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Denial of Wallet (DoW) attacks are one kind of cyberattack whose goal is to develop and expand 
the financial sources of a group by causing extreme costs in their serverless computing or cloud 
environments. These threats are chiefly related to serverless structures owing to their features, such 
as auto-scaling, pay-as-you-go method, cost amplification, and limited control. Serverless computing, 
Function-as-a-Service (FaaS), is a cloud computing (CC) system that permits developers to construct 
and run applications without a conventional server substructure. The deep learning (DL) model, a 
part of the machine learning (ML) technique, has developed as an effectual device in cybersecurity, 
permitting more effectual recognition of anomalous behaviour and classifying patterns indicative of 
threats. This study proposes a Mitigating Malicious Denial of Wallet Attack using Attribute Reduction 
with Deep Learning (MMDoWA-ARDL) approach for serverless computing on next-generation 
applications. The primary purpose of the MMDoWA-ARDL approach is to propose a novel framework 
that effectively detects and mitigates malicious attacks in serverless environments using an advanced 
deep-learning model. Initially, the presented MMDoWA-ARDL model applies data pre-processing using 
Z-score normalization to transform input data into a valid format. Furthermore, the feature selection 
process-based cuckoo search optimization (CSO) model efficiently identifies the most impactful 
attributes related to potential malicious activity. For the DoW attack mitigation process, the bi-
directional long short-term memory multi-head self-attention network (BMNet) method is employed. 
Finally, the hyperparameter tuning is accomplished by implementing the secretary bird optimizer 
algorithm (SBOA) method to enhance the classification outcomes of the BMNet model. A wide-ranging 
experimental investigation uses a benchmark dataset to exhibit the superior performance of the 
proposed MMDoWA-ARDL technique. The comparison study of the MMDoWA-ARDL model portrayed 
a superior accuracy value of 99.39% over existing techniques.
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Serverless computing is an application employment structure that gives pay-as-you-go event-based performance1. 
Serverless function platforms offer the framework for employing code to execute through the cloud and describe 
the event processing logic by using these methods: trigger, action, and event. Serverless computing summaries 
back-end management from consumers, permitting only minimum admittance for a few fundamental parameters 
like function runtime timeout and function memory allocation2. Functions implemented on platforms like 
conventional Infrastructure as a Service (IaaS) virtual machine (VM) assistances; nevertheless, the requirement 
of this VM is accomplished by the platform with function invocation and not by the developer3. A container 
is made for every function invocation and might be recycled for recurrent invocations4. In diverse IaaS, you 
do not pay for the uptime and source dissipated by the function container or VM execution for the runtime 
of every function, thus the term FaaS. This method permits serverless applications to measure extensively as 
the application is presented on the serverless platform of the cloud and admittance to its source5. One of these 
safety attacks is the DoW threat, a different Denial-of-Service (DoS) attack performed on serverless platforms6. 
There are two kinds of DoW attacks, namely internal and external. The external attackers will drain money from 
the victims by frequently invoking the APIs that the victims accidentally reveal, whereas the internal attackers 
will cause source contention on the function examples like VM or containers of the victims, reducing their 
programs7.

By postponing the performance of the target function, an internal DoW threat has dual direct impacts 
on the target. External and internal DoW describes the latest investigation on DoW. This study recommends 
that external DoW might be identified and diminished by conventional DoS mitigation models. Nevertheless, 
diverse DoS and DoW can utilize alternative threat patterns that do not trigger DoS recognition parameters 
and cannot be volumetric threats, which creates enormous traffic volumes that search, causing damage in a 
short period8. Alternatively, these threats perform for long periods, not to raise suspicion, as with conventional 
DoS flooding threats9. For internal threat recognition, the systems should analyze and monitor the lower-level 
source utilization of particular bare-metal machines. DL and ML are progressively utilized in cybersecurity 
aid to prevent and detect cyber threats. With the development of big data, it became gradually complicated 
for humans to identify and analyze possible attacks10. ML models are skilled in vast datasets of known cyber 
threats and patterns of suspicious action, and they are utilized to identify and respond to novel attacks in the real 
world. The swift growth of cloud-native and event-driven applications has improved the reliance on serverless 
architectures, giving scalability and cost-efficiency. However, this shift also exposes systems to new attack 
surfaces, specifically DoW attacks that utilize resource-triggered billing mechanisms. As serverless platforms 
abstract away infrastructure management, attackers can misuse function calls, resulting in unexpected costs. 
This raises the requirement for intelligent, lightweight defence mechanisms. This motivates the development of 
a DL-based approach with optimized feature selection to detect and reduce such threats effectually in real-time.

This study proposes a Mitigating Malicious Denial of Wallet Attack using Attribute Reduction with Deep 
Learning (MMDoWA-ARDL) approach for serverless computing on next-generation applications. The 
primary purpose of the MMDoWA-ARDL approach is to propose a novel framework that effectively detects 
and mitigates malicious attacks in serverless environments using an advanced deep-learning model. Initially, 
the presented MMDoWA-ARDL model applies data pre-processing using Z-score normalization to transform 
input data into a valid format. Furthermore, the feature selection process-based cuckoo search optimization 
(CSO) model efficiently identifies the most impactful attributes related to potential malicious activity. For the 
DoW attack mitigation process, the bi-directional long short-term memory multi-head self-attention network 
(BMNet) method is employed. Finally, the hyperparameter tuning is accomplished by implementing the 
secretary bird optimizer algorithm (SBOA) method to enhance the classification outcomes of the BMNet model. 
A wide-ranging experimental investigation uses a benchmark dataset to exhibit the superior performance of the 
proposed MMDoWA-ARDL technique. The key contribution of the MMDoWA-ARDL technique is listed below.

•	 The MMDoWA-ARDL model utilizes Z-score normalization to standardize the input features by centring 
them around the mean and scaling based on standard deviation (SD). This pre-processing step enhances the 
model’s learning efficiency and stability. It also ensures that all features contribute equally during training, 
improving overall performance.

