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Improving Hokkai shrimp tracking
accuracy using YOLOvVS8 with
reflection and parallax correction
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Amane Nakamura?, Sakura Igawa?, Yoko Ohtomo*, Kenji Minami3, Kazushi Miyashita3 &
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Eelgrass ecosystems provide essential habitats for species, such as the Hokkai shrimp (Pandalus
latirostris), supporting biodiversity and fisheries. Understanding shrimp behavior in these
environments is vital for conservation efforts, yet accurately tracking shrimp movement in controlled
tank settings is challenging because of surface reflections and parallax distortions. This study primarily
focuses on developing and evaluating a You Only Look Once (YOLO) tracking system for Hokkai
shrimp in aquaria. We implemented preliminary measures to address reflection artifacts and parallax
distortions; however, our core contribution is the robust detection performance of YOLOv8. Through
controlled tank experiments, the system demonstrated high detection accuracy and captured metrics
such as distance, velocity, and angle. The results showed a high detection accuracy, with success rates
of 95.65% and 100% from the front and side views, respectively, ensuring reliable data on shrimp
movement in aquaria. These outcomes provide a robust foundation for high-precision measurements
in future ecological or aquaculture studies.
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Ecosystem services' are defined as the benefits humans derive from ecosystems and fall into four categories:
provisioning, regulating, supporting, and cultural services (MEA Millennium Ecosystem Assessment (MEA)?).
The economic value of these ecosystem services is frequently expressed in monetary units, and their valuation is
crucial to alert policymakers to the significance of natural ecosystems. Seagrass and algae ecosystem services are
recognized as being especially valuable>~’. Eelgrass ecosystems provide a range of valuable ecosystem services
in coastal areas and serve as vital aquatic habitats®. Eelgrass plays a role in carbon sequestration and biodiversity
and provides an optimal environment for the reproduction and habitation of aquatic organisms®!°. Eelgrass
serves as the foundation for the food chain and plays a significant role in fisheries. Nevertheless, it remains
challenging to accurately quantify these ecosystem services. The effective collection and analysis of detailed
data on organism behavior and habitat use is hindered by the lack of suitable methods. Furthermore, traditional
approaches have not provided sufficient spatial and temporal resolutions.

The Hokkai shrimp (Pandalus latirostris) is a marine crustacean that inhabits coastal waters along northern
Japan and Primorye in Russia. It is a marine species, capable of tolerating a wide range of salinities, and is found
in seaweed ecosystems such as eelgrass' 2. It is crucial to understand the influence of Hokkai shrimp behavior
and habitat utilization on ecosystem services, as this knowledge is vital for the advancement of environmental
conservation and the implementation of sustainable fisheries management strategies.

Despite their ecological and economic importance, precise observation of Hokkai shrimp behavior in
controlled settings faces two major challenges—reflections on the aquarium glass surface and distance
measurement errors due to depth parallax (see Figs. 1 and 2). In this study, we primarily focus on the novel
application of the YOLOv8 model to track Hokkai shrimp by leveraging a custom training dataset that captures
the unique conditions of aquarium environments. While the use of reflection and parallax modification
techniques represents an exploratory effort to further enhance detection accuracy, our main contribution is
demonstrating how a machine learning approach can be effectively tailored to monitor the movement of Hokkai
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Fig. 1. Reflections of organisms on the aquarium glass surface due to differences in the media inside and
outside the aquarium.
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Fig. 2. Mismeasurement of distance due to depth parallax.

shrimp. This refined tracking method enables more accurate measurement of shrimp trajectories, which is critical
for understanding their habitat use within eelgrass beds—ecosystems that are not only vital for biodiversity
but also hold significant economic value, with shrimp often traded at premium prices exceeding 10,000 yen
per kilogram. Given the small size and cryptic behavior of Hokkai shrimp, improved observation methods are
essential to advance our knowledge of their migratory ecology and support future conservation and sustainable
fisheries management initiatives.

Accordingly, our objectives were twofold.

1. To demonstrate the applicability and effectiveness of the YOLOvV8-based tracking system for Hokkai shrimp
(Pandalus latirostris) using our custom training dataset.
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(The empbhasis is on adapting YOLOVS to the unique challenges of tracking a single shrimp in controlled aquar-
ium settings, thereby highlighting the advantages of a machine learning approach in ecological studies.)

