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We analyze the decoherence dynamics of a central spin coupled to a spin chain with a time-dependent 
noisy magnetic field, focusing on how noise influences the system’s decoherence. Our results show 
that decoherence due to the nonequilibrium critical dynamics of the environment is amplified in the 
presence of uncorrelated and correlated Gaussian noise. We demonstrate that decoherence factor 
consistently signals the critical points, and exhibits exponential scaling with the system size, the 
square of noise intensity, and the noise correlation time at the critical points. We find that strong 
coupling between the qubit and the environment leads to partial revivals of decoherence, which 
diminish with increasing noise intensity or decreasing noise correlation time. In contrast, weak 
coupling leads to monotonic enhanced decoherence. The numerical results illustrate that, the revivals 
decay and scale exponentially with noise intensity. Moreover, the revivals increase and indicate linear 
or power law scaling with noise correlation time depending on how the correlated noise is fast or slow. 
Additionally, we explore the non-Markovianity of the dynamics, finding that it decays in the presence 
of noise but increases as the noise correlation time grows.

Quantum correlations (QCs) are essential in quantum information science1–4 and quantum computation5–9, 
as they are pivotal for understanding the inherent non-locality in quantum mechanics10–12. During quantum 
information processing, quantum systems are inevitably affected by interactions with their surrounding 
environment. These interactions result in quantum decoherence, which is key to comprehend the transition 
from quantum to classical behavior13–18. In order to grasp the environment induced-decoherence, the model 
of a single central spin interacting with an environment, known as the central spin model (CSM)19–25, has 
been extended to the notion of quantum phase transition15,26. Within the CSM framework, an environmental 
quantum spin system (ESS) interacting with a central spin (CS) or qubit can be either time-independent or 
time-dependent.

In the time-independent case, the environmental spin system starts in its lowest energy state, whereas the 
central spin/qubit is initially in a pure state. The overall connection between the qubit and the environment is 
structured so that the ESS’s initial ground state evolves along two distinct pathways, each governed by a different 
Hamiltonian. Although the qubit starts in a pure state, it has been shown that it loses almost all of its purity as 
the ESS approaches its quantum critical point15,26. Furthermore, in the context of time-dependent scenarios, as 
the ESS is gradually moved through its quantum critical point, there is a notable increase in decoherence. This 
amplification arises not only from the heightened susceptibility present near the critical point but also from 
the provoked excitations, suggesting an aspect that is dependent on the universality class. This phenomenon 
shows a remarkable similarity to the dynamics associated with defect formation seen in nonequilibrium phase 
transitions, as described by the Kibble-Zurek mechanism.27,28.

Nevertheless, there has been a limited focus on the investigation of stochastically driven ESSs characterized 
by noisy Hamiltonians, and the influence of quantum coherence within these systems is still largely unexamined.

Noise is a major obstacle in achieving goals in all quantum technologies, especially in the progression of 
quantum computing.29–31. In particular, by altering the outcome of a quantum dynamics through the disturbance 
that it introduces to the system parameters. Such disturbance can become significant which leads to information 
loss in qubits and a general deviation of the system from its intended state. Due to the conceptual and technical 
complexities in dealing with the system plus environment fully quantum mechanically, an alternative approach 
is to simply consider that the effect of the environment is to introduce classical noise in the system’s degrees of 
freedom32–37. In other words, noise arises as an efficient way of describing the evolution of systems interacting 
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with environments or external driven fields. Surmounting this challenge, is vital for advancements in quantum 
computing, with a goal to attain greater reliability and accuracy.

In addition, in any real experiment, the simulation of the intended time-dependent Hamiltonian is inherently 
imperfect, and the presence of noisy fluctuations is inevitable. In essence, noise is pervasive and unavoidable in 
any physical system, exemplified by noise-induced heating that may result from amplitude variations in the 
lasers used to create the optical lattice38–41. Consequently, it is essential to comprehend the effects of noise on 
Hamiltonian evolution to accurately forecast experimental results and to develop advanced configurations that 
are robust against noise effects35,38,42–46.

The question addressed in this paper is: What are the effects of a noisy ESS on the decoherence of a central 
qubit when it is driven across the QCPs? Specifically, is there still a universal pattern in the dynamically induced 
decoherence, as measured by the decoherence factor (DF) of the CS? More precisely, can the decoherencies due 
to proximity to a critical point and noise be distinguished?

