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Many tunnels in Western China are excavated through soft and water-rich rocks. Tunnel excavation in 
such regions is highly susceptible to disasters such as collapses and water and mud inrush. To control 
the risks associated with tunneling, this paper proposes a risk evaluation model applicable to soft 
and water-rich tunnels. First, geological data corresponding to typical soft and water-rich tunnels 
and related cases were analyzed. By analyzing the natural geology, tunnel characteristics, and 
construction management, ten influencing factors were selected as the risk evaluation indicators, and 
a risk evaluation hierarchy was established. Second, the improved combination weight method was 
applied to obtain the optimal weights of each indicator. A cloud model was then used to visualize the 
final risk level and establish an evaluation system for soft and water-rich surrounding rocks. Finally, the 
developed evaluation model was practically applied to a railway tunnel in Western China. The results 
were highly consistent with the actual situation and could play a guiding role in the construction 
process. This confirmed the reliability and applicability of the proposed model, which can also be used 
as a reference for other similar tunnels.
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Since the turn of the 21st century, an increasing number of tunnels have been constructed worldwide. These 
tunnels can be characterized by their long distance, large buried depth, high pressure groundwater-rich, high 
in-situ stress, frequent disasters, and complex structure1. In particular, the high-pressure water-rich tunnels 
in the western mountainous regions of China, such as Yunnan, Guizhou, and Sichuan, are often associated 
with disasters such as large deformation, landslides, and water and mud inrush2. The Dayaoshan Tunnel on the 
Beijing–Guangzhou Line has frequently been caught by accidents such as gushing mud and landslides, resulting 
in huge economic losses. The old Tanna Tunnel in Japan had a maximum surge of 28.8 × 103 m3/d, and it had 
taken 16 years to construct3. Hence, it is important to mitigate the construction risks associated with tunneling 
in soft and water-rich rocks and to promote the safety and efficiency of construction.

The main causes of disaster in soft water-rich tunnels are the high water enrichment and high in-situ stress. Ou 
et al.4 analyzed data pertaining to accidents in deep tunnels. Accidents with the highest probability of occurrence 
were found to be collapses, large deformations, water and mud inrush, and leakage of hazardous gases. The 
proportion of water and mud inrush accidents was up to 45%, whereas collapses and large deformations 
accounted for 35% of the accidents5. Li et al.1 analyzed the mechanism of the occurrence of water and mud 
inrush disasters in terms of the disaster source, water-surge channel, and water-isolating layer. The main reason 
for the occurrence of a water surge is believed to be the interaction between the movement of the front-end 
hazard source and the disturbance due to tunnel construction. Li2 performed a risk assessment of the Ganzhuang 
Tunnel by studying the breakage mechanism of carbonaceous rock. The thickness of the safe water barrier was 
proposed through the cusp mutation theory. Qin et al.6 analyzed the disaster-causing mechanisms of excavation 
disturbance and heavy rainfall on tunnel collapse by analyzing typical soil layers. Excavation disturbances caused 
the soil shear stresses to drop, and the heavy rainfall induced the collapse of the penetration surface above 
the tunnel. Shi et al.7 categorized coal mine water inrush accidents into four types by analyzing water inrush 
events in Chinese coal mines: 92.3% of the gushing water was from the limestone aquifer, 4.9% from surface 
water, and 1.4% each from the sandstone aquifer and impact water. Wu et al.8 found a relationship between the 
surrounding rock and surge water through geological investigation and mineral experimental analysis. When 
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the surrounding rock contains more soluble minerals and has a poor lithology, excavation disturbance can easily 
trigger a sudden water disaster. For the large deformation of soft rocks, Jeon et al.9 analyzed the effects of faults, 
surrounding rock, and grouting on tunnel stability through equal scaling experiments on tunnel faults. He et 
al.10 pointed out that common mountain tunnel boring methods can cause large deformation, soft rock sinking 
near tunnel vaults, and cracks in the lining. The idea of risk compensation was applied to the Muzhailing and 
Changning Tunnel projects to study the control mechanism under the large deformation of soft rocks.

In most of the current catastrophic accidents, debris flow, landslides, and large deformations have been 
studied more often, and the effects of hazardous gases are seldom considered. Leakage of hazardous gases 
in plateau tunnels occurs from time to time, such as in the Longquanshan and Wushaoling tunnels, where a 
hazardous gas leakage had occurred, causing scheduled delays11. A gas explosion in the Zipingpu Tunnel caused 
44 deaths and 11 injuries, with economic losses amounting to $20.35 million12. Therefore, in this study, a risk 
assessment model was constructed under actual engineering conditions to consider characteristic indicators 
such as hazardous gases.

The use of risk modeling has grown rapidly since its application to engineering evaluation. The concept of 
quantitative risk assessment was introduced by Kaplan in 198113. In 2014, Aven et al.14 developed a new risk 
assessment model by adding the k dimension, which introduced the concept of an iterative risk response system15. 
The purpose of risk evaluation is to balance the level of risk with the cost and to control the risk in a reasonable 
interval16. This idea enhances the practical application of risk evaluation. Eskesen et al.17 put forth “Guidelines 
for Risk Management in Tunnels,” where seven risk evaluation models for road and undersea tunnels have been 
proposed. Later, Browne et al. developed a systematic organization structure for risk evaluation systems and 
management norms18.

Model construction strongly depends on the choice of data and algorithms. Fu et al.19 established a risk 
assessment system for deep foundation pits using the Apriori algorithm to mine the correlation weights among 
the influencing factors. Zhao et al.20 combined the multi-risk decision analysis method with complex networks 
and applied it to the risk evaluation of underground spaces. Xu21 employed a k-value clustering algorithm to 
evaluate the risk of urban flooding (k is the number of clusters in the cluster, and k = 5). Gorsevski et al.22 used 
a clustering algorithm for the risk assessment of large deformations in landslides. Papadopoulou et al.23 used a 
logistic regression algorithm to assess the risk of karst tunnel collapse. However, some of the algorithms require 
high quality and large amounts of data and are not very generalizable; in addition, most of the risk studies based 
on objective assignment algorithms ignore the coupling relationship between risks24–26. Chen et al.27 explored 
the coupling relationship of the risks during subway construction using a small amount of data through an 
improved empowerment method and achieved remarkable results. Improved combinatorial weight algorithms 
have received increasing attention28. Lin et al.29 analyzed data through a combination weight algorithms and 
constructed a risk evaluation model for water and mud inrush in karst tunnels based on a cloud model. Zhang et 
al.30 established a risk evaluation system for urban flood disasters through a game theory combination weighting 
algorithm. However, most of the current portfolio empowerment models only consider the overall risk during 
tunnel construction; research on the dynamic risks in each section of the tunnel during the construction process 
is lacking. Hai et al.31 realized the dynamic evolution of the risk during road tunnel construction through the 
Dirichlet al.location algorithm and the NK model. Xue et al.26 utilized convolutional neural network layers for the 
dynamic risk assessment of data collected from 13 highway tunnels in Beijing and pointed out the inadequacies 
of the dynamic analysis in risk assessments. Risk evaluation is temporal and spatial: as a project progresses, the 
original risk evaluation system does not receive good feedback32.

