extracted from manually defined ROIs by calculating
the time differences between adjacent peaks. Although a detailed performance analysis was not provided, the
study reports a high correlation between the respiratory rates obtained from the camera and those derived from
a cardiomonitor’..

Kyrollos et al.?® conducted a more sophisticated study involving the application of deep learning techniques
for respiratory monitoring using RGB-D camera data. Their approach entailed training a deep learning network
to accurately identify facial and chest regions within the images. Subsequently, respiratory rate was estimated
based on signal changes in both RGB and depth data obtained from these identified regions. The algorithm
was only validated on a single patient, for which data was recorded for 20min. Although a comprehensive
performance analysis was not provided, the study reports that the measurement error for respiratory rate
estimation was below 3.5 breaths per minute for approximately 69% and 67% of the recording duration, when
derived from RGB and depth image data respectively?.

Villarroel et al.?? conducted an extensive study involving 30 subjects with recordings spanning over 400h
to monitor respiratory rate. They trained a deep neural network to identify whether babies are present in the
image and segment visible skin regions. However, due to the inaccuracies of thoracic impedance measurements
only 44% of the recording was included in the analysis. The authors performed a more detailed analysis of their
proposed algorithms which achieved a MAE of 3.5 breaths/min for 82% of the recording time they considered
their ground truth and camera data valid. Khanam et al.3? also used deep learning techniques to estimate
respiratory rate from 10s recordings of neonates using two RGB cameras. After exclusion of invalid segments,
they achieved a MAE of 2.13 breaths per minute.

Defining accurate requirements for respiratory rate and tidal volume measurements in neonatal monitoring
presents challenges due to the absence of consensus on gold standard measurement devices. Currently, there is no
universally agreed upon standard for assessing tidal volume measurements. However, a recent report by UNICEF
indicated that achieving a MAE of 5 breaths per minute would be desirable for low cost infant monitoring™.
The true performance of previously developed monitoring systems remains unclear due to several factors.
Many studies have provided only superficial analyses, lacking comprehensive validation against established
benchmarks?®3!. Many studies also only recorded under non-natural conditions 33, with modifications to the
clinical environment?? or for very short time segments®2. Additionally, some studies only included segments of
data where their algorithms perform well in the analysis®%.
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Fig. 7. Flow-volume loops. (a) Flow-volume loops for a representative neonate generated using the RGB-D
camera, illustrating the flow and volume dynamics during individual breaths. (b) Corresponding flow-volume
loops generated from ventilator-derived data for the same neonate. Each loop represents a single breath,
showcasing the close correspondence between camera-based and ventilator-based measurements. (c) Flow-
volume loops from a non-ventilated neonate in the normal breathing group, demonstrating typical respiratory
patterns. (d) Flow-volume loops from a non-ventilated neonate in the poor breathing group are visibly smaller.

Method IMAE (bpm) | {MSE (bpm) | + CP£5%(%) |+ CPE£10%(%)
CHROM Peaks 30.90 1052.39 2.70 7.88
CHROM Fourier | 7.72 82.49 50.87 94.47
POS Peaks 29.10 942.54 1.31 9.70
POS Fourier 7.83 85.62 51.41 91.12
Combined 7.69 81.24 50.84 93.37

Table 5. Comparison of heart rate estimation methods. Total number of subjects: 11. Arrows indicate whether
higher or lower values signify increased accuracy. Peak counting is highly inaccurate due to the noisy signals.
Highest performance is achieved by combining the Fourier CHROM and POS signals.

The accuracy of previous studies in monitoring respiratory parameters is also severely limited by the accuracy
of gold standard signals from thoracic impedance measurements??. A more accurate respiratory signal can be
obtained from mechanically ventilated neonates, where breath timings are precisely controlled by the ventilator.
Usually, when the infants are mechanically ventilated, the impedance recordings are not performed. For one
neonate in our study, both impedance and ventilator data were available, suggesting a MAE of 18.5 breaths per
minute. MAEs between thoracic impedance and breathing rates counted manually by clinical staff of over 10
breaths per minute have been reported in the literature®®. Consultant neonatologists in the Rosie hospital in
Cambridge have also expressed reservations about using impedance-derived respiratory measurements to guide
clinical decisions due to concerns about accuracy.

We demonstrate that reliable respiratory rate estimates can be obtained from depth signals. Based on the
limited data available, the RGB-D camera surpasses the reported accuracy of currently used thoracic impedance
systems when compared to ventilator ground truth. Additionally, the error relative to thoracic impedance
remains below the threshold of 5 breaths per minute. These results align well with previously reported accuracies
in the field. Our system has a slightly lower accuracy over the entire dataset than some of the other studies.
This discrepancy is anticipated as we did not exclude large segments of data where the system exhibited lower
accuracy, opting instead to provide a comprehensive assessment of performance. Unlike thoracic impedance
systems, our approach is also capable of measuring tidal volumes which can highlight breathing abnormalities.

The studies discussed thus far have primarily focused on respiratory rate as a key parameter for assessing
respiratory function. However, other parameters such as tidal volumes and flow dynamics are important
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Fig. 8. Heart rate analysis. (a) Representative 1h recording of heart rate monitoring using CHROM and POS
signals with peak counting. (b) Representative 1h recording of heart rate monitoring using Fourier analysis

of the CHROM and POS signals. (c) Bland-Altman plot showing heart rate errors. (d) Correlation between
camera-derived and pulse oximeter-derived tidal volumes. For clarity, only one sample per minute is displayed
in the correlation and Bland-Altman plots. (e) Histogram of error distribution for the camera measurements
compared to the ground truth. (f) Coverage Probability (CP) plot showing the proportion of camera-derived
values lying within specific absolute error thresholds relative to the ground truth.

Method IMAE (%) | {MSE (%) |1 CP£3%(%) |1t CP16%(%)
Red/Infrared 3.37 15.89 57.45 84.15
Red/Blue 8.93 123.11 20.45 41.14
YCgCr 3.27 22.53 64.23 74.23
Calibration free | 9.49 190.34 31.65 47.13

Table 6. Comparison of oxygen saturation estimation methods. Total number of subjects: 7. Arrows indicate
whether higher or lower values signify increased accuracy. The Red/Infrared ratio of ratio method achieved the
highest performance.

as well. Tidal volumes in ventilated babies over 4 5m],, for instance, have been shown to be a predictor of
successful extubation®”. A study by Rehouma et al. measured both respiratory rate and tidal volumes in a
paediatric ICU setting®*. However, they only imaged manikins with test lungs connected to ventilators rather
than actual infants. In a subsequent study by the same group, actual ventilated infants were included, but only
one infant was imaged for a total duration of 5min?®. The baby was 4 months postpartum and had a tidal volume
of around 40mL, significantly larger than the neonates in our study, which they could measure with a mean
relative error of 9.17%. In our dataset, which included three mechanically ventilated premature infants, we
observed a slightly higher error rate of 12.81%. This increase is anticipated, as larger tidal volumes facilitate
the separation of breathing movements from measurement noise. Our recording also encompassed periods of
neonatal movement, which further impacted measurement accuracy but is expected in real-world applications.
Furthermore, we demonstrate the non-invasive construction of flow-volume loops that visually closely resemble
those recorded by ventilators, a similarity confirmed by consultant neonatologists. In non-ventilated babies,
significantly higher tidal volumes are recorded in neonates with normal breathing compared to those with poor
outcomes. The resulting flow-volume loops in the poor outcome group are also smaller.

