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OPEN A facial structure sampling

contrastive learning method for
sketch facial synthesis

Kangning Du'?, Jiyu Zhang*?, Lin Cao%2", Yanan Guo%? & Wenwen Sun™-2

Sketch face synthesis aims to generate sketch images from photos. Recently, contrastive learning,
which maps and aligns information across diverse modalities, has found extensive application in image
translation. However, when applying traditional contrastive learning to sketch face synthesis, the
random sampling strategy and the imbalance between positive and negative samples result in poor
performance of synthesized sketch images regarding local details. To address the above challenges, we
propose A Facial Structure Sampling Contrastive Learning Method for Sketch Facial Synthesis. Firstly,
we propose a region-constrained sampling module that utilizes the distribution map of facial structure
obtained by a dual-branch attention mechanism to segment the input photos into diverse regions,
thereby providing regional constraints for sample selection. Subsequently, we propose a dynamic
sampling strategy that dynamically adjusts the sampling frequency based on the feature density in
the distribution map, thereby alleviating sample imbalance. Additionally, to diminish the background
influence and enhance the delineation of character contours, we introduce the mask derived from the
input photo as an additional input. Finally, to further enhance the quality of the synthesized sketch
images, we introduce pixel-wise loss and perceptual loss. The CUFS dataset experiment demonstrates
that our method generates high-quality sketch images, outperforming existing state-of-the-art
methods in subjective and objective evaluations.
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Sketch face synthesis aims to produce sketch images with a distinct style from provided photos, extensively
utilized in both digital entertainment and criminal investigations.

In digital entertainment, sketch face synthesis methods are used to rapidly convert exaggerated face photos
into sketch images with distinct styles and personalities, thereby markedly improving conversion efficiency. In
criminal investigations, sketch face synthesis methods address the challenge of low identification rates between
hand-drawn sketch images and images within police databases. Converting optical photos from police databases
into sketched images not only enhances recognition accuracy but also improves investigation efficiency.
Therefore, to improve the performance of sketch face synthesis methods in these tasks, it is crucial to develop
algorithms that generate sketched face images with realistic facial details.

Present methodologies for sketch face synthesis can be broadly categorized into two groups: shallow learning-
based methods and deep learning-based methods. Shallow learning-based methods can be further categorized
into three primary classes: subspace learning!, sparse representation?, and Bayesian inference’. Nonetheless,
these methods are limited by their inadequate generalization capability, leading to considerable variations in the
generated sketch face images across diverse datasets.

In recent years, Generative Adversarial Networks (GANs) have been widely applied in sketch face synthesis.
By employing adversarial strategies between the generator and discriminator, GANs notably improve the model’s
generalization capability, allowing for the production of high-quality sketch face images. For example, Yi et al.?
proposed APDrawing, which synthesizes key facial features using multiple GANs. Subsequently, these synthesized
facial components are stitched together to form a complete facial representation. As the local facial components
are synthesized independently, inconsistencies arise in the connected regions and their appearances. To tackle
this issue, Fan et al.> proposed FSGAN, a two-stage face synthesis framework. In the first stage, this model
resembles APDrawing. In the second stage, it comprehensively incorporates global information and texture
details to enhance the synthesis effect, thereby improving the quality of the synthesized sketch images. Despite its
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enhanced performance, this model has also led to increased training costs. Contrastive learning has substantially
enhanced training efficiency by effectively mapping and aligning information across diverse modalities, leading
to remarkable advancements in the field of image translation. For example, Park et al.® proposed a framework
based on contrastive learning. By maximizing mutual information between the source and target domain, this
approach brings together corresponding samples in the source and target while pushing away noncorresponding
“negative” samples, thereby enhancing image quality and reducing training time.

Traditional contrastive learning methods employ random sampling strategies that ignore the distribution
of facial structure. Utilizing traditional contrastive learning methods in sketched face synthesis may produce
numerous invalid samples, thus complicating model training, as shown in Fig. 1. Moreover, the imbalance
between positive and negative samples leads to the loss of local texture details in the generated sketched face
images. These limitations align with the findings of Bian et al.”, who demonstrated that current sketch face
recognition methods are fundamentally constrained by both generation quality deficiencies and insufficient
local feature representation. To tackle these challenges, we present a contrastive learning approach based on face
structure, which utilizes face structure information to precisely direct the sampling process, thereby improving
the accuracy of feature extraction and opening up a new perspective for the application of contrastive learning
in the field of sketch face synthesis. Specifically, we propose the Region-Constrained Sampling (RSC) module
for sample selection. This module utilizes a dual-branch attention mechanism to obtain the distribution map of
facial structure. Guided by this map, it segments the input photos into facial and hair regions, thereby providing
regional constraints for sample selection. The RSC module effectively reduces the number of invalid samples
and ensures that the selected samples contain more source domain information. Furthermore, we introduce
the Dynamic Sampling Strategy (DSS), which dynamically adjusts the sampling frequency based on the feature
density of samples, thus mitigating the issue of local texture loss in generated face sketch images. Additionally,
we introduce a mask derived from the input photo as an extra input to the generator, reducing the influence
of the background on synthesis results and enhancing the delineation of character contours. Compared with
existing approaches, our proposed method demonstrates superior capability in capturing intricate facial details
and structural information, enabling the synthesis of sketch faces with enhanced realism and naturalness in
both texture and geometry on real-world datasets. In addition, by specifically enhancing the extraction and
representation of local features, the proposed method offers a promising solution for improving the accuracy
of sketch-photo cross-modal face recognition’. In the field of face recognition, our synthesized sketch images
show a significant improvement in recognition accuracy compared to other mainstream synthesis methods. This
advancement provides strong support for the practical application of sketch face synthesis technology in areas
such as digital entertainment, criminal investigations.