We demonstrate that decoherence factor decreases in the presence of both correlated (colored) and 
uncorrelated (white) Gaussian noises. This reduction exhibits exponential scaling with the system size, the 
square of noise intensity, and the noise correlation time at the critical points. Moreover, in the case of strong 
environment-qubit coupling (large ramp time scale), decoherence exhibits revivals in both noiseless and noisy 
scenarios. These revivals scale exponentially with the square of noise intensity. However, in the presence of fast 
colored noise (small correlation time), the revivals scale linearly with the noise correlation time, whereas in slow 
noise (large correlation time), they exhibit a power-law scaling with noise correlation time. Additionally, we 
find that the measure of non-Markovianity decreases with noise intensity and increases linearly with the noise 
correlation time.

Theoretical model
The full Hamiltonian which considers a qubit coupled to a driven transverse field Ising chain (Fig. 1), is expressed 
as23–25

	 H = HE + HI + Hq,� (1)

where

	
HE = HE(h(t)) = −

N∑
j=1

(
σx

j σx
j+1 + h(t)σz

j

)
,

represents the time dependent transverse field Ising model in a ring configuration,

	
HI = HI(δ) = −δ

N∑
j=1

σz
j σz

0 ,

describes the interaction between the surrounding spin ring and the central qubit, and

	 Hq = σz
0 ,

Fig. 1.  (a) The schematic diagram of spin qubit symmetrically coupled to the critical spin environment 
described as a transverse field Ising chain. When the magnetic field is large (|h(t)| > 1), (right and left panels), 
the environment is in a paramagnetic phase, where spins aligned with the field. In contrast, when the field is 
small (|h(t)| < 1; (center panel), the spin chin enters a ferromagnetic phase, where spins ordered in x or −x 
direction. (b) The decoherence factor can be directly measured through a Ramsey experiment, which involves 
a π/2 pulse sequence followed by a projective measurement in the Z-basis on the central qubit47–50.
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corresponds to the Hamiltonian of the qubit. Here, σα=x,y,z  are Pauli matrices, and δ represents the interaction 
strength between environment and the qubit. To search the effects of noise on the decoherence, we consider 
the noise added time dependent transverse field, i.e., h(t) = h0(t) + S(t), in which the noiseless transverse 
field h0(t) varying from an initial value hi at time ti to a final value h0(t) at time t following the linear quench 
protocol h0(t) = t/τQ, where τQ is the ramp time scale, and S(t) is the stochastic noise. When the transverse 
field is time-independent and noiseless, h0(t) = h, the ground state of the model is in the ferromagnetic phase 
for |h| < 1, while the system is in the paramagnetic phase for |h| > 1, with the phases separated by equilibrium 
quantum critical points at hc = ±151.

Assuming the qubit is initially in a pure state at h(ti)23–25,

	 |ϕ(ti)⟩q = cu| ↑⟩ + cd| ↓⟩,

with coefficients satisfying |cu|2 + |cd|2 = 1, and the environment, E, is in the ground state denoted by |φ(ti)⟩E , 
the total wave function of the composite system at time ti can then be written in the direct product form23–25

	 |Ψ(ti)⟩ = |ϕ(ti)⟩q ⊗ |φ(ti)⟩E .� (2)

It is straightforward to show that, the total wave function at an instant t is given by23–25

	 |Ψ(t)⟩ = cd| ↓⟩ ⊗ |φ−(t)⟩ + cu| ↑⟩ ⊗ |φ+(t)⟩,� (3)

where

	
|φ±(t)⟩ = T̂ exp

[
−i

∫ t

ti

HE

(
h(t) ± δ

)
dt

]
|φ±(ti)⟩,� (4)

and T̂  denotes the time-ordering operator. Since interaction Hamiltonian commutes with the central spin 
Hamiltonian, the basis {| ↑⟩, | ↓⟩} are stationary states. Thus, the evolution of the entire system simplifies to 
the dynamics of two Ising branches, each evolving in an effective magnetic field given by heff(t) = h(t) ± δ. 
Consequently, the spin-dependent evolution of the environmental states is governed by23–25

	
i

∂

∂t

∣∣φ±(t)
〉

= HE

(
h(t) ± δ

) ∣∣φ±(t)
〉

.� (5)