•	 The MMDoWA-ARDL approach employs the CSO method to detect and retain the most informative features 
from the dataset. It removes irrelevant or redundant data by mitigating dimensionality, resulting in a more 
efficient model. This improves classification accuracy and mitigates computational overhead.

•	 The MMDoWA-ARDL methodology uses the BMNet-based architecture, which combines Bi-LSTM with 
multi-head self-attention to capture both temporal dependencies and contextual associations in the data. This 
approach enables more accurate and adaptive detection of DoW attacks. Using these advanced techniques, 
the model improves robustness in handling complex attack scenarios.

•	 The MMDoWA-ARDL method implements the SBOA technique to fine-tune the model’s hyperparameters, 
optimizing its learning process. This approach systematically searches for the optimum configuration, en-
hancing overall model efficiency and accuracy. SBOA ensures the model operates at its peak performance.

•	 by improving parameter settings.
•	 Integrating CSO, BMNet, and SBOA into a unified framework presents a novel approach to attack mitigation 

by integrating advanced optimization, DL, and attention mechanisms. This novel combination improves fea-
ture selection, model robustness, and hyperparameter tuning, addressing complex security challenges. The 
novelty is in the seamless synergy between these techniques, which has not been explored in the existing 
literature on such attack scenarios.
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Review of literature
Lu et al.11 projected an intellectually improving localized GNSS monitoring method that incorporates artificial 
intelligence (AI) and blockchain (BC) technology. Initially, this study utilizes BCT to ensure GNSS monitoring 
reliability and tamper resistance of the data. It employs a distributed ledger framework for recognizing the 
decentralization of data transmission and storage, thus improving the anti-threat reliability and ability of the 
method. Then, the long short-term memory (LSTM) method is used for forecasting and examining the vast 
number of monitoring data in the real world, allowing the intellectual recognition of GNSS signal deviations 
and anomalies and presenting real-world timely warnings to enhance the monitoring impacts. In12, a BC-based 
Operational Threat Intelligence architecture, OTI-IoT, is projected. During Level 1, this consortium BC system 
validators utilize the IPS component from smart contracts for access control and attack prevention. Ullah et 
al.13 improve the management and access control of electronic health records (EHR) by utilizing purpose-based 
access control (PBAC), BC, Smart Contracts, and interplanetary file systems (IPFS). de Lima et al.14 detect 
economic denial of sustainability (EDoS) attacks by integrating the synthetic minority oversampling technique 
(SMOTE), edited nearest neighbour rule (ENN), Random Forest (RF), and XGBoost (XGB) classifiers. The 
classifiers are optimized utilizing nature-inspired metaheuristics, specifically the bat algorithm (BA), and 
hyperparameter tuning techniques like random and Bayesian search. Manh et al.15 developed a novel packing 
model using a single-instruction-multiple-data (SIMD) method, allowing effective training on Homomorphic 
Encryption (HE)-encrypted data. Developing this deep neural network (DNN) training model enhanced for 
encoded data. A privacy-preserving distributed learning method depending on the FedAvg model was projected 
that parallelizes the training through several workers, substantially enhancing the computation period. Sangore 
and Patil16 improve threat detection in blockchain-based Bitcoin systems by integrating ensemble learning, 
water cycle algorithm (WCA), and dynamic optimization (DO) for improved accuracy and real-time response 
to emerging threats. Almazroi17 utilizes EffiIncepNet, an ensemble DL method, for BC security and medical data 
classification. The aim is to develop an efficient, scalable, and robust method that reduces security attacks and 
functions well. EffiIncepNet enhances the accuracy of classification and effectiveness of execution by associating 
InceptionResNetv2 and EfficientNet structures. EffiIncepNet data classification, internal BC performance to 
terminate doubtful transactions, and continuous system monitoring with models that look for strange behaviours 
are each part of the 3-phase security framework.

Rani et al.18 projected a sophisticated neural network and AdaHessian optimizer model for defence and 
cryptojacking prediction. This method gives an advanced DNN cryptojacking threat prediction method 
utilizing AdaHessian optimizer, pruning, and post-training quantization. A novel structure for rapid 
DNN training using AdaHessian optimizer can identify cryptojacking endeavours by reducing the cost of 
computation. Renukadevi et al.19 propose the fusion of optimization with deep wavelet neural networks on 
the denial of wallet attack detection (FODWNN-DoWAD) methhodology. The mobile utilizes min-max-based 
normalization, pair barracuda swarm optimization (PBSO)-based optimal feature selection, deep wavelet 
neural network (DWNN)-based attack detection, and hierarchical learning-based chaotic crayfish optimizer 
(HLCCO)-based tuning. Ramos et al.20 analyze how technical events like attacks, hard forks, and wallet breaches 
affect the financial performance of Proof-of-Work cryptocurrencies. The study also utilizes models such as the 
capital asset pricing model (CAPM), mean adjusted return (MAR), and arbitrage pricing theory (APT); the 
study quantifies abnormal returns to evaluate the economic effects of these cyber-attacks and inform regulatory 
decisions. Li et al.21 developed FaaSMT. This framework enables real-time security checks and performance-
cost optimization in serverless applications utilizing parallel log collection, Merkle tree (MT) algorithms, and 
heuristic optimization (HO). Joshi et al.22 develop and provide a specialized dataset for detecting DoW attacks in 
serverless architectures, assisting in creating effective security solutions for containerized applications. Krishna 
et al.23 explore advanced encryption and security techniques, including AI, BC, and compliance measures, to 
improve cloud computing data protection and threat detection. Mora et al.24 create a realistic dataset simulating 
function calls to detect DoW attacks using ML and neural networks. Ranganatha and Mustafa25 utilize a 
bidirectional 3d quasi-recurrent neural network (Bi-3DQRNN) model, with self-adaptive synthetic over-
sampling technique (SASOS) for data balancing, enhanced artificial gorilla troops optimization (EAGTO) for 
parameter tuning, and Proof of Voting (PoV) consensus BC for secure transaction forecasting. Xiong et al.26 
expose and analyze the Warmonger attack, a DoS threat in serverless platforms, resulting from shared egress IPs 
being blocked due to malicious function behaviour. Musamih et al.27 employ BC, composable NFTs, threshold 
cryptography, fully homomorphic encryption (FHE), and decentralized storage via IPFS. Lavi et al.28 developed 
an extendable security threat detection model for serverless computing, utilizing native cloud monitoring tools 
to detect anomalous behaviour and compromised serverless functions. Table 1 summarizes the key findings and 
models on serverless safety threat detection.