Additionally, we anticipate that the camera could provide valuable insights into respiratory dynamics by
capturing spatial variations in breathing efforts and enabling the construction of flow-volume loops. These
insights may offer clinicians valuable information to better understand and manage respiratory dynamics
in neonates. Tidal flow-volume loops can reveal differences between healthy infants and those with chronic
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Fig. 9. Oxygen saturation. (a) Representative 1h recording of oxygen saturation monitoring using the infrared
and RGB algorithms. (b) Representative 1h recording of oxygen saturation monitoring using the YCgCr and
calibration free algorithms. (c) Bland-Altman plot showing oxygen saturation errors. (d) Correlation between
camera-derived and pulse oximeter-derived tidal volumes. For clarity, only one sample per minute is displayed
in the correlation and Bland-Altman plots. (e) Histogram of error distribution for the camera measurements
compared to the ground truth. (f) Coverage Probability (CP) plot showing the proportion of camera-derived
values lying within specific absolute error thresholds relative to the ground truth.

lung diseases®. Asymmetry in chest wall movements is an early predictor of pneumothorax in neonates, as
demonstrated by Wasiman et al.°. Using a sensor attached to the chest, the authors detected changes in chest
movement 31min before a clinical diagnosis of pneumothorax could be confirmed. Another condition that can
present with tidal volume asymmetry is congenital scoliosis, as reported by Redding et al.*’. In the future, there
is potential to use RGB-D cameras to verify correct endotracheal tube placement in neonates. Endotracheal tube
misplacement can have serious consequences including atelectasis (lung collapse) of the non-ventilated lung,
pneumothorax and even death?!. Currently, x-rays are used if tube misplacement is suspected*?. By monitoring
changes in spatial airflow distribution, particularly asymmetries that may indicate inadequate ventilation of one
lung, RGB-D camera-based systems could offer a real-time method to assess endotracheal tube position without
the need for invasive or radiation-based procedures.

An application of RGB cameras for heart rate monitoring in a NICU setting was done by Chen et al.?*. Heart
rate was estimated using Fourier analysis of the green channel. On a clinical study of 5 babies they achieved a
MAE of 7.4bpm. Paul et al.** also used RGB cameras with manual ROI selection. They reported errors of less
than 3bpm in infants with baseline heart rates of about 120bpm during high-quality recordings, but this level
of accuracy was achievable for less than 40% of the recording time. A study by Svoboda et al. has achieved high
accuracy in heart rate measurement compared to a pulse oximeter, but this is not as accurate as an ECG?. The
previously discussed study conducted by Villaroel et al. also examined heart rate, achieving a MAE of 2.3bpm
over 76% of valid data. Unlike the thoracic impedance measurement, ECG provides robust measurements, of
which the authors deemed 91.2% to be valid®2.

Heart rate estimation from colour signals is shown to be feasible for continuous monitoring using our
RGB-D camera. The American National Standards Institute specifies an acceptable range of error for heart rate
measurements as +=10% or =5bpm, whichever is greater43. However, higher accuracy has been achieved in the
literature using deep learning approaches that are less sensitive to variations in lighting conditions and more
expensive cameras. This difference is likely attributed to the high noise inherent in colour signals, in contrast to
the more robust depth measurements obtained using built-in infrared lighting. On a similar dataset, Grafton et
al. ? have achieved an MAE of 3.83bpm with deep learning methods. A large scale study conducted by Huang
et al.** used deep learning techniques for estimation of heart rate in neonates, achieving a MAE of 3.97bpm.
The authors from the latter study also directly compared their method to established heart rate estimates and
concluded that it outperformed the CHROM and POS algorithms slightly on their dataset. However, their
recording session only lasted a maximum of 1 min, leaving uncertainty about the system’s accuracy for long-
term monitoring applications.
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Various established techniques for measuring oxygen saturation using cameras have been documented in
the literature*>~*3. In laboratory settings they have been reported to give good accuracy but there is limited
evidence on their performance in challenging clinical environments. One of the first applications of non-contact
monitoring on neonates was performed by Ye et al.2®. They managed to record oxygen saturation from 22 infants
on the NICU with a MAE of less than 4%, Villaroel et al.*’ previously demonstrated the capture of a bradycardia
episode resulting in desaturation using an RGB camera. They, however, did not provide any statistical analysis
of their method in the study.

For our study, we evaluated four different non-contact algorithms that have been reported in the literature.
The superior performance of the infrared based method is not surprising given that traditional pulse oximeters
have the same principle of operation. The infrared result is compliant with UK regulations that mandate the MSE
to be below 16%°. The RGB method performed slightly worse, likely due to the challenging lighting conditions.
The calibration-free method was found to introduce significant errors into the measurements. This is likely
due to the inadequacy of the shallow and deep layer model for neonates or the inaccurate modelling of our
camera under the assumption of absorbance at a single wavelength. The model is also based on the absorption
characteristics of adult haemoglobin Hb A. Neonates, however, mainly have Hb F, which was produced during the
pregnancy and remains the dominant form until 6 — 12 months post delivery®!. Despite structural disparities,
studies have indicated negligible differences in oxygen absorption values between fetal and adult haemoglobin
molecules®?. A limitation of our study is that we only compared the SpOs to devices used in clinical practice. For
full validation, establishing ground truth using blood gas samples would be necessary. However, this procedure
is highly invasive, only provides intermitted measurements, and falls beyond the scope of our study.

In contrast to previous studies, performance of the developed algorithms was evaluated on the entire recorded
dataset where the baby is visible in the image regardless of the baby’s position and valid ground truth data was
available. By providing additional clinical insights, currently not available to clinicians, the system could assist
in early recognition of pathological changes, with the potential to improve patient outcomes. Additionally, we
have created a fully anonymised dataset of the pre-processed data that can be made publicly available along with
the code used in the analysis. This may facilitate the development of novel non-contact monitoring algorithms,
addressing the current limitation of publicly available neonatal data for testing such methods.