Given the qubit in the | ↑⟩, | ↓⟩ basis, the reduced density matrix is described by23–25

	
ρq(t) = TrE

[
|ψ(t)⟩⟨ψ(t)|

]
=

(
|cu|2 cuc∗

dd∗(t)
c∗

ucdd(t) |cd|2

)
,� (6)

 where d(t) = ⟨φ+(t)|φ−(t)⟩ captures the coherency of the spin. We focus on studying its squared modulus, 
|d(t)|2, which is known as the decoherence factor, to analyze the time evolution of decoherence23–25:

	 D = |d(t)|2 = |⟨φ+(t)|φ−(t)⟩|2.� (7)

Not to be confused with the term noise, it is preferable to refer to this property as visibility, which measures the 
interference contrast. It is worth noting that the entanglement entropy, concurrence, and maximum quantum 
Fisher information are directly connected to the decoherence factor52–54. The qubit is fully decohered when 
D = 0, but it stays in a pure superposition state when D = 1. In the unique situation where cu = cd = 1/

√
2, 

the density matrix assumes the subsequent straightforward form

	
ρq(t) = 1

2

( 1 d∗(t)
d(t) 1

)
= 1

2

(
� + ⟨σx

0 ⟩σx
0 + ⟨σy

0 ⟩σy
0

)
.� (8)

 From this, it becomes evident that one can directly measure D by evaluating the Pauli x and y observables 
of the central spin. Specifically, d(t) = ⟨σx

0 ⟩ + i⟨σy
0 ⟩. The standard experimental scheme to perform this 

measurement is known as the Ramsey measurement, which involves suitable pulse sequences followed by a 
projective measurement in the Z-basis47–50, as illustrated in Fig. 1b. In this scheme, the first pulse performs a π/2
-rotation of the initial qubit state around the y-axis. The second pulse applies another π/2-rotation, but around 
either the x-axis or the y-axis, depending on whether σx

0  or σy
0  is to be measured. The outcome statistics are then 

read out in the Z-basis to determine the expectation values of σy
0  or σx

0 .

Decoherence factor and time dependent Schrödinger equation
The behavior of the decoherence factor (visibility) can be determined by solving the time-dependent 
Schrödinger equation (Eq. 5). Through the application of Jordan-Wigner fermionization and use of Fourier 
transformation55,56, the Hamiltonian presented in Eq. (1) can be reformulated as the sum of N/2 non-interacting 
terms23–25:
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H(t) =

∑
k

Hk(t),� (9)

with

	 Hk(t) = [−(h(t) ± δ − cos k)](c†
kck + c†

−kc−k) + sin(k)(c†
kc†

−k + ckc−k),� (10)

where ck, (c†
k) represents spinless fermionic annihilation (creation) operator, and the wave number k is given 

by k = (2m − 1)π/N , with m ranging from 1 to N/2, and N denotes the total number of spins (or sites) in 
the chain (mathematical details of analysis can be found in Supplemental Material). The Bloch single-particle 
Hamiltonian Hk(t) can be expressed as23–25

	
Hk(t) =

(
hk(t) ∆k

∆k −hk(t)
)

,� (11)

where ∆k = sin(k) and hk(t) = −(h(t) ± δ − cos(k)). Thus, the time-dependent Schrödinger equation (Eq. 
(5)) with |φ±

k (t)⟩ = (v±
k , u±

k )T  can be expressed as

	

i
d

dt
v±

k = − (h(t) ± δ − cos k)v±
k + sin k u±

k ,

i
d

dt
u±

k =(h(t) ± δ − cos k)u±
k + sin k v±

k .

� (12)

Within this framework, one can derive that

	
D(t) =

∏
k>0

Fk(t); Fk(t) =
∣∣u+∗

k (t)u−
k (t) + v+∗

k (t)v−
k (t)

∣∣2
,� (13)

where Fk(t) captures the dynamics of decoherence from the perspective of momentum space23–25.
It is worthy to note that, in the absence of noise S(t) = 0, it can be demonstrated that the coupled deferential 

equations in Eq. (12) are exactly solvable23–25,57–60. While in the presence of noise, the ensemble average of u±
k (t) 

and v±
k (t) can be calculated numerically using the master equation32,58–62. In the following we first review the 

dynamics of decoherence factor in the noiseless case and then we search the effects of noise on the dynamics of 
decoherence factor.