Despite the crucial improvements in security solutions for serverless and BC environments, various 
limitations still exist. Existing models mainly concentrate on specific attack types, making them less adaptable 
across diverse threat scenarios. Several techniques still encounter difficulty effectively handling large-scale, real-
time data processing, specifically in highly dynamic serverless platforms. Moreover, the lack of standardized, 
comprehensive datasets restricts the accuracy of anomaly detection systems. While few methods incorporate 
optimization and AI techniques, the efficiency of these techniques in complex, growing environments remains 
questionable. Additionally, most solutions fail to address the threats of minimizing false positives and ensuring 
system scalability. Lastly, integrating advanced cryptographic techniques in BC systems sometimes increases 
computational costs and complexity.
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Materials and methods
This study proposes the MMDoWA-ARDL approach. The primary purpose of the model effectively detects 
and mitigates malicious attacks in serverless environments using an advanced DL model. Figure 1 depicts the 
workflow of the MMDoWA-ARDL model.

Z-score normalization
At first, the presented MMDoWA-ARDL model applies data pre-processing using Z-score normalization 
to transform input data into a helpful format29. This is chosen for its effectualness in standardizing data by 
transforming features with a mean of 0 and a standard deviation of 1. The model confirms that the overall 
input factors play a crucial role in equally contribution to the learning process, averting bias produced by scale 
differences. Unlike min-max normalization, which can be sensitive to outliers, Z-score is more robust in datasets 
with varying distributions. It also enhances the stability and convergence speed of optimization approaches. 
Moreover, it improves model generalization by mitigating the impact of noisy or extreme values. These merits 
make Z-score normalization an ideal choice for pre-processing in ML processes. At first, this is used to measure 
input data. This method is selected for data pre-processing owing to its efficacy in normalizing features. It 
converts them into a general measure with an SD of 1 and a mean of 0. This model is mainly beneficial when 
managing databases that display fluctuating measures and allocations. This standardization safeguards the shape, 
which makes it suitable for techniques that pretend to spread data typically. Furthermore, this approach enables 
quicker convergence throughout the optimizer, as it helps uphold a constant input value, eventually improving 
the model’s performance. Its efficiency and simplicity in enhancing comparability and understandability through 
features uphold its extensive usage in the applications of ML. Thus, this normalization is a statistical method 
for regularizing the features of the data. It transforms the data into an SD ( σ ) of 1 and a mean ( µ ) of 0. The 
mathematical formulation is shown as follows:

	
z = (x − µ )

σ
� (1)

Ref. Techniques Metrics Findings

11 BC, AI, LSTM, Smart Contracts Monitoring Accuracy, Response Speed, Data Integrity, 
Anomaly Detection Rate

The system detects GNSS signal anomalies and improves 
monitoring accuracy and response time.

12 BC, Smart Contracts, DL-based IDS, Proof of 
Voting Consensus, IPS/IDS Modules

Accuracy, Precision, Recall, Sensitivity, Specificity, 
FPR, F1-Score, MCC

The framework mitigates detection/validation time and 
boosts attack prevention, making it ideal for real-time 
use.

13 PBAC, BC, Smart Contracts, IPFS Access Control Efficiency, EHR Management 
Scalability, Smart Contract Execution Time

The proposed technique enhances EHR management 
efficiency and scalability.

14 SMOTE, ENN, RF, XGB, BA, Random and 
Bayesian Search

Accuracy, Error Rate, Computational Costs, 
Parameter Search Time

The BA enhanced performance, attaining higher 
accuracy and a lower error rate in EDoS attack detection.

15 AI, HE, SIMD, DNN, FedAvg Algorithm, 
Privacy-preserving Distributed Learning

Detection Accuracy, Training Time, Real-world 
Adaptability

The framework maintains accuracy, mitigates training 
time, and adapts to real-world systems.

16 Ensemble Learning, WCA, DO, Threat Detection Accuracy, Resilience Against Threats, Real-time 
Detection

Improved threat detection and system adaptability 
utilizing ensemble learning and WCA.

17
EfficientNet, Inception-ResNet-v2, Ensemble DL, 
BC, Continuous network monitoring, Anomaly 
detection algorithms

Classification Accuracy, AUC, Training time, 
Balanced Accuracy Recall Weighted Score (BPRWS) 
Metric

EffiIncepNet achieved up to 98% accuracy with 
enhanced scalability and security.

18 CNN, AdaHessian Optimization, Model Pruning, 
Post-training Quantization Accuracy, Recall, Precision, F1-Score Attained the highest output with low resource usage and 

high cryptojacking detection.

19 FODWNN-DoWAD, PBSO, DWNN, HLCCO Accuracy, Recall, Precision, F1-Score, MCC Highlighted more significant results in detecting DoW 
attacks utilizing optimized neural networks.

20 Cryptocurrency market data and Event study 
analysis, Attack type evaluation Market Returns, Cryptocurrency Price Stability Diverse attacks significantly affect cryptocurrency 

returns and stability.

21 FaaSMT, Parallel Processing, MTA, HO Attack Detection, Function Monitoring, Performance 
Overhead

FaaSMT effectively detects attacks while mitigating 
performance overhead.

22
Dataset Creation, DoW Attack Detection, 
Containerized Applications, Threat 
Understanding

Attack Detection, Dataset Utilization, Security 
Enhancement

The dataset assists in developing stronger models for 
detecting DoW attacks in serverless environments.

