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This work is a thorough investigation of mathematical modeling with an emphasis on efficiency 
and performance optimization. Our research is centered on the cubic–quartic nonlinear Schrödinger 
equation, specifically concerning birefringent fibers exhibiting nonlinearity in the cubic–quintic–
septic–nonic continuum. This work makes a unique and significant addition to the field of science. 
We have obtained a wide range of soliton solutions for cubic–quintic optical solitons in birefringent 
fibers by using sophisticated mathematical techniques, most notably the modified extended mapping 
technique. The solitons that fall under these obtained solutions are dark, singular, bright, and combo 
bright-dark. Besides, we get other exact wave solutions such as singular periodic, exponential, 
rational, and Weierstrass elliptic doubly periodic solutions. The study presented in this publication is 
novel and creative, shedding light on how mathematical techniques might improve the functionality 
and architecture of fiber communication networks. These results are crucial for understanding pulse 
propagation in birefringent optical fibers governed by the cubic–quartic nonlinear Schrödinger 
equation, particularly when nonlinear effects extend into the cubic–quintic–septic–nonic continuum. 
It highlights the innovative nature of our work and highlights the relevance of our results in furthering 
the science of nonlinear optics and its possible applications in the real world. Graphical depictions of 
some of the extracted solutions are included to aid readers in physically understanding the obtained 
solutions’ behavior and characteristics.
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The visualization of basic physical phenomena in fields like fluid mechanics, chemical reactions, electromagnetism, 
magneto-hydrodynamics, quantum mechanics, thermodynamics, optics, neuroscience, and elasticity is often 
achieved through the use of nonlinear partial differential equations, or NPDEs. Understanding the exact 
solutions to these equations is essential to comprehending the propagation of waves1,2. Chou et al.3 analyze heat 
conduction using Lie symmetry, solitons, and modulation instability. Kudryashov et al.4 studied cubic–quartic 
optical solitons under higher-order self-phase modulation. Gonzalez-Gaxiola et al.5 investigate highly dispersive 
solitons with a quadratic–cubic refractive index using the variational iteration method. Rehan Akber et al.6 
explore Brownian motion in the stochastic Schrödinger equation via the Sardar sub-equation method. These 
works enhance understanding in nonlinear optics, stochastic waves, and thermal transport.
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Thanks to its ability to carry massive amounts of data over long distances in a reliable and fast manner, 
fiber optic communications have become the backbone of the contemporary telecommunications network. 
The persistent advancement of fiber communication networks is propelled by the growing need for data-
intensive applications, including cloud computing algorithms7, Internet of Things devices8, and video streaming 
programs9. Given this, understanding the complexities of these systems and optimising their performance are 
crucial tasks for which mathematical modelling and analysis must be used. Many models that involve NPDEs 
are investigated by many researchers for the seek of finding solitons by implementing several approaches and 
techniques such as the improved modified extended Tanh-Function method10, the sub ordinary differential 
equation11, the extended F-expansion method12 and many others (see13–15).

Ever since their discovery in the nineteenth century, solidions have been the subject of considerable 
investigation, revolutionizing a number of scientific and technological domains and resulting in groundbreaking 
discoveries in nonlinear dynamics, optics, communications, and other sectors16. Soliton solutions are one topic 
of special interest in mathematical fiber communications, especially in birefringent fibers. Because they can 
maintain their form and integrity throughout transmission, self-sustaining, non-dispersive optical pulses called 
soliton pulses are very attractive for long-distance communication. Birefringent fibers come with special benefits 
when it comes to controlling and preserving polarization because of their capacity to keep light signals polarized. 
Many types of soliton solutions, including single, combo-bright-dark, brilliant, and combo-singular solitons, 
may be studied by scientists in cubic–quintic (CQ) optical systems by using mathematical techniques17,18. 
Through the use of mathematical tools, scientists and engineers may develop a deeper understanding of the 
intricate dynamics related to light transmission, signal deterioration, interference, and other elements that 
affect the system’s overall performance. More dependable and effective fiber communication systems may be 
developed, thanks to mathematical models, which offer a quantitative foundation for system parameter design 
and optimization. Some valuable contributions to the study of nonlinear wave phenomena, soliton dynamics, 
mathematical modeling of complex physical systems, and fractional differential equations across various 
scientific disciplines are described briefly. Ismael et al.19 investigate autonomous multiple wave solutions and 
hybrid behaviors in a (3+1)-dimensional Boussinesq-type equation, which is significant for fluid mechanics. 
Muhammad et al.20 examine optical wave propagation in fiber optics using a nonlinear fractional Schrödinger 
equation, highlighting the influence of fractional derivatives on optical communication systems. Younas et al.21 
focus on the solitary wave dynamics and interaction mechanisms in ultrasound imaging, modeled through a 
fractional nonlinear system, providing insights into medical wave applications. In22, Muhammad et al. analyze 
soliton solutions and their interaction properties in the Estevez-Mansfield-Clarkson equation, which appears in 
multiple physical fields. Their research in23 explores the propagation of fractional solitary waves in the modified 
Korteweg-de Vries-Kadomtsev-Petviashvili equation, emphasizing parametric effects and qualitative wave 
characteristics. Furthermore, Muhammad et al.24 delve into the fractional impact on optical wave transmission 
in the extended Kairat-II equation, demonstrating how fractional-order derivatives affect nonlinear optical 
models. Raza et al.25 investigate complexiton and resonant multi-soliton solutions for a (4 + 1)-dimensional 
Boiti-Leon-Manna-Pempinelli equation, providing insights into high-dimensional nonlinear wave interactions 
in optical and quantum systems. Javid et al.26 explore dual-wave resonant solutions of the nonlinear Schrödinger 
equation with varying nonlinearities, shedding light on wave dynamics in dispersive and nonlinear media. 
Kazmi et al.27 conduct a bifurcation analysis of soliton and quasi-periodic patterns in a generalized q-deformed 
Sinh-Gordon equation, emphasizing the role of symmetry and integrability in nonlinear systems. Finally, Raza et 
al.28 derive new exact periodic elliptic wave solutions for the extended quantum Zakharov-Kuznetsov equation, 
enhancing the understanding of nonlinear wave behavior in quantum plasmas. Together, these studies enhance 
the theoretical and applied understanding of nonlinear waves in diverse fields such as fluid dynamics, optics, 
and medical imaging.