Noiseless decoherence factor
To study the dynamics of the decoherence, we initially prepare the system in its ground state at ti → −∞( 
h0(t) ≪ −1), and then ramp up the magnetic field in such a way that the system crosses the ferromagnetic 
phase (−1 < h0(t) < 1), to enter the other paramagnetic phase (h0(t) > 1). In such a case the quench field 
crosses the critical points where located at hc = ±1.

As the transverse field is ramped up, the responsive of environment to external field increases. This heightened 
sensitivity leads to enhanced decoherence, which is observed as a gradual reduction in the decoherence factor D, 
beyond the critical point; see Fig. 2. In the noiseless case, it has been shown that the decoherence factor in the 
paramagnetic phase is approximately given by23–25

	
D(t) ≈ exp

(
− Nδ2

4h(t)2(h(t)2 − 1)

)
.� (14)

As the transverse field crosses the first critical point, h(t) > −1, the adiabatic evolution breaks down which 
leading to acceleration of decoherence; appears as a substantial reduction in decoherence factor. As a result, 
the dynamics of decoherence influenced by the two effects: (i) the excitations in the environments due to the 
crossing the critical point, (ii) the perturbation which amplified by enhancement of environment’s sensitivity 
close to the quantum critical points58–60.

As the driven transverse field crosses the first critical point at hc = −1, decoherence either partially revives 
(Fig. 2a) or decays monotonically (Fig. 2b,c) in the region between two critical points. These behaviors arise from 

the non-adiabatic dynamics of the system near the critical point, as the band gap closes for k = π at hc = −1, 

where large k modes are excited. The large k modes, particularly those with k ∼ π − k̂ with ̂k ∼ τ
−1/2
Q  experience 

significant excitation23–25, while the small k modes, for which k ≪ π − k̂, evolve adiabatically through the 
critical point. Additionally, partial revivals of decoherence between the critical points have been observed when 
the environment-qubit coupling is sufficiently strong, specifically when δ ≫ π/(16τQ)23–25; see Fig. 2a. These 
revivals manifest within the magnetic field, h(t), domain with a period of π/(4τQδ)23–25. In contrast, in the weak 
coupling regime where δ ≪ π/(16τQ), the decoherence factor exhibits a monotonic decrease, as illustrated in 
Fig. 2b. Moreover, more complex decoherence dynamics arise when the driven field inverses polarity and takes 
the system through the second critical point at hc = 1. At this critical point, where the gap closing occurs at 
k = 0 the modes with k ∼ k̂ become excited.
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In the next section we will study the effect of noise on the dynamics of the decoherence factor using the 
numerical solution of the exact master equation.

Impact of environmental noise: noisy dynamics
Noise is everywhere and unavoidable in any physical system. Specifically, when energy is moved into or out of 
a system in the lab, there will always be some fluctuations, “noise”, in this process. In addition, in the Ramsey 
interference scheme, the central qubit used as a noise spectrometer47–50. The noise is caused by a classical 
fluctuating field. In this section, we look at how noise affects the decoherence of a qubit that’s linked to a time-
varying environmental spin system. To this end, we consider an added noise to the time dependent magnetic 
field

	
h(t) = h0(t) + S(t) = t

τQ
+ S(t),� (15)

in the ramp interval [ti = hiτQ, tf = h(t)τQ], where S(t) represents random fluctuations with vanishing 
mean, ⟨S(t)⟩ = 0. This extra noisy term can resemble either a pure dephasing dynamics for the central spin. We 
assume the noise distribution is Gaussian with two-point correlations (Ornstein-Uhlenbeck process)

	
⟨S(t)S(t′)⟩ = ξ2

2τn
e

− |t−t′|
τn ,

where ξ characterizes the strength of the noise and τn is the noise correlation time58,61,63–65. White noise is 
approximately equivalent to fast colored noise (τn → 0) with two-point correlations

	 ⟨S(t)S(t′)⟩ = ξ2δ(t − t′).