The main contributions of this model are as follows:

o We propose A Facial Structure Sampling Contrastive Learning Method for Sketch Facial Synthesis. By impos-
ing regional constraints during the sample selection, our method effectively addresses the issue of introducing
invalid samples in traditional contrastive learning.

« We propose a Region-Constrained Sampling (RCS) module, employing a dual-branch attention mechanism
to obtain the distribution map of facial structures. Guided by this map, the input photos are segmented into
facial and hair regions based on feature density, thereby providing region constraints for sample selection.

o We propose a Dynamic Sampling Strategy (DSS) that dynamically adjusts the sampling quantity based on
the feature density of samples, effectively addressing the imbalance between positive and negative samples.

o We innovatively introduce the mask derived from the input photo as an additional input, effectively reducing
the impact of the background and enhancing the character contours of the sketch image.

Related work

Shallow learning-based methods

Subspacelearning methods assume correlation between sketch face images and face photos in alow-dimensional
feature space. Huang et al.® proposed a model to address coupled dictionary and feature space learning issues
simultaneously. This model extracts feature space that not only associates cross-domain data for recognition
but also updates dictionaries in each data domain to improve image representation, thereby enhancing image
synthesis quality. Song et al.’ proposed the face portrait method based on spatial portrait denoising, which adds
smoothness constraints to reduce noise, effectively solving missing detail in synthetic images.
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Fig. 1. Randomly sampling selected samples may include background regions unrelated to the task of
synthesizing sketch images. The RCS module confines the selection region of samples to facial and hair regions,
thereby minimizing irrelevant samples.
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Sparse representation methods encode face images into a sparse coefficient matrix and obtain coefficients
through dictionary learning. Wang et al.!® proposed semi-coupled dictionary learning, capturing structural
features of two different style images by learning a pair of dictionaries and the mapping function. This learning
strategy reveals the underlying relationship between the styles, enabling precise cross-style transformation.
Zhang et al.!! proposed a method that combines the similarity between image blocks and prior knowledge.
This approach employs a sparse coefficient matrix instead of traditional pixel values and extends the search area
globally, effectively utilizing identity details and enhancing the realism of generated facial images.

Bayesian learning methods utilize probability models to predict outputs. Wang et al.!? proposed the Markov
Random Field (MRF) model that utilizes both local and global relationships of facial features to enhance
synthesized image quality. Zhou et al.!* proposed the Markov Weighted Field (MWF) model, which extends the
one-to-one facial block transformation strategy to the one-to-many form and utilizes a weighted block method
to obtain the final output blocks. This model significantly enhances facial detail realism in synthesized images,
thereby improving the overall visual quality.

However, the inference-based generation of sketch images makes these algorithms time-consuming.
Additionally, the quality of the generated images exhibits significant differences across different datasets.