The non-contact vital sign monitoring system could be integrated into a comprehensive camera-based
platform for neonatal activity and physiological monitoring, currently under development. However, several
limitations remain before the system can be applied in real-world clinical or home settings. At present, the system
operates retrospectively and does not provide real-time monitoring. Implementing real-time measurements
will be necessary for practical deployment. Notably, efficient real-time pose estimation algorithms exist, and
analyzing one hour of extracted PPG signals takes under five minutes on a standard laptop (Dell XPS 13). The
system currently relies on ambient lighting. While respiratory monitoring in the dark could be possible using
infrared images, this would require additional training of the model for effective baby detection. The evaluation
was limited to a single well-resourced hospital. Expanding the study to diverse environments will be essential
for broader validation.

Despite these limitations, the system is specifically designed for use in resource-limited settings such as
developing countries or even home settings. It employs a cost-effective camera priced at $399.00, with a simple
recording setup requiring only a computer. Our study demonstrates that healthcare professionals, such as
nurses, can easily position the camera to ensure the baby remains within the video frame, making the system
accessible and user-friendly. Future efforts will focus on validating the algorithms with a larger study population.
Including neonates with various pathologies will be essential to assess the system’s diagnostic potential. With
access to larger datasets, it will also become feasible to train machine learning algorithms for multiple vital signs,
potentially enhancing accuracy. Additionally, implementing more advanced skin segmentation methods and
motion correction techniques is expected to further improve the system’s robustness.

Methods

Clinical study

Ethical approval was obtained for a single-centre study conducted at Cambridge University Hospitals NHS
Foundation Trust Rosie Hospital, involving the monitoring of neonates using RGB-D cameras to assess physical
activity and vital functions. The study was reviewed by the Research Ethics Committee (North-West, Preston)
with reference number 21/NW/0194 and IRAS ID 285615. All data were collected anonymously in accordance
with the principles of the Helsinki Declaration. Ground truth measurements were concurrently recorded using
gold standard devices in the ICU including a pulse oximeter, ventilator, ECG, and thoracic impedance. All
collected data underwent anonymisation following the extraction of relevant clinical information from hospital
records to protect patient privacy. Informed written consent was obtained from all parents for the recording and
subsequent analysis of the data. Participants had the right to withdraw from the study at any time and request
deletion of their collected data.

The study was designed to minimise interference with clinical interventions and parental interactions with
the babies. The recording setup was non-invasive and did not require any permanent changes to the incubator,
ensuring it could be quickly removed during emergencies. Throughout the study, the clothing and positioning
of the infants remained unchanged. For respiratory monitoring, we specifically targeted babies on mechanical
ventilation. During data collection, ventilated babies were recorded for up to 1}, while non-ventilated babies
were monitored for up to 72h for physical activity monitoring. For this analysis, only infants who were nursed
naked were included, as visible skin on the chest area is required for the developed algorithms. Neonates
receiving mechanical ventilation were only included in the study if it was clinically appropriate to record them
in a supine position.
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Experimental setup

RGB-D camera

The RGB-D camera used in this study was the Azure Kinect DK (Microsoft Corporation, USA), equipped with
a 1MP Time-of-flight (ToF) depth camera and a 12MP CMOS RGB camera®. Colour images with a resolution
of 1280 x 720 were captured with 4 : 2 : 2 chroma sub-sampling and stored in the MJPEG format. The depth
image acquisition relied on the Amplitude Modulated Continuous Wave (AMCW) time-of-flight principle
which involves illuminating the scene with near-infrared light emitted by laser diodes®’. The depth image is
calculated by measuring the time difference between the start of illumination and the return of the infrared light
from specific objects. Additionally, an infrared image is obtained by measuring the intensity of the reflected light.
The infrared and depth images were upsampled from 640 X 576 to match the dimensions of the RGB image.
The Azure Kinect offers both narrow and wide field of view options, with the narrow field of view mode selected
for this study.

Data collection in the NICU

The camera was placed directly on top of the incubator’s perspex lid (see Fig. 1). To securely mount the camera, a
Manfrotto Flexible Arm was used, which was clamped onto the incubator. The arm allowed for easy adjustment
and movement of the camera, facilitating quick repositioning during clinical emergencies. Heart rate was
measured using a single-lead ECG signal, sampled at 240Hz, while oxygen saturation data were obtained from
standard clip-on pulse oximeters used on the ward. The patient monitor (GE HealthCare Technologies Inc., USA)
collecting heart rate and oxygen saturation was connected to a computer via an Ethernet cable and data were
recorded using custom software developed in the Signal Processing and Communications lab at the Department
of Engineering, University of Cambridge. Respiratory data were collected by linking a laptop directly to the
ventilator, which recorded ventilation parameters using software provided by the manufacturer (Driger Medical
GmbH). During data collection, it was noted that the introduction of the infrared light from the camera affected
the oxygen saturation probe that relies on infrared light to estimate the bound haemoglobin®>*°. To mitigate
this interference, the pulse oximeter was shielded with a phototherapy mask, designed to block external light
sources (see Fig. 1) and the SpO2 signal manually observed before and after activating the infrared emitter.
This precautionary measure ensured reliable oxygen saturation measurements despite the presence of infrared
illumination.

Periods when the infant was covered, such as during clinical procedures, were manually excluded from the
study. However, infant movement alone was not considered an exclusion criterion, as our focus was on real-
world performance. While it is possible to quantitatively analyze the impact of infant motion®” to exclude these
segments, we found the system’s performance to be robust without this additional step. Our filtering operations,
including histogram binning, PCA analysis, and skin segmentation, effectively mitigate the impact of motion
artifacts on the results.

Data analysis

All data analysis has been conducted using Python (version 3.11.5). Camera and patient monitor data were
analysed using NumPy (version 1.25.2), SciPy (version 1.11.2), scikit-learn (version 1.3.1), and simdkalman
(1.0.4). Analysis of ventilator data were conducted using ventiliser (version 1.0.0). Matplotlib (version 3.8.0),
and seaborn (version 0.13.0) were used for visualisation. An overview of the data pipeline is shown in Fig. 10.

Region of interest identification

The analysis focused on the thoracic and abdominal regions, defined by the hip and shoulder joints, a method
successfully employed in the literature®. Neonatal pose estimation relied on the MMPose toolbox>®, where a
standard model was retrained specifically for neonatal applications using a manually annotated dataset featuring
key-points for hips and shoulders®. For the colour-based heart rate and oxygen saturation measurements, non-
skin pixels were excluded to enhance signal quality. Skin segmentation was achieved by isolating pixels in the
YCbCr and HSV colour spaces®. The skin masks generated from different colour spaces were processed to
improve their accuracy and consistency. First, each mask underwent morphological opening using a 3x3 kernel
to reduce noise by eliminating small, isolated regions or filling tiny gaps. Next, the processed masks from all
colour spaces were intersected. The resulting combined mask was then smoothed using a median filter of size
3 to reduce remaining noise. Finally, the mask was refined with another morphological opening operation, this
time using a larger 4x4 kernel.