23 AI, BC, and Compliance Measures Data Protection, Threat Detection, Security Integrity Encryption, AI, and BC improve cloud security and 
ensure compliance.

24 Synthetic Data Generation, ML Dataset Generation, Anomaly Detection Created a synthetic dataset for detecting DoW attacks in 
serverless environments using ML.

25 Bi-3DQRNN, SASOS, EAGTO Accuracy The model attained higher accuracy than existing fraud 
detection techniques in mobile transactions.

26 Warmonger Attack, Egress IP Analysis Egress IP Usage Patterns, Number of Egress IPs per 
Serverless Service Providers (SSP)

Small egress IP sets in serverless platforms allow 
malevolent users to trigger IP blocking, causing DoS.

27 BC, NFTs, Threshold Cryptography, FHE, IPFS, 
Smart Contracts, Composable NFTs

Privacy Preservation, Data Traceability, Cost 
Evaluation, Feasibility and User-friendliness

The model ensures efficient, private, traceable genomic 
data management and monetization.

28 Native Monitoring Tools Attack Detection Rate, False Alarm Rate The methodology detects overall simulated attacks with 
minimal false alarms.

Table 1.  Summary of key findings and techniques of studies on serverless security threat detection.
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While x denotes an original value, 0 displays the SD, and µ  represents the mean of the feature.

CSO-based feature selection
Next, the FS process-based CSO efficiently identifies the most impactful attributes related to potential malicious 
activity30. This model is chosen for to its robust global search capability and simplicity of implementation. Inspired 
by the brood parasitism behaviour of cuckoos, CSO effectually explores the search space to detect the most 
relevant features while averting local minima. Compared to conventional methods such as genetic algorithms 
(GAs) or particle swarm optimization (PSO), CSO gives improved convergence rates and requires fewer 
parameter adjustments. Its use of Lévy flights improves exploration, making it appropriate for high-dimensional 
and complex datasets. By choosing optimal features, CSO mitigates computational costs and enhances the 
accuracy and interpretability of the model. Figure 2 portrays the working flow of the CSO methodology.

The features were recognized using the CSO technique from the set of features. This method is dependent 
upon cuckoo types, which perform resource exploitation by egg-laying in other crowded birds’ nests. The host 
bird will also throw the eggs away as they do not fit into the nest or will build a novel nest by deserting the 
present one. Regarding the computational procedure, every egg in the nest signifies the solution, where the 
precise cuckoo egg maps to the novel solution. The cuckoo technique selects features by repeatedly hunting for 
an optimum subset of features. It develops the searching space, assesses the fitness of every feature sub-set, and 
upgrades the solutions depending upon the behaviour of the cuckoo that aims to enhance accuracy, decrease 
overfitting, and improve efficacy. A better solution is achieved by substituting the old cuckoo egg with a novel 
one that fits well in the nest. The instructions behind CSO are denoted below:

•	 At a time, a cuckoo rests only one egg, thrown in any chosen nest randomly.
•	 The fine eggs in the best nest are delivered to the next generation.
•	 Only a fixed amount of host nests are obtainable, and the likelihood of discovering a foreign egg is set within 

the range of [0,1]. With this likelihood, the egg is dropped by the host bird or dumped and transferred into a 
newly made nest in another position.

Depending upon the rules above, the cuckoo search is prolonged as below,

Fig. 1.  Workflow of MMDoWA-ARDL approach.
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Fig. 2.  Working flow of CSO technique.
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Throughout the procedure of making solutions, the novel generations x(t + 1), for example, Levy flight, is 
formulated as

	 x
(t+1)
i = x

(t)
i + α ⊕ Leν y (λ )� (2)

In the abovementioned formulation, α  denotes the size of size, which differs based on the issue. Frequently, the 
α  value is equivalent to 1. The B symbol means the entry-wise multiplications. The Levy flight delivers a vital 
random walk, while the length of the step is drawn at random from the distribution of Levy.

	 Levy ∼ u = t−λ , (1 < λ < 4)� (3)

Algorithm 1.  Pseudocode of CSO.

In the CSO model, the purposes are united into a single objective formulation, and a present weight 
categorizes every objective’s significance. An FF that unites both FSs is used, as shown in Eq. (4).

	
F itness (X) = α · E (X) + β

(
1 − |R|

|N |

)
� (4)

Here, F itness (X) is the fitness value of a sub-set X, E (X) represents the classifier rate of error in the 
X  subset, |N | and |R| means a quantity of original features and amount of chosen features in the dataset 
correspondingly, β  and α  means a decrease ratio and weights of classifier error, α ∈ [0,1] and β = (1 − α ).

DoW attack mitigation process using BMNet
For the attack mitigation process, the BMNet model is utilized31. This approach is chosen because it captures 
transaction data’s sequential patterns and contextual dependencies. By incorporating Bi-LSTM and multi-head 
self-attention, BMNet effectually learns long-term dependencies and concentrates on crucial aspects in past and 
future contexts. This dual capability outperforms conventional RNNs or CNNs, which may face difficulty with 
temporal dynamics or attention mechanisms. BMNet model improves detection accuracy in complex, growing 
attack scenarios and gives robustness against subtle anomalies. Its architecture confirms high sensitivity and 
adaptability, making it ideal for securing BC-based wallets. Figure 3 portrays the BMNet architecture.

The Bi-LSTM method develops time-based dependencies, exploiting its capability to handle time-based data 
bi-directionally. BiLSTM concurrently handles data at every time step over both backward and forward layers. 
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For every input Lt, the Bi-LSTM produces backward and forward hidden layers (HLs) for every time step, 
which are then linked to yield a feature representation ht that creates both backward and forward time-based 
relationships:

	 ht = BiLST M (Lt) , ht ∈ Rd� (5)

Fig. 3.  Structure of BMNet model.
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While, ht signifies the temporal feature of tth, and d means a dimension of HL. The Bi-LSTM method makes a 
complete time-series feature matrix H  by doing backwards and forward calculations on the complete sequence:

	 H = [h1, h2, . . . , hT ] , H ∈ RT × d� (6)

Here, T  signifies the number of features. This feature matrix efficiently considers time-based dependencies, 
delivering more informative inputs for the following self-attention mechanism.

