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Eelgrass ecosystems provide essential habitats for species, such as the Hokkai shrimp (Pandalus 
latirostris), supporting biodiversity and fisheries. Understanding shrimp behavior in these 
environments is vital for conservation efforts, yet accurately tracking shrimp movement in controlled 
tank settings is challenging because of surface reflections and parallax distortions. This study primarily 
focuses on developing and evaluating a You Only Look Once (YOLO) tracking system for Hokkai 
shrimp in aquaria. We implemented preliminary measures to address reflection artifacts and parallax 
distortions; however, our core contribution is the robust detection performance of YOLOv8. Through 
controlled tank experiments, the system demonstrated high detection accuracy and captured metrics 
such as distance, velocity, and angle. The results showed a high detection accuracy, with success rates 
of 95.65% and 100% from the front and side views, respectively, ensuring reliable data on shrimp 
movement in aquaria. These outcomes provide a robust foundation for high-precision measurements 
in future ecological or aquaculture studies.
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Ecosystem services1–3 are defined as the benefits humans derive from ecosystems and fall into four categories: 
provisioning, regulating, supporting, and cultural services (MEA Millennium Ecosystem Assessment (MEA)4). 
The economic value of these ecosystem services is frequently expressed in monetary units, and their valuation is 
crucial to alert policymakers to the significance of natural ecosystems. Seagrass and algae ecosystem services are 
recognized as being especially valuable5–7. Eelgrass ecosystems provide a range of valuable ecosystem services 
in coastal areas and serve as vital aquatic habitats8. Eelgrass plays a role in carbon sequestration and biodiversity 
and provides an optimal environment for the reproduction and habitation of aquatic organisms9,10. Eelgrass 
serves as the foundation for the food chain and plays a significant role in fisheries. Nevertheless, it remains 
challenging to accurately quantify these ecosystem services. The effective collection and analysis of detailed 
data on organism behavior and habitat use is hindered by the lack of suitable methods. Furthermore, traditional 
approaches have not provided sufficient spatial and temporal resolutions.

The Hokkai shrimp (Pandalus latirostris) is a marine crustacean that inhabits coastal waters along northern 
Japan and Primorye in Russia. It is a marine species, capable of tolerating a wide range of salinities, and is found 
in seaweed ecosystems such as eelgrass11,12. It is crucial to understand the influence of Hokkai shrimp behavior 
and habitat utilization on ecosystem services, as this knowledge is vital for the advancement of environmental 
conservation and the implementation of sustainable fisheries management strategies.

Despite their ecological and economic importance, precise observation of Hokkai shrimp behavior in 
controlled settings faces two major challenges—reflections on the aquarium glass surface and distance 
measurement errors due to depth parallax (see Figs. 1 and 2). In this study, we primarily focus on the novel 
application of the YOLOv8 model to track Hokkai shrimp by leveraging a custom training dataset that captures 
the unique conditions of aquarium environments. While the use of reflection and parallax modification 
techniques represents an exploratory effort to further enhance detection accuracy, our main contribution is 
demonstrating how a machine learning approach can be effectively tailored to monitor the movement of Hokkai 
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shrimp. This refined tracking method enables more accurate measurement of shrimp trajectories, which is critical 
for understanding their habitat use within eelgrass beds—ecosystems that are not only vital for biodiversity 
but also hold significant economic value, with shrimp often traded at premium prices exceeding 10,000 yen 
per kilogram. Given the small size and cryptic behavior of Hokkai shrimp, improved observation methods are 
essential to advance our knowledge of their migratory ecology and support future conservation and sustainable 
fisheries management initiatives.

Accordingly, our objectives were twofold.

	1.	  To demonstrate the applicability and effectiveness of the YOLOv8-based tracking system for Hokkai shrimp 
(Pandalus latirostris) using our custom training dataset.

Fig. 2.  Mismeasurement of distance due to depth parallax.

 

Fig. 1.  Reflections of organisms on the aquarium glass surface due to differences in the media inside and 
outside the aquarium.
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	(The emphasis is on adapting YOLOv8 to the unique challenges of tracking a single shrimp in controlled aquar-
ium settings, thereby highlighting the advantages of a machine learning approach in ecological studies.)