2. To explore auxiliary techniques for improving detection accuracy under challenging imaging conditions,
including reflections from the tank surface and depth-induced parallax effects.

(We implement a simple proximity-based filtering for reflection removal and a horizontal barrel distortion cor-
rection for mitigating parallax errors. Detailed quantitative assessments of these techniques are deferred to
future work.)

By integrating these approaches with the YOLOVS tracking system, it is feasible to precisely ascertain the
distance, velocity, and angle of movement of Hokkai shrimp within aquaria. This not only demonstrates the
potential of machine learning techniques in ecological applications but also lays the foundation for sustainable
fisheries management and biodiversity conservation by enabling accurate behavioral analyses in controlled
environments.

Related works

Tracking system for organisms in the aquarium

Tracking of organisms in aquariums is a particularly prevalent practice in aquaculture. Despite the existence of
several proposed methodologies, it has been observed that invasive tracking can have a significant impact on
the behavior of organisms within an aquarium environment*®. In particular, acoustic telemetry'*-1¢ technology,
which captures and tracks ultrasonic signals emitted from tags, is susceptible to noise and expensive!”.
Considering these considerations, technologies based on machine vision, sensors, and utilization of acoustic
information represent a significant alternative avenue for exploration'®. Although two-dimensional (2D)"-2
and three-dimensional (3D)?*-2* machine vision tracking methods have been proposed, 3D is preferable for
ecological surveys because it is not possible to observe the movement of living organisms in three dimensions
in 2D*7,

For example, Al Muskit et al.?® demonstrated the application of a YOLOv3-based model (YOLO-Fish) for
automated fish detection in underwater environments, effectively addressing challenges such as low illumination
and complex backgrounds. Similarly, Xiao et al.?’ recently employed a YOLOvS-based multi-object tracking
framework (Yolo-AWD +CBT) for precise and real-time tracking of fish in aquaculture, overcoming issues
related to occlusion and variable body shapes.

In the context of 3D ecological surveys, subject tracking is typically conducted using a combination of
multiple cameras or depth cameras. For example, zebrafish observations have been conducted using multiple
cameras. The coordinate points measured by each camera were then reconstructed in three-dimensional space
using Microsoft Excel software®.

Nevertheless, fish tracking system in aquariums is not without its limitations, as demonstrated by Yupeng
Mei (2022)"7. According to Yupeng (2022), in fish tracking (a) occlusion, (b) morphological changes, (c) scale
change, (d) background interference, (e) image blur, (f) changes in illumination, (g) turbid water, and (h) low
resolution. In this study, only scale change (c) was problematic because the subject was a single organism in an
aquarium under ideal experimental conditions. In addition, the reflection of organisms on the tank surface is
an important issue to be resolved. While scale adaptive tracking improves tracking accuracy for changes in the
scale of organisms in the tank, it does not adjust the scale itself, so accurate distance measurement is still difficult.
Ecologically speaking, observing shrimp activity may help identify patterns of habitat usage in eelgrass meadows.
However, this study only looks at one shrimp in a controlled tank; field applications will be investigated later.

False detection of reflected objects and its improvement

It is an inherent characteristic of the photographic process that the object being photographed will reflect off
the glass surface when shooting through it>"*2. Therefore, techniques have been proposed to remove reflections
from captured images. Existing reflection removal methods can be classified into single image reflection removal
methods and multiple images reflection removal methods. Single image reflection removal can be further
classified into conventional methods that do not use deep learning and those that use deep learning, respectively.
Multiple Images Reflection Removal can be classified into two categories: those that capture multiple types of
images at once using a single device, and those that record multiple images by changing their positions and poses
from a single device®>. However, these methods are not general purpose, as the accuracy of reflection rejection
is contingent upon the environmental conditions and the characteristics of the object in question. Furthermore,
methods that necessitate the use of specialized cameras and devices are subject to financial constraints. Instead
of doing a thorough comparison examination of these sophisticated reflection removal techniques, we just use a
simple proximity-based filtering to handle reflections in our study. As a result, we are not currently equipped to
do a comprehensive quantitative validation of reflection elimination efficacy.