Afterwards, the time-based features made by the Bi-LSTM are distributed to the multi-head self‐attention 
mechanism (MHSA) to improve the spatiotemporal feature-capturing ability by utilizing manifold attention 
heads to emphasize the global relations among dissimilar landmark features simultaneously. The MHSA aids 
in recognizing anomalies in local features from the spatio‐temporal dimension and holds global data of the 
temporal sequence.

In BMNet, an input to the MHSA component is the time-series feature matrix H  handled by the Bi-LSTM, 
which efficiently shows the global dependencies. It focuses on local feature variations and also captures temporal 
consistency. For every attention head, the key K , query Q, and value V  are made utilizing weighting matrices 
WQ, WK , and WV . The last attention output, Z, is gained by computing the attention score A:

	 Q = WQH, K = WKH, V = WV H � (7)

	
A = softmax

(
QKT

√
dk

)
� (8)

	 Z = AV � (9)

The last MHSA output is gained by calculating the outputs of manifold attention heads Zi in analogous:

	 ZMHSA = Concat (Z1, Z2, . . . , Zh)� (10)

Here, h denotes the number of attention heads, and ZMHSA is the output feature of MHSA.

SBOA-based parameter tuning
Finally, the hyper-parameter tuning model is implemented by SBOA to enhance the classification outcomes of 
the BMNet model. This method is chosen due to its dynamic balance between exploration and exploitation. 
Inspired by the hunting strategy of secretary birds, SBOA effectively searches the hyperparameter space to find 
optimal configurations with lesser iterations. SBOA adapts better to complex, non-linear problem spaces than 
conventional grid or random search methods. It mitigates the chances of getting stuck in local optima and 
accelerates convergence. Its lightweight computation and robust global search abilities make it ideal for tuning 
DL models, ultimately improving performance and stability. Table 2 describes the hyperparameters of CSO and 
SBOA models. Figure 4 illustrates the steps comprised in the SBOA approach.

The SBOA model is a population-based metaheuristic technique that makes a set of candidate solutions at 
random in the search space32.

	

X =




x1,1 x1,2 · · · x1,j · · · x1,D

x2,1 x2,2 · · · x2,j · · · x2,D

...
...

. . .
...

. . .
...

xi,1 xi,2 · · · xi,j · · · xi,D

...
...

. . .
...

. . .
...

xN,1 xN,2 · · · xN,j · · · xN,D




N×D

� (11)

Algorithm Hyperparameter Description Typical Value/Range

CSO NO_of_Nests Overall candidate solutions (POPULACE_SIZE) 15–50

DISCOVERY_Rate_of_Alien_Eggs (p.a.) Probability of finding a bad solution and replacing it 0.25–0.35

MAX_Iterations MAX_NO_of_Generations 100–1000

SIZE_of_Step (α) Regulates the scale of random walk (Lévy flight) 0.01–1

SBOA POPULACE_Size OVERALL_Search_Agents 20–50

MAX_Iterations NO_of_OPTZ_Cycles 100–1000

ESCAPE_Energy (E) Regulates the behaviour of exploration vs. exploitation 0 to 1 (adaptive)

FLIGHT_Angle_Factor (θ) Governs the variability of the search direction π/6 to π/3 (radians)

CONVERGENCE_Coefficient (C) Adjusts the intensity of dislocation towards prey 0.5–2

Table 2.  Hyperparameters and their typical values for CSO and SBOA, utilized to control exploration, 
convergence, and overall optimization performance.
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Here, X signifies the population of secretary birds, Xi means the location of the ith secretary bird, xi,j  specifies 
the location information of the jth problem variable for ith secretary birds, and N  represents the population 
dimension. D refers to the dimension of problem variables.

The Secretary Birds initial locations are defined at random depend upon Eq. (12):

	 xi,j = (ubj − lbj) × r1 + lbj � (12)

Fig. 4.  Steps involved in the SBOA method.
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While, xi,j  signifies the initial value of decision variable j for ith candidate solutions; ubj  and lbj  refer to the 
upper and lower boundaries, correspondingly; and r1 denotes an arbitrarily created number within the interval 
of (0,1).

Hunting behaviour (exploration)
This kind of behaviour naturally contains 3 phases: prey searching (P1), prey exhausting (P2), and prey 
attacking (P3). In the prey search phase, Secretary Birds are probable prey. If the prey is recognized, then they 
arrive at the prey-exhausting phase. With the firm decision of the prey’s actions, the Secretary Birds easily fly, 
jump, and aggravate near the snake, exhausting the enemy’s energy. Once the stamina of the prey is completely 
exhausted, then they will start an attack. This procedure was demonstrated utilizing Eqs. (13) and (14).

	

xnew1
i,j =




P1 : xi,j + r2 × (xr1 − xr2 ) , if iter < 1
3 T

P2 : xbest + exp
((

iter
T

)4
)

× (RB − 0.5) × (xbest − xi,j) , if 1
3 T < iter < 2

3 T

P3 : xbest +
(
1 − iter

T

)(2× iter
T ) × xi,j × RL, else

� (13)

	
Xi

{
Xnew1

i , if F new1
i < Fi

Xi, else
� (14)

While, iter means the present count of iteration, T  embodies the maximum iteration count, Xnew1
i  specifies 

the novel state of ith secretary bird in the 1st phase, and xr1 and xr2 are candidate solutions at random for 
the 1st phase iteration. r2 represents a generated array at random dimension 1x D within the range of [0,1] . 
xnew1

i,j  means the location data of its jth dimension, while F new1
i  represents its objective function fitness value. 

