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fibers with higher nonlinearities
using the modified extended
mapping algorithm

Karim K. Ahmed?, Njah A. Alsahafi?, Hamdy M. Ahmed?, Salah Boulaaras* &
M. S. Osman?56%

This work is a thorough investigation of mathematical modeling with an emphasis on efficiency

and performance optimization. Our research is centered on the cubic-quartic nonlinear Schrédinger
equation, specifically concerning birefringent fibers exhibiting nonlinearity in the cubic-quintic-
septic—nonic continuum. This work makes a unique and significant addition to the field of science.

We have obtained a wide range of soliton solutions for cubic—quintic optical solitons in birefringent
fibers by using sophisticated mathematical techniques, most notably the modified extended mapping
technique. The solitons that fall under these obtained solutions are dark, singular, bright, and combo
bright-dark. Besides, we get other exact wave solutions such as singular periodic, exponential,
rational, and Weierstrass elliptic doubly periodic solutions. The study presented in this publication is
novel and creative, shedding light on how mathematical techniques might improve the functionality
and architecture of fiber communication networks. These results are crucial for understanding pulse
propagation in birefringent optical fibers governed by the cubic—quartic nonlinear Schrédinger
equation, particularly when nonlinear effects extend into the cubic—quintic—septic—nonic continuum.
It highlights the innovative nature of our work and highlights the relevance of our results in furthering
the science of nonlinear optics and its possible applications in the real world. Graphical depictions of
some of the extracted solutions are included to aid readers in physically understanding the obtained
solutions’ behavior and characteristics.

Keywords Fiber optic communications, Soliton solutions, Cubic-quintic-septic-nonic, Analytical
techniques, Partial differential equations

Thevisualization of basic physical phenomena in fieldslike fluid mechanics, chemical reactions, electromagnetism,
magneto-hydrodynamics, quantum mechanics, thermodynamics, optics, neuroscience, and elasticity is often
achieved through the use of nonlinear partial differential equations, or NPDEs. Understanding the exact
solutions to these equations is essential to comprehending the propagation of waves!. Chou et al. analyze heat
conduction using Lie symmetry, solitons, and modulation instability. Kudryashov et al.* studied cubic-quartic
optical solitons under higher-order self-phase modulation. Gonzalez-Gaxiola et al.” investigate highly dispersive
solitons with a quadratic-cubic refractive index using the variational iteration method. Rehan Akber et al.’
explore Brownian motion in the stochastic Schrodinger equation via the Sardar sub-equation method. These
works enhance understanding in nonlinear optics, stochastic waves, and thermal transport.
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Thanks to its ability to carry massive amounts of data over long distances in a reliable and fast manner,
fiber optic communications have become the backbone of the contemporary telecommunications network.
The persistent advancement of fiber communication networks is propelled by the growing need for data-
intensive applications, including cloud computing algorithms’, Internet of Things devices?, and video streaming
programs’. Given this, understanding the complexities of these systems and optimising their performance are
crucial tasks for which mathematical modelling and analysis must be used. Many models that involve NPDEs
are investigated by many researchers for the seek of finding solitons by implementing several approaches and
techniques such as the improved modified extended Tanh-Function method!’, the sub ordinary differential
equation'!, the extended F-expansion method!? and many others (see'>~1°).