Theoretical issues related to the influence of parallax and depth information

The application of vision sensors for the measurement of objects in liquids is complicated by the phenomenon
of image distortion. This phenomenon is caused by the refraction of light at the boundary between air, liquid,
and glass, which results in the formation of distorted images and subsequent ranging errors®!. A camera system
comprising trapezoidal glass and a microlens array was put forth as a potential solution for correcting image
distortion. This approach proved effective in correcting distortions around the tank®>*¢. However, these studies
address image distortion caused by medium differences exclusively. To the best of the author’s knowledge,
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there are few previous studies on scale changes of objects. Our work just uses a preliminary horizontal barrel
distortion for the aquarium scenario, whereas many earlier attempts concentrate on intricate optical corrections.
More precise parallax correction might be possible with a more thorough geometric calibration or multi-camera
technique, but this evaluation is still for future research.

Experimental methods

YOLOv8

YOLOVS, which was introduced by Ultralytics®” in 2023. The model offers five scaled versions, designated as
YOLOV8n (nano), YOLOVS8s (small), YOLOv8m (medium), YOLOVSI (large), and YOLOvS8x (extra large), which
are intended to meet the diverse requirements of potential applications. YOLOv8n®® was used in this study. The
YOLOV8 model incorporates numerous architectural, and developer experience changes and improvements
over YOLOv5%. YOLOv8n was selected for its lightweight architecture, high detection accuracy, and real-time
processing capabilities, which are particularly advantageous for tracking applications under controlled tank
conditions. While other object detection models exist, a detailed comparison was beyond the scope of this study.
However, the performance and simplicity of YOLOv8n made it the most appropriate choice for our objectives.
Furthermore, although the training data, code, and complete experimental results are currently available upon
request, we plan to release these resources on platforms such as GitHub in future revisions to promote replication
and further research in this area.

Training the model

By cropping still images from the acquired video data, annotations were made into 209 image datasets,
which were subsequently utilized as training data. The data used for training were obtained from two distinct
perspectives relative to the aquarium surface. Experts conducted the annotation process using RoboFlow (htt
ps://roboflow.com/). Only one classification category, Pandalus latirostris, was utilized. To propose correction
techniques for YOLO identification, it is necessary to ensure that the individuals used for the training and testing
are identical. The annotation results were transformed into YAML data in compliance with the YOLOv8 format
and subsequently exported. Subsequently, the annotated dataset was randomly divided into training, validation,
and test datasets at a 7:2:1 ratio of respectively.

YOLOV8 (You Only Look Once Version 8) is a framework commonly used for real-time object detection
and image segmentation tasks. In this study, the ultralytics library was installed using pip install ultralytics. We
selected the YOLOv8n model, a lightweight variant of YOLOVS, and trained it for 100 epochs. An epoch refers
to one complete pass through the entire training dataset. During training, the model’s internal parameters—
often referred to as weights—are updated to minimize prediction errors on the training data. The weights from
the epoch yielding the highest mean Average Precision (mAP) on the validation set were saved and used for
subsequent analyses. Figure 3 shows a batch of images used during training, while Fig. 4 presents the training
and validation losses for the bounding box regression (box_loss), classification (cls_loss), and distribution focal
loss (dfl_loss), along with precision, recall, and mAP at IoU thresholds of 0.5 and 0.5:0.95. The training curves
for box_loss, cls_loss, and dfl_loss show a consistent downward trend over 100 epochs. The validation curves
display fluctuations around relatively stable values for each loss component. The precision and recall metrics
approach high values during the later epochs, and the mAP metrics similarly reach elevated levels, indicating the
model’s ability to detect the single class (Pandalus latirostris) in the validation data.

Image processing to reduce reflection on aquarium surface

As the object nears the surface of the tank, it is reflected by different densities of air and water. Reflections result
in false detections using YOLO and represent a significant issue. Consequently, if YOLO identifies multiple
target objects at time ¢, the distance between the coordinates of each detection result can be calculated. The
detection result that is near the coordinates of the singularly detected object at time -1 is then considered to be
the true target object. This methodology circumvents the issue of false detections resulting from reflections from
the tank surface. The Fig. 5 illustrates the process flow during multiple detections by YOLO, providing a visual
representation of the process of selecting the closest detected coordinates.