In this study, a risk evaluation model was constructed for soft and water-rich surrounding rock plateau 
tunnels, transforming qualitative indicators into quantitative ones to assess the dynamic risk level in complex 
environments. The model can help a construction unit to understand the risks in the construction area in time 
and accordingly optimize the construction plan. Three main evaluation objects are considered in the model: 
natural geological factors, tunnel design parameters, and construction safety management. The special geological 
formations, hazardous gases, and other characteristics of western tunnels were considered in conjunction with 
project characteristics. Ten evaluation indicators were used to determine the optimal dynamic weights of each 
indicator in different intervals using an improved combinatorial weight method. Finally, the risk level in each 
tunnel section was established through the cloud modeling method. The model was applied to a tunnel located 
in the western region of China, and its feasibility and accuracy were demonstrated through the results.

Overview of the tunnel project
The tunnel is located in Ganzi Prefecture, Sichuan Province, China, which is situated on the Western Sichuan 
Plateau, with an absolute altitude of more than 4000 m. The tunnel mileage is from D1K470 + 908 to D1K480 + 874, 
and its length is 9975 m, with one side uphill. The maximum buried depth is approximately 500 m, and the tunnel 
arrangement is a single hole with double lines plus an inclined shaft. The entrance is in a steep hillside with poor 
slope stability and is prone to collapsing downhill during the rainy season. The construction environment is 
poor due to the development of adverse geology along the entire route and the distribution of electric towers 
and other structures around the import and export stacking yard. Figure 1 shows the construction topography.

The surface is covered by Quaternary residual soil, pebble soil, and coarse rounded gravel soil of the Upper 
Pleistocene floodplain. The overburden has a small thickness, and the bedrock is exposed sporadically. The 
tunnel area is covered by Quaternary soil and underlying Triassic soil layer. The surrounding rock is mainly of 
grades IV–V, with an overall poor lithology. The tunnel crosses multiple faults and folds. The terrain is deeply 
cut, showing tectonic denudation of alpine landforms, with large ups and downs, a relative height difference of 
400–900 m, and a natural slope of 30°–50°. The tunnel mainly passes through unequal-thickness interbedded 
layers of carbonaceous slate and sandstone, with pore water and bedrock fissure water developing in the loose 
stockpile layer below the tunnel area. Figure 2 shows the geological profile.
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The tunnel is constructed in a horseshoe shape, primarily utilizing the micro-step method for excavation, 
with additional support from full section excavation and other techniques. The micro-step excavation method 
involves dividing the excavation process into several smaller steps. Each step has a relatively small excavation 
volume and area, and corresponding support or reinforcement measures are implemented following each 
excavation. This approach allows for a gradual advancement of the excavation while maintaining the highest 
safety factor. A cross-section of the tunnel is illustrated in Fig. 3.

Construction risk in the project area
The tunnel is a typical high-risk water-rich deep-buried plateau tunnel. The tunnel area crosses several folds and 
fractures, and the terrain is deeply cut. Passing through many streams and accompanied by torrential rains in 
summer, the tunnel has poor air circulation conditions, and construction workers have frequently suffered from 
high altitude sickness and sunburn. The winters here are cold with frozen water and frozen equipment. The exit 
D1K480 + 874 section is close to Donglai Village Bridge, with complicated construction conditions. The tunnel 
passes through water-rich carbonaceous slate and sandstone interlaced with interlayers of unequal thickness, 
which are prone to landslides, large soft-rock variations, water and mud inrush, and other disasters.

Fig. 3.  Cross-section of the tunnel.

 

Fig. 2.  Geological map of the tunnel area.

 

Fig. 1.  Topographic map of tunnel construction.
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Collapes: The risk of landslide is at the entrance and exit sections of the tunnel. The entrance section 
D1K470 + 908 is covered with gravel soil, and the exit section D1K480 + 874 is covered with gravel soil and 
pebble soil. The tunnel is thinly overburdened with sporadic bedrock outcrops. The terrain is heavily biased. 
Heavy rains are frequent from June to September each year, and the probability of landslides during excavation 
is high. Landslide risk was in the entire tunnel dark hole section, especially the fracture zone section of the 
fault, the shallow buried section of the tunnel entrance and the V level surrounding rocks section. During the 
construction of the entrance section D1K470 in the tunnel area, a small landslide occurred, see Fig. 4.

Water and mud inrush: The climate in the tunnel area is between continental monsoon plateau climate 
and sub-cold humid climate. As the tunnel area is located in a narrow riverbed with a small drop in the water 
level, it is prone to waterlogging. The stratigraphy is a water-rich peripheral rock, and groundwater collection 
is dominated by pore water from loose rocks and bedrock fissure water. The terrain crosses several geological 
zones. The risk of sudden mud and water surges is in the fault fracture zone section of the entire tunnel. Surges 
and seepages are common during construction in the tunnel area, see Fig. 5.

Large deformations in soft rock: Soft rock large deformation refers to the phenomena observed in tunnel 
or underground engineering within soft rock geological conditions. Due to the inherent characteristics of the 
rock mass, as well as factors such as ground stress conditions and construction disturbances, the surrounding 
rock may experience significant plastic deformation or creep. This deformation can exceed 20 cm. The large 
deformation is mainly in the soft rock section under high stress. The length of the medium-large deformation of 
the entire tunnel reaches 690 m, accounting for 6.9%, and the slight large deformation reaches 750 m, accounting 
for 7.5%. Groundwater and fractured surrounding rock are the main factors causing the large deformation of the 
soft rock. Based on geological investigation data, a preliminary prediction of the large deformation level of the 
entire tunnel was made, as shown in Table 1.