Utilizing a powerful mathematical tool, the modified extended mapping technique (MEMT)13, these soliton 
solutions are found in this study. In this study, the dynamics and properties of solitons in birefringent fibers 
are investigated by using this approach on the cubic–quintic–septic–nonic nonlinear Schrödinger’s equation 
(CQSN-NLSE). For enhanced performance and efficiency, fiber communication system design and optimization 
can be guided by the soliton solutions generated, which offer insightful information on the behavior of the 
system. In addition to offering a thorough examination of the system under study and its results, the paper 
includes novel and unique research. This paper demonstrates the potential of mathematical modeling in fiber 
communications, laying the groundwork for further development and research in the design and optimization 
of fiber communication systems. It also contributes to the field’s ongoing development. Focusing on the CQ-
NLSE in birefringent fibers with CQSN nonlinearity17,18, this study explores the intricate realm of nonlinear 
optical systems and is considered significant. In fields like optical signal processing, laser technology, and 
telecommunications, understanding this complex nonlinear behavior is crucial from a practical standpoint.

An important new concept is presented in this work. Literature that is currently accessible does not offer a 
thorough examination of soliton solutions inside the birefringent fibers CQSN nonlinearity model. This opens 
up new areas in the field of nonlinear optics. Here, we examine for the first time the effect of CQSN terms on the 
dynamic behavior of solitons in optical systems using the widely recognized MEMT.

A dimensionless variation of the CQ-NLSE with CQSN nonlinearity has recently been written as4:

	 iHt + iaHzzz + bHzzzz +
(
c1 |H|2 + c2 |H|4 + c3 |H|6 + c4 |H|8

)
H = 0, i =

√
−1,� (1)

where H(z, t) defines the complex-valued wave packet’s amplitude and z,  t symbolizes the the spatial and 
temporal variables, respectively. The first term is the evolution term, while the a and b are the 3rd and 4th order 
dispersion coefficients, in the given sequence. Additionally, the self-phase modulation (SPM) influences are 
represented by cj , (1 ≤ j ≤ 4).
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In this article, since we treat birefringent fibers, we can split Eq. (1) into the following coupled NLSEs 
(CNLSEs)17:

	

iϕt + iα1ϕzzz + β1ϕzzzz +
(
a11 |ϕ|2 + a12 |ψ|2

)
ϕ +

(
b11 |ϕ|4 + b12 |ψ|2 |ϕ|2 + b13 |ψ|4

)
ϕ

+
(
c11 |ϕ|6 + c12 |ϕ|4 |ψ|2 + c13 |ϕ|2 |ψ|4 + c14 |ψ|6

)
ϕ

+
(
d11 |ϕ|8 + d12 |ϕ|6 |ψ|2 + d13 |ϕ|4 |ψ|4 + d14 |ϕ|2 |ψ|6 + d15 |ψ|8

)
ϕ = 0,

� (2)

	

iψt + iα2ψzzz + β2ψzzzz +
(
a21 |ψ|2 + a22 |ϕ|2

)
ψ +

(
b21 |ψ|4 + b22 |ϕ|2 |ψ|2 + b23 |ϕ|4

)
ψ

+
(
c21 |ψ|6 + c22 |ψ|4 |ϕ|2 + c23 |ψ|2 |ϕ|4 + c24 |ϕ|6

)
ψ

+
(
d21 |ψ|8 + d22 |ψ|6 |ϕ|2 + d23 |ψ|4 |ϕ|4 + d24 |ψ|2 |ϕ|6 + d25 |ϕ|8

)
ψ = 0,

� (3)

where the functions ϕ = ϕ(z, t) and ψ = ψ(z, t) describe wave profiles, whereas the first terms relate to linear 
temporal evolutions. The coefficients αi and βi, (i = 1, 2) reflect the 3rd and 4th order dispersions, respectively. 
The constants ai2, bi2, bi3, ci2, ci3, ci4, di2, di3, di4, and di5, (i = 1, 2) represent the coefficients of the 
cross-phase modulation (XPM) terms. The coefficients of the SPM terms are ai1, bi1, ci1, and di1, (i = 1, 2).

The novelty of this work lies in deriving a broader class of solutions than previously reported, including 
singular, periodic, and elliptic function solutions, expanding the known solution space. Unlike earlier studies 
limited to cubic–quintic or cubic–septic models, this research incorporates ninth-order nonlinearities, providing 
a more complete understanding of extreme nonlinear regimes in birefringent fibers, which is essential for 
advanced optical communication and fiber laser technologies. Each solution is substituted back into the original 
cubic–quartic nonlinear Schrödinger equation to confirm that it satisfies the equation exactly.

Below is the structure of this paper: The exact solutions for the suggested coupled system in Eqs. (2)–
(3) are derived after a brief discussion of the concept’s mathematical underpinnings and recent application. 
Mathematical preliminaries for the proposed method” section provides a summary of the main elements of 
the suggested strategy. In addition to displaying all of the data,  “Novel solutions extraction for the proposed 
coupled system” section explains the many dynamic wave shapes that make up the novel soliton solutions when 
implementing the MEMT. In  “Graphical simulation of some retrieved solutions” section, graphical 2D, 3D, and 
contour drawings of several obtained solutions are shown. “Conclusion” section presents some inferences drawn 
from the data acquired and some conclusive remarks.