Horizontal barrel distortion conversion

When the image is captured perpendicular to the surface of the tank, the tank surface at the rear appears smaller
due to parallax effects, leading to discrepancies in the measured distances between the front and rear sides. To
mitigate the distance error caused by parallax, we applied a barrel transformation in the horizontal direction,
extending from the image’s center to its periphery, as shown in Fig. 6. It should be noted that the barrel distortion
correction employed in this study is a preliminary attempt. Due to resource limitations, we did not perform a
full optical calibration using a chequerboard or advanced computer vision libraries such as OpenCV, which are
well-documented for such corrections. Instead, we implemented a simple correction based on a zoom factor that
varies with the distance from the image center. Specifically, the zoom factor is calculated as follows:

)

T

zoom factor (r) = mazxzoom x (1 —
Tmaz

where r is the distance from the pixel coordinates (X, Y) to the image center, and r max is the maximum distance
from the image center (e.g., along the diagonal of the image). The corrected horizontal coordinate is computed
as:
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(X — centers)

!
X' = centers + zoom factor (1)
with the vertical coordinate remaining unchanged. This approach reduces horizontal distortion across the image,
thereby lessening the parallax-induced distance errors.

While commercial tools (e.g., GoPro Studio, Adobe Lightroom) or more comprehensive methods using
OpenCV could offer higher precision, our choice was motivated by the need for rapid preliminary evaluation,
reduced computational cost, and future scalability. In future work, we plan to rigorously compare this simple
method with more advanced calibration techniques, including checkerboard-based calibration, to determine the
optimal approach for our application.

Experimental settings

The experimental setup is illustrated in Fig. 7. One Hokkai shrimp (Pandalus latirostris) was placed in a tank
measuring 45 cm height, 45 cm width, and 90 cm depth. Subsequently, images were captured using a video
camera (GoPro: GoPro HERO10 Black) from the front and side of the tank. The frame rate and quality were set
to 60 FPS and 1080P, respectively, and the video was recorded for a total of 12 min and 3 s.

Results and discussion

The proposed tracking technique generates a time-series dataset comprising the coordinates, speed, and angle
of the detected object, which is output as a CSV file. The resulting data are shown in Fig. 8. The coordinates
represent the midpoint of the boundary box delineated by YOLO, whereas the velocity is quantified as the
number of pixels that have undergone a change with respect to the elapsed time. The angles were calculated by
determining the change in coordinates with respect to time. At each time point, a single object was identified
consistently.

Figures 9, 10, and 11 illustrate the temporal evolution of the angle, velocity, and score, respectively, as a
function of time. In particular, the angle is defined as the angle between the coordinates of the previous frame
and those of the current frame. It is crucial to consider the influence of experimental conditions and the
surrounding environment, particularly during periods of rapid change. The velocity was calculated from the
distance of pixel movement between frames, resulting in an average velocity of 164.7 pixels per second. This
provides a useful indicator of the speed of the object’s movement, which will be beneficial in future studies. The
abrupt acceleration observed at approximately 850 s is postulated to be the result of an erroneous estimation
of the tracking parameters. More precise data may be obtained by processing the omitted values in the output
CSV file. A frame-by-frame review around the 850-s mark revealed that reflection overlap and partial occlusion
momentarily shifted the bounding box, resulting in an artificially high velocity calculation. This suggests that
refining reflection filtering thresholds or incorporating additional training data specific to partial occlusions
could mitigate such abrupt errors. The score serves as an indicator of the confidence level associated with the
objects identified by YOLO, with an average score of 62.7%. It is anticipated that this score will improve with
the incorporation of additional training data and the utilization of more diverse datasets, which will be a future
challenge.

Figures 12 and 13 illustrate the detection outcomes for each 60-s frame in the video captured from each
direction. The results presented herein demonstrate the efficacy of the object detection algorithm, which displays
the name, score, speed, and angle in real time for the organism enclosed in the blue bounding box. This display
method enhances the practicality of the system by enabling the user to rapidly ascertain the organism’s motion
and reliability. In particular, Fig. 12 demonstrates that no detection was performed in the f=6 frame, but that
detection was successfully performed in all other frames. On closer examination, it seems that YOLO missed the
target because of the strong reflection on the aquarium glass, which confused the detector at f=6. Such single-
frame identification failures may be avoided in subsequent rounds by modifying the reflection threshold or adding