Ever since their discovery in the nineteenth century, solidions have been the subject of considerable
investigation, revolutionizing a number of scientific and technological domains and resulting in groundbreaking
discoveries in nonlinear dynamics, optics, communications, and other sectors!®. Soliton solutions are one topic
of special interest in mathematical fiber communications, especially in birefringent fibers. Because they can
maintain their form and integrity throughout transmission, self-sustaining, non-dispersive optical pulses called
soliton pulses are very attractive for long-distance communication. Birefringent fibers come with special benefits
when it comes to controlling and preserving polarization because of their capacity to keep light signals polarized.
Many types of soliton solutions, including single, combo-bright-dark, brilliant, and combo-singular solitons,
may be studied by scientists in cubic-quintic (CQ) optical systems by using mathematical techniques!”!.
Through the use of mathematical tools, scientists and engineers may develop a deeper understanding of the
intricate dynamics related to light transmission, signal deterioration, interference, and other elements that
affect the system’s overall performance. More dependable and effective fiber communication systems may be
developed, thanks to mathematical models, which offer a quantitative foundation for system parameter design
and optimization. Some valuable contributions to the study of nonlinear wave phenomena, soliton dynamics,
mathematical modeling of complex physical systems, and fractional differential equations across various
scientific disciplines are described briefly. Ismael et al.'® investigate autonomous multiple wave solutions and
hybrid behaviors in a (3+1)-dimensional Boussinesq-type equation, which is significant for fluid mechanics.
Muhammad et al.?’ examine optical wave propagation in fiber optics using a nonlinear fractional Schrodinger
equation, highlighting the influence of fractional derivatives on optical communication systems. Younas et al.?!
focus on the solitary wave dynamics and interaction mechanisms in ultrasound imaging, modeled through a
fractional nonlinear system, providing insights into medical wave applications. In?2, Muhammad et al. analyze
soliton solutions and their interaction properties in the Estevez-Mansfield-Clarkson equation, which appears in
multiple physical fields. Their research in?® explores the propagation of fractional solitary waves in the modified
Korteweg-de Vries-Kadomtsev-Petviashvili equation, emphasizing parametric effects and qualitative wave
characteristics. Furthermore, Muhammad et al.> delve into the fractional impact on optical wave transmission
in the extended Kairat-II equation, demonstrating how fractional-order derivatives affect nonlinear optical
models. Raza et al.?® investigate complexiton and resonant multi-soliton solutions for a (4 + 1)-dimensional
Boiti-Leon-Manna-Pempinelli equation, providing insights into high-dimensional nonlinear wave interactions
in optical and quantum systems. Javid et al.® explore dual-wave resonant solutions of the nonlinear Schrodinger
equation with varying nonlinearities, shedding light on wave dynamics in dispersive and nonlinear media.
Kazmi et al.”’ conduct a bifurcation analysis of soliton and quasi-periodic patterns in a generalized g-deformed
Sinh-Gordon equation, emphasizing the role of symmetry and integrability in nonlinear systems. Finally, Raza et
al.?8 derive new exact periodic elliptic wave solutions for the extended quantum Zakharov-Kuznetsov equation,
enhancing the understanding of nonlinear wave behavior in quantum plasmas. Together, these studies enhance
the theoretical and applied understanding of nonlinear waves in diverse fields such as fluid dynamics, optics,
and medical imaging.

Utilizing a powerful mathematical tool, the modified extended mapping technique (MEMT)'?, these soliton
solutions are found in this study. In this study, the dynamics and properties of solitons in birefringent fibers
are investigated by using this approach on the cubic-quintic-septic-nonic nonlinear Schrédinger’s equation
(CQSN-NLSE). For enhanced performance and efficiency, fiber communication system design and optimization
can be guided by the soliton solutions generated, which offer insightful information on the behavior of the
system. In addition to offering a thorough examination of the system under study and its results, the paper
includes novel and unique research. This paper demonstrates the potential of mathematical modeling in fiber
communications, laying the groundwork for further development and research in the design and optimization
of fiber communication systems. It also contributes to the field’s ongoing development. Focusing on the CQ-
NLSE in birefringent fibers with CQSN nonlinearity'”!8, this study explores the intricate realm of nonlinear
optical systems and is considered significant. In fields like optical signal processing, laser technology, and
telecommunications, understanding this complex nonlinear behavior is crucial from a practical standpoint.

An important new concept is presented in this work. Literature that is currently accessible does not offer a
thorough examination of soliton solutions inside the birefringent fibers CQSN nonlinearity model. This opens
up new areas in the field of nonlinear optics. Here, we examine for the first time the effect of CQSN terms on the
dynamic behavior of solitons in optical systems using the widely recognized MEMT.

A dimensionless variation of the CQ-NLSE with CQSN nonlinearity has recently been written as*:

My 4 iaHzzz + bHozee + (e [HIP + 2 |[H + e [H e [HE) H =0, i=vV—], (1)

where H(z,t) defines the complex-valued wave packet’s amplitude and z, ¢ symbolizes the the spatial and
temporal variables, respectively. The first term is the evolution term, while the a and b are the 3rd and 4th order
dispersion coefficients, in the given sequence. Additionally, the self-phase modulation (SPM) influences are
represented by ¢;, (1 <7 <4).
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In this article, since we treat birefringent fibers, we can split Eq. (1) into the following coupled NLSEs
(CNLSEs)!”:

igp + 101 Pzzz + Propazzz + (a11 | + a1z [¢°) ¢ + (bur [@]" + baz [[? |81 + bas [¥]*) ¢
+ (e [81° + caz oI |9 + crs |6 [[* + cra [9]°) & )
+ (a1 |91° + daz [8]° [0* + das |¢|* ] + dua 6]” [|° + das [¥]*) ¢ = 0,

ithr + i0otzzz 4 Botbzzzz + (a1 [Y1° + as2 [8]) ¥ + (bar [1B]" + baz |17 9] + bas [6]*) ¥
+ (ca1 [91° + oz [9[* @I + cas [ [@|* + caa [¢]°) ¢ 3)
+ (da1 [9[° + daa [1]° |6* + das [¢]" |@]" + daa [9]*|8]° + das |¢]*) 1 = 0,

where the functions ¢ = ¢(z,t) and ¢ = (2, t) describe wave profiles, whereas the first terms relate to linear
temporal evolutions. The coefficients cv; and 8;, (¢ = 1, 2) reflect the 3rd and 4th order dispersions, respectively.
The constants ai2, bi2, bis, ci2, ¢i3, Cia,di2, dis, dia, and di5, (i = 1,2) represent the coefficients of the
cross-phase modulation (XPM) terms. The coefficients of the SPM terms are a;1, bi1, ci1,and ds1, (1= 1,2).

