
Valley crossed Andreev reflection 
in graphene periodic line defect 
superlattice junctions
Chongdan Ren1, Minglei Sun2, Hongyu Tian3 & Sake Wang4

We study the crossed Andreev reflection and the nonlocal transport in the staggered graphene/
superconductor/periodic line defect superlattice (LDGSL) junctions. The staggered pseudospin 
potential in the left graphene electrode suppress the local Andreev reflection, while the elastic 
cotunneling of K′ valley electrons is inhibited due to the exclusive rightward motion of K valley 
electrons in the right LDGSL electrode, thereby enabling the realization of dominant intravalley 
crossed Andreev reflection for incident electrons from the K′ valley. Meanwhile, the intravalley elastic 
cotunneling occurs while both local Andreev reflection and crossed Andreev reflection are completely 
eliminated for incident electrons in the K valley. Furthermore, the probability of intervalley crossed 
Andreev reflection scattering is significantly lower than that of intravalley CAR scattering across a 
broad range of incident angles and electron energies. Our results are helpful for designing the flexible 
and high-efficiency Cooper pair splitter based on the valley degree of freedom.
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Quantum entanglement among microscopic particles has garnered significant attention due to its intrinsic 
importance and prospective applications in quantum information technologies1. Superconductors are 
considered natural sources of entangled electrons, as Cooper pairs consist of two electrons with interdependent 
spin and momentum characteristics2–9. Through the process of Cooper pair splitting, spatially separated spin-
entangled electrons can be generated at the junction of a conductor and a superconductor. This mechanism’s 
time-reversed counterpart is known as crossed Andreev reflection (CAR) or non-local Andreev reflection. CAR 
represents a nonlocal process that converts an incoming electron from a voltage-biased lead into an outgoing 
hole in a spatially separated grounded lead via Cooper pair formation within the grounded superconductor10,11. 
The efficiency of CAR serves as a direct indicator of the effectiveness of Cooper pair splitting.

The realization of the CAR has garnered significant attention in both theoretical and experimental 
researchers12–25. However, the emergence of CAR is generally accompanied by competing processes such as local 
Andreev reflection (LAR), normal reflection (NR), and elastic cotunneling (ECT). The LAR process converts an 
incoming electron from one electrode into a hole within the same electrode via Andreev reflection. In contrast, 
NR occurs when an electron is simply reflected at the interface without Andreev conversion, while ECT refers 
to the coherent transfer of an electron from one electrode to the other without forming a Cooper pair. These 
competing processes can obscure the detection of CAR, leading to a complete cancellation of the conductivities 
associated with ECT and CAR. This necessitates the use of noise measurements to identify the distinct signature 
of the CAR process in superconducting heterostructures.

Recent advancements have proposed methods to enhance CAR signals by mitigating both ECT and LAR 
processes through various types of leads, including normal metals, ferromagnetic metals, antiferromagnetic 
metals, and topological insulators26–34. For instance, perfect CAR has been achieved in hybrid junctions formed 
by n-type and p-type semiconductors through band-structure-induced energy filtering6. Specialized circuits 
utilizing helical edge states of topological insulators have been designed to achieve perfect CAR27. Additionally, 
a mechanism for achieving perfect CAR has been theoretically proposed in superconductors situated between 
two antiferromagnetic layers, with one being electron-doped and the other hole-doped32.

Furthermore, CAR can be realized in graphene/superconductor/graphene junctions by exploiting the 
valley degree of freedom35–40. Initial investigations into graphene-based devices aimed to achieve perfect 
CAR primarily focused on the zero density of states at the Dirac point35. In a zigzag graphene nanoribbon/
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superconductor/nanoribbon junction, exclusive CAR can be attained with complete suppression of both ECT 
and LAR, attributable to the valley selection rule in even zigzag nanoribbons37. The introduction of a staggered 
pseudo-spin potential and intrinsic spin-orbit coupling within graphene enables perfect CAR for electrons with 
a designated spin-valley index40.