Risk evaluation indicators
By identifying and analyzing the causes of the major risk events in this tunnel, the risk evaluation indicators 
were divided into three main categories: natural geological conditions, tunnel characteristic parameters, and 
construction safety management, as shown in Fig. 6.

Natural geological conditions
(a) Classification of surrounding rock B1: The self-stability of rock mass is mainly affected by their strength 
and integrity. The higher the grade of the surrounding rock, the worse its self-stability, the more broken the rock 
mass, and the greater the likelihood of disasters such as collapse and water surge. All of the indicators below 
are from geological survey reports. The formula for calculating BQ, which is the basic quality index of the rock 
mass, is as follows33.

	 BQ = 100 + 3σ c + 250Kv � (1)

Fig. 5.  (a) Surging water. (b) Seepage and surge water.

 

Fig. 4.  Construction site slip and fall diagram.
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Where σc is the uniaxial compressive strength (UCS) of the rock mass in MPa, and Kv is the integrity factor. The 
index is widely utilized in geotechnical engineering and rock mechanics to assess the integrity of a rock mass. It 
indicates the extent to which structural defects, such as joints, cracks, and voids, affect the overall quality of the 
rock mass.

The groundwater and orientation of the structure plane influence the stability of a tunnel project, which 
requires a modification of the BQ, and the correction formula is as follows:

	 [BQ] = BQ − 100 (K1 + K2 + K3)� (2)

Where K1 is the groundwater influence coefficient, K2 is the influence coefficient of the orientation of the 
structure plane, and K3 is the influence coefficient of the initial ground stress state.

From Eqs. (1) and (2), it can be seen that the [BQ] value is a comprehensive index reflecting the performance 
of the surrounding rock. According to the relevant specification34, the geotechnical quality class is graded 
according to Table 2.

(b) Groundwater abundance B2: Groundwater, as an extremely dynamic factor causing surrounding rock 
collapse and large soft rock deformation35,36, relies on the inflow of underground streams, pore and fissure 

Classification of surrounding rock Level I Level II Level III Level IV Level V

[BQ] > 550 450–550 350–450 350 − 250 ≤ 250

Table 2.  Classification of surrounding rock B1.

 

Fig. 6.  Risk evaluation indicator.

 

Starting and ending mileage Classification of surrounding rock
Large deformation
level Lengths (m)

D1K472 + 053 D1K472 + 103 V Medium 50

D1K472 + 143 D1K273 + 203 V Medium 60

D1K472 + 963 D1K473 + 043 V Medium 80

D1K473 + 598 D1K473 + 888 IV, V Medium 290

D1K478 + 543 D1K478 + 693 IV, V Medium 150

D1K478 + 693 D1K579 + 273 IV Minimal 580

D1K479 + 643 D1K479 + 703 IV Medium 60

D1K479 + 898 D1K480 + 068 IV Minimal 170

Table 1.  Prediction of large deformation classes in soft rocks.
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water pooling, and heavy rainfall through the surface. Groundwater action has three forms, i.e., physical action 
(erosion, softening), chemical action (dissolution, reduction, etc.), and mechanical action (mechanical erosion, 
dynamic water pressure, etc.)37. Under these actions, the self-stability of the surrounding rock is affected, 
resulting in disasters such as water and mud surges in the tunnel area. Therefore, groundwater abundance is 
categorized into five classes in terms of the degree of groundwater enrichment, as shown in Table 3.

(c) Fault width B3: The development of faults is a typical feature of tunnels in the western plateau, and it 
is a typical geological formation that affects groundwater development and causes collapses. The rock mass is 
fragmented within the faults and their influence zones. The groundwater dynamic conditions are abundant. The 
erosion of underground chambers influences the stability of a part of the tunnel area that crosses the fault and 
is highly susceptible to collapse due to excavation disturbances and other impacts. In this study, the grading 
method of the faults proposed by Zhang et al.38 is referred, as shown in Table 4.

(d) Fold width B4: The fold structure is a typical geological formation. The degree of erosion in the core 
of the fold is higher, and the probability of deformation and destruction of the rock mass is higher. Under the 
effect of extrusion and excavation disturbance at the wing of the fold structure, the tunnel area is prone to stress 
concentration. Under high in-situ stresses, the development of joints between rock layers provides channels for 
groundwater flow, which may pose a greater construction risk39,40. It is graded in Table 5.

(e) Hazardous gas B5: Low-oxygen and high-nitrogen hazards are often present in highland tunnels. 
During construction, the confined air environment with nitrogen in the bedrock lithology, which has a certain 
hydrocarbon-generating capacity, has an unstable distribution and is difficult to measure and eliminate. It poses 
a significant threat to the safety of construction workers. According to the national standard41 and Kang et al.’s12 
study on tunnels rich in gas and other harmful gases, the harmful gas pressure as a grading standard is shown 
in Table 6.

Tunnel design parameters
(f) Excavation span B6: The wider the excavation span, the lower the self-stability of the surrounding rock 
and the higher the risk probability of large deformation and collapse. According to the relevant literature42 the 
excavation spans are categorized, as in Table 7.

(g) Tunnel buried depth ratio B7: Generally, when a tunnel is excavated, a natural arch structure is formed 
above it, which can take up a part of the load. The arch structure is strongly influenced by the tunnel buried 
depth ratio (L0/L, where L0 is the tunnel buried depth, and L is the maximum tunnel excavation height). When 
the tunnel is located in the entrance section or when the tunnel depth ratio ≤ 5, the unloading stress will spread 

Level I Level II Level III Level IV Level V

Excavation span /m < 7 7–10 10–12 12–15 ≥ 15

Table 7.  Classification of excavation span B6.

 

Level I Level II Level III Level IV Level V

Hazardous gas (Gas pressure) /MPa < 0.35 0.35–0.45 0.46–0.55 0.56–0.74 ≥ 0.74

Table 6.  Classification of hazardous gas B5. In this study, the gas pressure measuring instrument is used for 
measurement.

 

Level I Level II Level III Level IV Level V

Fold width 0–20 20–40 40–60 60–80 80–100

Table 5.  Classification of fold widths B4.