Signal extraction

To extract a one-dimensional signal from the data for subsequent processing, the pixels within the region of
interest were spatially averaged, with zero values (indicating invalid measurements) excluded from the averaging
process. The colour signals obtained were sufficiently clear for further analysis, as the skin mask effectively
removed noisy portions of the torso region. However, for the respiratory signal, using the skin mask did not
produce optimal results because areas covered, for instance by electrodes, constitute important parts of the
signal. This approach renders the respiratory signal susceptible to artefacts stemming from the variable inclusion
of edge regions, especially under conditions of movement.

To enhance the accuracy of signal extraction, edge and outlier regions were excluded from the averaging
process by analysing the depth values distribution in a histogram. Pixels deviating more than 25mm from
the values of the most frequent bin, corresponding to the main torso region, were disregarded. Deviations in
neonatal chest depth exceeding 25mm are highly improbable and likely represent pixels from blankets, medical
equipment, or limbs rather than the torso itself. This results in a clearer signal (see Fig. 11).
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Fig. 10. Pipeline for determining vital signs from RGB-D videos. The red, green, and blue channels are utilised
for pose estimation and skin segmentation, defining the regions of interest. The resulting average signals from
these regions undergo Bandpass filtering. Oxygen saturation is calculated using a linear regression of the ratio
of ratios. Heart and respiratory rates are estimated via Bayesian inference applied to their respective Fourier
spectra. Volumes are estimated from peak-to-valley measurements in the volume signal. Processing operations
involving a single frame are indicated in green, while those involving time-series signals are shown in light red.

Respiratory monitoring

The resulting raw signal was then processed using a 7" order Butterworth bandpass filter and a principal
component analysis (PCA), as illustrated in Fig. 11. The cutoffs for the Butterworth filter were chosen at 15 and
150 breaths per minute which includes the entire physiological range for neonates®. All filtering procedures in
the study were performed bidirectionally (both forwards and backwards) to mitigate any potential shifts in the
signal. For real-time analysis, only forward filtering would be applied and the associated shift accounted for. The
PCA was performed by converting the one-dimensional time series signal into a Hankel matrix H of dimension

kx1
t1 to tr
to t3 R |
H=]. . . , (1)
tr tiyr . tn

where t; are elements of a time series 7" = (t1,t2... tn)6°. To include all values in the matrix, we set
k = n — l + 1. Subsequently, a singular value decomposition (SVD) of the matrix is performed. Optimal results
were achieved by retaining the first principal component of the volume signal and the first five components of
the respiratory rate signal, as some of the higher frequencies were not captured by the first principal component.
After recalculating the matrix, the time series can be recovered by averaging the columns, accounting for their
offsets. It was noted that this approach was still susceptible to parts of the thorax and abdomen being covered,
for instance, by clinical equipment or hand movement.

To address the challenge of obscured regions in the signal, the region of interest was divided into four
quadrants. Each quadrant was spatially averaged, and the resulting signals were processed using the described
methodology involving Butterworth filtering and PCA. For each time point, it was then determined which of the
quadrants had a valid signal by considering the physiological range of neonatal tidal volumes. The valid depth
values for each time point were then averaged.

The resulting respiratory signal can be used to estimate respiratory rate using two approaches: Peak counting
and Fourier analysis of the frequency spectrum. In peak counting, breaths are identified for each 60s segment
(with a 1s stride) by detecting peaks corresponding to tidal volumes within two standard deviations of the
median tidal volume for each infant. This method helps filter out potential movement artefacts by excluding
breaths that significantly deviate from typical respiratory patterns. Breaths exceeding 7.5mL or 1.5 times the
median tidal volume of the signal, whichever is greater, and those smaller than 2mL are excluded from the
standard deviation calculation to ensure accuracy. The dual threshold ensures that all breaths in the expected
range of neonates are captured without excluding breaths from larger babies as outliers. Alternatively, examining
the frequency spectrum by applying a Fourier transform to the same segments as used for the peak counting
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Fig. 11. Signal processing. (a) Representative depth histogram of a region of interest for a single frame. (b)
Outlier pixels deviating by more than 25mm from this peak are excluded from further processing to reduce
noise. (c) Representative 3s raw respiratory signal. (d) Bandpass filtering and PCA remove high frequency
noise effectively and result in a signal with visible peak. (e) Construction of a flow-volume loop from camera
data involves differentiating the captured volume signal to obtain a flow signal, which represents the rate of
change of volume over time. (f) Flow and volume signals are combined in a flow-volume loop to visualise their
relationship during a single respiratory cycle. (g) Representative 3s CHROM signal. (h) Representative 3s POS
signal. The CHROM and POS signals are a combination of the dimensionless colour intensity signals and are
displayed in arbitrary units (a.u.).

can estimate respiratory rate. To refine this analysis, a Hamming window was applied to the signal segments for
pulse shaping.

Bayesian inference was employed with the Fourier frequency spectrum as the likelihood and a Gaussian prior
characterised by a mean of 50 breaths per minute and a standard deviation of 15 breaths per minute to enhance
the precision of the frequency spectrum estimate. This prior reflects the expected distribution of respiratory
rates observed in neonates®. To account for variations in mean breathing rates across individuals, an adaptive
strategy was employed. Specifically, the prior distribution was updated by multiplying the original Gaussian
prior with a Gaussian estimate derived from at least ten measurements of breathing rate obtained without
Bayesian inference, resulting in an unnormalised Gaussian. This iterative approach adjusts the prior based on
previously observed respiratory rate data for each individual neonate as well as accounting for the expected value
in the population, improving the accuracy of the Bayesian inference process. Both respiratory rate signals were
subsequently passed through a Kalman filter with a process noise of
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and an observation noise R of 10 breaths per minute. The observation noise values for all vital signs were
determined manually by analysing short-term fluctuations in the measurement data.

To derive a signal for tidal volume measurement, the changes in depth were multiplied by the area of the ROI
rectangle. The pixel coordinates (x, y) were converted to world coordinates (X, Y) using the equations

Z(z — pa)
fe

Z(y — py)
fy

X = (3)

Y = (4)

where Z represents the depth value of the image pixel and ps, py, fz, fy are camera calibration parameters
defining the imaging process between world and image coordinates. The resulting X and Y coordinate time
series were bandpass filtered with the same filter as the depth signal to reduce noise. The volume signal V'is then
obtained as

V = Z(Xs — X1)(Ya — Y1), (5)

where X, X2, Y1 and Y5 are the upper and lower bounds of the region of interest. The signal was then processed
using the bandpass filter and PCA, as for the respiratory rate. The tidal volume was calculated as the mean of the
peak-valley difference in a 60s interval of all the valid peaks identified in the signal. The tidal volume signal was
then processed using a Kalman filter with a process noise of

107 o0
Q= { 0 105] (6)

and an observation noise R of 2mL.