	2. 	 To explore auxiliary techniques for improving detection accuracy under challenging imaging conditions, 
including reflections from the tank surface and depth-induced parallax effects.

	(We implement a simple proximity-based filtering for reflection removal and a horizontal barrel distortion cor-
rection for mitigating parallax errors. Detailed quantitative assessments of these techniques are deferred to 
future work.)

By integrating these approaches with the YOLOv8 tracking system, it is feasible to precisely ascertain the 
distance, velocity, and angle of movement of Hokkai shrimp within aquaria. This not only demonstrates the 
potential of machine learning techniques in ecological applications but also lays the foundation for sustainable 
fisheries management and biodiversity conservation by enabling accurate behavioral analyses in controlled 
environments.

Related works
Tracking system for organisms in the aquarium
Tracking of organisms in aquariums is a particularly prevalent practice in aquaculture. Despite the existence of 
several proposed methodologies, it has been observed that invasive tracking can have a significant impact on 
the behavior of organisms within an aquarium environment13. In particular, acoustic telemetry14–16 technology, 
which captures and tracks ultrasonic signals emitted from tags, is susceptible to noise and expensive17. 
Considering these considerations, technologies based on machine vision, sensors, and utilization of acoustic 
information represent a significant alternative avenue for exploration18. Although two-dimensional (2D)19–22 
and three-dimensional (3D)23–25 machine vision tracking methods have been proposed, 3D is preferable for 
ecological surveys because it is not possible to observe the movement of living organisms in three dimensions 
in 2D26,27.

For example, Al Muskit et al.28 demonstrated the application of a YOLOv3-based model (YOLO-Fish) for 
automated fish detection in underwater environments, effectively addressing challenges such as low illumination 
and complex backgrounds. Similarly, Xiao et al.29 recently employed a YOLOv8-based multi-object tracking 
framework (Yolo-AWD + CBT) for precise and real-time tracking of fish in aquaculture, overcoming issues 
related to occlusion and variable body shapes.

In the context of 3D ecological surveys, subject tracking is typically conducted using a combination of 
multiple cameras or depth cameras. For example, zebrafish observations have been conducted using multiple 
cameras. The coordinate points measured by each camera were then reconstructed in three-dimensional space 
using Microsoft Excel software30.

Nevertheless, fish tracking system in aquariums is not without its limitations, as demonstrated by Yupeng 
Mei (2022)17. According to Yupeng (2022), in fish tracking (a) occlusion, (b) morphological changes, (c) scale 
change, (d) background interference, (e) image blur, (f) changes in illumination, (g) turbid water, and (h) low 
resolution. In this study, only scale change (c) was problematic because the subject was a single organism in an 
aquarium under ideal experimental conditions. In addition, the reflection of organisms on the tank surface is 
an important issue to be resolved. While scale adaptive tracking improves tracking accuracy for changes in the 
scale of organisms in the tank, it does not adjust the scale itself, so accurate distance measurement is still difficult. 
Ecologically speaking, observing shrimp activity may help identify patterns of habitat usage in eelgrass meadows. 
However, this study only looks at one shrimp in a controlled tank; field applications will be investigated later.

False detection of reflected objects and its improvement
It is an inherent characteristic of the photographic process that the object being photographed will reflect off 
the glass surface when shooting through it31,32. Therefore, techniques have been proposed to remove reflections 
from captured images. Existing reflection removal methods can be classified into single image reflection removal 
methods and multiple images reflection removal methods. Single image reflection removal can be further 
classified into conventional methods that do not use deep learning and those that use deep learning, respectively. 
Multiple Images Reflection Removal can be classified into two categories: those that capture multiple types of 
images at once using a single device, and those that record multiple images by changing their positions and poses 
from a single device33. However, these methods are not general purpose, as the accuracy of reflection rejection 
is contingent upon the environmental conditions and the characteristics of the object in question. Furthermore, 
methods that necessitate the use of specialized cameras and devices are subject to financial constraints. Instead 
of doing a thorough comparison examination of these sophisticated reflection removal techniques, we just use a 
simple proximity-based filtering to handle reflections in our study. As a result, we are not currently equipped to 
do a comprehensive quantitative validation of reflection elimination efficacy.