H:
45 cm
W:
45 cm
()
(a) Schematic of experimental settings (b) Experimental setting
Fig. 7. Schematic of experimental settings.
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Al v | fevl No

A B C D E F G H I ] K
1 -No Class Label Scores id xcoord ycoord zcoord Time Speed Angle
2 1 0 Pandalus 0.845679 1 1803.567 1780.741 645.6648 0.033333 0 0
3 2 0 Pandalus 0.836044 1 1804.266 1780.335 645.7096 0.066667 8.296896 3.663449
4 3 0 Pandalus 0.825254 1 1802.878 1780.076 645.6049 0.1 30.92386 -175.685
5 4 0 Pandalus 0.828252 1 1801.924 1778.788 645.2545 0.133333 26.39594 -159.837
6 5 0 Pandalus 0.811613 1 1805.341 1777.505 647.1872 0.166667 109.0361 29.4946
7 6 0 Pandalus 0.778623 1 1807.25 1775.745 646.5668 0.2 52.10092 -18.0068
8 T 0 Pandalus 0.765391 1 1807.325 1775.66 646.6072 0.233333 2.437199 28.01987
9 8 0 Pandalus 0.770799 1 1807.92 1775.516 646.1213 0.266667 21.30435 -39.2609
10 9 0 Pandalus 0.742013 1 1808.72 1775.272 645.0596 0.3 36.53795 -52.9875
11 10 0 Pandalus 0.765176 1 1812.319 1774.607 645.2264 0.333333 97.3545 2.655197
12 11 0 Pandalus 0.756859 1 1811.971 1773.869 645.9894 0.366667 23.28587 114.4657
13 12 0 Pandalus 0.764086 1 1812.857 1774.011 646.6674 0.4 31.31654 37.42162
14 13 0 Pandalus 0.761558 1 1812.395 1773.632 646.2676 0.433333 15.669 -139.139
15 14 0 Pandalus 0.747695 1 1811.511 1772512 646.3527 0.466667 22.93669 174.5018

Fig. 8. Overview of output data.
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more reflection samples to the training set. This aspect is crucial in evaluating the algorithm’s responsiveness
under specific circumstances and should be acknowledged as a potential avenue for future enhancement.

In contrast, Fig. 13 illustrates that the biological detection process was successful in all frames. This is
indicative of the system’s stability, particularly in the context of disparate shooting conditions and angles. It
serves to reinforce the system’s resilience. Although it is practically challenging to conduct a comprehensive
visual verification of all 42,660 frames in each video, the analysis of the 22 extracted frames indicates a detection
accuracy of 95.65% for videos captured from the front and 100% for videos captured from the side. This serves
to corroborate the high degree of accuracy demonstrated by the experimental results, thereby underscoring
the reliability of the algorithm. Nevertheless, a random sampling strategy for frame-by-frame annotation could
provide a more comprehensive error analysis than visual inspection of selected frames alone, ensuring that rare
detection failures are systematically identified.

Furthermore, Fig. 14 illustrates a three-dimensional graph that plots the coordinates of the output CSV file.
The color intensity of yellow indicates the duration of the time lapse, thus providing a visual representation of the
trajectory of the moving object. The coordinates demonstrate a pattern that aligns with the observations made by
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an expert, thereby confirming the efficacy of this tracking system. This provides crucial evidence for the practical
implementation of the system and paves the way for future research.

Basic quantitative assessment of logged tracking data

Without further experimental trials, we examined the available log data (more than 40,000 frames) to give a
basic quantitative assessment of our YOLO-based tracking outcomes. The Speed and Angle histograms are
shown in Fig. 15, and the main descriptive statistics and outlier analyses are compiled in Table 1. According to
Table 1, speed had a significant standard deviation of 7606.78 pixels/s and an overall mean of 164.74 pixels/s.
It is assumed that the maximum measured speed, which was around 1.37x 1076 pixels/s, resulted from brief
bounding-box jumps brought on by occlusions or reflections.