Deep learning-based methods

Deep learning-based models handle high-dimensional data and efficiently capture rich details, significantly
enhancing their generalization capability. This has opened up a new era in the field of image translation. Zhu
et al.' proposed BiCycleGAN, which employs conditional variational autoencoder and latent regression
generator to address mode collapse, thus facilitating diverse style perception. Zhang et al.!> proposed the NPGM
framework, which utilizes a probabilistic graphical model to reconstruct the common facial structure, thereby
solving the problem that existing methods lose part of the facial structure during the synthesis process. Zhang
etal.!® proposed DLLRR, which transforms the sketch face synthesis task into a low-rank optimization problem,
thereby synthesizing a clear and realistic sketch with identity feature information. Yu et al.'” proposed CA-GAN,
which utilizes perceptual loss function to ensure synthetic images resemble real images, and employs stacked
CA-GAN further enriches synthesized images with captivating details. Zhao et al.'® proposed ACL-GAN, which
introduce adversarial consistency loss to preserve the commonalities between the source and target domains,
improving image translation quality. Duan et al.'® proposed a multi-scale gradient self-attention residual learning
framework, which introduces an attention mechanism to selectively enhance key features, thereby effectively
improving synthesized image quality. Liu et al.?>?! proposed attribute-guided sketch face synthesis methods,
which employ facial attribute information to generate a wider variety of local features for simulating modal
differences, and embed discriminative information guided by facial attributes, thereby eliminate bias during
the generation process and more effectively utilizes the attribute information. Liu et al.?? proposed HFIDR,
which learns interpretable disentangled representations via supervised disentanglement and incorporates
a face semantic part exchange strategy along with symmetric adversarial loss to enhance the performance of
heterogeneous face recognition and synthesis tasks. Wang et al.2* proposed PITI, which leverages adversarial
training to enhance texture synthesis in diffusion?® models, and combines normalized guided sampling to
improve synthesized image quality. Cao et al.?> proposed a full-scale identity supervision method. This method
utilizes a face recognition network to extract multi-level depth representations of cross-domain facial images
and constrains the generation model using full-scale identity loss. This approach not only maximizes the
preservation of perceptual appearance but also enhances the richness of synthesized images in detail. Liu et
al.¢ proposed the MAMCO-HFR method that generates modality-independent perturbation samples via an
adversarial training procedure, maps the data into a modality-independent subspace to mitigate the differences
in data modalities and enhance the recognition performance. Bian et al.” proposed a novel adapter module that
integrates transformer and graph convolutional network (GCN) architectures, which by enhancing the CLIP
model’s capability to extract features from different face regions within the same modality in sketch-photo cross-
modal face recognition tasks, significantly improves cross-modal matching accuracy.

Recently, contrastive learning has been applied in image translation®*”%8, Its core idea is to compare positive
and negative samples in the feature space to learn the feature representation of the sample. For example, Park
et al.% proposed CUT, which utilizes contrastive learning to maximize the mutual information between input
and output without relying on cycle consistency. This model outperforms existing methods in one-sided
image translation tasks. Zheng et al.?” proposed the F-LSeSim method, which introduces spatial correlation
loss to effectively capture the spatial relationships within the image and eliminate the interference of visual
appearance factors, thereby significantly improving the model performance. Hu et al.® proposed the QS-Attn
method, which selectively focuses on important samples by measuring the importance of input image features,
and imposes constraints that are more closely related to the translation task when calculating the contrastive
loss, thereby improving the image translation quality. In addition, Oord et al.?’ proposed a method based on
contrastive predictive coding. This method utilizes probabilistic contrastive loss to induce latent space, thereby
better capturing the crucial information for predicting samples. He et al.** proposed MoCo, which facilitates
contrastive unsupervised learning by constructing a dynamic dictionary with a queue and a moving-averaged
encoder. Kim et al.3! proposed InstaFormer, which leverages the self-attention mechanism in Transformer®* to
extract global content features, and enhance the quality of image conversion by defining instance-level content
contrast loss between input and output images. Although we utilize patch contrastive loss in images similar
to CUT, we innovatively propose a method that utilizes the distribution map of facial structure to ensure that
samples can concentrate on the facial and hair regions of the input image, thereby improving the synthesis
quality of sketch images.
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Methods

The proposed network framework, depicted in Fig. 2, consists of a generator, discriminator, and block feature
extractor, designed to produce sketch images with authentic textures from input optical images. Firstly, the
optical photo and its derived mask are fed into the generator to produce the pseudo-sketch image. Subsequently,
the discriminator evaluates the pseudo-sketch image to distinguish its authenticity, with feedback provided to
the generator accordingly. During this process, the optical photo is fed into the pre-trained Region-Constrained
Sampling (RCS) module to obtain the distribution map of facial structures. Concurrently, the generator’s
encoder module extracts multi-level feature maps from optical photos and pseudo-sketch images. Guided by
the distribution map, the block feature extractor is employed to acquire the feature stack of the optical photos,
facilitating the computation of the block contrastive loss. Notably, the introduction of the mask aims to minimize
background influence and enhance character outlines in the synthesized sketch image. Finally, by integrating
adversarial loss, block contrastive loss, pixel-wise loss, and perceptual loss, our model excels in producing
realistic sketch images.

Dataset

The participant photos were obtained from the CUFS database!2 It includes the Chinese University of Hong
Kong (CUHK) student database'?, the AR database®, and the XM2MTS database*. We have successfully
secured the necessary permissions for dataset utilization. Moreover, all participants have provided their fully-
informed consent to partake in this experiment. CUFS dataset can be downloaded from https://mmlab.ie.cuhk
.edu.hk/datasets.html.

Region-constrained sampling module

To enhance the realism of local details in the sketch image, it is necessary to select patches containing more
source domain information. Based on this, we propose the Region-Constrained Sampling (RCS) module, which
employs a dual-branch attention mechanism to acquire the distribution map of the facial structures of the optical
image, as shown in Fig. 3. Guided by this map, the selection region of samples is restricted to the facial and hair
regions in the optical image. The RSC module effectively reduces the number of invalid samples and ensures that
the selected samples contain more source domain information, aiming for maximum consistency between the
synthesized sketch image and the optical image.