Even though the ventilator provides a very controlled environment, it is difficult to accurately measure tidal
volumes due to leakage. Accurate measurements of the air volume of inspiration and a slightly lower volume
of expiration are however available. In this study, both the most accurate estimate from the ventilator based on
leakage modelling and the worst-case estimate, encompassing all values between the inspiratory and expiratory
volumes, were considered. This approach accounts for uncertainty regarding the location and extent of any
leakage in the system. For accurate comparison, the values obtained from the ventilator for rate and tidal volume
were also averaged for 60s intervals and processed using Kalman filters with the same parameters as for the
camera data. For the impedance-derived measurement, the observation noise R was increased to 15 breaths per
minute to account for the greater measurement uncertainty.

The camera data can be used to construct flow-volume loops which are normally obtained from ventilator
or spirometry measurements. The ventilator measures airflow, which can be numerically integrated to generate
a volume signal. To ensure accurate comparison between the data collected using two different devices, the
flow data from the ventilator is bandpass filtered before integration using the same filter as the respiratory
signal derived from the camera. Conversely, the camera captures a volume signal, which can be numerically
differentiated to derive a flow signal. The beginning and end of each breath in the ventilator data were identified
using a rule-based algorithm involving the analysis of flow and pressure data®'. An example of a volume signal
recorded with the camera for a single breath, along with the resulting flow profile and flow-volume loop, is
shown in Fig. 11. Flow-volume loops where the end point deviated by more than 1mL from the start volume,
the tidal volume was less than 2mL, more than one standard deviation away from the median, or the flow values
deviated highly from the expected sinusoidal curve are not visualised.

Heart rate monitoring

The resulting colour signals obtained from spatial averaging can be combined into a single physiological signal
using the CHROM®? and POS®? algorithms. These algorithms use empirically determined equations that were
shown to yield a high signal-to-noise ratio. For the CHROM algorithm, the mean of each colour channel
C € (R, G, B) is calculated and the channel normalised

Cnorm ;= 5
e 7

where g1 represents the mean of the respective time series. Additionally, better results are achieved by
standardising the colour channels

[Rstch Gstd7 Bstd] = [07682 Rnorm, 0.5121 Gnor'rru 0.3841 Bnorm}, (8)

with empirically determined coefficients®?. The light reflected from the skin is assumed to consist of both broadly
scattered diffusion and a narrow specular component. The specular component only depends on the light source
whereas the diffusion component varies with the blood volume. The specular component can be eliminated by
constructing orthogonal channels
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Rstd - Gstd
Xstd = —ci————— = 3Rnorm — 2G7L07”"L7 9
707682 — 0.5121 ©)

Rsta + Gsta — 2Bsta
Yoa = =1 norm . norm — Bnorm,, 10
= 07682 1 05121 — 0.7682  ~oTmerm +0-5C (10)

from colour difference as the specular reflection will be similar for all channels. The final signal is then calculated
as

B 1o(Xy) 1o(Xy) 3o(Xy)
S=3 (1 D) > Ry —2 (1+ 300V > Gy + 20 (V) By, (11

where Ry, G¢, By, X5 and Y7 are obtained by bandpass filtering the colour channels Rq:q, Gstd, Bstd> Xstds
and Y;¢q and o is the standard deviation of the signal.

The POS algorithm begins by spatially averaging the three colour channels for each frame. Subsequently,
these averaged values are temporally normalised within specified windows

C.
Cnormi = ﬂ, 12
a=b N(Cia—w) ( )

where a and b indicate the start and end of the window, respectively. Similar to CHROM, a set of orthogonal
colour channels is then defined:

Xno'rm = Gnorm - Bnorm7 (13)
Yonorm = Gnorm + Brorm — 2Rnorm. (14)

Each window signal is then calculated as

_ U(Xnorm) U(Xnorm) o o U(Xnorm)
5= (1 + U(Ytrwrm) > G < U(Ynorm) 1) b=z U(Ynm'm) R. (15)

The final signal is obtained as a sum of each of the overlapping window signals and subtracting their respective
means®. This process enhances the identification of peaks within the signal. Furthermore, the signal is bandpass
filtered using the same filter utilised in the CHROM algorithm to improve peak detection accuracy.

To exclude oscillatory signals generated by respiration and remove high frequency noise, the CHROM and
POS signals were processed with a Butterworth bandpass filter with cutoffs of 90bpm and 270bpm, following
methods similar to those in the literature?’. Sample recordings from a representative 30s video using the
CHROM and POS algorithms are shown in Fig. 11. These signals can be utilised to estimate heart rate using
similar approaches as for respiratory rate estimation but with a window length of 120s. Bayesian inference was
performed using a Gaussian prior with a mean of 155bpm and a standard deviation of 15bpm instead, which
approximates the expected distribution of heart rate signals in neonates®®. Due to the noise in the raw Fourier
spectrum, the adaptive prior method was deemed unreliable. The signal was then smoothed using the same
Kalman filter applied to the respiratory signal with an observation noise of 20 beats per minute.

When analysing ECG-derived heart rate measurements, it was observed that a small proportion of values
exhibited non-physiological jumps that were not plausible given the neighbouring values. Two representative
examples of such jumps are shown in Supplementary Information Table 1. As these measurements would skew
the comparison of camera-derived heart rate and ground truth, they were manually removed. The valid ECG
values were smoothed with the same Kalman filter to make measurements more comparable.

Oxygen saturation monitoring

The time series data from each colour channel was processed to extract both the alternating current (AC) and
direct current (DC) components. Initially, all signals underwent Butterworth bandpass filtering with cutoffs
of 60bpm and 300bpm. Subsequently, the filtered signal was segmented into 30s intervals. Within each
segment, the AC component was determined as the average amplitude of the peaks observed within the interval.
Meanwhile, the DC component was estimated as the mean value of the signal over the same interval. The AC
and DC components of the RGB and infrared channels were utilised in the calculation of oxygen saturation
using four distinct approaches described in the literature. All of these assume a pulsatile component of optical
absorption attributed to increases in arterial blood during the systolic phase of the heartbeat, along with a non-
pulsatile component originating from other tissues.