Theoretical issues related to the influence of parallax and depth information
The application of vision sensors for the measurement of objects in liquids is complicated by the phenomenon 
of image distortion. This phenomenon is caused by the refraction of light at the boundary between air, liquid, 
and glass, which results in the formation of distorted images and subsequent ranging errors34. A camera system 
comprising trapezoidal glass and a microlens array was put forth as a potential solution for correcting image 
distortion. This approach proved effective in correcting distortions around the tank35,36. However, these studies 
address image distortion caused by medium differences exclusively. To the best of the author’s knowledge, 

Scientific Reports |        (2025) 15:29482 3| https://doi.org/10.1038/s41598-025-01138-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


there are few previous studies on scale changes of objects. Our work just uses a preliminary horizontal barrel 
distortion for the aquarium scenario, whereas many earlier attempts concentrate on intricate optical corrections. 
More precise parallax correction might be possible with a more thorough geometric calibration or multi-camera 
technique, but this evaluation is still for future research.

Experimental methods
YOLOv8
YOLOv8, which was introduced by Ultralytics37 in 2023. The model offers five scaled versions, designated as 
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra large), which 
are intended to meet the diverse requirements of potential applications. YOLOv8n38 was used in this study. The 
YOLOv8 model incorporates numerous architectural, and developer experience changes and improvements 
over YOLOv539. YOLOv8n was selected for its lightweight architecture, high detection accuracy, and real-time 
processing capabilities, which are particularly advantageous for tracking applications under controlled tank 
conditions. While other object detection models exist, a detailed comparison was beyond the scope of this study. 
However, the performance and simplicity of YOLOv8n made it the most appropriate choice for our objectives. 
Furthermore, although the training data, code, and complete experimental results are currently available upon 
request, we plan to release these resources on platforms such as GitHub in future revisions to promote replication 
and further research in this area.

Training the model
By cropping still images from the acquired video data, annotations were made into 209 image datasets, 
which were subsequently utilized as training data. The data used for training were obtained from two distinct 
perspectives relative to the aquarium surface. Experts conducted the annotation process using RoboFlow ​(​​​h​t​t​
p​s​:​/​/​r​o​b​o​f​l​o​w​.​c​o​m​/​​​​​)​. Only one classification category, Pandalus latirostris, was utilized. To propose correction 
techniques for YOLO identification, it is necessary to ensure that the individuals used for the training and testing 
are identical. The annotation results were transformed into YAML data in compliance with the YOLOv8 format 
and subsequently exported. Subsequently, the annotated dataset was randomly divided into training, validation, 
and test datasets at a 7:2:1 ratio of respectively.

YOLOv8 (You Only Look Once Version 8) is a framework commonly used for real-time object detection 
and image segmentation tasks. In this study, the ultralytics library was installed using pip install ultralytics. We 
selected the YOLOv8n model, a lightweight variant of YOLOv8, and trained it for 100 epochs. An epoch refers 
to one complete pass through the entire training dataset. During training, the model’s internal parameters—
often referred to as weights—are updated to minimize prediction errors on the training data. The weights from 
the epoch yielding the highest mean Average Precision (mAP) on the validation set were saved and used for 
subsequent analyses. Figure 3 shows a batch of images used during training, while Fig. 4 presents the training 
and validation losses for the bounding box regression (box_loss), classification (cls_loss), and distribution focal 
loss (dfl_loss), along with precision, recall, and mAP at IoU thresholds of 0.5 and 0.5:0.95. The training curves 
for box_loss, cls_loss, and dfl_loss show a consistent downward trend over 100 epochs. The validation curves 
display fluctuations around relatively stable values for each loss component. The precision and recall metrics 
approach high values during the later epochs, and the mAP metrics similarly reach elevated levels, indicating the 
model’s ability to detect the single class (Pandalus latirostris) in the validation data.