To emphasize the importance of each channel in the feature map, we employ the average pooling (AvgPool)
layer to obtain the global feature z. of the optical photo p;. Subsequently, z. is passed through the fully connected
layer and activation function to compute the weight s for each channel in the feature map. The specific process
is as follows:
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Fig. 2. The structure of A Facial Structure Sampling Contrastive Learning Method for Sketch Facial Synthesis
(FSS). Here, G is the generator, E is the encoder module of the G, D is the discriminator, H is the block feature
extractor, and Region-Constrained Sampling (RCS) is responsible for selecting samples with specific positional
constraints as samples required for computing block contrastive loss. During the sample selection process,

we introduce the Dynamic Sampling Strategy (DSS) to address the imbalance between positive and negative
samples.
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Fig. 3. The structure of the region-constrained sampling (RCS) module. A and b, respectively, represent the
attention maps of optical photos obtained under different branches. The depth of red indicates the degree of
attention the branch pays to the region, with deeper red indicating higher attention to that region.

ze = AvgPool(p;) (1)
s = Sigmoid(F°(ReLU(F°(z.)))) (2)

Where F° represents the fully connected layer, ReLU and Sigmoid represent the corresponding activation
functions.

To improve the representation of the hair region in the optical photo, we employ the vector s to excite the
optical photo p;. Then the resulting output undergoes a 1 x 1 convolution layer to obtain the enhanced channel
attention matrix (p;)c, as shown in Eq. (3).

(pi)e = Conv(sp;) 3)

To assess the performance of channel attention in the optical photos, we visualize the attention matrix (p;)., as
shown in Fig. 3a. Through visualization analysis, distinct performances across different regions can be observed
under the channel attention mechanism. In the hair region, the color and texture of the hair create prominent
feature patterns within specific channels. The channel attention mechanism is capable of sensitively detecting
these patterns and assigning higher weights to the corresponding channels, which effectively accentuates the
hair region. Conversely, in the facial region, the facial features and their relative positional relationships play a
crucial role. Nevertheless, the channel attention mechanism fails to take into account the spatial relationships.
As a result, it is unable to effectively capture this vital information, leading to suboptimal performance in the
facial region.

To improve the spatial information of the feature map, we first subject the original feature map p; toal x 1
convolution to produce the compression matrix zs. Subsequently, we normalize the compression matrix z, using
the Sigmoid activation function and then multiply it with the original feature map p; to obtain the enhanced
spatial feature matrix (p;)s. The specific process is as follows:

zs = Conv(p;) (4)

(pi)s = Sigmoid(zs)p; (5)

The channel attention implementation is shown in Egs. (1, 2, and 3). Finally, we feed the enhanced spatial and
channel feature matrix into a 1 x 1 convolutional layer to generate the fused attention matrix f, as shown in

Eq. (6):
fr = Conv((pi)s + (pi)e) (6)

To assess the performance of fused attention, we visualize the attention matrix f, as shown in Fig. 3b. The fused
attention mechanism integrates multiple attention modes and comprehensively analyzes the facial region from
two dimensions: spatial and channel. This enables the mechanism to accurately capture the overall characteristics
of the face and the relative positional relationships between facial features. Consequently, it allocates more
attention to the facial region, achieving effective representation of facial features. In contrast, characteristics
such as color and texture in the hair region are predominantly captured by the channel attention mechanism.
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The spatial attention mechanism often fails to effectively enhance such channel-based features. Furthermore, the
introduction of the spatial attention mechanism into the fused attention mechanism alters the overall attention
distribution pattern. As a result, under the fused attention mechanism, the performance in the hair region may
not achieve the ideal effectiveness observed when using the channel attention mechanism alone.

In summary, the RCS module employs distinct branches to obtain attention maps of the optical photo,
effectively segmenting it into facial and hair regions, thereby offering regional constraints for sample selection.

Dynamic sampling strategy

In the sketch face synthesis task, we confine the selection region of contrastive learning samples to the hair
and facial regions, effectively mitigating the interference of background information on the synthesized results.
This strategic not only refines the learning direction of the model but also substantially enhances the model’s
efficiency in extracting key features during training. Consequently, it reduces the training complexity, rendering
the overall process more precise and efficient.