The mean transition probabilities over the whole noise distribution S(t) are obtained numerically using the exact 
master equation58,61,63–65 for the averaged density matrix ρk(t) of the noisy Hamiltonian

	 H
(ξ)
k (t) = H

(0)
k (t) + S(t)H(1)

k ,� (16)

i.e.,

	
ρ̇k(t) = −i

[
H

(0)
k (t), ρk(t)

]
− ξ2

2τn

[
H

(1)
k ,

∫ t

ti

e−|t−s|/τn [H(1)
k , ρk(s)]ds

]
.� (17)

where H(0)
k (t) represents the noise-free Hamiltonian and H(1)

k = −σz  denotes the noisy component58.
As described in Supplemental Material, by converting Eq. (17) into a pair of coupled differential equations, 

we numerically compute the mean values of |u±
k (t)|2, |v±

k (t)|2, u±
k (t)v±∗

k (t), and u±∗
k (t)v±

k (t) as ensemble 
averages over the noise distribution S(t). It is important to note that in the limit as τn → 0, the above master 
equation simplifies to the white noise master equation

Fig. 2.  Noiseless decoherence, as measured by the visibility or decoherence function during a quench, is 
analyzed for δ = 0.01 with varying ramp time scales τQ and system sizes N: (a) For τQ = 250, nearly perfect 
revivals of decoherence observed between two critical points. However, decoherence is reduced when the 
magnetic field swept through the second critical point, and wiped out for very large system sizes. (b) For 
τQ = 10, there is a monotonic decay of decoherence between the critical points. This behavior is observed 
when τQ exceeds the threshold value of π/(16δ), indicating that τQ is approximately around this threshold. 
(c) The decoherence behavior during the quench for τQ = 1 is illustrated, highlighting the differences in 
decoherence loss compared to the other time scales.
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ρ̇k(t) = −i

[
H

(0)
k (t), ρk(t)

]
− ξ2

2

[
H

(1)
k ,

[
H

(1)
k , ρk(t)

]]
.� (18)

Analysis in the presence of white noise
Our numerical analysis begins by examining the effects of white noise on the system, as illustrated in Fig. 3 for 
ramp time scales: (a) τQ = 250, (b) τQ = 10, and (c) τQ = 1. As depicted in Fig. 3a, when the environment-
qubit coupling is strong, partial revivals are still observable in the presence of the white noise, and diminish by 
increasing the noise intensity ξ. While, in the absence of noise, the revivals do not decrease by increasing the 
quench time t, the partial revivals decay by increasing the quench time in the presence of the noise. Decaying the 
revivals by increasing the quench time in the presence of the noise originates from the accumulation of noise-
induced excitations during the evolution. Notably, the period of the revivals remains consistent across both noisy 
and noiseless cases. In scenarios with weak coupling between the environment and the qubit, as shown in Fig. 3b, 
noise exacerbates the monotonic decay of decoherence.

As demonstrated in Fig. 3c, when the ramp time scale decreases, indicating weaker coupling between the 
environment and the qubit, decoherence decreases and becomes less affected by noise. Furthermore, as shown 
in Fig. 3b,c, the finite-size decoherence exhibits a sharp decay at the critical points hc = ±1 for small ramp time 
scales, where the environment-qubit coupling is weak. In the case of strong coupling and large ramp time scales, 
the decay is observed specifically at hc = −1. While for strong environment-qubit coupling, the decoherence 
exhibits a maximum at hc = 1, as seen in Fig. 3a. In other words, the critical points are signaled by the finite-size 
decoherence. In the absence of noise, the decoherence exhibits exponential scaling with the size of the system at 
the critical point, i.e.,

	 D|h=±1 ∼ e−N .

In Fig. 4, we investigated the scaling behavior of the decoherence at the critical points in the presence of noise. 
We discovered that the decoherence exhibits exponential scaling with Nξ2, such that

	 D|h=±1 ∼ e−Nξ2
.

Fig. 4.  Scaling of the minimum decoherence at the critical point hc = 1 versus Nξ2 for the different ramp 
time scales: (a) τQ = 250, (b) τQ = 10, (c) τQ = 1.