Mathematical preliminaries for the proposed method
This section is divided into two parts. General detailed steps of the proposed technique are presented in the 
first part. Finally, we mention the advantages of the applied technique compared to some other methods in the 
literature in the last subsection.

General algorithm of the MEMT
The key components of the MEMT that will be used in section 3 are presented in this section13.

If we assume to have an NPDE of the following form :

	 Z (R,Rt,Rx,Rxx,Rxt,Rxxt, ...) = 0,� (4)

where Z denotes a polynomial function of R(x, t) and its corresponding partial derivatives with respect to the 
two-dimensional time and space.

Algorithm-(I): The next travelling wave transformation will be used to solve Eq. (4):

	 R(x, t) = K(ζ), ζ = x − κt, κ ̸= 0,� (5)

where κ denotes the speed of the wave.
The transformation of Eq. (5) into Eq. (4) yields the following nonlinear ordinary differential equation 

(NODE):

	 Z(K,K′,K′′,K′′′, . . .) = 0.� (6)

Algorithm-(II): We suggest that the general solution of Eq. (6) is:

	
K(ζ) =

M∑
j=0

AjWj(ζ) +
−M∑

j=−1

B−jWj(ζ) +
M∑

j=2

θjWj−2(ζ)W ′(ζ) +
−M∑

j=−1

C−jWj(ζ)W ′(ζ),� (7)

where Aj ,B−j , θj ,C−j  represent real-valued constants that will be estimated and the function W(ζ) obeys the 
following constraint:

	 W ′(ζ) =
√

τ0 + τ1W(ζ) + τ2W2(ζ) + τ3W3(ζ) + τ4W4(ζ) + τ6W6(ζ),� (8)

where τi, (i = 0, 1, 2, 3, 4, 6) are constants. Many types of solutions can be extracted from Eq. (8) by putting 
τ0, τ1, τ2, τ3, τ4, τ6 with differnt values as follows:
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Case 1: When τ0 = τ1 = τ3 = τ6 = 0, the following solutions are raised:

	

W(ζ) =
√

−τ2

τ4
sech (

√
τ2ζ) , τ2 > 0, τ4 < 0.

W(ζ) =
√

−τ2

τ4
sec

(√
−τ2ζ

)
, τ2 < 0, τ4 > 0.

W(ζ) =
√

−τ2

τ4
csc

(√
−τ2ζ

)
, τ2 < 0, τ4 > 0.

Case 2: When τ1 = τ3 = τ6 = 0, τ0 = τ2
2

4τ4 , the following solutions are raised:

	

W(ζ) =
√

− τ2

2τ4
tanh

(√
−τ2

2 ζ
)

, τ2 < 0, τ4 > 0.

W(ζ) =
√

τ2

2τ4
tan

(√
τ2

2 ζ
)

, τ2 > 0, τ4 > 0.

Case 3: When τ3 = τ4 = τ6 = 0, the following solutions are raised:

	

W(ζ) =
τ1 sinh (2√

τ2ζ)
2τ2

− τ1

2τ2
, τ2 > 0, τ0 = 0.

W(ζ) =
τ1 sin

(√
−τ2ζ

)
2τ2

− τ1

2τ2
, τ2 < 0, τ0 = 0.

W(ζ) =
√

λ0

λ2
sinh

(√
λ2ζ

)
, τ0 > 0, τ2 > 0, τ1 = 0.

W(ζ) =
√

−λ0

λ2
sin

(√
−λ2ζ

)
, τ0 > 0, τ2 < 0, τ1 = 0.

W(ζ) = exp (
√

τ2ζ) − τ1

2τ2
, τ2 > 0, τ0 = τ2

1

4τ2
.

Case 4: When τ0 = τ1 = τ2 = τ6 = 0, the following solution is raised:

	
W(ζ) = 4τ3

τ2
3 ζ2 − 4τ4

.

Case 5: When τ0 = τ1 = τ6 = 0, the following solutions are raised:

	

W(ζ) = −
τ2

(
tanh

(
1
2
√

τ2ζ
)

+ 1
)

τ3
, τ2

3 = 4τ2τ4, τ2 > 0.

W(ζ) = −
τ2

(
coth

(
1
2
√

τ2ζ
)

+ 1
)

τ3
, τ2

3 = 4τ2τ4, τ2 > 0.

W(ζ) =
τ2sech2 (

1
2
√

τ2ζ
)

2√
τ2τ4 tanh

(
1
2
√

τ2ζ
)

− τ3
, τ2

3 ̸= 4τ2τ4, τ2 > 0, τ4 > 0.

W(ζ) = −
τ2 sec2 (

1
2
√

−τ2ζ
)

2
√

−τ2τ4 tan
(

1
2
√

−τ2ζ
)

+ τ3
, τ2

3 ̸= 4τ2τ4, τ2 < 0, τ4 > 0.

Case 6: When τ2 = τ4 = τ6 = 0, the following solution is raised:

	
W(ζ) = ℘

(1
2

√
τ3ζ; −4τ1

τ3
, −4τ0

τ3

)
, τ3 > 0.