 

Level I Level II Level III Level IV Level V

Fault width 0–3 3–5 5–10 10–20 20–50

Table 4.  Classification of fault widths B3.

 

Level I Level II Level III Level IV Level V

Groundwater abundance Water-poor area weakly water-rich area Medium water-rich area Strong rich water area Extremely water-rich area

Table 3.  Classification of groundwater abundance B2.
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directly to the ground, resulting in an unstable surrounding rock and the inability to form a natural arch. If 
the tunnel is not supported promptly, the risk of tunnel collapse will increase dramatically. Therefore, the risk 
of tunnels at shallow burials is higher. According to relevant literature and construction experience43, the 
classification criteria are selected as in Table 8.

(h) Excavation method B8: The excavation method is an important influencing factor of tunneling and 
plays a decisive role in the outcome of the construction. Different construction methods have different safety 
factors, economic benefits, and construction times under different geological conditions. For soft water-rich 
surrounding rock tunnels, the micro-step method is mainly adopted as the main method, supplemented by open 
cut and full-section excavation. Therefore, based on field reports and relevant experience44, the classification of 
excavation methods is shown in Table 9.

Construction safety management
(i) Support measure B9: The support structure is one of the most effective means of controlling tunnel 
deformation and ensuring construction safety. The support process encompasses advancing support, initial 
support, and secondary lining. Different grades of surrounding rock require distinct support methods. In the 
case of weak surrounding rock, reinforcement should be achieved through curtain grouting, advancing support, 
and anchors45,46. This is illustrated in Table 10.

Combined with the actual site and engineering experience, the classification of the support measures is 
shown in Table 11.

(j) Safety management B10: The quality of the safety management determines the quality of the project 
and encompasses a combination of worker occupational skill levels, site management, and site monitoring47. A 
scientific construction plan, complete organizational structure, and reasonable on-site management will directly 
influence the construction efficiency48. Poor management and a low level of professionalism can often lead to 
errors in site handovers, triggering risks such as tunnel collapses49,50. Therefore, efficient safety management 
is necessary. To simplify the analysis, site management and frequency of site monitoring are used as graded 
indicators, as shown in Table 12.

Level I Level II Level III Level IV Level V

Support measure and stratum 
reinforcement

Full-section curtain grouting 
and forepoling

Pipe shed support and 
forepoling

Curtain grouting and 
forepoling

Unreasonable
anchor bolt and forepoling

Extremely 
unreasonable 
forepoling

Table 11.  Classification of support measures B9. Curtain grouting is utilized to improve the stability of 
surrounding rock, reduce water seepage, and prevent groundwater infiltration by establishing a continuous 
grouting barrier, referred to as a curtain, within the rock mass. This process entails the high-pressure injection 
of slurry into cracks, pores, or weak layers of the surrounding rock, which then cures to create an impervious 
and high-strength curtain structure.

 

Rock 
description Support System Supplement

Very Hard Shotcrete (sprayed concrete), rock bolts, steel arches or ribs, steel or concrete lining Limited deformation, requiring minimal support.
Rock bolts and shotcrete for stabilization.

Hard Shotcrete, rock bolts, steel arches Rock is stable but still needs support for ensuring long-term stability.

Moderate Shotcrete, rock bolts, steel ribs, initial concrete lining, secondary lining (if needed) Rock stability can vary; support is provided for areas with higher deformation

Soft Shotcrete, rock bolts, steel ribs or arches, concrete lining, mesh reinforcement High risk of deformation; needs strong, continuous support.
Lining to prevent collapse.

Very Soft Shotcrete, rock bolts, steel ribs, full concrete lining (primary and secondary), 
grouting

Extensive deformation expected; full lining and grouting are used to ensure 
tunnel stability

Table 10.  Different surrounding rock support methods.

 

Level I Level II Level III Level IV Level V

Excavation method Micro step Open cut Short step Full section Long step

Table 9.  Classification of excavation method B8.

 

Level I Level II Level III Level IV Level V

Tunnel buried depth ratio (L0/L) > 20 15–20 10–15 5–10/ ≤ 5

Table 8.  Classification of tunnel buried depth ratio B7.
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Evaluation model
Through the above analysis of the tunnel risk factors, ten indicators were selected to construct a risk evaluation 
system for soft and water-rich surrounding rock tunnels. The improved game theory combination weighting-
cloud model algorithm was introduced to determine the optimal weights of each evaluation index. Based on the 
principle of maximum membership, a comprehensive risk evaluation model was established. Figure 7 shows the 
flowchart of the risk evaluation system.

The soft and water-rich peripheral rock tunnel is a type of tunnel with typical characteristics located on the 
plateau in Western China. In this study, the engineering background and risk of the tunnel area were analyzed. 
The risk evaluation indices are determined in Sect. 2. In general, multiple evaluation indicators have different 
ranges of values and meanings. In order to make the results reasonable and scientific, all data were dimensionless 
using the maximum-minimum-value method. Positive normalization was used when a large indicator was more 
advantageous for data evaluation:

	
Yij =

xij − ximin
ximax − ximin

� (3)

Reverse normalization was used when small indicators were more advantageous for data evaluation:

	
Yij = Ximax − Xij

Ximax − Ximin
� (4)

Where Yij denotes the normalized data, xij denotes the original data, and xi max and xi min denote the maximum 
and minimum values of row i of data, respectively. The establishment of optimal weights mainly relies on the 
subjective weighting method, i.e., the analytic hierarchy process (AHP), and the objective weighting method, 
i.e., the entropy weight method.

The AHP is a method for qualitative and quantitative analyses of complex problems between multiple 
objectives. It was proposed by American mathematician Thomas Saaty51 in 1977. A hierarchical structural model 
that stratifies decision goals, considerations, and decision objects according to their interrelationships is one of 
the most popular tools in multi-criteria decision-making (MCDM)52,53. Kim et al.54 performed a risk evaluation 
of tunnel collapse using the AHP method.

Fig. 7.  Risk evaluation flowchart.