Similar to pulse oximeters used in the clinic, oxygen saturation has been monitored by measuring
differences in absorption of red and infrared light as the absorption at these wavelengths differs depending on
the oxygenation state (see Supplementary Figure 4)*°. Even in the absence of an infrared signal, a comparable
analysis can be conducted, as there are also differences in absorption between red and blue light*S. A different
approach developed by Kim et al.*’ calculates the oxygen saturation colour signals in the YCgCr colour space.
It is also possible to measure oxygen saturation without performing a linear regression by modelling the light
absorption in the skin®®. Obtained signals were then truncated at 70% and 100%, as these represent realistic
physiological boundaries. Subsequently, the signal was smoothed with a Kalman filter with a process noise
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Symbol | Name Formula

1 N ]
MAE Mean absolute error | 3~ anl |Zn — yn|

N 2
MSE Mean square error % Zn: ) (T — Yn)

CP Coverage probability | P(zjower < ¥ < Tupper)

Table 7. Definitions of the statistical methods used for comparing two signals.

—4

and an observation noise R of 10%.

The oxygen saturation measurements from the gold standard pulse oximeter occasionally displayed values
that were likely erroneous, suggesting fatal desaturation of the baby that was not observed during the recording
period as the baby remained pink and well perfused. To validate the measurements, the underlying waveform
was analysed for periodicity. A less periodic signal, often observed during movements, suggested potential
measurement errors. Examples of good and bad waveforms are illustrated in Supplementary Information Figure
5. To improve data quality, all oxygen saturation recordings were segmented into 30s intervals, and segments with
low-quality signals were manually excluded. Reasons for segment exclusion included lack of clear oscillations,
prolonged periods of constant values, and sharp spikes of abnormally high or low values. The resulting revised
curve is depicted for two representative babies in Supplementary Information Figure 6. This approach facilitated
the identification and removal of unreliable data segments, enabling a more accurate assessment of oxygen
saturation patterns and minimising the impact of movement-related artefacts on the analysis. For accurate
comparison, the values were Kalman filtered with the same parameters as the measurements obtained from the
camera.

Statistical analysis
The most commonly used method to assess differences between gold standard and new methods in clinical
medicine is a Bland-Altman plot®. Bland-Altman plots examine the difference between two measurements as
a function of the mean of the two measurements®. This permits the detection of systematic trends in the error
distribution. The bias in the new measurement is approximated by the mean average error. Limits of agreements
are drawn at 2 standard deviations, providing a range within which most of the differences between
measurements fall. The assumption underlying Bland-Altman analysis is that the noise in the measurements is
approximately normally distributed. This assumption can be verified by constructing a histogram of the errors.
Apart from Bland-Altman plots, there is no established consensus on the most appropriate metrics for
comparison of clinical measurements with a variety of methods being used in the literature®”. Many articles
have also been reported to incorporate inappropriate tests such as correlation coefficients or t-tests®’. Instead,
it is recommended to use coverage probability (CP), which measures the proportion of measurements that
fall within +x% of the reference signal®®. Commonly used metrics such as mean absolute error (MAE) and
mean square error (MSE) are also reported. The statistical methods used are defined in Table 7. To match the
measurements obtained from different sensors with the camera data, the higher sampled signals were averaged
over periods corresponding to the period of the lower sampled signal. The tidal volume comparisons between
different groups were done using a two-sided Mann-Whitney U test.

Data availability

The datasets generated and/or analysed during the current study are available in the Apollo repository, https://do
i.org/10.17863/CAM.111417. The dataset can also be requested from Silas Ruhrberg Estévez (sr933@cam.ac.uk).
Raw videos are not publicly available to protect the privacy of neonates involved in the study.

Code availability

The underlying code for this study is available on GitHub and can be accessed via this link https://github.com
/Sr933/Meerkat-Vital-Sign- Analysis-Pipeline.git. The code can also be requested from Silas Ruhrberg Estévez
(sr933@cam.ac.uk).

Received: 7 January 2025; Accepted: 29 April 2025
Published online: 15 May 2025

References

1. Ohuma, E. et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis.
Obstetr. Gynecol. Surv. 79, 195-197 (2024).

2. Kim, Y., Ganduglia-Cazaban, C., Chan, W,, Lee, M. & Goodman, D. C. Trends in neonatal intensive care unit admissions by race/
ethnicity in the United States, 2008-2018. Sci. Rep. 11, 23795 (2021).

3. Talisman, S. et al. Neonatal intensive care admission for term neonates and subsequent childhood mortality: a retrospective
linkage study. BMC Med. 21, 56 (2023).

4. Borg, S. et al. Term Neonates admissions to neonatal intensive care unit: retrospective study. Int. J. Clin. Obstetr. Gynaecol. 2023,
11-15 (2023).

Scientific Reports |

(2025) 15:16863 | https://doi.org/10.1038/s41598-025-00539-9 nature portfolio


https://doi.org/10.17863/CAM.111417
https://doi.org/10.17863/CAM.111417
https://github.com/Sr933/Meerkat-Vital-Sign-Analysis-Pipeline.git
https://github.com/Sr933/Meerkat-Vital-Sign-Analysis-Pipeline.git
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

5. Blencowe, H. et al. Born Too Soon: the global epidemiology of 15 million preterm births. Reprod. Health 10, 896 (2013).

6. Kumar, N., Akangire, G., Sullivan, B., Fairchild, K. & Sampath, V. Continuous vital sign analysis for predicting and preventing
neonatal diseases in the twenty-first century: big data to the forefront. Pediatr. Res. 87, 1-13 (2019).

7. Nerella, S. et al. In Encyclopedia of Sensors and Biosensors (First Edition) (ed. Narayan, R.) 52-62 (Elsevier, 2023).

8. Ohlin, A, Bjorkqvist, M., Montgomery, S. & Schollin, J. Clinical signs and CRP values associated with blood culture results in
neonates evaluated for suspected sepsis. Acta paediatrica (Oslo, Norway : 1992) 99, 1635-40 (2010).

9. Bifano, E. & Pfannenstiel, A. Duration of hyperventilation and outcome in infants with persistent pulmonary hypertension.
Pediatrics 81(5), 657-61 (1988).

10. Stenzel, M., Stiiwe-Kunz, L., Biihrer, C. & Roll, C. Spontaneous hypocarbia without mechanical ventilation in preterm infants with
cystic periventricular leukomalacia. Acta Paediatr. 109, 2292-2298 (2020).

11. Cretikos, M. et al. Respiratory rate: the neglected vital sign. Med. J. Australia 188, 657-659 (2008).

12. Kayton, A., Timoney, P, Vargo, L. & Perez, J. A review of oxygen physiology and appropriate management of oxygen levels in
premature neonates. Adv. Neonatal Care 18, 1 (2017).