In this study, we propose a distinct mechanism to achieve valley-dependent dominant CAR in proximitized 
graphene/ superconductor/ periodic line defect superlattice (LDGSL) junctions. The lattice structure of the 
LDGSL consists of extended line defects that are periodically embedded along the y-direction, forming a 
superlattice41. Due to this periodicity, ky  remains a conserved quantum number. In Fig. 1a, we illustrate one 
such extended line defect, while in reality, they repeat periodically along y. The heterojunction extends along 
the x-direction, where electronic transport occurs. The dispersion of the LDGSL for ky = 0 is shown on the 
right side of Fig. 1b. Notably, the LDGSL functions as a valley filter by utilizing valley-dependent transmission 
properties near the bottom conduction band edge, where electrons near the K and K′ points exhibit distinct 
group velocities. This feature allows the LDGSL to selectively permit rightward propagation for electrons 
(holes) in the K (K′) valley and leftward propagation for electrons (holes) in the K′ (K+) valley. In our junction 
configuration, the left graphene electrode features a pseudospin staggered potential induced by the proximity 
effect of the substrate42–47. We first demonstrate that if the left graphene electrode is gapless, LAR diminishes the 
occurrence of CAR. Upon introducing the staggered pseudospin potential, the left graphene electrode becomes 
insulating for the hole band, enabling exclusive CAR for K′ electrons while completely suppressing LAR and 
ECT. Conversely, ECT can manifest for K electrons while both LAR and CAR are suppressed. Moreover, both 
CAR and ECT processes are predominantly governed by intra-valley scattering. Additionally, we analyze the 
relationship between scattering probabilities and the incident angle θ, demonstrating that both inter-valley and 
intra-valley scattering probabilities rise with increasing θ, while intra-valley scattering probabilities considerably 

Fig. 1.  (a) Schematic of the proposed proximitized staggered graphene/superconductor/LDGSL junction. The 
shaded green area in the right LDGSL region indicates the unit cell of the superlattice, with ⃗b1(2) as primitive 
vectors. N  denotes the transverse dimension of the LDGSL unit cell, while its longitudinal dimension is 2a

. The junction is translationally symmetric along the y-axis with periodicity 
∣∣⃗b2

∣∣. Hopping energies τ1 and 
τ2 represent the carbon-carbon bonds around the line defect. A external bias voltage V  is applied to the left 
graphene electrode, while the superconductor and the right LDGSL are grounded (i.e., their external bias 
voltage is set to zero), with the chemical potential µR tunable via gate voltage. (b) Band structure showing the 
dispersion of electrons (solid black lines) and holes (dashed red lines) in the left proximitized graphene and 
the right LDGSL for fixed ky = 0. The expanded unit cell in the left proximitized graphene (shaded green 
region above) introduces additional subbands. The electron gap in the left proximitized graphene spans from 
−µL − ∆ to −µL + ∆, and the hole gap ranges from µL − ∆ to µL + ∆, where ∆ is the on-site staggered 
potential and µL is the chemical potential. Arrows indicate group velocity directions for each state. The 
solid red circle represents K  electrons, while solid and hollow blue circles denote K′ electrons and holes, 
respectively. For incident K′ electrons within the hole gap range, LAR is suppressed; these electrons can only 
tunnel to K′ holes via intra-valley CAR. In contrast, incident K  electrons can tunnel to K  electrons through 
inter-valley ECT. (c) The original Dirac points K  and K′ at [±4π/3a, 0] in pristine graphene are shifted to K̂  
and K̂′ in the superlattice at [±π/3a, 0].
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surpass those of inter-valley scattering. This indicates that dominant CAR with incident K′ valley electrons can 
be achieved across a wide range of incident angles and energy.

The structure of the remainder of the paper is as follows. Section 2 presents the proposed structure and 
establishes the theoretical framework for calculating valley-related scattering probabilities as well as local 
and nonlocal conductances. In Section 3, we provide numerical results regarding intra-valley and inter-valley 
scattering for the NR, LAR, ECT, and CAR processes, along with the local and nonlocal conductance within the 
proposed structure. Finally, Section 4 offers a brief summary of the findings.

Theoretical model
In Fig.  1a, we present a schematic representation of the proximitized graphene /superconductor/LDGSL 
configuration within the xy plane, with junction interfaces located at x = 0 and x = L, where electronic 
transport is directed along the x-axis. The staggered potential ∆ in the left graphene is attributed to the 
substrate, while the superconducting gap ∆0 in the central region is induced by a bulk superconductor via 
the proximity effect. The right section features a one-dimensional LDGSL superlattice, created by periodically 
embedding extended line defects along the y direction in pristine graphene. The unit cell size of the LDGSL in 
the x direction measures 2a with a being the graphene lattice constant, while the dimension in the y direction 
is characterized by the integer N 41. The left pristine graphene sheet is infinitely wide along the y direction. 
Due to the distinct lattice vectors of the LDGSL compared to graphene, the original Dirac points K  and K′ 
at [±4π/3a, 0] in pristine graphene shift to the new Dirac points K̂  and K̂′ in the superlattice, now located at 
[±π/3a, 0], as illustrated in Fig. 1c. The hopping energies τ1 and τ2 between nearest-neighbor lattice points on 
the line defect within the tight-binding model may differ from the uniform nearest-neighbor hopping energy t 
of pristine graphene, indicating lattice distortion surrounding the line defect.