Image processing to reduce reflection on aquarium surface
As the object nears the surface of the tank, it is reflected by different densities of air and water. Reflections result 
in false detections using YOLO and represent a significant issue. Consequently, if YOLO identifies multiple 
target objects at time t, the distance between the coordinates of each detection result can be calculated. The 
detection result that is near the coordinates of the singularly detected object at time t-1 is then considered to be 
the true target object. This methodology circumvents the issue of false detections resulting from reflections from 
the tank surface. The Fig. 5 illustrates the process flow during multiple detections by YOLO, providing a visual 
representation of the process of selecting the closest detected coordinates.

Horizontal barrel distortion conversion
When the image is captured perpendicular to the surface of the tank, the tank surface at the rear appears smaller 
due to parallax effects, leading to discrepancies in the measured distances between the front and rear sides. To 
mitigate the distance error caused by parallax, we applied a barrel transformation in the horizontal direction, 
extending from the image’s center to its periphery, as shown in Fig. 6. It should be noted that the barrel distortion 
correction employed in this study is a preliminary attempt. Due to resource limitations, we did not perform a 
full optical calibration using a chequerboard or advanced computer vision libraries such as OpenCV, which are 
well-documented for such corrections. Instead, we implemented a simple correction based on a zoom factor that 
varies with the distance from the image center. Specifically, the zoom factor is calculated as follows:

	
zoomfactor (r) = maxzoom × (1 − r

rmax
)

where r is the distance from the pixel coordinates (X, Y) to the image center, and r max is the maximum distance 
from the image center (e.g., along the diagonal of the image). The corrected horizontal coordinate is computed 
as:
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Fig. 4.  Learning progress, results.

 

Fig. 3.  Example of train batch.
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Fig. 6.  Converted images.

 

Fig. 5.  Schematic of reflection and reduce reflection process.
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X ′ = centerx + (X − centerx)

zoomfactor (r)

with the vertical coordinate remaining unchanged. This approach reduces horizontal distortion across the image, 
thereby lessening the parallax-induced distance errors.

While commercial tools (e.g., GoPro Studio, Adobe Lightroom) or more comprehensive methods using 
OpenCV could offer higher precision, our choice was motivated by the need for rapid preliminary evaluation, 
reduced computational cost, and future scalability. In future work, we plan to rigorously compare this simple 
method with more advanced calibration techniques, including checkerboard-based calibration, to determine the 
optimal approach for our application.

Experimental settings
The experimental setup is illustrated in Fig. 7. One Hokkai shrimp (Pandalus latirostris) was placed in a tank 
measuring 45 cm height, 45 cm width, and 90 cm depth. Subsequently, images were captured using a video 
camera (GoPro: GoPro HERO10 Black) from the front and side of the tank. The frame rate and quality were set 
to 60 FPS and 1080P, respectively, and the video was recorded for a total of 12 min and 3 s.

Results and discussion
The proposed tracking technique generates a time-series dataset comprising the coordinates, speed, and angle 
of the detected object, which is output as a CSV file. The resulting data are shown in Fig. 8. The coordinates 
represent the midpoint of the boundary box delineated by YOLO, whereas the velocity is quantified as the 
number of pixels that have undergone a change with respect to the elapsed time. The angles were calculated by 
determining the change in coordinates with respect to time. At each time point, a single object was identified 
consistently.

Figures  9, 10, and 11 illustrate the temporal evolution of the angle, velocity, and score, respectively, as a 
function of time. In particular, the angle is defined as the angle between the coordinates of the previous frame 
and those of the current frame. It is crucial to consider the influence of experimental conditions and the 
surrounding environment, particularly during periods of rapid change. The velocity was calculated from the 
distance of pixel movement between frames, resulting in an average velocity of 164.7 pixels per second. This 
provides a useful indicator of the speed of the object’s movement, which will be beneficial in future studies. The 
abrupt acceleration observed at approximately 850 s is postulated to be the result of an erroneous estimation 
of the tracking parameters. More precise data may be obtained by processing the omitted values in the output 
CSV file. A frame-by-frame review around the 850-s mark revealed that reflection overlap and partial occlusion 
momentarily shifted the bounding box, resulting in an artificially high velocity calculation. This suggests that 
refining reflection filtering thresholds or incorporating additional training data specific to partial occlusions 
could mitigate such abrupt errors. The score serves as an indicator of the confidence level associated with the 
objects identified by YOLO, with an average score of 62.7%. It is anticipated that this score will improve with 
the incorporation of additional training data and the utilization of more diverse datasets, which will be a future 
challenge.