During the sample selection procedure, we initially leverage the encoder module of the generator to extract
multi-level feature maps from the optical photo. Subsequently, we utilize the facial structure distribution map
generated by the RCS module as a regional constraint to conduct sample selection within the extracted multi-level
feature maps. Notably, we discovered that the multi-level feature maps extracted by the encoder of the generator
are capable of effectively retaining the key identity information of the characters. Consequently, we carry out
the sample selection operation on the multi-level feature maps employing the geometric scaling method. Next,
following the methodology of SimCLR?, we process the acquired samples through the block feature extractor H
to obtain the feature stack of the optical photo. The feature stack of the synthetic sketch image can be acquired
using an same approach. Moreover, in the sample selection process, we introduce a Dynamic Sampling Strategy
(DSS), this strategy dynamically modulates the sampling frequency in accordance with the feature density of
samples in the distribution map, alleviating the imbalance between positive and negative samples and preventing
the distortion of local details in the synthetic sketch image. We utilize the obtained feature stack to compute the
multi-layer block contrast loss, as shown in Fig. 4. The specific implementation steps are as follows:

To produce the feature stack of the optical image p, we utilize the encoder module of the generator to extract
multi-level feature maps from the optical photo p. The extracted feature maps are fed into the block feature
extractor H guided by the RCS module, thereby producing a feature stack {z; } ; with positional constraints. The
specific process is shown in Eq. (7).

Dynamic sampling strategy
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Fig. 4. The dynamic sampling strategy demonstrates the mechanism for adjusting the number of samples.
Under the constraint of RSC, the samples are dynamically adjusted based on their feature density in the face
structure distribution map. Specifically, the orange boxes represent the obtained samples, while the red boxes
indicate samples whose feature density exceeds the preset threshold, thereby the number of such samples being
doubled. The calculation procedure of the multi-layer block contrast loss demonstrates how the multi-layer
feature maps of optical photos and sketch images are converted into corresponding feature stacks under the
guidance of the RSC module. In the figure, the query sample is denoted by the green box, the positive sample
by the purple box, and the negative samples by the blue box.
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{z}, = H(RCS(E'(p))) 7)

Here, E' denotes the output feature of the encoder at layer I where [ € {0, 4, 8,12,16}.
Similarly, the encoder extracts feature stacks {2;}; with region constraints from pseudo-sketch images 3, as
shown in Eq. (8):

{2}, = H(RCS(E'(3))) (8)

We sequentially traverse each feature in feature stacks {;}, and {#;}; . During this process, we label different
features: features in stack {2}, are denoted as query samples v, those in stack {2}, as positive samples v™
, and the remaining ones in stack {2}, as negative samples v,, . It is worth noting that the higher the feature
density of samples, the more corresponding samples there are. The positive samples we constructed have features
that highly match those of the query samples, thus providing positive learning references for the model. In
contrast, the features of negative samples are quite different from those of the query samples, and this difference
enables them to assist the model in effectively distinguishing different features, thereby enhancing the model’s
discrimination ability.

To maximize the correlation between the query sample and the positive sample, we introduce the cross-
entropy loss function, as shown in Eq. (9):

exp(v-vt/T)

]

1('1),'1) 71)_) = 710g[

N _ 9)
exp(v-vt/7)+ > exp(v- vy /T)
n=1

To compute the correspondence between different patches in feature maps at various scales. We introduce the
multi-level patchwise contrastive loss, as shown in Eq. (10):

L S

s -
Lpatch(El7 H7 P) = EPiNPp Z Zl(/z\?7 Zf7 le ) (10)

=1 s=1

s
Where, 7; denotes the pseudo-sketch query sample; z; denotes the optical photo positive sample; z;° denotes

the optical photo negative sample; s = 1,2, 3, ..., 5], and S; represents the number of patches at each layer.

Loss function

Given a pair of photo-sketch sets {(pi, si)|pi € P, s; € S}, with P and S denoting collections of facial photos
and sketch images respectively, and the shared label i indicating that the facial photo and sketch image belong
to the same individual. To ensure stability and accelerate convergence during network training, we designed the
following loss functions:

Adversarial loss. During the training process of the GAN, the discriminator D aims to accurately distinguish
between real sketch images and pseudo-sketch images. Meanwhile, the generator G generates pseudo-sketch
images closely resembling the real sketch images to deceive the discriminator D. To quantify this adversarial
process, we introduce the adversarial loss function®® as shown in Eq. (11):

L GAN(G, D7 ]D7 S) = E~9iNPS [lOg(D(Sl))} + Epiwpp [log(l — D(G(pz)))] (11)

Where Ps and Pp denote the sample distributions of sketch images and optical photos, respectively.
Pixel-wise loss & Perceptual loss. The training dataset comprises paired photo-sketch images, so we employ
supervised learning to train the GAN. Hence, we introduce the following loss functions: pixel-wise loss and
perceptual loss.
To guide the model in capturing image details and generating high-quality sketch images, we introduce the
pixel-wise loss, calculated by comparing the L1 distance between the pseudo-sketch image and the real sketch
image at each pixel, as shown in Eq. (12):

Li(Gs, P, S) = Es;~pg,pinpp [|Gs (i) — sill1] (12)

To ensure that the model considers the global structure of the image and produces natural sketch images, we
introduce perceptual loss. We utilize pre-trained VGG19% to extract multi-layer feature maps from both real and
pseudo-sketch, computing the L1 norm of these feature maps at different layers, as shown in Eq. (13):

4

Loer(Gs, P, S) = Esimpspimre D s ll0s(s:) = 05(Gs(i)ly (13)

=0

Where, ¢, (.) denotes the perceptual features extracted from the j — th layer, with j = 0, 1, 2, 3, 4. Additionally,
w; = 1/32,1/16,1/8,1/4, 1.