The following model Hamiltonian is employed here to describe the system:

	 H = HL + HR + HS � (1)

where HL describes the left proximitized graphene with straggered potential, HS  denoted a superconducting 
graphene caused by a bulk superconductor through proximity effect, and HR stands for the LDGSL electrode. 
In the tight-binding representation, the Hamiltonians HL, HS  and HR are defined as follows:

	
HL = − t

∑
⟨i,j⟩

c†
i cj +

∑
i

∆ξci c†
i ci−µL

∑
i

c†
i ci � (2)

	
HS = − t

∑
⟨i,j⟩

c†
i cj +

∑
i

∆0
(
c†

i↑c†
i↓ + ci↓ci↑

)
− µS

∑
i

c†
i ci � (3)

	

HR = −t
∑
⟨i,j⟩

c†
i cj −


τ1

∑
i

d†
i,Adi,B + τ2

∑
⟨i,α⟩

c†
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
 − µR

∑
i

c†
i ci� (4)

where c†
i  and d†

i,α represent the creation operators for an electron at lattice site i and in sublattice α of the 
line defect, respectively. ⟨...⟩ refer to nearest-neighbor sites. The hopping integral is represented by t, and ∆ 
denotes the on-site staggered potential, where ξci = 1 corresponds to sublattice A and ξci = −1 to sublattice B
. ∆0 refers to the induced superconducting pairing. Additionally, τ1(2) signifies the hopping energy associated 
with carbon-carbon bonds surrounding the line defect, and µL(S,R) represents the Fermi level, which can be 
modulated through gate voltage technology. Note that the line defect atoms and the surrounding graphene 
atoms in the right electrode share the same chemical potential µR, as they are part of the same electronic system.

The valley-dependent transmission coefficients are determined utilizing the S-matrix method, a widely 
recognized approach in the field of mesoscopic physics48. In this investigation, we numerically implement 
the S-matrix method through KWANT49, a Python library specifically designed for calculating the S-matrix 
of scattering regions within tight-binding frameworks. The model previously defined is compatible with the 
KWANT methodology for S-matrix computations. The scattering matrix τ  yields the scattering amplitude 
τ ij

k1k2,αβ , which describes the transmission from the incoming k2 state of particle type β in lead j to the 
outgoing k1 state of particle type α in lead i50. Subsequently, the valley-dependent transmission coefficients can 
be derived using the following formula:

	
T ij

K1K2,αβ =
∑

k1∈K1

∑
k2∈K2

∣∣τ ij
k1k2,αβ

∣∣2
� (5)

where T LL
K1K2,ee and T LL

K1K2,he denote the valley-dependent NR and LAR processes, respectively, while 
T RL

K1K2,ee and T RL
K1K2,he refer to the valley-related ECT and CAR processes. Furthermore, the condition K1

=K2 signifies intravalley scattering, whereas K1 ̸= K2 indicates intervalley scattering.
Based on the Blonder-Tinkham-Klapwijk framework51, the valley-dependent normalized conductance 

matrix at a bias voltage V  and at zero temperature can be expressed as follows:
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σij
K1

(eV ) = e2

h
×

∑
ky,K2(=K,K′)

(
δijN j

K1,e − T ij
K2K1,ee + T ij

K2K1,he

)

∑
ky

N j
K1,e(ky)

� (6)

where N j
K1,e represents the number of transverse modes associated with the K1 valley in the left graphene at 

the transverse wavevector ky . The terms σij
K1

 correspond to the local conductance when i = j and the nonlocal 
conductance when i ̸= j. Additionally, ky  serves as a conserved quantum number due to the translational 
symmetry along the y-axis. The Fourier transformation is performed using the wraparound function in Kwant.