Figures 12 and 13 illustrate the detection outcomes for each 60-s frame in the video captured from each 
direction. The results presented herein demonstrate the efficacy of the object detection algorithm, which displays 
the name, score, speed, and angle in real time for the organism enclosed in the blue bounding box. This display 
method enhances the practicality of the system by enabling the user to rapidly ascertain the organism’s motion 
and reliability. In particular, Fig. 12 demonstrates that no detection was performed in the f = 6 frame, but that 
detection was successfully performed in all other frames. On closer examination, it seems that YOLO missed the 
target because of the strong reflection on the aquarium glass, which confused the detector at f = 6. Such single-
frame identification failures may be avoided in subsequent rounds by modifying the reflection threshold or adding 

Fig. 7.  Schematic of experimental settings.
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more reflection samples to the training set. This aspect is crucial in evaluating the algorithm’s responsiveness 
under specific circumstances and should be acknowledged as a potential avenue for future enhancement.

In contrast, Fig.  13 illustrates that the biological detection process was successful in all frames. This is 
indicative of the system’s stability, particularly in the context of disparate shooting conditions and angles. It 
serves to reinforce the system’s resilience. Although it is practically challenging to conduct a comprehensive 
visual verification of all 42,660 frames in each video, the analysis of the 22 extracted frames indicates a detection 
accuracy of 95.65% for videos captured from the front and 100% for videos captured from the side. This serves 
to corroborate the high degree of accuracy demonstrated by the experimental results, thereby underscoring 
the reliability of the algorithm. Nevertheless, a random sampling strategy for frame-by-frame annotation could 
provide a more comprehensive error analysis than visual inspection of selected frames alone, ensuring that rare 
detection failures are systematically identified.

Furthermore, Fig. 14 illustrates a three-dimensional graph that plots the coordinates of the output CSV file. 
The color intensity of yellow indicates the duration of the time lapse, thus providing a visual representation of the 
trajectory of the moving object. The coordinates demonstrate a pattern that aligns with the observations made by 

Fig. 9.  Angle (degree) versus Time (second).

 

Fig. 8.  Overview of output data.
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an expert, thereby confirming the efficacy of this tracking system. This provides crucial evidence for the practical 
implementation of the system and paves the way for future research.

Basic quantitative assessment of logged tracking data
Without further experimental trials, we examined the available log data (more than 40,000 frames) to give a 
basic quantitative assessment of our YOLO-based tracking outcomes. The Speed and Angle histograms are 
shown in Fig. 15, and the main descriptive statistics and outlier analyses are compiled in Table 1. According to 
Table 1, speed had a significant standard deviation of 7606.78 pixels/s and an overall mean of 164.74 pixels/s. 
It is assumed that the maximum measured speed, which was around 1.37 × 10^6 pixels/s, resulted from brief 
bounding-box jumps brought on by occlusions or reflections.

We found 66 frames (0.16% of the sample) to be outliers using a 3σ-based threshold of 22,985.09 pixels/s 
(e.g., Frame No. 3928, Speed = 29,297.84 pixels/s). Such high numbers probably represent situations in which 
the shrimp’s reflection on the aquarium glass caused incorrectly excessive coordinate shifts. The angle had a 
standard deviation of 108.53° and an average of -0.62°, ranging from -179.99° to + 180.00°. We calculated the 
frame-to-frame angle difference and noted any shift greater than 150° in order to identify sudden changes in 
shrimp heading. Using this criterion, 13,017 frames (or around 32% of the dataset) were found. Although some 
significant angle shifts might constitute actual abrupt rotations, the majority are probably caused by reflection-

Fig. 11.  Scores versus Time (second).

 

Fig. 10.  Speed (pix/sec) versus Time (second).
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induced misalignments in bounding-box identification or partial occlusions. Figure 15 summarizes the data as 
histograms.