13. Saugstad, O. Why are we still using oxygen to resuscitate term infants?. J. Perinatol. 30(Suppl), S46-50 (2010).

14. Moore, V. Spirometry:step by step. Breathe 46, 569 (2012).

15. Silverman, W. A. & Andersen, D. H. A controlled clinical trial of effects of water mist on obstructive respiratory signs, death rate
and necropsy findings among premature infants. Pediatrics 17, 1-10 (1956).

16. Wood, D. W,, Downes, J. J. & Leeks, H. I. A clinical scoring system for the diagnosis of respiratory failure: preliminary report on
childhood status asthmaticus. Am. J. Dis. Children 123, 227-228 (1972).

17. Wilkinson, J. & Thanawala, V. Thoracic impedance monitoring of respiratory rate during sedation—is it safe?. Anaesthesia64,
455-6 (2009).

18. Sterner, J., Morris, M., Sill, J. & Hayes, J. Inspiratory flow-volume curve evaluation for detecting upper airway disease. Respir. Care
54, 461-6 (2009).

19. Lizal, E et al. Variations of flow in human airways as a consequence of lung diseases. EP] Web Conf. 180, 02055 (2018).

20. Schmalisch, G., Wilitzki, S. & Wauer, R. Differences in tidal breathing between infants with chronic lung diseases and healthy
controls. BMC Pediatr. 5, 36 (2005).

21. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363,
56 (2019).

22. Villarroel, M. et al. Non-contact physiological monitoring of preterm infants in the Neonatal Intensive Care Unit. Npj Digit. Med.
2,128 (2019).

23. Chen, Q. et al. Non-contact heart rate monitoring in neonatal intensive care unit using RGB camera. In 2020 42nd Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 5822-5825 (2020).

24. Paul, M. et al. Non-contact sensing of neonatal pulse rate using camera-based imaging: a clinical feasibility study. Physiol. Meas.
41, 024001 (2020).

25. Svoboda, L., Sperrhake, J., Nisser (Glockner), M., Taphorn, L. & Proquitté, H. Contactless assessment of heart rate in neonates
within a clinical environment using imaging photoplethysmography. Front. Pediatr. 12, 569 (2024).

26. Ye, Y. et al. Notch RGB-camera based SpO2 estimation: a clinical trial in a neonatal intensive care unit. Biomed. Opt. Express 15, 36
(2024).

27. Yu, M.-C,, Liou, J.-L., Kuo, S.-W., Lee, M.-S. & Hung, Y.-P. Noncontact respiratory measurement of volume change using depth
camera. In Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Conference 2012 2371-2374 (2012).

28. Kyrollos, D.G., Tanner, ].B., Greenwood, K., Harrold, J. & Green, J.R. Noncontact neonatal respiration rate estimation using
machine vision. In 2021 IEEE Sensors Applications Symposium (SAS) 1-6 (2021).

29. Grafton, A. et al. Advancing neonatal care: a deep learning approach for non-contact heart rate monitoring. In 2024 IEEE
International Conference on E-health Networking, Application & Services (Healthcom), Nara, Japan (2024).

30. Djamila, D., Cheref, M. & Larabi, S. Zero-sum game theory model for segmenting skin regions. Image Vis. Comput. 99, 78 (2020).

31. Cendi, A, Liciotti, D., Frontoni, E., Mancini, A. & Zingaretti, P. Non-Contact Monitoring of Preterm Infants Using RGB-D Camera
(2015).

32. Khanam, E-T.-Z,, Perera, A., Al-Naji, A. A., Gibson, K. & Chahl, J. Non-contact automatic vital signs monitoring of infants in a
neonatal intensive care unit based on neural networks. J. Imaging 7, 122 (2021).

33. UNICEE. Target Product Profile—Respiratory Rate Manager (2024, accessed 16 May 2024). https://www.unicef.org/supply/medi
a/2941/file/respiratory-rate-monitor-TPP.pdf.

34. Rehouma, H., Noumeir, R., Jouvet, P., Bouachir, W. & Essouri, S. A computer vision method for respiratory monitoring in
intensive care environment using RGB-D cameras. In 2017 Seventh International Conference on Image Processing Theory, Tools and
Applications (IPTA) 1-6 (2017).

35. Benetazzo, F, Freddi, A., Monteril, A. & Longhi, S. Respiratory rate detection algorithm based on RGB-D camera: theoretical
background and experimental results. Healthcare Technol. Lett. 1, 81-86 (2014).

36. Jorge, J. et al. Assessment of signal processing methods for measuring the respiratory rate in the neonatal intensive care unit. IEEE
J. Biomed. Health Inform. 44, 1-1 (2019).

37. Dassios, T. et al. Tidal volumes and outcome of extubation in mechanically ventilated premature infants. Am. J. Perinatol. 37, 42
(2019).

38. Rehouma, H., Noumeir, R., Bouachir, W,, Jouvet, P. & Essouri, S. 3D imaging system for respiratory monitoring in pediatric
intensive care environment. Comput. Med. Imaging Graph. 70, 17-28 (2018).

39. Waisman, D. et al. Chest dynamics asymmetry facilitates earlier detection of pneumothorax. J. Perinatol. 36, 157-159 (2016).

40. Redding, G., Song, K., Inscore, S., Effmann, E. & Campbell, R. Lung function asymmetry in children with congenital and infantile
scoliosis. Spine J. 36, 639-44 (2008).

41. Simons, T., S6derlund, T. & Handolin, L. Radiological evaluation of tube depth and complications of prehospital endotracheal
intubation in pediatric trauma: a descriptive study. Eur. J. Trauma Emerg. Surg. 43, 427 (2017).

42. Pinheiro, J., Munshi, U. & Chowdhry, R. Strategies to improve neonatal intubation safety by preventing endobronchial placement
of the tracheal tube-literature review and experience at a tertiary center. Children 10, 361 (2023).

43. Institute, A.N.S. Cardiac monitors, heart rate meters, and alarms (2024, accessed 16 May 2024). https://docplayer.net/34982183-A
ami-american-national-standard-cardiac-monitors-heart-rate-meters-and-alarms-ansi-aami-ec13-2002.html.

44. Huang, B. et al. A neonatal dataset and benchmark for non-contact neonatal heart rate monitoring based on spatio-temporal
neural networks. Eng. Appl. Artif. Intell. 106, 104447 (2021).

45. Shao, D. et al. Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system. IEEE Trans.
Biomed. Eng. 63,1091-1098 (2016).

46. Guazzi, A. et al. Non-contact measurement of oxygen saturation with an RGB camera. Biomed. Opt. Express 6, 3320-38 (2015).

47. Kim, N.H,, Yu, S.-G., Kim, S.-E. & Lee, E.C. Non-contact oxygen saturation measurement using YCgCr color space with an RGB
camera. Sensors 21, 1424-8220 (2021).