Patchwise contrastive loss. To maximize the mutual information between optical photos and synthetic
sketch images, we introduce the multi-level patchwise contrastive loss, as shown in Eq. (10).
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Dataset | Train | Test
CUHK | 88 100
AR 80 43
XM 100 195

Table 1. Train set and test set division of the dataset.

Number | Baseline | W/ RCS | W/ DSS | W/ Mask | W/ losses
1 v

2 v v

3 v v v

4 v v v v

5 v v v v v

Table 2. Ablation studies.

Total loss.The total loss function is given by Eq. (14):
qull = Lago +al1 + /BLpatL:h + 'YLper (14)

Where o, 8, and +y are hyperparameters controlling the importance of per-pixel loss, patchwise contrastive loss,
and perceptual loss, respectively.

Experimental results and analysis

This section begins by detailing the experimental datasets, evaluation metrics, and implementation specifics. We
then validate the effectiveness and accuracy of our proposed method using the publicly available CUFS dataset,
conducting both qualitative and quantitative experiments.

Training and testing dataset: We utilize the public CUFS dataset, comprising 188 pairs of faces from the
Chinese University of Hong Kong (CUHK) student dataset, 123 pairs from the AR dataset, and 295 pairs from the
XM2VTS dataset. Both the paired photos and sketch images feature neutral facial expressions. They are resized
to 256 x 256 and geometrically aligned based on the eyes. To facilitate comparison with existing methods, we
follow Wang et al.*® dataset division method. Specifically, 88 pairs from CUHK, 80 pairs from AR, and 100 pairs
from XM2VTS are used for training, while the remaining pairs are reserved for testing. Data division details for
each dataset are shown in Table 1.

Evaluation metrics: To evaluate the performance of the proposed method, we employ Peak Signal to Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM)?°, and Fréchet Inception Distance (FID)*°. A higher
PSNR and SSIM value, along with a lower FID value, collectively indicate the superior quality of the pseudo-
sketch image.

Implementation details: The proposed method is implemented using the PyTorch framework. During
training, the batch_size is set to 1, and the total number of iterations is 400 epochs. The learning rate starts at
0.0002 for the first 200 epochs and linearly decays to 0 for the remaining 200 epochs. The generator, discriminator,
and block feature extractor are optimized using the Adam optimizer, with momentum parameters 31 and (2
set to 0.5 and 0.999, respectively. The weights o and 3 for the per-pixel loss and perceptual loss in the total loss
function are set to 100 and 1, respectively. Furthermore, the number of samples for the face and hair regions,
guided by the facial structure distribution, are set to 256 and 128, respectively.

Analysis of ablation experimental results

To verify the effectiveness of each component in the proposed method, a series of ablation experiments are
conducted. Starting with the original CUT model as the baseline, we incrementally introduced the Region-
Constrained Sampling (RCS) module, Dynamic Sampling Strategy (DSS), mask, pixel-wise and perceptual
losses during training. The performance of these experiments on the CUFS dataset is presented in Table 2.

As shown in Fig. 5, CUT employs random sampling to synthesize sketch images, which falls short in
capturing facial features like eyes and textures on the CUHK and AR datasets. Similarly, on the XM2VTS
dataset, despite the depiction of character outlines and facial features, the synthesized sketch images exhibit
dim colors, failing to convey facial texture and shadow distribution, and thus lacking realism. To address these
challenges, we introduced the RCS module. On the AR and XM2VTS datasets, the synthesized sketch images
show significant improvements over CUT in terms of hair texture, facial details, and line strokes. On the CUHK
dataset, while the details of the eyes and mouth are enhanced, issues such as artifacts in character outlines and
missing key lines remain pressing problems. Additionally, across all datasets, the synthesized sketch images
exhibit local discrepancies compared to real sketch images. To further enhance the model’s performance in
capturing local details, we introduced the DSS. This strategy effectively mitigates artifacts and missing lines
on the CUHK dataset, making the synthesized sketch images more realistic in terms of eye and hair textures.
However, the newly added lines fail to align with human visual aesthetics. On the AR and XM2VTS datasets, the
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Fig. 5. Comparison of synthetic effects of ablation experiments.