The novelty of this work lies in deriving a broader class of solutions than previously reported, including
singular, periodic, and elliptic function solutions, expanding the known solution space. Unlike earlier studies
limited to cubic—quintic or cubic-septic models, this research incorporates ninth-order nonlinearities, providing
a more complete understanding of extreme nonlinear regimes in birefringent fibers, which is essential for
advanced optical communication and fiber laser technologies. Each solution is substituted back into the original
cubic—-quartic nonlinear Schrodinger equation to confirm that it satisfies the equation exactly.

Below is the structure of this paper: The exact solutions for the suggested coupled system in Egs. (2)-
(3) are derived after a brief discussion of the concept’s mathematical underpinnings and recent application.
Mathematical preliminaries for the proposed method” section provides a summary of the main elements of
the suggested strategy. In addition to displaying all of the data, “Novel solutions extraction for the proposed
coupled system” section explains the many dynamic wave shapes that make up the novel soliton solutions when
implementing the MEMT. In “Graphical simulation of some retrieved solutions” section, graphical 2D, 3D, and
contour drawings of several obtained solutions are shown. “Conclusion” section presents some inferences drawn
from the data acquired and some conclusive remarks.

Mathematical preliminaries for the proposed method

This section is divided into two parts. General detailed steps of the proposed technique are presented in the
first part. Finally, we mention the advantages of the applied technique compared to some other methods in the
literature in the last subsection.

General algorithm of the MEMT
The key components of the MEMT that will be used in section 3 are presented in this section®®.
If we assume to have an NPDE of the following form :

3(%, mtamz7mzz,mzt7%zzt,-n) :0, (4)
where 3 denotes a polynomial function of JR(z, ¢) and its corresponding partial derivatives with respect to the

two-dimensional time and space.
Algorithm-(I): The next travelling wave transformation will be used to solve Eq. (4):

R(z,t) = K(C), (=x—Kt, K#0, (5)

where x denotes the speed of the wave.
The transformation of Eq. (5) into Eq. (4) yields the following nonlinear ordinary differential equation
(NODE):

Z(&, R, R, 8",..)=0. 6)

Algorithm-(II): We suggest that the general solution of Eq. (6) is:

j=—1 j=—1

M —M M —M
RO =D AW QO+ Y B Q4D W THOW Q)+ Y C-WOW'(Q), )

where Aj,B_;, 0;, C_; represent real-valued constants that will be estimated and the function W(() obeys the
following constraint:

W(C) = /1o + TIW(C) + 2W2(C) + sW3(C) + aWH(C) + e WS (C), (8)

where 7;, (1 =0,1,2,3,4,6) are constants. Many types of solutions can be extracted from Eq. (8) by putting
To, T1, T2, T3, T4, Te With differnt values as follows:
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Case 1: When 79 = 7 = 13 = 16 = 0, the following solutions are raised:

Case 2: When ~

=4/- —sech (vV712€), 7=2>0,74<0.

= — bec \/ —7'2( T2 < 0,74 > 0.
= — CbC \/ —7'2< T2 < 0,74 > 0.

7'2
474, the following solutions are raised:

W(C):,/f%tanh( 7%24), T2 < 0,74 > 0.
W(() = 274 (\/74) 79> 0,74 > 0.

7’377'670 T0 =

Case 3: When 13 = 74 = 76 = 0, the following solutions are raised:

71 sinh (24/72() T

W(C) = 27 27_2, T2 > 0,70 = 0.
71 sin (\/—7'2() el
W(C)* 2 7*%, T2 < 0,70 = 0.

W(C) =4/ %Sinh (\/ )\2C) , T0>0,72>0,71=0.
2

W(C) = ﬁsin (\/ —>\2C) , 10>0,72 <0, =0.
2

W(() =

47’2

Case 4: When 79 = 7 = 75 = 76 = 0, the following solution is raised:

47’3

W(C) = 20 —in

Case 5: When 7y = 7 = 74 = 0, the following solutions are raised:

T (tanh (%\/EC) + 1) 9

T T
xp (v/72¢) — i, 2> 0,10 = ——.