We found 66 frames (0.16% of the sample) to be outliers using a 30-based threshold of 22,985.09 pixels/s
(e.g., Frame No. 3928, Speed =29,297.84 pixels/s). Such high numbers probably represent situations in which
the shrimp’s reflection on the aquarium glass caused incorrectly excessive coordinate shifts. The angle had a
standard deviation of 108.53° and an average of -0.62°, ranging from -179.99° to+180.00°. We calculated the
frame-to-frame angle difference and noted any shift greater than 150° in order to identify sudden changes in
shrimp heading. Using this criterion, 13,017 frames (or around 32% of the dataset) were found. Although some
significant angle shifts might constitute actual abrupt rotations, the majority are probably caused by reflection-
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Fig. 12. Tracking images per 60 s steps from front view. f=6 fails to identify.

induced misalignments in bounding-box identification or partial occlusions. Figure 15 summarizes the data as
histograms.

Only a small percentage of frames were classified as “Speed outliers,” as Table 1 illustrates, suggesting that
our proximity-based filtering and reflection-removal strategy generally reduced extreme tracking errors.
Nonetheless, the comparatively high number of significant angle jumps indicates that more improvement—for
example, better filtering settings or more training data for partial occlusions—might be helpful. Despite being
early, these evaluations show that speed and angle logs can be useful markers of aquarium-specific aberrations
(reflection, parallax) and indicate the possible need for more extensive post-processing or advanced corrective
techniques.

Limitation and future work

In this study, visual observation was employed as the evaluation method. However, this approach is inherently
subjective and would be enhanced by the incorporation of objective quantitative evaluation metrics. Future
work will include a quantitative evaluation using standard metrics, such as Multiple Object Tracking (MOT),
to further enhance the precision of the results. Furthermore, although this study concentrated on individual
identification, future research will address the identification of multiple subjects.

Additionally, our current tracking system reports velocity in pixels per second, which is less informative for
behavioral studies. Given the known dimensions of the tank and the localization data from the two cameras,
it is straightforward to convert these measurements into physical units (e.g., mm/s), thereby providing more
meaningful insights. Moreover, the frame-by-frame tracking approach can lead to instability, especially due
to occlusion or reflection overlap. To improve robustness, we plan to explore temporal tracking methods that
incorporate information from multiple frames—such as smoothing techniques or Kalman filtering—in future
studies.

Conclusions

The utilization of tracking techniques in an experimental setting to facilitate ecological observations is not
without its inherent challenges. For instance, there is a potential for false positives resulting from reflections
of organisms on the surface of the tank, as well as the possibility of misjudging the distance traveled due to
parallax effects. In this study, we proposed a method to compensate for false positives in tracking using the
YOLOV8 model. In instances where YOLO identifies multiple target objects at a given time, the distance between
the coordinates of each detection result is calculated. The detection result that is in closest proximity to the
coordinate that was specifically detected at time t-1 is then considered the true target object. This approach
effectively prevents false detection due to reflections on the tank surface. When the image is captured at an
angle perpendicular to the surface of the tank, the tank surface situated behind the tank appears to be smaller
due to the phenomenon of parallax. If YOLO tracking is conducted in this manner, errors are introduced in
the measurement of distances between the front and rear surfaces of the tank. Accordingly, the distance error
resulting from the parallax effect was mitigated through the implementation of a barrel transformation in the
horizontal direction, extending from the image’s center to its periphery. As a result, it was confirmed that the
visual evaluation conducted by experts and the tracking results generated by YOLO were in general agreement.
The proposed method proved effective in reducing judgment errors in organism tracking and enabled precise
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Fig. 13. Tracking images per 60 s steps from side view.

measurement of the distance, speed, and angle of movement of organisms in the aquarium. Future work will
focus on extending this technique to more complex conditions, potentially involving multiple individuals or
diverse environments. Through these refinements, the method may serve as a foundation for more detailed
ecological studies on shrimp behavior. Future studies will systematically evaluate these corrective measures to
clarify their effectiveness and refine the overall detection framework. Through these refinements, the method
may serve as a foundation for more detailed ecological studies.
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Speed (pixels/s) Mean = 164.74, Std =7606.78, Min = 0.00, Max = 1.37 x 10°
Speed outlier threshold (30) 22,985.09 pixels/s

Frames exceeding speed threshold | 66

Angle (degrees) Mean =-0.62°, Std=108.53°, Min =-179.99°, Max = 180.00°
Angle jump threshold 150°

Frames with angle jumps >150° 13,017

Table 1. Summary of speed and angle analysis.

Data availability

The data used in the study are available from the corresponding author upon reasonable request.
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