Dataset | Metrics | CUT W/RCS | W/ DSS | W/ Mask | FSS
FID| 81.2447 | 77.4903 | 71.34153 | 62.7373 53.3347
CUHK PSNRT | 16.8903 |17.1985 | 17.4079 | 17.4951 18.5729
SSIMT | 0.54361 | 0.57214 | 0.58010 | 0.58509 0.63567
FID] 87.6897 | 84.6346 | 81.2749 | 71.6501 62.33
AR PSNRT |17.2912 | 17.8219 | 17.9628 | 17.8549 18.1293
SSIMT | 0.59046 | 0.60303 | 0.59908 | 0.60337 0.63419
FIDJ] 76.0358 | 73.4575 | 71.5189 | 60.6443 30.4706
XM2VTS | PSNRT | 15.9739 | 16.4856 | 16.9673 17.1576 18.1112
SSIMT | 0.50383 | 0.53392 | 0.53813 | 0.55885 0.57660

Table 3. Comparison of quantitative metrics of ablation experiments.

synthesized sketch images demonstrate improved of eyes and nose details but still suffer from localized feature
loss and interference from background lines. To eliminate background interference and enhance the generator’s
expressiveness in character areas, we incorporated a Mask corresponding to the optical photo as an additional
input to the generator. This approach results in sketch images with clearer hair textures and more realistic facial
details across all datasets, though minor imperfections persist in specific areas. Furthermore, to enhance visual
fidelity, we introduced pixel-wise loss and perceptual loss functions. These loss functions not only account for
pixel-level differences between synthesized and real sketch images but also guide the synthesized sketch images
to achieve greater consistency with real sketch images in terms of overall structure and contextual coherence.

As shown in Table 3, with the best-performing results highlighted in bold. The gradual introduction of each
component in experiments, followed by comparison with CUT, it can be observed that the FID is decreased by
approximately 25 on the CUHK and AR datasets and by approximately 45 on the XM2VTS dataset. Furthermore,
improvements in SSIM and PSNR are evident across all datasets. These results highlight the critical role of these
components in enhancing the overall performance of the proposed method.

In summary, comparing individual ablation experiments reveals that the FSS consistently produces higher-
quality sketch images.

Analysis of comparative experimental results
To verify the effectiveness of our proposed method, we compare it with mainstream methods on the CUFS
datasets.

As shown in Figs. 6, 7, 8. CycleGAN optimizes the synthesis of sketch images via cycle-consistency loss,
which aids in capturing better global information. However, it tends to produce unrealistic textures in local
regions, such as the eyes, nose, and mouth, resulting in suboptimal visual outcomes. Pix2pix relies on L1
loss for optimization, but due to the lack of precise alignment between optical photos and sketch images, the
produced sketch images often exhibit facial distortions with blurred character contours. MDAL employs multi-
domain adversarial learning, effectively mitigating issues related to blurriness and deformation in synthesized
sketch images. However, it falls short of enhancing texture details, resulting in excessively smooth textures and
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Fig. 6. Visual comparison on the CUHK test set. (a) Images. (b) Ground true. (c) CycleGAN*!, (d) pix2pix*2,
(e) MDAL®, (f) FaceSketchWild*!, (g) FSGAN?®, (h) T2V*, (i) Dif-Fusion® and (j) our FSS.

Fig. 7. Visual comparison on the AR test set. (a) Images. (b) Ground true. (c) CycleGAN*!, (d) pix2pix*?, (e)
MDAL®, (f) FaceSketchWild*, (g) FSGAN® (h) T2V*, (i) Dif-Fusion?® and (j) our FSS.

Fig. 8. Visual comparison on the XM2VTS test set. (a) Images. (b) Ground true. (c) CycleGAN%, (d)
pix2pix*?, (e) MDAL®, (f) FaceSketchWild**, (g) FSGAN?® (h) T2V*, (i) Dif-Fusion* and (j) our FSS.
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Metrics | CycleGAN*! | pix2pix** | MDAL* | FaceSketchWild* | FSGAN® | T2V* | Dif-Fusion® | FSS

FID| 60.13357 74.96257 | 66.87124 | 79.86677 65.6648 89.4926 | 72.2763 53.3347
SSIM?T | 0.589582 0.539621 | 0.635232 | 0.631354 0.65022 | 0.6423 | 0.6021 0.63567
PSNRT | 17.88922 17.68544 | 17.90861 | 15.58399 18.6751 | 17.4948 | 18.8142 18.5729
Table 4. Quantitative comparison on the CUHK test set.

Metrics | CycleGAN*! | pix2pix*> | MDAL* | FaceSketchWild** | FSGAN® | T2V* Dif-Fusion*® | FSS
FIDJ 74.42147 103.6566 | 81.19116 | 72.41438 64.9136 110.6717 | 82.1047 62.33
SSIMT | 0.60301 0.572184 | 0.626738 | 0.61378 0.64317 | 0.5568 0.5412 0.634019
PSNRT | 18.04683 17.57163 18.04985 | 19.4711 18.46683 | 18.1123 | 18.1656 18.12983
Table 5. Quantitative comparison on the AR test set.