Numerical results
In our calculations, we use the superconducting gap ∆0 = 0.001 eV as the unit of energy. µS  is taken as 
µS = 20∆0. Similarly, µR is also set to 20∆0, ensuring that the energy range under consideration remains 
within the flat lowest conduction band and the corresponding hole band, thereby excluding minor dips near the 
K and K  points from transport. µL is designated as 0.5∆0. Suppose a variation of less than 5% in the hopping 
terms τ1 and τ2, and here we adopt τ1 ≈ τ2 ≈ t = 2.8 eV52. The length of the superconducting region is set to 
L = 1500a, while the width of a unit cell of the LDGSL is set to N = 32.

Firstly, we consider the left graphene without the pseudospin staggered potential, i.e., ∆ = 0, resulting 
in gapless and linear dispersion for both electrons and holes in graphene. Fig.  2 illustrates the intra- and 
intervalley scattering spectra for NR, LAR, CAR, and ECT processes as a function of incident energy E at 
ky = 0 (i.e., normal incidence with θ = 0). For the ECT process, only the intra-valley transmission T RL

KK,ee is 
significant, while other processes can be disregarded (see Fig. 2c). This phenomenon can be attributed to the 
valley filtering effect, which originates from the presence of a single rightward-propagating mode in the K valley 
within the right LDGSL electrode. In the case of LAR, intervalley scattering associated with both the K and K  
valleys (T LL

K′K,he and T LL
KK′,he) occurs within the energy range 0 < E < ∆0, as illustrated in Fig. 2b. Notably, 

T LL
K′K,he is less than T LL

KK′,he due to the ability of K valley electrons to tunnel into the right LDGSL electrode, 
whereas K  valley electrons can only be normally reflected (see Fig. 2a). In contrast to LAR and ECT, all intra- 
and intervalley CAR processes can be neglected, as demonstrated in Fig. 2d. Thus, this configuration employs 
the right LDGSL electrode to block tunneling of K  valley electrons. Additionally, for CAR to take place, it is 
essential to suppress LAR process occurring in the left electrode.

The LAR process can be effectively suppressed by employing either n-type or p-type graphene. This 
suppression relies on the principle that an electron cannot be reflected as a hole within the same electrode if the 
hole band is artificially rendered insulating. When a pseudospin staggered potential ∆ ̸= 0 is introduced, an 
energy gap of 2∆ emerges. This gap for electrons extends from −∆ − µL to ∆ − µL, while the corresponding 
gap for holes spans from −∆ + µL to ∆ + µL, as shown in Fig. 1b. Within the energy range defined by the 
hole band gap, LAR is absent for incident electrons. In Fig. 3, we consider the scattering spectra under a finite 
pseudospin staggered potential of ∆ = 0.25∆0, with other parameters consistent with those in Fig.  2. As 
anticipated, LAR is zero within the energy range 0.25∆0 < E < 0.75∆0 and nonzero outside this interval, as 
demonstrated in Fig. 3b. Furthermore, nonlocal ECT processes associated with intravalley scattering T RL

K′K′,ee 

Fig. 2.  Plots of the transmission probabilities for intra- and intervalley NR (a), LAR (b), ECT (c), and CAR 
(d) as functions of the incident electronic energy E at an incident angle of θ = 0, specifically for the condition 
where ∆ = 0. TK1K2  denotes the transmission probability of K2 valley particles to K1 valley particles.
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are prohibited, while those related to intervalley scattering T RL
KK′,ee are minimal (refer to Fig. 3c). Consequently, 

CAR can occur in the injection of K  electrons T RL
K′K′,he without LAR and ECT (shown in Fig. 3d), even outside 

the superconducting gap, as depicted in the inset of Fig. 3d. In contrast, for incident K electrons within the 
energy gap of hole gap, both LAR processes (T LL

K′K,he and T LL
KK,he) as well as intra-valley CAR T RL

KK,he are 
zero, while inter-valley CAR T RL

K′K,he is negligibly small, leaving only a finite intra-valley ECT T RL
KK,ee. Thus, by 

analyzing the carrier type in the right LDGSL electrode, it is possible to ascertain whether the incident electron 
is a K or K  valley electron. These processes are clearly illustrated in Fig. 1b, offering a visual representation of 
the mechanisms discussed above. Furthermore, unlike the previous scenario where ∆0 = 0, the intervalley NR 
processes T LL