RB implies a range of sizes 1 × D produced randomly, and Xbest signifies the finest solution attained until 
now. RL denotes the function of Lévy flight, which is computed utilizing Eq. (15).

	




RL = 0.5 × Levy (Dim)
Levy (Dim) = 0.01 × u× σ

|v|
1
η

σ =

(
Γ (1+η )× sin( π η

2 )
Γ ( 1+η

2 )× η × 2( η −1
2 )

) 1
η � (15)

While η  represents a fixed constant with a value of 1.5, u and v denote produced numbers randomly in the 
range of [0, 1], and Γ  embodies the gamma function.

Escape strategy (exploitation)
Secretary birds might tackle attacks from predators or attempts to catch its prey. Due to its cleverness, they 
frequently use avoidance tactics to defend themselves. These tactics were mainly separated into dual kinds: one 
includes soaring or running to escape (S), whereas others involve utilizing ecological colours or constitute 
camouflage (S), which makes it firmer for predators to perceive them. This procedure is demonstrated utilizing 
Eqs. (16) and (17).

	
xnew2

i,j =
{

S1 : xbest + (2 × RB − 1) ×
(
1 − iter

T

)2 × xi,j , if q < r3
S2 : xi,j + r4 × (xrand − xi,j) , else

� (16)

	
Xi =

{
Xnew2

i , if F new2
i < Fi

Xi, else
� (17)

In the above equation, q = 0.5, r3, and r4 signify sets of dimensions (1 × D) produced arbitrarily from a 
standard distribution. xrand means a produced candidate solution randomly in the present iteration, and 1 
denotes a selected number at random of either 1 or 2.

Fitness choice is a crucial factor in manipulating SBOA performance. The hyper-parameter range procedure 
contains the solution-encoded system for appraising the effectiveness of the candidate solution. The SBOA 
reflects accuracy as the foremost measure to project the fitness function. It is shown below:

	 F itness = max (P )� (18)

	
P = T P

T P + F P
� (19)

Here, T P  and F P  signifies the true and positive values.

Experimental analysis
The performance evaluation of the MMDoWA-ARDL methodology is examined under a benchmark dataset33. 
The dataset covers 100,000 samples below dual classes, with every class comprising 50,000 samples, as defined in 
Table 3. It includes 17 features, out of which 14 are selected. Table 4 outlines key metrics utilized to detect DoW 
behaviour in serverless function invocations.
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Figure 5 established a set of confusion matrices created by the MMDoWA-ARDL technique on several epochs. 
On 500 epochs, the MMDoWA-ARDL technique has accepted 49,477 samples into attack transactions and 49,712 
samples into legitimate transactions. Followed by, on 1000 epochs, the MMDoWA-ARDL methodology has 
known 49,515 samples into attack transactions and 49,707 samples into legitimate transactions. Simultaneously, 
on 1500 epochs, the MMDoWA-ARDL methodology has accepted 49,536 samples into attack transactions and 
49,699 samples into legitimate transactions. Moreover, in the 2000 epochs, the MMDoWA-ARDL approach has 
known 49,583 samples for attack transactions and 49,706 samples for legitimate transactions. Eventually, on 
3000 epochs, the MMDoWA-ARDL technique has realized 49,659 samples into attack transactions and 49,730 
samples into legitimate transactions.

In Table  5; Fig.  6, the DoW attack recognition results of the MMDoWA-ARDL methodology are shown 
below in various epochs. The outcomes identified that the MMDoWA-ARDL methodology correctly recognized 
the attack and legitimate transaction samples. With 500 epochs, the MMDoWA-ARDL methodology attains 
an average accuy  of 99.19%, precn of 99.19%, recal of 99.19%, Fmeasure of 99.19%, MCC of 98.38%, and 
Kappa of 98.63%. Besides, with 1000 epochs, the MMDoWA-ARDL methodology attains an average accuy  of 
99.22%, precn of 99.22%, recal of 99.22%, Fmeasure of 99.22%, MCC of 98.44%, and Kappa of 98.67%. At the 
same time, with 1500 epochs, the MMDoWA-ARDL methodology accomplishes an average accuy  of 99.24%, 
precn of 99.24%, recal of 99.24%, Fmeasure of 99.23%, MCC of 98.47%, and Kappa of 98.78%. Also, with 2000 
epochs, the MMDoWA-ARDL model accomplishes an average accuy  of 99.29%, precn of 99.29%, recal of 
99.29%, Fmeasure of 99.29%, MCC of 98.58%, and Kappa of 99.01%. At the same time, with 3000 epochs, the 
MMDoWA-ARDL model obtains an average accuy  of 99.39%, precn of 99.39%, recal of 99.39%, Fmeasure of 
99.39%, MCC of 98.78%, and Kappa of 99.09%. These outputs highlight the consistent and robust performance 
of the MMDoWA-ARDL model across varying training durations.

Figure 7 illustrates the TRA accuy( TRAAY) and validation accuy( VLAAY) outcomes of the MMDoWA-
ARDL technique. The accuy  analysis is calculated under 0-3000 epochs. The figure highlights that the TRAAY 
and VLAAY analysis showed an increasing trend, which informed the capacity of the MMDoWA-ARDL 
technique with higher outcomes across diverse iterations. Similarly, the TRAAY and VLAAY exhibit close 
epochs, indicating minimal overfitting and confirming the robustness of the MMDoWA-ARDL model under 
unseen data.

Feature Description Relevance to DoS/DDoS attacks

ID Unique identifier for every entry. Assists in tracking particular requests and analyzing attack patterns.

IP SOURCE_IP address. Utilized to detect the origin of attack requests. The high frequency may exhibit bot 
activity.

Bot FLAG_if_IP_is_Bot (TRUE/FALSE). The presence of a Bot is a key indicator of automated attack traffic.

FunctionId Identifier of the specific function being triggered. Function call patterns can assist in detecting unusual requests and illustrating an attack.

FunctionTrigger FUNCTION_Trigger (e.g., notification). Malicious activity may be the result of anomalous function triggers.