Case 7: When τ1 = τ3 = τ6 = 0, the following solutions are raised:

No. τ0 τ2 τ4 W(ζ)

1 1 −(1 + m2) m2 cd(ζ, m) or sn (ζ, m)

2 m2 − 1 −m2 + 2 −1 dn (ζ, m)

3 −m2 2m2 − 1 −m2 + 1 nc (ζ, m)
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No. τ0 τ2 τ4 W(ζ)
4 −1 −m2 + 2 m2 − 1 nd (ζ, m)

5 m2 − 2m3 + m4 −
4
m

−1 + 6m − m2 mdn(ζ|m)cn(ζ|m)
1 + msn(ζ|m)2

6 1
4

1
2 m2 − 1 m4

4

sn(ζ|m)
1 + dn(ζ|m)

 or 
cn(ζ|m)

√
1 − m2 + dn(ζ|m)

 

Algorithm-(III): Equation (6) may be utilised to compute the integer M, utilising the idea of homogeneous 
balancing the nonlinearity and the dispersion in the resultant ODE.

Algorithm-(IV): After plugging the suggested solution into Eq. (5) using Eq. (8) into Eq. (6), we equalize 
the coefficients of W

′j(ζ)Wi(ζ)( j = 0, 1; i = 0, ±1, ±2, ...) to zero and obtain a set of nonlinear algebraic 
equations (NLAEs) for Aj ,B−j , θj ,C−j and κ, which will be solved using the Wolfram Mathematica program. 
From there, we can estimate the used unknowns Aj ,B−j , θj , and C−j . Following that, it is possible to derive 
many precise solutions for Eq. (4).

Advantages of the applied technique
The MEMT has several advantages over traditional methods for solving nonlinear differential equations. Unlike 
the Inverse Scattering Transform29, which is limited to integrable equations and requires intricate spectral 
analysis, MEMT provides a more direct and adaptable approach. Compared to Hirota’s Bilinear Method30, which 
involves tedious bilinear transformations and perturbative expansions, MEMT simplifies the derivation of exact 
solutions. Unlike Lie Symmetry Analysis31, which demands extensive group-theoretic computations and is often 
limited to finding symmetry-invariant solutions, MEMT systematically generates multiple types of solutions, 
including solitons, periodic, and elliptic function solutions. Its efficiency and versatility make it a valuable tool 
in nonlinear wave analysis.

Novel solutions extraction for the proposed coupled system
The solutions of Eqs. (2)–(3) may be obtained by assuming the following wave transformation:

	 ϕ(z, t) = P1(ζ) eiΥ (z,t),� (9)

	 ψ(z, t) = P2(ζ) eiΥ (z,t),� (10)

and

	 ζ = z − ρt, ρ ̸= 0, Υ (z, t) = −Kz + ωt + ∆,� (11)

where P1(ζ) and P2(ζ) denote the wave’s solution amplitude, and K, ρ, ∆ and ω denote the frequency, 
velocity of the soliton, phase shift constant and wave number in the mentioned sequence.

Using the transformation described by Eqs. (9)–(11), after that, Eqs. (2)–(3) will be transformed into the 
subsequent system of NODEs, then separating the real and imaginary parts yield:

Real parts:

	

β1P(4)
1 + 3K (α1 − 2β1K) P ′′

1 +
(
a12P2

2 + b13P4
2 + c14P6

2 + d15P8
2 + β1K4 − α1K3 − ω

)
P1

+
(
a11 + b12P2

2 + c13P4
2 + d14P6

2
)

P3
1 +

(
b11 + c12P2

2 + d13P4
2
)

P5
1 +

(
c11 + d12P2

2
)

P7
1

+ d11P9
1 = 0,

� (12)

	

β2P(4)
2 + 3K (α2 − 2β2K) P ′′

2 +
(
a22P2

1 + b23P4
1 + c24P6

1 + d25P8
1 + β2K4 − α2K3 − ω

)
P2

+
(
a21 + b22P2

1 + c23P4
1 + d24P6

1
)

P3
2 +

(
b21 + c22P2

1 + d23P4
1
)

P5
2 +

(
c21 + d22P2

1
)

P7
2

+ d21P9
2 = 0,

� (13)

and the imaginary parts are:

	 (α1 − 4β1K) P(3)
1 +

(
4β1K3 − 3α1K2 − ρ

)
P ′

1 = 0,� (14)

	 (α2 − 4β2K) P(3)
2 +

(
4β2K3 − 3α2K2 − ρ

)
P ′

2 = 0,� (15)

By integrating Eqs. (14)–(15) with respect to ζ  once with neglecting the constant of integration, and then 
inserting them in Eqs. (12)–(13), respectively, we get:
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β1 (α1 − 4β1K) P(4)
1 +

(
−β1K

(
4P2

2
(
a12 + b13P2

2 + c14P4
2 + d15P6

2
)

+ 25α1K3 + 6Kρ − 4ω
)

+α1
(
a12P2

2 + b13P4
2 + c14P6

2 + d15P8
2 + 8α1K3 + 3Kρ − ω

)
+ 20β2

1K5)
P1

+ (α1 − 4β1K)
(
a11 + b12P2

2 + c13P4
2 + d14P6

2
)

P3
1 + (α1 − 4β1K)

(
b11 + c12P2

2 + d13P4
2
)

P5
1

+
(
c11 + d12P2

2
)

(α1 − 4β1K) P7
1 + d11 (α1 − 4β1K) P9

1 = 0,

� (16)

	

β2 (α2 − 4β2K) P(4)
2 +

(
−β2K

(
4P2

1
(
a22 + b23P2

1 + c24P4
1 + d25P6

1
)

+ 25α2K3 + 6Kρ − 4ω
)

+α2
(
a22P2

1 + b23P4
1 + c24P6

1 + d25P8
1 + 8α2K3 + 3Kρ − ω

)
+ 20β2

2K5)
P2

+ (α2 − 4β2K)
(
a21 + b22P2

1 + c23P4
1 + d24P6

1
)

P3
2 + (α2 − 4β2K)

(
b21 + c22P2

1 + d23P4
1
)

P5
2

+
(
c21 + d22P2

1
)

(α2 − 4β2K) P7
2 + d21 (α2 − 4β2K) P9

2 = 0.