Metrics | CycleGAN*! | pix2pix?? | MDAL* | FaceSketchWild** | FSGAN® | T2V% | Dif-Fusion® | FSS

FID| | 3850704 70.60789 | 44.41342 | 56.84637 444891 | 62.8700 | 55.0305 30.4706
SSIMT | 0.538109 0.517199 | 0.54752 0.476643 0.47257 0.5196 | 0.5266 0.5766
PSNR?T | 17.37244 17.73103 16.15575 | 15.93193 16.4345 15.0301 | 18.0176 18.1112

Table 6. Quantitative comparison on the XM2VTS test set.

ambiguous details in the synthesized sketch images. FaceSketchWild employs a cascading approach to delineate
characters’ contours and key facial features. However, the color of synthesized sketch images is dim, thereby
failing to effectively depict facial texture and shadow distribution, lacking realism. FSGAN adopts a two-stage
facial synthesis framework, which fully considers key facial features, global information, and texture details,
thereby notably enhancing the synthesis quality of sketch images. However, on the CUHK dataset, the clarity
of texture in the hair region remains insufficient. Furthermore, notable disparities are observed between the
synthesized sketch images and the original sketch images on the XM2VTS and AR datasets. T2V employs a
conditional denoising probability model and achieves relatively satisfactory results on the CUHK and XM2VTS
datasets. However, it still faces issues with suboptimal denoising performance across datasets, leading to
black backgrounds or patch artifacts in some synthesized sketch images, particularly pronounced in the AR
dataset. Dif-Fusion construct a multi-channel data distribution using a diffusion model, effectively mitigating
the black background or patch artifacts observed in T2V. Nevertheless, the synthesized sketch images still
exhibit shortcomings, such as blurred local details and dim brush strokes. In contrast to previous methods, our
proposed method achieves a harmonious equilibrium among global features, local features, character contours,
and visual effects within synthesized sketch images, thereby rendering the produced sketch images more realistic
and artistic.

As shown in Table 4, 5, and 6, with the best-performing results highlighted in bold. It can be observed that
our method surpasses CycleGAN, pix2pix, MDAL and T2V across all metrics on diverse datasets. Noteworthy
is its outstanding performance on the XM2VTS dataset, where it consistently outperforms all other methods
across all metrics. However, on the CUHK and AR datasets, although our method slightly trails behind FSGAN,
FaceSketchWild and Dif-Fusion in terms of PSNR or SSIM, our method exhibits superior visual quality
compared to these three methods.

In summary, our approach has demonstrated significant advancements in addressing issues of local blurriness
in synthesized sketch images, alongside enhancing the delineation of character contours. Moreover, the method
adeptly preserves subtle texture details and overall facial structure within sketch images, thereby augmenting the
visual realism of the synthesized sketch images.

Face sketch recognition

Face recognition performance is a key metric for evaluating sketch face synthesis methods. To assess the
performance of our proposed method in the face recognition task, we selected the FaceNet!” model, which
is based on triplet loss optimization, and conducted experimental evaluation using the CUFS dataset.
FaceNet minimizes the triplet loss function to cluster embedding vectors of the same identity while effectively
distinguishing embeddings of different identities. As shown in Table 7, with the best-performing results
highlighted in bold. It can be observed that our method significantly outperforms other models in terms of
recognition rate, highlighting its ability to better preserve identity information during the synthesis process.

Conclusions
We propose a contrastive learning approach based on face structure for sketch face synthesis. Firstly, we design
the RCS module to obtain distribution maps of facial structures from optical photos. Using this map as guidance,
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Comparison methods | Test set | CycleGAN*! | pix2pix*> | MDAL® | T2V# | Dif-Fusion® | FSS
Accurary (%) 85.20 88.86 88.82 90.22 68.48 89.56 90.54

Table 7. Comparison of recognition accuracy for synthesizing sketch images on CUFS database(%).

we segment the input photos into facial and hair regions to provide regional constraints, addressing the issue
of invalid samples introduced by random sampling in traditional contrastive learning. Additionally, we propose
a dynamic sampling strategy that effectively mitigates the imbalance between positive and negative samples by
dynamically adjusting the sample quantity based on the feature density. Furthermore, to eliminate background
influence and enhance the character contours of the sketch image, we introduce the mask derived from the
optical photo as additional input. Finally, we adopt pixel-wise loss and perceptual loss, which not only capture
pixel-level disparities but also consider the global structure and contextual information between the synthetic
sketch image and the optical sketch image. Extensive experimentation on the CUFS dataset demonstrates our
method’s superior performance compared to mainstream methods, offering valuable insights and benchmarks
for future investigations within sketch face synthesis domain. Looking ahead, we plan to explore the application
of hard example mining in contrastive learning to further enhance the quality of sketch face synthesis.

Data availability
The datasets synthesized during and/or analysed during the current study are available from the corresponding
author on reasonable request. The code can be found under DOI 10.5281/zenodo.14724243.
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