Timestamp TIMESTAMP_Request. It assists in detecting the time of attack and correlates with high traffic spikes.

SubmitTime TIME_to_Submit a request. Longer submission times may hint at attack attempts like flooding.

Round-Trip Time (RTT) TIME_for_Signal to travel to the destination and back. High RTT values may show network congestion due to an attack.

InvocationDelay DELAY_before_Function_Invoke Enhanced delays may suggest throttling from attack traffic.

ResponseDelay The time between getting the request and sending a 
response. Delays in responses show resource saturation, which is usual in DoS/DDoS.

FunctionDuration DURATION_Function_Runs. Long durations reflect attacks that overload system functions.

ActiveFunctionsAtRequest ACTIVEFUNCTIONS_during_Request. Higher numbers could indicate system stress from attack traffic.

ActiveFunctionsAtResponse Number of active functions at the time of response. A higher number may indicate overloading, revealing DoS attacks.

MaxCPU MAX_CPU_USAGE during the request. Enhanced CPU usage may show resource exhaustion from an attack.

AvgCPU AVG_CPU_USAGE during the request. Higher average CPU usage can illustrate a DoS/DDoS attack.

P95MaxCPU The 95th percentile of maximum CPU usage. It assists in highlighting outliers in CPU usage and helps detect spikes caused by attacks.

VMCategory Category of virtual machine (e.g., Delay-insensitive). VM classes assist in correlating attack types, such as delay-sensitive traffic overload.

VMCoreCountBucket CPU_No. cores in the VM bucketed into categories. Unusual core usage patterns may depict resource hogging from attack traffic.

VMMemoryBucket Bucket for VM memory allocation. Memory usage spikes may show resource exhaustion during an attack.

Table 4.  Summary of features relevant to the detection of DoW attacks.

 

Transactions No. of transactions

Attack transactions 50,000

Legitimate transactions 50,000

Total transactions 100,000

Table 3.  Details of the dataset.
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Figure 8 depicts the TRA loss (TRALO) and VLA loss (VLALO) curves of the MMDoWA-ARDL method. 
The loss is computed across an interval of 0-3000 epochs. It is also shown that the TRALO and VLALO analysis 
establishes a diminishing algorithm, which informed the capability of the MMDoWA-ARDL technique to 
balance a trade-off between data fitting and generalization. There is a continuous reduction in loss, besides 
assurances of the more excellent performance of the MMDoWA-ARDL technique and tuning of the prediction 
outputs over time.

In Fig. 9, the precision-recall (PR) graph results of the MMDoWA-ARDL methodology below several epochs 
deliver clarification into its solution by plotting PR for each class. The steady increase in PR analysis between 
each class label describes the effectiveness of the MMDoWA-ARDL approach in the classification process.

Figure  10 inspects the ROC graph of the MMDoWA-ARDL methodology below several epochs. The 
results suggest that the MMDoWA-ARDL methodology gains more excellent ROC analysis across all classes, 
demonstrating an essential capacity for discerning classes. This constant trend of maximum ROC analysis 
across several classes means the capable outcomes of the MMDoWA-ARDL method on predicting class labels, 
highlighting the robust behaviour of the classification process.

To exhibit the proficiency of the MMDoWA-ARDL methodology, a thorough comparison investigation is 
conducted in Table 6; Fig. 1120,34–37. The table values depicted that the MMDoWA-ARDL methodology archives 
superior performance. Based on accuy , the MMDoWA-ARDL methodology provides a better accuy  of 99.39%. 
At the same time, NB, DBN, SVM, DQSP, DQN, DNN, Inception-ResNet, CAPM, MAR, and APT models have 
achieved lesser accuy  values of 95.13%, 94.01%, 99.05%, 91.60%, 90.79%, 97.10%, 90.59%, 92.36%, 91.39%, and 
97.88%, respectively. Afterwards, based on precn, the MMDoWA-ARDL approach presents a higher precn of 
99.39%, where NB, DBN, SVM, DQSP, DQN, DNN, Inception-ResNet, CAPM, MAR, and APT techniques have 
attained lower precn values of 92.82%, 97.01%, 97.34%, 90.58%, 98.34%, 97.64%, 92.22%, 91.34%, 99.05%, and 
98.24%, correspondingly. Simultaneously, depending on the recal, the MMDoWA-ARDL approach presents 
a maximum recal of 99.39%. In contrast, Naïve Bayes (NB), DBN, SVM, DQSP, DQN, DNN, Inception-
ResNet, CAPM, MAR, and APT methodologies have accomplished lower recal values of 97.09%, 95.00%, 
90.11%, 99.01%, 91.30%, 96.17%, 92.79%, 99.13%, 91.93%, and 96.94%, subsequently. Lastly, for Fmeasure, 
the MMDoWA-ARDL approach presents a superior Fmeasure of 99.39%. In contrast, NB, DBN, SVM, DQSP, 

Fig. 5.  Confusion Matrix of MMDoWA-ARDL approach (a–f) Epochs 500–3000.
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DQN, DNN, Inception-ResNet, CAPM, MAR, and APT approaches have reached minimal Fmeasure values of 
94.99% 97.56%, 91.20%, 97.34%, 91.69%, 90.57%, 95.01%, 97.84%, 92.20%, and 91.26%, subsequently.

The computation time (CT) outcomes of the MMDoWA-ARDL approach are compared to other existing 
methods in Table 7; Fig. 12. The results signified that the MMDoWA-ARDL approach achieves an inferior CT 
of 5.72s. On the other hand, the NB, DBN, SVM, DQSP, DQN, DNN, Inception-ResNet, CAPM, MAR, and 
APT methods achieve increased CT values of 8.60s, 9.63s, 8.74s, 19.52s, 17.37s, 16.68s, 18.32s, 11.90s, 10.56s, 
and 12.25s, correspondingly. Thus, the MMDoWA-ARDL approach is used to mitigate malicious DoW attacks.