� (17)

Now, let’s set

	 P2(ζ) = Ω P1(ζ), Ω ̸= 0, 1.� (18)

Then, Eqs. (16)–(17) can be written as:

	

P(4)
1 +

(
α1ω − 20β2

1K5 + 25α1β1K4 − 8α2
1K3 + 6β1K2ρ − 3α1Kρ − 4β1Kω

β1 (4β1K − α1)

)
P1

+
(

a12Ω2 + a11

β1

)
P3

1 +
(

b13Ω4 + b12Ω2 + b11

β1

)
P5

1 +
(

c14Ω6 + c13Ω4 + c12Ω2 + c11

β1

)
P7

1

+
(

d15Ω8 + d14Ω6 + d13Ω4 + d12Ω2 + d11

β1

)
P9

1 = 0,

� (19)

	

P(4)
1 +

(
α2ω − 20β2

2K5 + 25α2β2K4 − 8α2
2K3 + 6β2K2ρ − 3α2Kρ − 4β2Kω

β2 (4β2K − α2)

)
P1

+
(

a21Ω2 + a22

β2

)
P3

1 +
(

b21Ω4 + b22Ω2 + b23

β2

)
P5

1 +
(

c21Ω6 + c22Ω4 + c23Ω2 + c24

β2

)
P7

1

+
(

d21Ω8 + d22Ω6 + d23Ω4 + d24Ω2 + d25

β2

)
P9

1 = 0.

� (20)

So, by comparing the coefficients of Eqs. (19)–(20), they are equivalent by providing the following constraints:

	

α1ω − 20β2
1K5 + 25α1β1K4 − 8α2

1K3 + 6β1K2ρ − 3α1Kρ − 4β1Kω

β1 (4β1K − α1)

= α2ω − 20β2
2K5 + 25α2β2K4 − 8α2

2K3 + 6β2K2ρ − 3α2Kρ − 4β2Kω

β2 (4β2K − α2) ,

� (21)

	
a12Ω2 + a11

β1
= a21Ω2 + a22

β2
,� (22)

	
b13Ω4 + b12Ω2 + b11

β1
= b21Ω4 + b22Ω2 + b23

β2
,� (23)

	
c14Ω6 + c13Ω4 + c12Ω2 + c11

β1
= c21Ω6 + c22Ω4 + c23Ω2 + c24

β2
,� (24)

	
d15Ω8 + d14Ω6 + d13Ω4 + d12Ω2 + d11

β1
= d21Ω8 + d22Ω6 + d23Ω4 + d24Ω2 + d25

β2
.� (25)

Then, we can find the wave number from Eq. (21) to be

	

ω = 1
(β1 − β2) (α1 − 4β1K) (4β2K − α2) [K

(
β2

(
−8β2

1K2 (
10α2K2 + 3ρ

)
+ α1α2

(
8α1K2 + 3ρ

)

+6 (α1 − α2) β1Kρ) + α2β1 (4β1K − α1)
(
8α2K2 + 3ρ

)
+ 4β2

2K
(
α1

(
20β1K3 − 3ρ

)

−8α2
1K2 + 6β1Kρ

))
].

� (26)

Then Eq. (19) can be expressed as follows:

	 P(4)
1 + L1P1 + L3P3

1 + L5P5
1 + L7P7

1 + L9P9
1 = 0,� (27)
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where Li, (i = 1, 3, 5, 7, 9) represent constants and expressed as:

	

L1 = α1ω − 20β2
1K5 + 25α1β1K4 − 8α2

1K3 + 6β1K2ρ − 3α1Kρ − 4β1Kω

β1 (4β1K − α1) ,

L3 = a12Ω2 + a11

β1
,

L5 = b13Ω4 + b12Ω2 + b11

β1
,

L7 = c14Ω6 + c13Ω4 + c12Ω2 + c11

β1
,

L9 = d15Ω8 + d14Ω6 + d13Ω4 + d12Ω2 + d11

β1
.

� (28)

At this stage, we have to assume that

	 P1(ζ) =
√

X (ζ),� (29)

then, we can write Eq. (27) as:

	

8X 3X (4) − 16X 2X (3)X ′ − 12X 2 (
X ′′)2 − 15

(
X ′)4 + 36X

(
X ′)2 X ′′

+ 16
(
L9X 8 + L7X 7 + L5X 6 + L3X 5 + L1X 4)

= 0,
� (30)

According to the proposed technique discussed in section 2, by applying the balance between X 3X (4) and X 8, 
we find that M = 1. From Eq. (7), the solution of Eq. (30) can be formulated as:

	
X (ζ) = A0 + A1W(ζ) + B1

W(ζ) + C1

(
W ′(ζ)
W(ζ)

)
,� (31)

assuming that A1, B1, and C1 are all unknown constants, they may be estimated by concurrently applying the 
restrictions A1, B1, and C1 ̸= 0.

The following results may be obtained by solving the system of NLAEs created by inserting Eqs. (31) and (8) 
into Eq. (30) with the help of the Wolfram Mathematica program, grouping coefficients of comparable powers 
and setting them all to zero:

Result-(1): When τ0 = τ1 = τ3 = τ6 = A0 = C1 = 0, these are the sets of solutions that we discovered:

	Set (1.1):	 B1 = L7 = L3 = 0, A1 =
4√−105

√
−τ4

2 4
√

L9
, L5 = −13τ2

2

√
− 3L9

35 , L1 = − τ2
2

16 .