 

Fig. 3.  The noisy decoherence during a ramp up the magnetic field in the presence of the white noise, for 
δ = 0.01, N = 500 and different values of τQ and noise intensity: (a) As seen, revivals of decoherence which 
appear between two critical points for the ramp time scale τQ = 250, are still partially present in the presence 
of the white noise. (b) Monotonic decay of decoherence between the critical points for τQ = 10 increases in 
the presence of the white noise. (c) Illustrates decay of the noisy decoherence during the quench for τQ = 1..
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Analysis in the presence of colored noise
The decoherence during a quench in the presence of colored (correlated) noise is plotted in Fig. 5 for different 
values of the ramp time scale. As seen in Fig. 5a, when the environment-qubit coupling is strong enough, partial 
revivals are still present in the presence of colored noise, but they decrease as the noise correlation time τn 
decreases. This means that decoherence is less affected by correlated noise than by white noise. Moreover, the 
period of the revivals remains the same in both noisy and noiseless cases. As shown in Fig. 5b, in the case of 
weak coupling between the environment and the qubit, noise enhances the monotonic decay of decoherence. 
As the ramp time scale get smaller, which is equivalent to weaker environment-qubit coupling, the coherency 
increases and affected less by noise as illustrated in Fig. 5c. Furthermore, it is clear that the critical points are 
signaled by the finite-size decoherence. In the presence of colored noise, we investigated the scaling behavior of 
the decoherence at the critical points. We found that the decoherence exhibits exponential scaling with Nξ2/τn, 
specifically,

	 D|h=±1 ∼ e
− Nξ2

τn .

In Supplemental Material more details are given on the scaling of decoherence D.
Figure 6 illustrates the scaling of the revivals (the maximum of decoherence) in the presence of white and 

colored noise for τQ = 250. As seen in Fig. 6a, the maximum of the revivals scales exponentially with the square 
of the noise intensity. Additionally, the decreasing slope of the lines indicates the accumulation of noise-induced 
excitations during the evolution, which results in the decay of the revivals as the quench time t increases. The 
scaling of the revivals with the noise correlation time τn is depicted in Fig. 6b and c for the noise intensity 
ξ = 0.003. As observed, the maximum of the decoherence increases with the noise correlation time and scales 
linearly with τn for fast noise (τn ≤ 100), while it scales exponentially for slow noise (τn ≥ 250).

Fig. 6.  Scaling of the maximums (revivals) of decoherence (DMax) at the presence of the white noise and 
colored noise for τQ = 250. (a) Linear scaling of ln(DMax) with square of noise intensity ξ2 corresponding 
to Fig. 3a. (b) Linear scaling of revivals (DMax) for noise intensity ξ = 0.003 with noise correlation τn for fast 
noise corresponding to Fig. 5a. (c) Scaling of ln(DMax) versus ln(τn) for slow noise corresponding to Fig. 5a 
for noise intensity ξ = 0.003.

 

Fig. 5.  The noisy decoherence during a quench in the presence of colored noise, with parameters δ = 0.01 
and N = 500: (a) For τQ = 250 and ξ = 0.003, revivals of decoherence observed between critical points 
in the ramp time scale τQ = 250 are also partially visible in the presence of colored noise. (b) For τQ = 10 
and ξ = 0.01, there is a monotonic decay of decoherence between critical points, which becomes more 
pronounced with an increase in τn. (c) For τQ = 1 and ξ = 0.012, the decay of noisy decoherence is shown 
for a quench with τQ = 1.
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Non-Markovianity
The revivals in decoherence of the central spin through the quench signals non-Markovianity of the dynamics. 
Here, to study the features of this behavior we quantify deviation of this dynamics from a Markovian one by 
computing the measure proposed in Ref.66.

The measure is defined based on the rate of change in the trace distance between two initially distinguishable 
states ρ1(0) and ρ2(0) for a given process that we show as Φ(t). Indeed, for a Markovian process any two states 
become increasingly similar over time. Therefore, the measure is computed based on the deviation from this 
property as

	
N =

∫

>0
dt d

dt
D[Φ(t)ρ1(0), Φ(t)ρ2(0)],� (19)

where the integration is only performed for the time intervals that the integrand is positive. Here,

	
D[ρ1, ρ2] = 1

2∥ρ1 − ρ2∥1

is the trace distance with ∥ · · · ∥1 standing for the trace norm67. The above quantity must be maximized for 
different initial states. For the pure dephasing of a central spin that we are interested in this work the superposition 
state already is the optimal state.