 

Level I Level II Level III Level IV Level V

On-site management (%) > 98 95–98 92–95 88–92 ≤ 88

Monitoring (times/d) > 4 3 2 1 0

Table 12.  Classification of safety management B10.
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The entropy weight method is based on Shannon’s information entropy formula in information theory:

	
H(x) =

n∑
i=1

p(xi) log(p(xi))� (5)

A higher information entropy indicates higher information complexity. The formula can be optimized as follows:

	
Hj = −1/ ln(n)

n∑
i=1

Pij ln(pij)� (6)

Where Hj is the entropy value, and Pij is the probability of occurrence of the evaluation indicator.
The entropy weight method uses the laws of the data to determine the weights of the indicators, thus avoiding 

the subjective influence on the data of subjective weighting methods such as the AHP method. The score of each 
evaluation index is weighted using the following mathematical formula to obtain the weights of each evaluation 
index, and finally, the final degree of certainty is obtained by multiplying the score and weight of each evaluation 
index. This determines the final grade of the subject of this evaluation55.

	

P ij = Y ij
n∑

i=1
Y ij

, i = 1, 2.n; j = 1, 2.m
� (7)

	
Ej = − ln (n)−1

n∑
i=1

P ij ln P ij� (8)

	
W j = 1 − Ej

k −
∑

Ej
(j = 1, 2, ., m)� (9)

Where Ej is the information entropy value, and Wj is the weight value. The two results are linearly fitted to obtain 
the optimal weights.

Combination weighting: n weights are obtained based on n weighting methods, and a set of basic weight 
vectors Wj {w1, w2…, wn} was constructed. A possible set of weights comprising n vectors combined in an 
arbitrary linear combination can be expressed as follows.

	
W =

∑
n
k=1α kω T

k (α k > 0)� (10)

Where w is the optimal possible weight value, and αk is the weight coefficient.
The optimal weights can be thought of as a compromise between n weights, and such a compromise can be 

viewed as an optimization of the weights. Optimization aims to minimize the sum of deviations between W and 
Wk. The basic idea is similar to the least-squares method53. Therefore, in this study, a polynomial regression was 
fitted to the optimal weights to note the most dangerous indicators in different stages.

	
min ∥

∑
n
j=1α jω T

j − ω T
i ∥ (i = 1, 2 . . . , n)� (11)

A first-order derivative of the above equation gives:

	

∑ n

j=n
α jω iω

T
j = ω iω

T
i (i = 1, 2 . . . , n) � (12)

The corresponding matrix equation is:

	




ω1ωT
1 · · · ω1ωT

n

...
. . .

...
ωnωT

1 · · · ωnωT
n







α1
α2
. . .
αn


 =




ω1ωT
1

ω2ωT
2

. . .
ωnωT

n


� (13)

The corresponding weight coefficients are obtained and then normalized.

	
α ∗

k = α k∑
n
k=1α k

� (14)

Ultimately, the optimal weight value ω ∗ is:

	
ω ∗ =

∑
n
k=1α kω T

k � (15)
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Cloud model: Cloud model is a mathematical tool used for transforming qualitative concepts into quantitative 
data for uncertainty analyses. Using the three mathematical indicators of expectation Ex, entropy En, and 
hyper-entropy He to represent the qualitative concepts, a mutual transformation between the qualitative and 
quantitative indices is simply and directly accomplished56. Definition of cloud model: let U be a quantitative 
domain represented by exact numerical values, with a corresponding quantitative concept A, x ∈U. For any x in 
the domain U, there is an membership certainty Ct(x) corresponding to it, Ct(x) ∈ [0, 1]. The distribution of x 
on U is called a cloud model theory.

In the cloud model theory, the expectation Ex is used to represent the expectation of the spatial distribution 
of the cloud droplet domain, which is the point that represents the qualitative concepts and is the most typical 
sample of concept quantification in the model. The entropy En can measure the fuzzy range of qualitative 
concepts and react to the uncertainty of qualitative concepts in an integrated manner. The hyper-entropy He is 
used to measure the uncertainty in the entropy, which is used to reflect the discrete degree of cloud droplets in 
the theoretical space. The greater the hyper-entropy, the thicker the cloud droplets.

	
Ep

x =
Cmax + Cmin

2
� (16)

	
Ep

n = Cmax − Cmin

6
� (17)

	 He = β� (18)

WhereEp
x  is the expected value of the corresponding p-level indicator; Ep

n is the entropy of the corresponding 
p-level indicator. According to the fuzzy theory, in this study, β = 0.01 is uniformly adopted, and Cmax and Cmin 
are the maximum and minimum values of the boundary of the corresponding p-level, respectively. Figure 8 
shows the cloud model metrics.

Figure 9 shows the main process of the cloud model computation.

Step 1  Generate normal random numbers En* with En as the expectation and He as the standard deviation.

Fig. 9.  Flowchart of cloud model computation.

 

Fig. 8.  Diagram of the cloud model metrics.
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Step 2  Generate a normal random number x with Ex as the expectation and absolute value of En* as the stand-
ard deviation, x being a cloud droplet in the domain of the argument.

Step 3  Calculate Ct(x) = e
−(x−Ex)2

e2(En)2 , where Ct(x) is the membership certainty of x in the qualitative concept 

A.

The degree of membershipe is the value of the function that has a correspondence with x in the cloud model, 
taking a value between 0 and 1. The degree of membership corresponding to the measured indicators can 
be found for each evaluation indicator, and the final risk level can be assessed using the integrated degree of 
certainty57.

The final degree of certainty is the magnitude of the value of each evaluation indicator multiplied by the 
weight of the corresponding indicator, with the following formula:

	
Si =

m∑
j=1

W j ∗ P ij� (19)

Spearman’s rank correlation coefficient: Spearman’s rank correlation coefficient is a statistical measure 
employed to evaluate the strength and direction of the monotonic relationship between two variables. Unlike 
Pearson’s correlation coefficient, which necessitates that the data be linearly related and normally distributed, 
Spearman’s rank correlation is applicable to ordinal or non-linear relationships58. The formula for its calculation 
is as follows.

	
ρ = 1 −

6
∑

d2
i

n(n2 − 1)
� (20)

where ρ is the Spearman rank correlation coefficient, and d2
i  is the rank difference for the iii-th data point, and 

n is the number of data points.
Sobol Indics: Sobol’ indices serve as a robust sensitivity analysis tool designed to quantify the contribution 

of each input variable to the uncertainty associated with model outputs. This method assesses the impact of 
individual input variables, as well as their combinations, on variations in the output variable by decomposing the 
variance of the model output59. The formula for calculation is as follows.