48. Sasaki, S., Sugita, N., Terai, T. & Yoshizawa, M. Non-contact measurement of blood oxygen saturation using facial video without
reference values. IEEE J. Transl. Eng. Health Med. 12, 76-83 (2024).

Scientific Reports|  (2025) 15:16863 | https://doi.org/10.1038/s41598-025-00539-9 nature portfolio


https://www.unicef.org/supply/media/2941/file/respiratory-rate-monitor-TPP.pdf
https://www.unicef.org/supply/media/2941/file/respiratory-rate-monitor-TPP.pdf
https://docplayer.net/34982183-Aami-american-national-standard-cardiac-monitors-heart-rate-meters-and-alarms-ansi-aami-ec13-2002.html
https://docplayer.net/34982183-Aami-american-national-standard-cardiac-monitors-heart-rate-meters-and-alarms-ansi-aami-ec13-2002.html
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

49. Villarroel, M. et al. Continuous non-contact vital sign monitoring in neonatal intensive care unit. Healthcare Technology Letters 1,
87-91 (2014).

50. Medicines & products Regulatory Agency, H. The use and regulation of pulse oximeters (information for healthcare professionals)
(2024, accessed 16 May 2024). https://www.gov.uk/guidance/the-use-and-regulation-of-pulse-oximeters-information-for-healthc
are-professionals.

51. Kaufman, D., Khattar, J. & Lappin, S. Physiology, fetal hemoglobin (2024, accessed 16 May 2024). https://www.ncbi.nlm.nih.gov
/books/NBK500011/.

52. Harris, A., Sendak, M., Donham, R., Thomas, M. & Duncan, D. Absorption characteristics of human fetal hemoglobin at
wavelengths used in pulse oximetry. . Clin. Monit. 4(3), 56 (1988).

53. Microsoft. Azure Kinect DK (2024, accessed 16 May 2024). https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq
?activetab=pivot:techspecstab.

54. Microsoft. About Azure Kinect DK (2024, accessed 16 May 2024). https://learn.microsoft.com/en-us/azure/kinect-dk/about-azur
e-kinect-dk.

55. Dosso, Y.S., Selzler, R., Greenwood, K., Harrold, J. & Green, ].R. RGB-D sensor application for non-contact neonatal aonitoring. In
2021 IEEE Sensors Applications Symposium (SAS) 1-6 (2021).

56. Grafton, A.]. Applications of RGB-D Cameras in Healthcare PhD thesis (University of Cambridge, 2022).

57. Peng, Z. et al. Continuous sensing and quantification of body motion in infants: a systematic review. Heliyon 9, e18234. https://do
i.org/10.1016/j.heliyon.2023.e18234 (2023).

58. OpenMMLab. MMPose (2024, accessed 16 May 2024). https://mmpose.readthedocs.io/en/latest/.

59. Fleming, S. et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of
observational studies. Lancet 377, 1011-8 (2011).

60. Rodrigues, P. C. & de Carvalho, M. Spectral modeling of time series with missing data. Appl. Math. Model. 37, 4676-4684 (2013).

61. Chong, D., Morley, C. & Belteki, G. Computational analysis of neonatal ventilator waveforms and loops. Pediatric Res. ( 2020).

62. Haan, G. & Jeanne, V. Robust pulse rate from chrominance-based rPPG. LE.E.E. Trans. Biomed. Eng. 60, 563 (2013).

63. Wang, W,, den Brinker, A., Stuijk, S. & Haan, G. Algorithmic principles of remote-PPG. IEEE Trans. Biomed. Eng. 11, 58 (2016).

64. Alonzo, C. et al. Heart rate ranges in premature neonates using high resolution physiologic data. J. Perinatol. 38, 223 (2018).

65. Zaki, R., Bulgiba, A., Ismail, R. & Ismail, N. Statistical methods used to test for agreement of medical instruments measuring
continuous variables in method comparison studies: a systematic review. PLoS ONE 7, 37908 (2012).

66. Martin Bland, J. & Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. The
Lancet 327, 0140-6736 (1986).

67. McLaughlin, P. Testing agreement between a new method and the gold standard-How do we test?. J. Biomech. 46, 478 (2013).

68. Lawrence-Lin, A. S., Hedayat, B. S. & Yang, M. Statistical methods in assessing agreement. J. Am. Stat. Assoc. 97, 257-270 (2002).

Acknowledgements
This study was funded by the Rosetrees Trust, Isaac Newton Trust and Stoneygate Trust. The funder played no
role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.

Author contributions

K.B.,J.L., and A.G. came up with the idea for the project. S.R.E., A.G., and J.W. performed and contributed to the
image/video analysis and signal processing methods. S.R.E. drafted the first version of the manuscript. A.G. and
L.T. collected the datasets. K.B. provided the clinical guidance. J.L. provided the overall guidance for the project.
All authors reviewed the manuscript.

Funding
This study was funded by the Rosetrees Trust, Isaac Newton Trust, and Stoneygate Trust.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/s41598-025-00539-9.

Correspondence and requests for materials should be addressed to S.R.E.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:16863 | https://doi.org/10.1038/s41598-025-00539-9 nature portfolio


https://www.gov.uk/guidance/the-use-and-regulation-of-pulse-oximeters-information-for-healthcare-professionals
https://www.gov.uk/guidance/the-use-and-regulation-of-pulse-oximeters-information-for-healthcare-professionals
https://www.ncbi.nlm.nih.gov/books/NBK500011/
https://www.ncbi.nlm.nih.gov/books/NBK500011/
https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot:techspecstab
https://www.microsoft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab=pivot:techspecstab
https://learn.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk
https://learn.microsoft.com/en-us/azure/kinect-dk/about-azure-kinect-dk
https://doi.org/10.1016/j.heliyon.2023.e18234
https://doi.org/10.1016/j.heliyon.2023.e18234
https://mmpose.readthedocs.io/en/latest/
https://doi.org/10.1038/s41598-025-00539-9
https://doi.org/10.1038/s41598-025-00539-9
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Continuous non-contact vital sign monitoring of neonates in intensive care units using RGB-D cameras
	﻿Results
	﻿Respiratory rate and volume
	﻿Respiratory dynamics
	﻿Heart rate
	﻿Oxygen saturation

	﻿Discussion
	﻿Methods
	﻿Clinical study
	﻿Experimental setup
	﻿RGB-D camera
	﻿Data collection in the NICU


	﻿Data analysis
	﻿Region of interest identification
	﻿Signal extraction
	﻿Respiratory monitoring
	﻿Heart rate monitoring
	﻿Oxygen saturation monitoring
	﻿Statistical analysis

	﻿References