	Set (1.2):	 B1 = L7 = L3 = 0, A1 =
4√−105√

τ4

2 4√L9
, L5 = 13τ2

2

√
− 3L9

35 , L1 = − τ2
2

16 .

According to set (1.1), the solutions of Eqs. (2)–(3) can be stated as:

	(1.1)	 If τ2 > 0, τ4 < 0 and L9 < 0, then:

		

ϕ1.1(z, t) =
(

1
2

√
τ2

4

√
−105

L9
sech [(z − ρt)

√
τ2]

) 1
2

ei(−Kz+ωt+∆),� (32)

		

ψ1.1(z, t) = Ω
(

1
2

√
τ2

4

√
−105

L9
sech [(z − ρt)

√
τ2]

) 1
2

ei(−Kz+ωt+∆),� (33)

	these solutions represent bright soliton solutions.

According to set (1.2), the solutions of Eqs. (2)–(3) can be stated as:

	(1.2)	 If τ2 < 0, τ4 > 0 and L9 < 0, the solutions will be: 

		

ϕ1.2,1(z, t) =
(

1
2

√
−τ2

4

√
−105

L9
sec

[
(z − ρt)

√
−τ2

]) 1
2

ei(−Kz+ωt+∆),� (34)
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ψ1.2,1(z, t) = Ω
(

1
2

√
−τ2

4

√
−105

L9
sec

[
(z − ρt)

√
−τ2

]) 1
2

ei(−Kz+ωt+∆),� (35)

	or

		

ϕ1.2,2(z, t) =
(

1
2

√
−τ2

4

√
−105

L9
csc

[
(z − ρt)

√
−τ2

]) 1
2

ei(−Kz+ωt+∆),� (36)

		

ψ1.2,2(z, t) = Ω
(

1
2

√
−τ2

4

√
−105

L9
csc

[
(z − ρt)

√
−τ2

]) 1
2

ei(−Kz+ωt+∆),� (37)

	these solutions represent the singular periodic solutions.

Result-(2): When τ1 = τ3 = τ6 = A0 = C1 = 0 and τ0 = τ2
2

4τ4
, this is the set of solutions that we gained:

	
L7 = L3 = 0, A1 =

4√−105τ2

4√
τ0

4√L9
, B1 =

4√−105√
τ0

2 4√L9
, τ4 = τ2

2

4τ0
, L5 = −13τ2

√
−3L9

35 , L1 = −τ2
2

4

Based on the recovered solutions’ set, we may state the following solutions:
If τ2 > 0, τ4 > 0 and L9 < 0, we get singular periodic solutions:

	
ϕ2(z, t) =

(
√

τ2
4

√
− 105

2L9
csc

[
(z − ρt)

√
2τ2

]) 1
2

ei(−Kz+ωt+∆),� (38)

	
ψ2(z, t) = Ω

(
√

τ2
4

√
− 105

2L9
csc

[
(z − ρt)

√
2τ2

]) 1
2

ei(−Kz+ωt+∆).� (39)

Result-(3): When τ3 = τ4 = τ6 = A0 = C1 = 0, this is the set of solutions that we gained:

	
A1 = 0,B1 =

2τ1
√

− 1
7 (15L9)

L7
, L1 = −τ2

2

16 , L3 = 1
8τ2

√
− 35

3L9
L7,

	
L5 = 13

2 τ2

√
− 1

35 (3L9) + 7L2
7

40L9
, τ0 =

16
√

− 15
7 L3

9 τ2
1

7L2
7

.

If τ2 > 0, τ0 = τ2
1

4τ2
, L9 < 0, τ1τ2L7 < 0 and τ1 ̸= 2τ2e

√
τ2(z−ρt), then, the solutions are:

	
ϕ3(z, t) = 2 4

√
15
7

(
− τ1τ2

√
−L9

L7
(
τ1 − 2τ2e

√
τ2(z−ρt)

)
) 1

2

ei(−Kz+ωt+∆),� (40)

	
ψ3(z, t) = 2Ω 4

√
15
7

(
− τ1τ2

√
−L9

L7
(
τ1 − 2τ2e

√
τ2(z−ρt)

)
) 1

2

ei(−Kz+ωt+∆),� (41)

these solutions are exponential ones.
Result-(4): When τ0 = τ1 = τ2 = τ6 = A0 = C1 = 0, then, we obtain:

	
B1 = L1 = L3 = 0, A1 =

4√−105
√

−τ4

2 4√L9
, L5 = −

2τ2
3
√

− 1
35 (3L9)

τ4
, L7 =

4 4
√

−15L3
9τ3

73/4
√

−τ4
.

Then, the solutions are:

	

ϕ4(z, t) =




4
√

−105
L9

τ3
√

−2τ4

(τ2
3 (z − ρt)2 − 4τ4)




1
2

ei(−Kz+ωt+∆),� (42)
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ψ4(z, t) = Ω




4
√

−105
L9

τ3
√

−2τ4

(τ2
3 (z − ρt)2 − 4τ4)




1
2

ei(−Kz+ωt+∆),� (43)

which provide rational wave solutions in the constraints that L9 < 0, τ4 < 0 and τ2
3 (z − ρt)2 − 4τ4 ̸= 0.

Result-(5): When τ0 = τ1 = τ6 = A0 = C1 = 0, then, we discover:

	
B1 = 0, A1 = −5τ2τ3

4L3
, L1 = −τ2

2

16 , L7 = 96τ4L3
3

25τ3
2 τ2

3
, L5 = −

6
(
4τ2

3 + 13τ2τ4
)

L2
3

25τ2
2 τ2

3
, L9 = −336τ2

4 L4
3

125τ4
2 τ4

3
.