	 V ar(Y ) = E[Y 2] − (E[Y ])2 V ar(Y ) = E[Y 2] − (E[Y ])2� (21)

	
Si = V ar(Y |X−i)

V ar(Y ) � (22)

where V ar(Y ) is the the total variance of the output Y, and E[Y ] is the expected value (mean) of the output, 
and (E[Y ])2 is the expected value of the squared output. V ar(Y |X−i)is the conditional variance of the output 
Y, given that the input variable Xi is fixed. Si is the Sobol indics.

Case study
Based on the engineering investigation report and expert advices, the six most dangerous sections in the tunnel 
area were evaluated. Each section has certain risk characteristics: the entrance section from D1K470 + 908 to 
D1K470 + 913.35 and the exit section from D1K480 + 860 to D1K480 + 874 have the highest risk of collapse. 
The section D1K473 + 755 is rich in groundwater, and it was in the rainy season when construction was in 
progress. The D1K475 + 800 section passes through a fault. The D1K477 + 028 section is excavated with full-
section excavation. The D1K478 + 663 section exhibits fold development. Therefore, the above six segments were 
selected, and the cloud model was used to react to the final risk level of each segment. Table 13 presents the 
monitoring indicators of each section.

The AHP method determines the subjective weights, and the subjective weights were obtained by 
constructing the judgment matrix. Figure  10; Table  14 present the judgment matrix and subjective weights, 
which are in line with the consistency test results. Table 14(a) presents the judgment matrix of the three types 
of evaluation objects. Table 14(b), (c), and (d) present the judgment matrices of the evaluation indicators of the 
three evaluation objects, respectively. The corresponding subjective weight values of each evaluation indicator 
were obtained from Eqs. (3)–(7). Figure 10 presents the subjective weights of each evaluation indicator.

The objective weights were determined in conjunction with the entropy weighting method with the following 
parameters in Table 15:

According to Eqs. (13)–(17), the optimal weights were obtained based on the objective and subjective weights 
of the different monitoring intervals listed in Table 15, and the dynamic weight changes in the different intervals 
were obtained by polynomial regression, as shown in Fig. 11.

The blue curve in the above figure shows the risk evaluation weights of the D1K470 section. The red curve 
shows the risk evaluation weights of the D1K480 section, and the rest of the curves represent the weights at 
the time of construction to a certain section. The change in the curves indicates that the weight values of the 
evaluation indices change in the different construction stages, and the risk during construction also changes 
accordingly. Table 16 presents the optimal weight values for each zone.
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Fig. 10.  Subjective weights of evaluation subjects.

 

Sectors monitored B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

D1K470 + 908~
D1K470 + 914

180 0 0 0 0.1

14.8

1

Open excavation

90 90

178 2 0 0 0.1 1.5 85 89

180 0 0 0 0.1 2 88 88

182 0 0 0 0.1 5 88 90

180 5 0 0 0.1 7 90 90

D1K470 + 914
D1K473

295 30 0 0 0.4

14.6

11

Micro steps

90 98

290 26 0 0 0.4 13 90 98

290 25 0 0 0.3 13 90 98

295 32 2 0 0.3 15 89 95

295 35 5 0 0.2 16 89 95

D1K473~
D1K475

275 65 30 0 0.2

14.6

21

Micro steps

80 95

274 63 30 0 0.2 23 82 90

275 65 30 0 0.1 21 82 96

276 55 28 2 0.2 20 80 96

275 45 20 5 0.2 18 80 95

D1K475~
D1K477

300 20 0 30 0.1

14.8

15

Full-section

95 95

300 20 0 35 0.1 15 90 95

300 21 0 40 0.1 15 90 95

298 22 0 40 0.1 16 98 95

300 22 0 48 0.1 17 95 90

D1K477~
D1K478

405 25 0 75 0.1

14.8

19

Micro steps

90 88

405 25 0 75 0.1 20 90 90

405 25 1 77 0.1 15 89 90

405 22 0 77 0.1 13 91 85

412 18 0 80 0.1 11 93 88

399 15 0 80 0.1 5 90 88

D1K478~
D1K480

200 0 0 85 0.1

14.8

0.8

Open excavation

90 98

200 0 0 85 0.1 0.7 92 92

189 0 0 85 0.1 0.7 90 95

200 2 0 75 0.1 0.6 90 99

210 0 0 70 0.1 0.5 90 98

Table 13.  Monitoring and measurement indicators for monitoring sectors. The data presented in this study 
are sourced from various reports and assessments: B1, B2, B3, B4, B6, B7, B8, and B9 are derived from the 
geological exploration design report, while B5 is obtained from the gas pressure tester. Additionally, B9 and 
B10 are based on expert ratings collected from the field. Under the same index of each section, the data 
changes little and no missing or abnormal values have been identified in the dataset utilized for this study.
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Fig. 11.  Dynamic weight change curve.

 

Subjective weight
(D1K470)

Objective weight
(D1K473)

Objective weight
(D1K475)

Objective weight
(D1K477)

Objective weight
(D1K478)

Objective weight
(D1K480)

B1 0.196 0.007 0.009 0.009 0.022 0.018

B2 0.098 0.019 0.124 0.11 0.087 0.063

B3 0.098 0 0.02 0.019 0.015 0.01

B4 0.098 0 0 0.019 0.123 0.198

B5 0.049 0.024 0.021 0.0227 0.019 0.122

B6 0.0567 0 0 0 0 0

B7 0.0181 0.822 0.710 0.626 0.46 0.518

B8 0.0891 0.007 0.008 0.097 0.078 0.049

B9 0.2229 0 0.002 0.004 0.003 0.002

B10 0.0743 0.121 0.105 0.092 0.192 0.13

Table 15.  Table of weighting parameters.