Only a small percentage of frames were classified as “Speed outliers,” as Table 1 illustrates, suggesting that 
our proximity-based filtering and reflection-removal strategy generally reduced extreme tracking errors. 
Nonetheless, the comparatively high number of significant angle jumps indicates that more improvement—for 
example, better filtering settings or more training data for partial occlusions—might be helpful. Despite being 
early, these evaluations show that speed and angle logs can be useful markers of aquarium-specific aberrations 
(reflection, parallax) and indicate the possible need for more extensive post-processing or advanced corrective 
techniques.

Limitation and future work
In this study, visual observation was employed as the evaluation method. However, this approach is inherently 
subjective and would be enhanced by the incorporation of objective quantitative evaluation metrics. Future 
work will include a quantitative evaluation using standard metrics, such as Multiple Object Tracking (MOT), 
to further enhance the precision of the results. Furthermore, although this study concentrated on individual 
identification, future research will address the identification of multiple subjects.

Additionally, our current tracking system reports velocity in pixels per second, which is less informative for 
behavioral studies. Given the known dimensions of the tank and the localization data from the two cameras, 
it is straightforward to convert these measurements into physical units (e.g., mm/s), thereby providing more 
meaningful insights. Moreover, the frame-by-frame tracking approach can lead to instability, especially due 
to occlusion or reflection overlap. To improve robustness, we plan to explore temporal tracking methods that 
incorporate information from multiple frames—such as smoothing techniques or Kalman filtering—in future 
studies.

Conclusions
The utilization of tracking techniques in an experimental setting to facilitate ecological observations is not 
without its inherent challenges. For instance, there is a potential for false positives resulting from reflections 
of organisms on the surface of the tank, as well as the possibility of misjudging the distance traveled due to 
parallax effects. In this study, we proposed a method to compensate for false positives in tracking using the 
YOLOv8 model. In instances where YOLO identifies multiple target objects at a given time, the distance between 
the coordinates of each detection result is calculated. The detection result that is in closest proximity to the 
coordinate that was specifically detected at time t-1 is then considered the true target object. This approach 
effectively prevents false detection due to reflections on the tank surface. When the image is captured at an 
angle perpendicular to the surface of the tank, the tank surface situated behind the tank appears to be smaller 
due to the phenomenon of parallax. If YOLO tracking is conducted in this manner, errors are introduced in 
the measurement of distances between the front and rear surfaces of the tank. Accordingly, the distance error 
resulting from the parallax effect was mitigated through the implementation of a barrel transformation in the 
horizontal direction, extending from the image’s center to its periphery. As a result, it was confirmed that the 
visual evaluation conducted by experts and the tracking results generated by YOLO were in general agreement. 
The proposed method proved effective in reducing judgment errors in organism tracking and enabled precise 

Fig. 12.  Tracking images per 60 s steps from front view. f = 6 fails to identify.
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measurement of the distance, speed, and angle of movement of organisms in the aquarium. Future work will 
focus on extending this technique to more complex conditions, potentially involving multiple individuals or 
diverse environments. Through these refinements, the method may serve as a foundation for more detailed 
ecological studies on shrimp behavior. Future studies will systematically evaluate these corrective measures to 
clarify their effectiveness and refine the overall detection framework. Through these refinements, the method 
may serve as a foundation for more detailed ecological studies.

Fig. 13.  Tracking images per 60 s steps from side view.
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Data availability
The data used in the study are available from the corresponding author upon reasonable request.

Received: 29 October 2024; Accepted: 5 May 2025

Metric Value

Speed (pixels/s) Mean = 164.74, Std = 7606.78, Min = 0.00, Max = 1.37 × 106

Speed outlier threshold (3σ) 22,985.09 pixels/s

Frames exceeding speed threshold 66

Angle (degrees) Mean = − 0.62°, Std = 108.53°, Min = − 179.99°, Max = 180.00°

Angle jump threshold 150°

Frames with angle jumps > 150° 13,017

Table 1.  Summary of speed and angle analysis.

 

Fig. 15.  (left) histogram of speed, (right) histogram of angle.

 

Fig. 14.  3D movement plot of the shrimp.
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