W) =— p 75 = 41974, T2 > 0.
79 (coth (£ /m¢) +1
W(C) = — 2( (QT;EC) )» 5 = A7a74, 72 > 0.

Tosech? (%\/Eﬁ)

2\/ —T2T4 tan (%\/ 77_2<) + ’7'37

Case 6: When 7, = 74 = 74 = 0, the following solution is raised:

W(C) = ( 47 4719

VTG 77777) , T3>0,
3

Case 7: When 1, = 13 = 74 = 0, the following solutions are raised:

W) = , T3 #A4ToTa, T2 > 0,74 > 0.
(C) 9 %7_27_4 tanh(%ﬁ() — 3 # 274,72 4
Tasec? (/=7
W) = - - (2 QC) 7'9?7547'27'4,7’2 < 0,74 > 0.

No. | 1o T2 T4 W(<)

1 1 7(1+m2) m?2 cd(¢, m) or sn (¢, m)
2 m?—1 —m? 42 -1 dn (¢, m)

3 —m? 2m? — 1 -mZ4+1 nc (¢, m)
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No. To T2 Ta W(C)
4 —1 —m2+2 m? —1 nd (¢, m)
4 mdn(¢|m)cn(¢]m)
5 2 _ 3 4 P _ _ 2
m 2m” +m ™ 1+6m—m T+ msn(C|m)?
4 STI(C 77 cIr(¢t)
or
6 i Im?-1 |™ 14+dn(¢|m)  I—m2+ dn(¢|m)
4

Algorithm-(III): Equation (6) may be utilised to compute the integer [\, utilising the idea of homogeneous
balancing the nonlinearity and the dispersion in the resultant ODE.

Algorithm-(IV): After plugging the suggested solution into Eq. (5) using Eq. (8) into Eq. (6), we equalize
the coefficients of W7 (C)W*(¢)(7 = 0,1;4 = 0,+1, 42, ...) to zero and obtain a set of nonlinear algebraic
equations (NLAEs) for A;,B_;,0;,C_; and &, which will be solved using the Wolfram Mathematica program.
From there, we can estimate the used unknowns A;,B_;,0;, and C_;. Following that, it is possible to derive
many precise solutions for Eq. (4).

Advantages of the applied technique

The MEMT has several advantages over traditional methods for solving nonlinear differential equations. Unlike
the Inverse Scattering Transform?’, which is limited to integrable equations and requires intricate spectral
analysis, MEMT provides a more direct and adaptable approach. Compared to Hirota’s Bilinear Method?’, which
involves tedious bilinear transformations and perturbative expansions, MEMT simplifies the derivation of exact
solutions. Unlike Lie Symmetry Analysis®!, which demands extensive group-theoretic computations and is often
limited to finding symmetry-invariant solutions, MEMT systematically generates multiple types of solutions,
including solitons, periodic, and elliptic function solutions. Its efficiency and versatility make it a valuable tool
in nonlinear wave analysis.

Novel solutions extraction for the proposed coupled system
The solutions of Egs. (2)-(3) may be obtained by assuming the following wave transformation:

$(z,t) = Pr(¢) €T, ©)
Y(z,t) = Pa(Q) €T, (10)

and
C=z—pt, p#0, T(z,t)=—-Kz+wt+A, (11)

where P1(¢) and P2(¢) denote the wave’s solution amplitude, and /C, p, A and w denote the frequency,
velocity of the soliton, phase shift constant and wave number in the mentioned sequence.

Using the transformation described by Egs. (9)-(11), after that, Egs. (2)-(3) will be transformed into the
subsequent system of NODEs, then separating the real and imaginary parts yield:

Real parts:

BIPY 43K (a1 — 261K) PY + (a12P3 + bisPh + c1aP§ + disP5 + BiK* — a1 K —w) Py

+ (au + b127322 + 6137%1 + d1477§) 77? + (bu + 6127)22 + d1373§) Pf + (611 + d127)22) 7317 (12)
+dn P =0,

627)2(4) + 3K (a2 — 232K) Py + ((1227)12 + D23 Py + 24Py + dos P} 4 B2K* — aK® — w) Po

+ (a21 + b2oP; + cosPl + d247716) Ps + (b21 + coa P} + d2377f) P3+ (C21 + d22P12) P (13)
+ d2177§ =0,

and the imaginary parts are:
(a1 — 46:K) PP + (48:1K° — 301K — p) P =0, (14)
(a2 — 4B2KC) PSY + (482K° — 302K — p) P =0, (15)