Then, the solutions will be: 

	(5.1)	 If τ2 > 0, τ2
3 = 4τ2τ4  and L3 > 0, then, the solutions are: 

	
ϕ5.1(z, t) = 1

2τ2

(
5

(
tanh

[
1
2 (z − ρt)√τ2

]
+ 1

)
L3

) 1
2

ei(−Kz+ωt+∆),� (44)

	
ψ5.1(z, t) = Ω

2 τ2

(
5

(
tanh

[
1
2 (z − ρt)√τ2

]
+ 1

)
L3

) 1
2

ei(−Kz+ωt+∆),� (45)

	 these solutions are the dark solitons, or we can obtain singular soliton solutions as: 

	
ϕ5.2(z, t) = 1

2τ2

(
5

(
coth

[
1
2 (z − ρt)√τ2

]
+ 1

)
L3

) 1
2

ei(−Kz+ωt+∆),� (46)

	
ψ5.2(z, t) = Ω

2 τ2

(
5

(
coth

[
1
2 (z − ρt)√τ2

]
+ 1

)
L3

) 1
2

ei(−Kz+ωt+∆).� (47)

	(5.2)	 If τ2 > 0, τ4 > 0, τ2
3 ̸= 4τ2τ4, τ3L3 > 0  and τ3 − 2√

τ2τ4 tanh
(

1
2
√

τ2(z − ρt)
)

̸= 0, then, the 
solutions are: 

	
ϕ5.3(z, t) = 1

2τ2

√
5τ3sech2 [

1
2 (z − ρt)√τ2

]

L3
(
τ3 − 2√

τ2τ4 tanh
[

1
2 (z − ρt)√τ2

])ei(−Kz+ωt+∆),� (48)

	
ψ5.3(z, t) = Ω

2 τ2

√
5τ3sech2 [

1
2 (z − ρt)√τ2

]

L3
(
τ3 − 2√

τ2τ4 tanh
[

1
2 (z − ρt)√τ2

])ei(−Kz+ωt+∆),� (49)

	 these solutions represent combo bright-dark soliton solutions.

	(5.3)	 If τ2 < 0, τ4 > 0, τ2
3 ̸= 4τ2τ4, τ3L3 > 0 and τ3 − 2√

τ2τ4 tan
(

1
2
√

−τ2(z − ρt)
)

̸= 0, then: 

	
ϕ5.4(z, t) = 1

2τ2

√
5τ3sec2

[
1
2 (z − ρt)

√
−τ2

]

L3
(
τ3 − 2√

τ2τ4 tan
[

1
2 (z − ρt)

√
−τ2

])ei(−Kz+ωt+∆),� (50)

	
ψ5.4(z, t) = Ω

2 τ2

√
5τ3sec2

[
1
2 (z − ρt)

√
−τ2

]

L3
(
τ3 − 2√

τ2τ4 tan
[

1
2 (z − ρt)

√
−τ2

])ei(−Kz+ωt+∆),� (51)

	 these solutions represent singular periodic solutions.

Result-(6): When τ2 = τ4 = τ6 = A0 = C1 = 0, then, we gain:

	
A1 = 0, B1 =

L3

√
− 7

15L9

τ3
, L1 = −3

4 τ1τ3, L7 = −30τ1τ3L9

7L3
, τ0 =

4
√

− 7
15L9

L2
3

15τ2
3

, L5 = 45τ2
1 τ2

3 L9

14L2
3

.

Scientific Reports |        (2025) 15:17047 9| https://doi.org/10.1038/s41598-025-00668-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


So, we can have the following Weierstrass elliptic doubly periodic solutions:

	
ϕ6(z, t) =

√√√√
√

− 7
15L9

L3

τ3℘
(

1
2 (z − tρ)√τ3; − 4τ1

τ3
, − 4τ0

τ3

)ei(−Kz+ωt+∆),� (52)

	
ψ6(z, t) = Ω

√√√√
√

− 7
15L9

L3

τ3℘
(

1
2 (z − tρ)√τ3; − 4τ1

τ3
, − 4τ0

τ3

)ei(−Kz+ωt+∆),� (53)

where L9 < 0 and L3τ3 > 0.
Result-(7): When τ1 = τ3 = τ6 = A0 = C1 = 0, then, these are the sets of solutions that we discovered:

	Set (7.1):	
B1 = L3 = L7 = τ0 = 0, A1 =

√
−39τ2τ4

8L5
, L1 = −τ2

2

16 , L9 = −140L2
5

507τ2
2

.

	S e t  ( 7 . 2 ) : 	L3 = L7 = 0, A1 = −
√

39τ2τ4

4L5
, B1 = −τ2

√
39τ2

16τ4L5
, L1 = −τ2

2

4 , L9 = − 35L2
5

507τ2
2

, , τ0 = τ2
2

4τ4
.

  As per the solution set (7.1), the solutions can be expressed as follows: 

	(7.1,1)	 If τ0 = m2 − 1, τ2 = 2 − m2, τ4 = −1,  and L5 > 0, then, the solutions are: 

	
ϕ7.1,1(z, t) =

(
1
2

√
39

2L5
sech[z − ρt]

) 1
2

ei(−Kz+ωt+∆),� (54)

	
ψ7.1,1(z, t) = Ω

(
1
2

√
39

2L5
sech[z − ρt]

) 1
2

ei(−Kz+ωt+∆),� (55)

	 these solutions represent bright soliton solutions.

	(7.1,2)	 If τ0 = −m2, τ2 = 2m2 − 1, τ4 = 1 − m2,  and L5 > 0, then, the solutions are: 

	
ϕ7.1,2(z, t) =

(
1
2

√
39

2L5
sec[z − ρt]

) 1
2

ei(−Kz+ωt+∆),� (56)

	
ψ7.1,2(z, t) = Ω

(
1
2

√
39

2L5
sec[z − ρt]

) 1
2

ei(−Kz+ωt+∆),� (57)

	 these solutions are singular periodic solutions.