Table 8; Fig. 13 demonstrates the ablation study of the MMDoWA-ARDL approach. Four models namely 
CSO, SBOA, BMNet, and the proposed MMDoWA-ARDL model are analyzed under accuy , precn, recal, 
Fmeasure, MCC, Kappa. The CSO and SBOA models illustrates competitive results, attaining accuy  of 97.35% 
and 97.86%, respectively. BMNet additionally enhanced performance with an accuy  of 98.65%. However, 
the proposed MMDoWA-ARDL model outperformed all baselines, attaining a consistent 99.39% across all 
metrics. These results confirm that the integration of attribute reduction and DL techniques in the MMDoWA-
ARDL model significantly improves detection capabilities, validating its robustness and superiority in securing 
serverless applications against DoW attacks.

Conclusion
In this study, the MMDoWA-ARDL approach is proposed. The primary purpose of the MMDoWA-ARDL 
approach is to propose a novel framework that effectively detects and mitigates malicious attacks in serverless 
environments using an advanced DL model. At first, the presented MMDoWA-ARDL model applies data 
pre-processing using Z-score normalization to transform input data into a valid format. Furthermore, the FS 
process-based CSO efficiently identifies the most impactful attributes related to potential malicious activity. The 
BMNet model is employed for the attack mitigation process. Finally, SBOA accomplishes the parameter tuning 
method to enhance the classification outcomes of the BMNet model. A wide-ranging experimental investigation 
is conducted using a benchmark dataset to exhibit the superior performance of the proposed MMDoWA-ARDL 
technique. The comparison study of the MMDoWA-ARDL model portrayed a superior accuracy value of 99.39% 
over existing techniques.

Class Labels Accuy Precn Recal FMeasure MCC Kappa

Epoch − 500

 Attack Transactions 98.95 99.42 98.95 99.19 98.38 98.55

 Legitimate Transactions 99.42 98.96 99.42 99.19 98.38 98.71

 Average 99.19 99.19 99.19 99.19 98.38 98.63

Epoch − 1000

 Attack Transactions 99.03 99.41 99.03 99.22 98.44 98.80

 Legitimate Transactions 99.41 99.03 99.41 99.22 98.44 98.54

 Average 99.22 99.22 99.22 99.22 98.44 98.67

Epoch − 1500

 Attack Transactions 99.07 99.40 99.07 99.23 98.47 99.21

 Legitimate Transactions 99.40 99.08 99.40 99.24 98.47 98.34

 Average 99.24 99.24 99.24 99.23 98.47 98.78

Epoch − 2000

 Attack Transactions 99.17 99.41 99.17 99.29 98.58 99.11

 Legitimate Transactions 99.41 99.17 99.41 99.29 98.58 98.90

 Average 99.29 99.29 99.29 99.29 98.58 99.01

Epoch − 2500

 Attack Transactions 99.17 99.43 99.17 99.30 98.60 99.00

 Legitimate Transactions 99.43 99.17 99.43 99.30 98.60 99.12

 Average 99.30 99.30 99.30 99.30 98.60 99.06

Epoch − 3000

 Attack Transactions 99.32 99.46 99.32 99.39 98.78 98.67

 Legitimate Transactions 99.46 99.32 99.46 99.39 98.78 99.50

 Average 99.39 99.39 99.39 99.39 98.78 99.09

Table 5.  DoW attack detection of MMDoWA-ARDL method under various epochs.
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Fig. 6.  Average result of MMDoWA-ARDL method below several epochs.
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Fig. 7.  Accuy  curve outcome of MMDoWA-ARDL method (a–f) Epochs 500–3000
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Fig. 8.  Loss graph outcome of MMDoWA-ARDL approach (a–f) Epochs 500–3000.
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Fig. 9.  PR curve outcome of MMDoWA-ARDL approach (a–f) Epochs 500–3000.
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Classifier Accuy Precn Recal FMeasure

NB 95.13 92.82 97.09 94.99

DBN Model 94.01 97.01 95.00 97.56

SVM Method 99.05 97.34 90.11 91.20

DQSP Model 91.60 90.58 99.01 97.34

Deep Q-Network 90.79 98.34 91.30 91.69

DNN Algorithm 97.10 97.64 96.17 90.57

Inception-ResNet 90.59 92.22 92.79 95.01

CAPM 92.36 91.34 99.13 97.84

MAR 91.39 99.05 91.93 92.20

APT 97.88 98.24 96.94 91.26

MMDoWA-ARDL 99.39 99.39 99.39 99.39

Table 6.  Comparative outcome of MMDoWA-ARDL approach with existing methods20,34–37.

 

Fig. 10.  ROC analysis outcome of MMDoWA-ARDL model (a–f) Epochs 500–3000.
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Classifier CT (sec)

NB 8.60

DBN Model 9.63

SVM Method 8.74

DQSP Model 19.52

Deep Q-Network 17.37

DNN Algorithm 16.68

Inception-ResNet 18.32

CAPM 11.90

MAR 10.56

APT 12.25

MMDoWA-ARDL 5.72

Table 7.  CT outcome of MMDoWA-ARDL technique with existing models.

 

Fig. 11.  Comparative outcome of MMDoWA-ARDL approach with existing methods.
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Classifier Accuy Precn Recal FMeasure

CSO 97.35 97.33 97.12 97.48

SBOA 97.86 98.05 97.88 98.03

BMNet 98.65 98.84 98.62 98.6

MMDoWA-ARDL 99.39 99.39 99.39 99.39

Table 8.  Result analysis of the ablation study of MMDoWA-ARDL approach.

 

Fig. 12.  CT outcome of MMDoWA-ARDL technique with existing models.
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Data availability
The data supporting this study’s findings are openly available at ​h​t​t​p​s​:​/​/​d​a​t​a​.​m​e​n​d​e​l​e​y​.​c​o​m​/​d​a​t​a​s​e​t​s​/​g​8​g​9​v​d​x​y​v​
n​/​1​, reference number [33].
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