By integrating Eqs. (14)-(15) with respect to ¢ once with neglecting the constant of integration, and then
inserting them in Egs. (12)-(13), respectively, we get:
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B (a1 — 4B1K) PV + (=B1K (4P5 (ar2 + b1sP3 + c1aPs + disP5) + 2501K° + 6Kp — 4w)
+o1 (CL12P22 + b13P3 + c1aPs + disPs + 8a1K® 4 3Kp — w) + QOB%KS) 2

(16)
+ (o1 — 4B1K) (a11 + b12P3 + c13P3 + draP5) Py + (a1 — 481K) (bar + c12P3 + drsP3) Py
+ (011 + d12P22) (a1 — 451K) Pl +dn (a1 —451K) Py =0,
B2 (a2 — 4B2K) PSY + (= B2k (4PF (22 + basPr + c2aPi + dasPr) + 2502K° + 6Kp — 4w)
+as (a22P1 + bas Py + coaPY + dosPE + 8aaK® + 3Kp — w) + 205§’C5) P2 17)
+ (a2 — 482K) (021 + b227)12 + 62377;l + d2473?) 773 + (a2 — 482K) (b21 + 6227712 + d2373f) 7325
+ (021 + d22P12) (oo — 432K) P3 + do1 (a2 — 4B2K) P3 = 0.
Now, let’s set

Then, Egs. (16)-(17) can be written as:

,P(4) oW — 2051 15+ 25(11,81]64 — 8a2K3 + 651’C2p 3a1Kp — 451 Kw P
B1 (461K — 1)
4 2 6 4 2
n CL12Q + a1 73? " b13Q2" + 61297 + b1y ’Pf 4 c1482° 4+ 130" 4 c12Q7 + c11 7)17 (19)
B1 B1
QS O 04 0?
n <d15 + d142° + d13Q0" 4 d12Q° + d1s ) P =0,
B1
(4) n aow — 2082K° + 2502 82K — 8a2KC3 4 682K2%p — 3a2Kp — 482Kw P,
B2 (462K — az)
4 2 6 4 2
n ang + a2 P34 b21Q" + b222° + ba3 Po 4 €21€0° + 220" + 23027 + c24 PT (20)
B2 B2
8 6 ey 2 .
N (dzlfz + +dgdﬂ + d2aQ +d25> P —o.
2

So, by comparing the coefficients of Eqs. (19)-(20), they are equivalent by providing the following constraints:

a1w — 2082K° 4+ 2501 1 K* — 8a2K3 4+ 681K%p — 31 Kp — 461 Kw
B1 (41K — 1)

245 4 3 2 1)
_aow — 2085K° + 250282 K7 — 8a2K + 662K7p — 3aaCp — 4B2/Cw
B B2 (482K — az)
1292 + a11 _ a219% + as2 22)
B1 B2 ’
b13Q* 4 1202 + bis _ b1t 4 b2oQ? + bos (23)
B B2 ’
1498 + 130 + ¢12Q% + 11 _ c219° 4 229 4 230% + coa (24)
b1 B2 ’
d15Q8 + d14Q° + dlsQ4 + d12Q% + dis _ d21 908 4 d22Q° + d23Q4 + d24Q% + dos (25)
B1 B2 ’
Then, we can find the wave number from Eq. (21) to be
1 2,2 2 2
= K —8B7K° (10aa/C + 3p) + 8a1 K”+ 3
w (51—ﬁg)(a1—4ﬁllC)(4ﬁle—oz2)[ (52( 51 ( % P) a1a2( o1 p)
+6 (041 — 042) ﬁli(:p) + 042,31 (4B1K — 041) (80(2](:2 + 3/)) + 4B§K: (0[1 (2051’(:3 — 3/)) (26)
—8aik? +681Kp))].
Then Eq. (19) can be expressed as follows:
P+ L1P1 + L3P} + LsPY + L7P] + LoPY = 0, (27)
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where £;, (i = 1,3,5,7,9) represent constants and expressed as:

a1w — 20825 + 2500 1 K* — 8a2 K3 + 681 K%p — 301 Cp — 4B11Cw

E =
' B1 (41K — 1)
a12Q% + ant
L3= —"—F————
3 A
4 2
Lo = b13Q" + 012027 + bu7 (28)
b1
€128 + 139" + 1297 + e
£7 = )
B1
Lo — di59Q° + d14Q° + d13Q" + d129Q° + diy
9 = 5 .

At this stage, we have to assume that
P1(¢) = v X(Q), (29)

then, we can write Eq. (27) as:
8@ 16220’ — 1242 (x")? — 15 (&) + 36X (1) X"

(30)
+16 (LoX® + LrXT + LsX° + LoX° 4+ L,:X%) =0,

According to the proposed technique discussed in section 2, by applying the balance between X*X®) and A%,
we find that Ml = 1. From Eq. (7), the solution of Eq. (30) can be formulated as:

X(C) = Ao+ AMW(O) + V\I;B(lo +C (?Cég) , (31)

assuming that A, B1, and C; are all unknown constants, they may be estimated by concurrently applying the
restrictions A1, By, and C; # 0.