 

(a) Natural geological condition Tunnel characteristic parameter Safety management of construction

Natural geological condition 1 3 2

Tunnel characteristic parameter 1/3 1 1/2

Safety management of construction 1/2 2 1

(b)
Classification of 
surrounding rock (B1)

Groundwater 
abundance (B2) Fault width (B3) Fold width (B4)

Hazardous 
gas (B5)

Classification of surrounding rock 
(B1) 1 2 1/2 2 4

Groundwater abundance (B2) 1/2 1 1 1 1/2

Fault width (B3) 3 1 1 1 1/2

Fold width (B4) 1/2 1 1 1 2

Hazardous gas (B5) 1/4 2 2 1/2 1

(c) Excavation span(B6) Tunnel burial depth(B7) Excavation method (B8)

Excavation span (B6) 1 4 1/2

Tunnel buried depth (B7) 1/4 1 1/4

Excavation method(B8) 2 4 1

(d) Support measures (B9) Safety management (B10)

Support measures (B9) 1 3

Safety management (B10) 1/3 1

Table 14.  Judgement matrix for evaluation objects.
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The above optimal weight values are inputted to the cloud model. Taking the first evaluation index 
surrounding rock grade as an example, the quantitative value of the corresponding index is inputted to the x-
conditional cloud generator in the cloud model for calculation (number of cloud droplets: 3000), and the cloud 
model is obtained, as shown in Fig. 12.

The final risk level is determined based on Eq. (19) and the cloud model of the ten evaluation indicators. 
In different construction stages, the weights change dynamically, and the risk level of each section changes 
accordingly. Figure 13 shows the dynamic risk level of tunnel construction. Figure 13(a) shows the risk cloud 
diagram of the D1K470 section. Figure 13(b) shows the risk cloud diagram of the D1K473 section. Due to the 
change in the weights, the risk level of the D1K470 section changes accordingly. Figures 13(c)–(f) show the risk 
level cloud for each monitoring segment. Figure 14 presents the final certainty cloud for the D1K480 section.

Analysis and validation of results: Comparing the actual construction situation of each section with the 
risk assessment results, the D1K470 section is at the entrance and reaches grade IV risk. This zone has a low 
buried depth ratio and cannot form a natural arch. During the construction on 5th March 2022, a small landslide 
occurred during heavy rainfall on-site, as shown in Fig. 4. During the construction of the D1K473–D1K475 
section, there was a common phenomenon of water and mud inrush, which is in line with the grade III risk. On 
8th July 2022, the maximum gushing volume of water reached 140 m3/h, see Fig. 15 below. After construction, a 
combination of plugging, diversion, and drainage was adopted, which significantly reduced the risk level. After 
construction, the risk level was significantly reduced by the combination of plugging, diversion, and drainage.

The main construction risks of the water-rich surrounding rock tunnels in this project are: (1) The tunnel 
area passes through special geological formations, such as folded faults, and the fracture zones cause the rock 
layers to be broken and the rock properties to be weak, which significant influence the mechanical properties 
of the surrounding rocks and make the construction extremely difficult. (2) The broken rock layer provides a 
channel for the circulation of underground water, and the large area of the water-rich surrounding rock makes it 
easy to produce a sudden water inrush in the excavation process, thus triggering landslides and other disasters. 
(3) The tunnel section is large, the construction environment is complicated, and it is located on the plateau. 
The natural geographical conditions cause transport difficulties as well as delayed feedback on event handling. 
(4) The overall construction period in the tunnel area is long, and there are weaknesses in safety management. 
There is a lag in the monitoring and management response and a lack of emergency treatment capability. 
Therefore, in the subsequent project, measures should be taken to improve the excavation environment where 
the surrounding rock lithology is poor, such as conduit-induced drainage, grouting, tarpaulin laying, and other 
measures. In high-risk sections, an emergency response team should be set up, the monitoring frequency should 
be increased, and means such as high-intensity lining should be used.

Fig. 12.  Cloud model diagram.

 

D1K470 D1K473 D1K475 D1K477 D1K478 D1K480

B1 0.196 0.092411 0.089611 0.088818 0.096119 0.092933

B2 0.098 0.054364 0.114747 0.108357 0.092534 0.080172

B3 0.098 0.045096 0.077863 0.074467 0.069184 0.046898

B4 0.098 0.044196 0.042175 0.053317 0.114307 0.164432

B5 0.049 0.035176 0.03346 0.034555 0.031898 0.028069

B6 0.0567 0.025571 0.024401 0.024077 0.024029 0.02363

B7 0.0181 0.458469 0.384441 0.335601 0.247922 0.290127

B8 0.0891 0.044201 0.04311 0.09681 0.083833 0.067539

B9 0.2229 0.100523 0.097292 0.09678 0.096055 0.09394

B10 0.0743 0.099978 0.092927 0.086785 0.144148 0.112302

Table 16.  Optimal weight values for each zone.
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Fig. 14.  Maximum certainty percentile of the risk for the tunnel area.

 

Fig. 13.  Cloud map of the dynamic risk level of the tunnel area.
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Discussion
In order to verify the proposed approach in this model. Given that the weights in this article are variable, we 
select the weights from the final section for comparison. The changes in these weights are evaluated against those 
derived from the traditional analytic hierarchy process and the entropy weight method to assess the model’s 
efficiency, As shown in Table 17 below.

The analysis presented in the table illustrates that, within the Analytic Hierarchy Process (AHP) method, 
the weight of index B7 exhibits the most significant variability. This is primarily due to the omission of the 
importance of the buried depth ratio of index B7 in the judgment inverse matrix of the AHP. In practical 
engineering scenarios, accurately measuring the stress variations resulting from changes in the buried depth 
ratio poses challenges, necessitating a data-driven approach for analysis. Conversely, in the entropy weight 
method, index B9 demonstrates the most considerable weight fluctuation. The analysis indicates that the 
scores for support measures are relatively uniform, making it difficult to derive direct insights from the data. 
Nevertheless, implementing support measures is essential for effectively managing risks and adjusting risk 
levels. Regarding index B6, which pertains to the excavation span, the weight is assigned a value of 0 due to 
the constancy of the excavation span in the design data. However, it is important to note that variations in the 
excavation span can significantly impact the risk associated with tunnel excavation. Excessively large excavation 
spans can lead to issues such as collapses. The changes observed in the other indicators remain within acceptable 
limits. Consequently, it can be concluded that the improved combinatorial weighting method addresses the 
shortcomings of the AHP, which overly relies on expert judgment and may neglect critical data. This method 
also resolves the issue of minimal index changes that are inadequately represented in the entropy weight method. 
Overall, this model demonstrates superior evaluation capabilities compared to traditional single models.