The results for the measure of non-Markovianity are shown in Fig. 7 for both white and colored noise cases. 
In the case of white noise, we observe a monotonic decay in the non-Markovianity of the process as the noise 
strength increases. For large enough ξ values the process becomes fully Markovian. In order to understand the 
role of finite noise correlation time, we compute the measure in Eq. (19) with different τn values when the noise 
strength is fixed to ξ = 0.003. Interestingly, the measure exhibits a linear growth with the noise correlation time.

Fig. 7.  The measure of non-Markovianity for the white, as a function of the noise strength and the inset shows 
the measure of non-Markovianity for the color noises versus the correlation time. In the inset panel the dashed 
black line is the best linear fit to the data. Here, we have ξ = 0.003.
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Summary and conclusion
Characterizing noisy signals is crucial for understanding the dynamics of open quantum systems, enhancing our 
ability to control and engineer them effectively. This work investigated the impact of noisy environmental spin 
systems (ESSs) on the decoherence of the central qubit as a sensitive noise estimator compared to other methods. 
We specifically focus on how noise in a time-dependent external magnetic field influences the coherence 
dynamics of a central spin coupled to a spin chain, particularly as the ESS is driven across its quantum critical 
point (QCP).

By extending the central spin model to incorporate stochastic variations in the external magnetic field, we 
demonstrate that noise not only amplifies decoherence resulting from the nonequilibrium critical dynamics of 
the environment but also profoundly affects the system’s temporal evolution. Our numerical calculations reveal 
that decoherence exhibits exponential scaling at the critical points with both the square of the noise intensity 
and the noise correlation time. This contrasts with the noiseless case, where decoherence revivals occur when 
the chain-qubit coupling is sufficiently strong; however, these revivals diminish in the presence of noise, scaling 
exponentially with white noise intensity and linearly or a power law in the case of colored noise, depending on 
the correlation time. It should be emphasized that, both colored noise and white noise are classified as Gaussian 
noise, and a more comprehensive understanding could be achieved by exploring the effects of non-Gaussian 
noise on the decoherence factor.

Additionally, our exploration of non-Markovianity reveals that it decreases with the square of the noise 
intensity but increases linearly with the noise correlation time, highlighting the complex interplay between 
noise and memory effects in quantum systems. These findings underscore the importance of accounting for 
noise to model and predict quantum system behavior under realistic conditions accurately. They also offer new 
perspectives on the challenges and opportunities in quantum control, decoherence mitigation, and potential 
applications in noise spectroscopy of external signals47–50.

Last but not least, interference phenomena exemplified by the collapse and revival of the decoherence 
function serve as a direct evidence of entanglement dynamics and information flow between the central spin 
and the chain. But from a fundamental point of view the interference effect alone is not sufficient to rule out a 
classical description of the environment68; collapse and revival phenomena can indeed be generated by coupling 
the qubit to an engineered classical field69. Therefore, to definitively demonstrate the quantum nature of the 
system, a more fundamental approach is needed, similar to quantum-witness equality70 and the Leggett-Garg 
test50,69. Therefore, the present work anticipates a systematic exploration of entanglement dynamics and quantum 
coherence using stronger nonclassicality criterion for distinguishing quantum behavior from classical effects in 
various conditions.

The quick advancements in the realization of analog quantum simulators indicate that we might have the 
opportunity to experimentally verify our predictions. Noise-averaged measurements are anticipated to be entirely 
feasible with current experimental techniques and are expected to provide significant insights29–31,47–49. Ramped 
magnetic quenches, conducted in the presence of amplitude-controlled noise, have already been successfully 
implemented with trapped ions simulating the transverse-field XY chain71. Additionally, the foundational aspect 
of experimental investigation−detection and characterization of decoherence−is also established, as evidenced 
across various platforms for TFI-type chains with finite-range interactions, including trapped ions72–74, Rydberg 
atoms75, and NV centers76. These advancements, along with recent progress in quantum-circuit computations 
on NISQ devices77, suggest a promising avenue for exploring decoherence following noisy quenches in the 
nearest-neighbor interacting TFI chain discussed in this paper.
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