 As per the solution set (7.2), the solutions can be expressed as follows:

	(7.2,1)	 If τ0 = 1, τ2 = −m2 − 1, τ4 = m2, and L5 < 0, then, we raise singular soliton solutions as: 

	
ϕ7.2,1(z, t) = 4√78

(√
− 1

L5
csch[2(z − ρt)]

) 1
2

ei(−Kz+ωt+∆),� (58)

	
ψ7.2,1(z, t) = Ω 4√78

(√
− 1

L5
csch[2(z − ρt)]

) 1
2

ei(−Kz+ωt+∆).� (59)

 

Graphical simulation of some retrieved solutions
Equations (2)–(3) yielded many families of solutions when specific values were assigned to the 
parameters. This investigation has, therefore, led to several previously unpublished original and 
revised results. The 3D, contour, and 2D figures of certain specific solutions are displayed in order 
to let the reader fully understand the physical structures of some extracted solutions that will be 
provided. The bright soliton solution of Eq. (32) is plotted in Fig.  1 where the parameter’s values are 
α1 = 0.7, K = 0.5, β1 = −0.6, β2 = 0.8, α2 = 0.7, ρ = 0.5, Ω = 0.6, d11 = 0.5, d12 = 0.75, d13 = 0.6, d14 = 0.7, d15 = 0.8, ∆ = 0.7, 
and  −15 < x < 15. This solution depicts a bright soliton propagating over a nonlinear medium while keeping its 
localised form over time. The absence of oscillatory tails points to a basic soliton rather than a higher-order or periodic 
structure. This behaviour has applications in nonlinear optics, optical fibre communications, and wave dynamics. 
Eq.(34) shows a singular periodic solution which is drawn in Fig. 2 with α1 = 0.7, K = 0.6, β1 = −0.7, β2 = 0.9,  
α2 = 0.8, ρ = 0.6, Ω = 0.7, d11 = 0.85, d12 = 0.7, d13 = 0.7, 
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d14 = 0.6, d15 = 0.7, ∆ = 0.8,  and   −8 < x < 8. This solution is a periodic wave train rather than a 
single soliton, with steady and repeating oscillations. Such solutions occur in birefringent fibres and nonlinear 
media where energy distribution is periodic rather than localised, making them useful for optical signal 
processing, waveguides, and nonlinear wave interactions. Figure 3 displays a dark soliton solution of Eq. (44) 
with α1 = −0.5, K = 0.7, β1 = 0.8, β2 = −0.7, α2 = −0.8, ρ = 0.7, Ω = 0.7, a11 = 0.5, a12 = 0.7, 
∆ = 0.8,    and  −15 < x < 15. This solution is a dark soliton solution, which is an important structure in 
nonlinear optics, fluid mechanics, and phase transition models. The sudden shift in amplitude indicates shock-
wave dynamics, which are common in fibre optics, plasma physics, and condensed matter systems. Additionally, 
Eq.(48) is a combo bright-dark soliton solution that is plotted in Fig. 4 when α1 = −0.7, K = 0.7, β1 = 0.6, 
β2 = −0.8, α2 = 0.6, ρ = 0.7, Ω = 0.8, a11 = 0.5, a12 = 0.7,ρ = 0.7, Ω = 0.8, a11 = 0.5, a12 = 0.7, 
∆ = 0.85, τ4 = 0.7, τ3 = 0.9,  and  −15 < x < 15.

Fig. 3.  Simulation of the solution of Eq. (44).

 

Fig. 2.  Simulation of the solution of Eq. (34).

 

Fig. 1.  Simulation of the solution of Eq. (32).

 

Scientific Reports |        (2025) 15:17047 11| https://doi.org/10.1038/s41598-025-00668-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusion
We take on a leading position in the field of nonlinear optics with our study. Our main goal is to thoroughly 
investigate soliton solutions as they relate to birefringent fibers with CQSN nonlinearity, using the framework 
of the CQ-NLSE model. This unexplored field adds something unique and important to the body of knowledge 
in science. In order to understand the complexities of fiber communication networks and optimize their 
performance, we emphasize repeatedly in this study how crucial mathematical modeling and analysis are. 
Researchers and engineers may comprehend the dynamics and properties of optical systems by skillfully 
applying mathematical tools. These discoveries promise improved performance and efficiency and have practical 
implications for the development of fiber communication networks. Key conclusions include the impact of 
higher-order self-phase modulation on soliton structure, the role of non-Kerr nonlinearities in shaping pulse 
dynamics, and the conditions for stable propagation. We found a large number of new soliton solutions. The 
retrieved solutions include singular, dark, bright, and combo bright-dark solitons. Also, we get numerous exact 
wave solutions, including rational, exponential, singular periodic, and Weierstrass elliptic double periodic 
solutions. With the fiber optic communications business developing so quickly, it is impossible to exaggerate 
the value of mathematical modelling and analysis. This dynamic interaction fosters creativity, maximizes system 
efficiency, and effectively handles the ever-increasing demands of contemporary telecommunications. More 
sophisticated fiber communication technologies are made possible by the combination of practical technical 
solutions and mathematical methodologies, which effectively meet the demands of our data-driven society. In 
order to clarify the physical nature of some solutions, graphic representations were also added. Since this model 
has never been examined using the suggested method, the answers we retrieved for our study report are unique. 
The method’s aptitude for handling NPDEs and its ease of use, efficacy, and success rate are further indications 
of its trustworthiness.
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