Global sensitivity analysis is a methodological approach used to investigate how variations in input parameters 
affect the state or output changes of a model. To assess the impact of various indicators on the model, this paper 
employs the Spearman correlation coefficient method, with the corresponding index coefficients presented in 
Table 18 below.

The table above illustrates the Spearman coefficient, which primarily indicates two states: positive and negative 
correlation. A positive correlation means that as one indicator increases, the other also increases. Conversely, 
a negative correlation indicates that as one indicator increases, the other decreases. Notably, there is a strong 

Improved combination weight method AHP Rate EWM Rate

B1 0.092933 0.196 0.474148 0.018 5.162944

B2 0.080172 0.098 0.818082 0.063 1.272571

B3 0.046898 0.098 0.478551 0.01 4.6898

B4 0.164432 0.098 1.677878 0.198 0.830465

B5 0.028069 0.049 0.572837 0.122 0.230074

B6 0.02363 0.0567 0.416755 0 0

B7 0.290127 0.0181 16.02912 0.518 0.560091

B8 0.067539 0.0891 0.758013 0.049 1.378347

B9 0.09394 0.2229 0.421445 0.002 46.97

B10 0.112302 0.0743 1.511467 0.13 0.863862

Table 17.  Sepearman coefficient between factors.

 

Fig. 15.  Mud surge incident map of the D1K475 + 609 section.
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positive correlation between indicators B5 and B10, as well as B6 and B9, suggesting the possibility of shared 
dependent variables upon further analysis. In practical engineering applications, these indicators are typically 
analyzed separately for statistical purposes. Additionally, a strong negative correlation exists between B3 and 
B9, which aligns with established engineering practices. Furthermore, the Spearman correlation coefficients 
among the remaining indicators reveal a lack of strong correlations, suggesting that the selection of indices for 
the model is appropriate and that the model exhibits good robustness.

We used Sobol to analyze the sensitivity of each indicator, as shown in Fig. 16.
The Sobol index reveals that the model exhibits significant sensitivity to the abundance of underground water 

in B2 and the buried depth ratio of the B7 tunnel. These factors should be prioritized as critical indicators for 
monitoring and control. By enhancing monitoring efforts and implementing timely, targeted interventions, the 
overall risk can be effectively mitigated. In contrast, the excavation span represented by Index B6 and the safety 
management associated with Index B10 contribute minimally to the model, suggesting that these indices can be 
streamlined in future iterations. Nevertheless, it is important to acknowledge that they may still interact with 
other indicators discussed in this paper.

Conclusions
Soft and water-rich surrounding rock tunnels in the western plateau are characterized by complex construction 
influencing factors and high social impact, making them high-risk projects. To reduce the construction risk and 
improve project efficiency, this study used a cloud model to determine the risk level based on the game theory 
combination weighting principle, which dynamically shows the changes in the risk during the construction 
period. A risk assessment model was proposed for the construction of soft and water-rich surrounding rock 
tunnels by analyzing the natural geological conditions, tunnel design parameters, and construction safety 
management of tunnel construction in soft and water-rich surrounding rocks, and combining domestic and 
international research and actual engineering cases. The model analysis process is clear and reproducible, and 

Fig. 16.  Sobol sensitivity index.

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 1 0.46382 -0.13093 0.27323 0.03381 -0.24689 0.6 0.24689 0.33806 -0.26482

B2 0.46382 1 0.66421 -0.46203 0.78889 0.03131 0.81168 0.75147 -0.5145 0.04478

B3 -0.13093 0.66421 1 -0.41737 0.46476 0.42426 0.65465 0.42426 -0.7746 0

B4 0.27323 -0.46203 -0.41737 1 -0.64658 -0.09837 -0.27323 -0.29512 0.35921 0.03127

B5 0.03381 0.78889 0.46476 -0.64658 1 -0.23735 0.30426 0.65727 -0.5 0.48742

B6 -0.24689 0.03131 0.42426 -0.09837 -0.23735 1 0.30861 0.36667 -0.63901 -0.69921

B7 0.6 0.81168 0.65465 -0.27323 0.30426 0.30861 1 0.49377 -0.33806 -0.44137

B8 0.24689 0.75147 0.42426 -0.29512 0.65727 0.36667 0.49377 1 -0.7303 -0.07946

B9 0.33806 -0.5145 -0.7746 0.35921 -0.5 -0.63901 -0.33806 -0.7303 1 0

B10 -0.26482 0.04478 0 0.03127 0.48742 -0.69921 -0.44137 -0.07946 0 1

Table 18.  Sepearman coefficient between factors.

 

Scientific Reports |        (2025) 15:16036 17| https://doi.org/10.1038/s41598-025-01103-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the results obtained are reliable, instructive, and can be of some reference value for similar projects. The main 
conclusions drawn from this research are as follows:

(1) The risk level could be classified into five grades: extremely low risk (Grade I), low risk (Grade II), medium 
risk (Grade III), high risk (Grade IV), and extremely high risk (Grade V).

(2) The disadvantage of the AHP as a subjective weighting method is that it is too subjective. The entropy 
weight method, which is an objective weighting method, has a drawback in that it overemphasizes the feedback 
of the data, thus ignoring the coupling relationship between indicators. By combining the two, the advantages 
of each method are complemented, and the conversion between qualitative and quantitative indices is achieved, 
thus significantly eliminating the subjectivity and increasing the accuracy.

(3) Based on combinatorial weighting and combining the AHP method and entropy weight method, a new 
weight fusion model was proposed to fit polynomials to the optimal weights, and a weight change curve was 
obtained. It can dynamically analyze the dynamic changes in the risks corresponding to different construction 
periods.

(4) The EAHP cloud model applied to the risk evaluation of soft and water-rich surrounding rocks can 
deal with the ambiguity and uncertainty in the engineering evaluation, provide an effective method for similar 
projects, and ensure reliable decision support for constructors.

(5) We compared the enhanced model with the traditional model and confirmed its superior performance. 
To assess the model’s sensitivity, we utilized the Spearman rank correlation coefficient and Sobol indices. The 
results demonstrated that the model displayed increased sensitivity to the B2 groundwater abundance index and 
the buried depth of the B7 tunnel. Therefore, it is crucial to strengthen the management of these two indices in 
practical engineering applications.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available but are avail-
able from the corresponding author on reasonable request.
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