The following results may be obtained by solving the system of NLAEs created by inserting Eqs. (31) and (8)
into Eq. (30) with the help of the Wolfram Mathematica program, grouping coefficients of comparable powers
and setting them all to zero:

Result-(1): When 7 = 71 = 73 = 76 = Ag = C; = 0, these are the sets of solutions that we discovered:

4, 7_2
Set(1.1): By =Lr=L3=0, Ay = Y107 po— 13 / 3Lo o) = 22

ﬁ_ﬁf 16 °

T4 137, /3L 5
Set(lZ) B1:£7:£3:0, Al—w,[{): 22 73759, [«1:*1*%

According to set (1.1), the solutions of Egs. (2)-(3) can be stated as:

(1.1) If 2 >0, 74 < 0and L9 < 0, then:

1
2

d1.1(2,t) = ( VT2 { ——5$ech [(z — pt)\/a) el TREtwtta) (32)
Yra(z,t) = < VT2 7—sech [(z — mm) i l(TRetwtta) (33)

these solutions represent bright soliton solutions.
According to set (1.2), the solutions of Egs. (2)-(3) can be stated as:

(1.2) If12 <0, 74 > 0and Ly < 0, the solutions will be:

01.2,1(2,1) ( V-2 Fsec (z — pt) —7'2]) glTRatwtta) (34)
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1
1 [ 1 *
P1.21(2,t) = Q (2\/—7'2 & —% sec [(z — pt)V/ —7'2}) el(flcz“”“rm, (35)
9
or
1 o] 105 ? iCKetwtta) p
P1.2,2(2,t) = V- ~ 7, ¢ [(z - pt)\/—Tz] e , (36)
1 ./ 105 2 i(—Kztwt4A)
P1.22(z,t) = Q VT2 = csc [(z — pt)y/ 772} e ) (37)
9
these solutions represent the singular periodic solutions.
2
Result-(2): Wheny =3 =176 =Ag =C; =0and 79 = %, this is the set of solutions that we gained:
4/ 4/7105 2 2
Lr=L3=0, Ay = 105T2, B, = ﬁ7 =2, L5=—137 —%7 L=-2
4/ VLs 29T 470 35 4
Based on the recovered solutions’ set, we may state the following solutions:
If 2 >0, 74 > 0and Lo < 0, we get singular periodic solutions:
4/ 105 ? i(—Kztwt+A)
d2(2,t) = [ /72 —5p. os¢ [(z - pt)\/ZTg] e , (38)
9
4/ 105 ? i(—Kztwt+A) 39
Ya(z,t) = Q[ /72 ~ o, ¢ [(z - pt)\/27—2] e . (39)
9
Result-(3): When 75 = 74 = 76 = Ag = C; = 0, this is the set of solutions that we gained:
3 6 0 g
2714/ — 2 (15L9) T2 1 35
e L P T 06 TR LT
J - Sy B AP/ S, L
ST 2P\ s Y Moy 0 7L2 '
2
Ifre >0, 70 = 47712, Lo <0, ieL7 < 0and 1 # 272eV™2(=PY) then, the solutions are:
3
bo(z,t) = 28/ 22 [ T2V Lo gi(~Ketwita) (40)
’ 7 L7 (7’1 — 27-2@\/5@*0”) ’
3
oz t) =204/ B [ ___Tmmev=Lo (KAt ta) (a1)
’ 7 L7 (7'1 - 27’26\/6(2*“)) 7
these solutions are exponential ones.
Result-(4): When 7y = 71 = 72 = 76 = Ag = C; = 0, then, we obtain:
By f1m Lm0 A= Y~105 — Lo — _2T§\/—% (3[,9) Ly — 43 —15587’3.
’ 2/ Ly ’ T4 ’ 7314/ =14
Then, the solutions are:
%
TV 2m (Kot a) (42)
t — (—AZrTw
¢4(Zv ) (7_32(2 _ pt)2 _ 47_4) e ’
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105
Y —Llsd T3v/—274

(73 (2 = pt)* — 4m1)

a(z,t) = Q gl Ratwita) (43)

which provide rational wave solutions in the constraints that Lo < 0, 74 < 0and 75 (z — pt)* — 474 # 0.
Result-(5): When 7y = 7y = 76 = Ay = C; = 0, then, we discover:

2 3
IB%1:O, A1:_57'2’7'3 ﬁlz—%, ;= 96T4£3

6 (4735 + 137ama) L3 3367204
4L’ a

- 3,20 =5 = 7 2.2 )y ~9 = 44"
257573 257573 12575735

Then, the solutions will be:

(5.1) If 2 >0, Tg = 47574 and L3 > 0, then, the solutions are:

1

5 (tanh [L(z — pt)y/72| + 1)\ ° |
¢5‘1(Z,t) — %7_2 < ( [2( £ P )\/72} )) ez(sz+wt+A)7 (44)
3
%
0 5 (tanh [ (z — pt)y/T2| + 1 )
w5A1(Z7t) — 57_2 < ( [2( z p )ﬁ] ) ev,(—lCz+wt+A)7 (45)
3
these solutions are the dark solitons, or we can obtain singular soliton solutions as:
1 !
5 (coth |5(z — pt)y/m2| +1 )
¢5‘2(Z,t) = %7—2 ( ( [2( e P )\/72:I )) ez(sz+wt+A)’ (46)
3
1
0 5 (coth [1(z — pt)y/T2| + 1 o
Y5.2(z,t) = 572 < ( [2( - P )ﬁ] ) P (—Katwt+a) (47)
3

(52) If 79 >0, 74 >0, 73 # 41974, 73L3 >0 and T3 — 2,/T274 tanh (%\/E(Z — pt)) # 0, then, the
solutions are:

5 h? [L(z — pt ,
bo5(z.1) = Lr T35€C [2(2 lp )\/E] iRt a). (48)
2 L3 (7'3 — 2,/ToT4 tanh [E(z — pt)\/?g])
5 h? [1(z — pt .
¢5A3(2,t) _ 97’2 T3S€eC. [2(2 1/7 )\/7'72} ez(—lCz+wt+A)7 (49)
2 L3 (7'372x/7'27—4tanh [5(27;)15)\/7'»2})

these solutions represent combo bright-dark soliton solutions.
(53) Ifro <0, 74 >0, 72 # 47174, 73L3 > 0and 73 — 2,/7274 tan (%\/—TQ(Z - pt)) # 0, then:

1 5rasec? [4(z — pt)y/—72] i(—KztwttA)
_: i z4w 50
Poalzt) z”\/ Lo (ma— 2ymamitan [5(z — pvra]) | ()

oale.t) = QTQ 573sec? [%(z — pt)\/—TQ] Si(—Katut+)
5. ) - 5 )
2 L3 (7'3 — 2,/TaT4 tan [%(z — pt)\/—rg])

these solutions represent singular periodic solutions.
Result-(6): When 7, = 74y = 76 = Ay = C; = 0, then, we gain:

Lo/ ——T_ 4./ ——-"_r2
Ai=0 By Y P =3 _30m7sLy V 55T 4BriTiL,

=Y " i =2nm, L= . To = , L5 =
75 LT T T Ly 1572 L= gz
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So, we can have the following Weierstrass elliptic doubly periodic solutions:

7
_7£3
15L9 I(—Kz4+w
be(z,t) = v i Ketwttd) (52)

B T30 (%(z—tp)v‘l'&—%, %)

[T _r
5Ly =8 G (—Kztwita) (53)

729 (32 — tp) /7 — 22k, —2m)

ng(z,t) =0

where L9 < 0and L3735 > 0.
Result- (7) Whenr =1 =7 =A¢g = Cr= these are téle sets of soﬁ ZR) B§ that we discovered:
=Ls=Lr=70=0, Ay =

Qo 39 8'65 39 | 35(3 ;
s Lot A=/ o T2 T22 __ 35 _m
Li=Lr=0 M 1674Ls5’ L= 5072 ™ T iy

As per the solution set (7.1), the solutions can be expressed as follows:

(7.1,1) Ifro = m? — 1, m=2— mz7 74 = —1, and L5 > 0, then, the solutions are:

1
1 39 : i(—Kz+wt+A)
¢r11(z,t) = | 54/ gp-sechlz —pt] | e ; (54)
5
3
Yr11(2,t) =Q (;1 / %sech[z - pt]> gl(TRatwtt ) (55)
5

these solutions represent bright soliton solutions.