K′K,ee and T LL
KK′,ee occur alongside T LL

K′K′,ee from both valleys, as demonstrated in Fig. 3a.
To gain a more comprehensive understanding of the interplay between CAR and ECT as a function of the 

angle of incidence, we present the inter-valley and intra-valley CAR and ECT probabilities within the (E, θ) 
parameter space, as depicted in Fig. 4. When the energy of the incident electron at the left electrode falls within 
the energy gap of the corresponding hole and the angle of incidence is near θ = 0, the probabilities for both 
intra- and inter-valley CAR and ECT exhibit minimal variation, with intra-valley scattering probabilities 
markedly surpassing those of inter-valley scattering, as illustrated by the comparisons between Fig. 4a–d. This 
phenomenon suggests that when electrons from the K  valley impinge upon the left electrode, nearly ideal CAR 
occurs at the right LDGSL electrode, while ECT is observed for electrons originating from the K valley. As the 
incident angle θ increases, the energy ranges favorable for intra-valley CAR and ECT broaden. This behavior is 

attributed to the critical angle for LAR, defined by θc = arcsin

√√√√∣∣(E − µL)2 − ∆2
∣∣
/(

(E + µL)2 − ∆2
)

 

, where θc represents the angular threshold beyond which LAR ceases to occur53. Concurrently, both intra-
valley and inter-valley scattering probabilities increase with θ. The enhancement of inter-valley CAR and ECT 
scattering can be attributed to the reduced effective separation of the electronic states near the two valleys as 
ky  becomes non-zero in the band structure of the right LDGSL electrode with increasing incident angle θ. The 
increase in intra-valley scattering with θ can be elucidated by the upward shift of the conduction band minimum 
in the left graphene, which facilitates a more effective alignment of the conduction band slopes between the two 
electrodes.

Finally, We examine both local and nonlocal conductance as shown in Fig.  5. The local conductance for 
incoming electrons from the K and K  valleys exhibits a notable reduction as the bias voltage increases from 
V = 0. Importantly, within the energy interval 0.25∆0 < E < 0.75∆0, where no holes are present, the 
local conductance does not converge to zero, as typically observed in two-terminal graphene/superconductor 
junctions; rather, it indicates the contribution of nonlocal processes. Furthermore, the LAR within the energy 
range 0 < E < 0.25∆0 corresponds to retro-Andreev reflection, whereas the LAR within the energy range 
0.75∆0 < E < ∆0 is associated with specular Andreev reflection. Regarding nonlocal conductivity, for incident 
electrons in the K  valley, the conductivity remains relatively constant within the energy gap, facilitating nearly 
ideal CAR. However, as the energy of the incident electrons deviates from the energy gap, the CAR decreases 
towards zero. Conversely, for electrons originating from the K valley, the nonlocal conductivity remains largely 

Fig. 3.  Plots of the transmission probabilities for intra- and intervalley NR (a), LAR (b), ECT (c), and CAR 
(d) as a function of the incident electronic energy E at an incident angle of θ = 0, under the condition where 
∆ = 0.25∆0. TK1K2  denotes the transmission probability of K2 valley particles to K1 valley particles. Aside 
from µL = ∆0, all other parameters in the inset of panel (d) are consistent with those in panel (d).
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stable both inside and outside the energy gap. Within the energy gap, the total conductivity is low due to the 
cancellation between CAR and ECT, while outside the energy gap, it approaches a value determined primarily 
by ECT.

Conclusion
In conclusion, this investigation presents an new approach for achieving valley-dependent dominant CAR in 
straggered graphene/superconductor/LDGSL junctions. By employing a staggered pseudospin potential and 
the valley-filtering effect of the LDGSL, we effectively suppress LAR and ECT, thereby facilitating exclusive 
intra-valley CAR. The results indicate that intra-valley CAR scattering is predominantly unaffected by the angle 
of incidence and is considerably greater than inter-valley CAR scattering. These findings make a important 
contribution to the understanding of electron transport phenomena in defect-based junctions and highlight the 
potential for harnessing valley-dependent physics within quantum information technologies.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.
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Fig. 5.  Normalized local (a) and non-local (b) conductance spectra are presented for the K  electrons (blue 
dotted line), K′ electrons (red dash-dot line), and the total conductance (black solid line).

 

Fig. 4.  (a) Intra-valley CAR probabilities for incident K′ electrons, denoted as T RL
K′K′,he, in the (E, θ) space; 

(b) Inter-valley CAR probabilities for incident K  electrons, represented as T RL
K′K,he, in the (E, θ) space; (c) 

Intra-valley ECT probabilities for incident K  electrons, denoted as T RL
KK,ee, in the (E, θ) space; (d) Inter-

valley ECT probabilities for incident K′ electrons, represented as T RL
KK′,ee, in the (E, θ) space. The parameters 

are consistent with those presented in Fig. 3.
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