(71,2) Ifro = —m27 To = 2m? — 1, m=1-— m27 and L5 > 0, then, the solutions are:

1
3
¢r12(z2,t) = (1 \/ ;ﬁ seclz — pt]> elTREHwtrA) (56)
%
Yra,2(2,t) =Q <;\/ %sec[z - pt]) g TRatwita) (57)

these solutions are singular periodic solutions.
As per the solution set (7.2), the solutions can be expressed as follows:

(7.2,1) Ifrp =1, 0 = —m?— 1, = m2, and L5 < 0, then, we raise singular soliton solutions as:

bran(zrt) = V78 (\/Tcsch[mz - ptn) HKsuta) (59)
5

1
2

csch[ (z — pt)]) el(TRtwtta) (59)

Yr.21(z,t) = QW( I

Graphical simulation of some retrieved solutions

Equations (2)-(3) yielded many families of solutions when specific values were assigned to the
parameters. This investigation has, therefore, led to several previously unpublished original and
revised results. The 3D, contour, and 2D figures of certain specific solutions are displayed in order
to let the reader fully understand the physical structures of some extracted solutions that will be
provided. The bright soliton solution of Eq. (32) is plotted in Fig. 1 where the parameters values are
a1 =07, K=0.5, f1 = 0.6, f2 =08, az =07, p=0.5, Q= 0.6, di1 = 0.5, di2 = 0.75, di3 = 0.6, dia = 0.7, di5 = 0.8, A=0.7,
and —15 < x < 15. This solution depicts a bright soliton propagating over a nonlinear medium while keeping its
localisedformovertime. Theabsenceofoscillatorytailspointstoabasicsolitonratherthanahigher-orderorperiodic
structure. This behaviour has applications in nonlinear optics, optical fibre communications, and wave dynamics.
Eq.(34)showsasingularperiodicsolutionwhichisdrawninFig.2witha; = 0.7, K = 0.6, f1 = —0.7, B2 = 0.9,
Q2 = 0.8, p = 0.6, Q = 0.77 d11 = 0.85, d12 = 0.7, d13 = 0.7,
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Fig. 1. Simulation of the solution of Eq. (32).
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Fig. 3. Simulation of the solution of Eq. (44).

dia = 0.6, dis =0.7, A=0.8, and —8 < x < 8. This solution is a periodic wave train rather than a
single soliton, with steady and repeating oscillations. Such solutions occur in birefringent fibres and nonlinear
media where energy distribution is periodic rather than localised, making them useful for optical signal
processing, waveguides, and nonlinear wave interactions. Figure 3 displays a dark soliton solution of Eq. (44)
with a1 = —0.5, K= 07, ﬂl = 08, ﬁz = —0.7, Q2 = —0.8, p = 07, Q= 0.7, ail = 0.5, a2 = 0.7,
A =0.8, and —15 < z < 15. This solution is a dark soliton solution, which is an important structure in
nonlinear optics, fluid mechanics, and phase transition models. The sudden shift in amplitude indicates shock-
wave dynamics, which are common in fibre optics, plasma physics, and condensed matter systems. Additionally,
Eq.(48) is a combo bright-dark soliton solution that is plotted in Fig. 4 when o1 = —0.7, K = 0.7, 81 = 0.6,
ﬁz = *0.8, Q2 = 0.6, pP = 0.7, Q= 0.8, ail = 0.5, a2 = 0.7,,0 = 0.7, Q= 0.8, ail = 0.5, a2 = 0.7,
A =085 174=0.7 173 =0.9, and —15 < x < 15.
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| ¢5.3(Z! 0) |

Fig. 4. Simulation of the solution of Eq. (48).

Conclusion

We take on a leading position in the field of nonlinear optics with our study. Our main goal is to thoroughly
investigate soliton solutions as they relate to birefringent fibers with CQSN nonlinearity, using the framework
of the CQ-NLSE model. This unexplored field adds something unique and important to the body of knowledge
in science. In order to understand the complexities of fiber communication networks and optimize their
performance, we emphasize repeatedly in this study how crucial mathematical modeling and analysis are.
Researchers and engineers may comprehend the dynamics and properties of optical systems by skillfully
applying mathematical tools. These discoveries promise improved performance and efficiency and have practical
implications for the development of fiber communication networks. Key conclusions include the impact of
higher-order self-phase modulation on soliton structure, the role of non-Kerr nonlinearities in shaping pulse
dynamics, and the conditions for stable propagation. We found a large number of new soliton solutions. The
retrieved solutions include singular, dark, bright, and combo bright-dark solitons. Also, we get numerous exact
wave solutions, including rational, exponential, singular periodic, and Weierstrass elliptic double periodic
solutions. With the fiber optic communications business developing so quickly, it is impossible to exaggerate
the value of mathematical modelling and analysis. This dynamic interaction fosters creativity, maximizes system
efficiency, and effectively handles the ever-increasing demands of contemporary telecommunications. More
sophisticated fiber communication technologies are made possible by the combination of practical technical
solutions and mathematical methodologies, which effectively meet the demands of our data-driven society. In
order to clarify the physical nature of some solutions, graphic representations were also added. Since this model
has never been examined using the suggested method, the answers we retrieved for our study report are unique.
The method’s aptitude for handling NPDEs and its ease of use, efficacy, and success rate are further indications
of its trustworthiness.
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