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Denial of Wallet (DoW) attacks are one kind of cyberattack whose goal is to develop and expand

the financial sources of a group by causing extreme costs in their serverless computing or cloud
environments. These threats are chiefly related to serverless structures owing to their features, such
as auto-scaling, pay-as-you-go method, cost amplification, and limited control. Serverless computing,
Function-as-a-Service (FaaS), is a cloud computing (CC) system that permits developers to construct
and run applications without a conventional server substructure. The deep learning (DL) model, a

part of the machine learning (ML) technique, has developed as an effectual device in cybersecurity,
permitting more effectual recognition of anomalous behaviour and classifying patterns indicative of
threats. This study proposes a Mitigating Malicious Denial of Wallet Attack using Attribute Reduction
with Deep Learning (MMDoWA-ARDL) approach for serverless computing on next-generation
applications. The primary purpose of the MMDoWA-ARDL approach is to propose a novel framework
that effectively detects and mitigates malicious attacks in serverless environments using an advanced
deep-learning model. Initially, the presented MMDoWA-ARDL model applies data pre-processing using
Z-score normalization to transform input data into a valid format. Furthermore, the feature selection
process-based cuckoo search optimization (CSO) model efficiently identifies the most impactful
attributes related to potential malicious activity. For the DoW attack mitigation process, the bi-
directional long short-term memory multi-head self-attention network (BMNet) method is employed.
Finally, the hyperparameter tuning is accomplished by implementing the secretary bird optimizer
algorithm (SBOA) method to enhance the classification outcomes of the BMNet model. A wide-ranging
experimental investigation uses a benchmark dataset to exhibit the superior performance of the
proposed MMDoWA-ARDL technique. The comparison study of the MMDoWA-ARDL model portrayed
a superior accuracy value of 99.39% over existing techniques.
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Serverless computing is an application employment structure that gives pay-as-you-go event-based performance!.

Serverless function platforms offer the framework for employing code to execute through the cloud and describe
the event processing logic by using these methods: trigger, action, and event. Serverless computing summaries
back-end management from consumers, permitting only minimum admittance for a few fundamental parameters
like function runtime timeout and function memory allocation®. Functions implemented on platforms like
conventional Infrastructure as a Service (IaaS) virtual machine (VM) assistances; nevertheless, the requirement
of this VM is accomplished by the platform with function invocation and not by the developer’. A container
is made for every function invocation and might be recycled for recurrent invocations®. In diverse Iaa$, you
do not pay for the uptime and source dissipated by the function container or VM execution for the runtime
of every function, thus the term FaaS. This method permits serverless applications to measure extensively as
the application is presented on the serverless platform of the cloud and admittance to its source®. One of these
safety attacks is the DoW threat, a different Denial-of-Service (DoS) attack performed on serverless platforms®.
There are two kinds of DoW attacks, namely internal and external. The external attackers will drain money from
the victims by frequently invoking the APIs that the victims accidentally reveal, whereas the internal attackers
will cause source contention on the function examples like VM or containers of the victims, reducing their
programs’.

By postponing the performance of the target function, an internal DoW threat has dual direct impacts
on the target. External and internal DoW describes the latest investigation on DoW. This study recommends
that external DoW might be identified and diminished by conventional DoS mitigation models. Nevertheless,
diverse DoS and DoW can utilize alternative threat patterns that do not trigger DoS recognition parameters
and cannot be volumetric threats, which creates enormous traffic volumes that search, causing damage in a
short period®. Alternatively, these threats perform for long periods, not to raise suspicion, as with conventional
DoS flooding threats’. For internal threat recognition, the systems should analyze and monitor the lower-level
source utilization of particular bare-metal machines. DL and ML are progressively utilized in cybersecurity
aid to prevent and detect cyber threats. With the development of big data, it became gradually complicated
for humans to identify and analyze possible attacks'®. ML models are skilled in vast datasets of known cyber
threats and patterns of suspicious action, and they are utilized to identify and respond to novel attacks in the real
world. The swift growth of cloud-native and event-driven applications has improved the reliance on serverless
architectures, giving scalability and cost-efficiency. However, this shift also exposes systems to new attack
surfaces, specifically DoW attacks that utilize resource-triggered billing mechanisms. As serverless platforms
abstract away infrastructure management, attackers can misuse function calls, resulting in unexpected costs.
This raises the requirement for intelligent, lightweight defence mechanisms. This motivates the development of
a DL-based approach with optimized feature selection to detect and reduce such threats effectually in real-time.

This study proposes a Mitigating Malicious Denial of Wallet Attack using Attribute Reduction with Deep
Learning (MMDoWA-ARDL) approach for serverless computing on next-generation applications. The
primary purpose of the MMDoWA-ARDL approach is to propose a novel framework that effectively detects
and mitigates malicious attacks in serverless environments using an advanced deep-learning model. Initially,
the presented MMDoWA-ARDL model applies data pre-processing using Z-score normalization to transform
input data into a valid format. Furthermore, the feature selection process-based cuckoo search optimization
(CSO) model efficiently identifies the most impactful attributes related to potential malicious activity. For the
DoW attack mitigation process, the bi-directional long short-term memory multi-head self-attention network
(BMNet) method is employed. Finally, the hyperparameter tuning is accomplished by implementing the
secretary bird optimizer algorithm (SBOA) method to enhance the classification outcomes of the BMNet model.
A wide-ranging experimental investigation uses a benchmark dataset to exhibit the superior performance of the
proposed MMDoWA-ARDL technique. The key contribution of the MMDoWA-ARDL technique is listed below.

o The MMDoWA-ARDL model utilizes Z-score normalization to standardize the input features by centring
them around the mean and scaling based on standard deviation (SD). This pre-processing step enhances the
model’s learning efficiency and stability. It also ensures that all features contribute equally during training,
improving overall performance.

o The MMDoWA-ARDL approach employs the CSO method to detect and retain the most informative features
from the dataset. It removes irrelevant or redundant data by mitigating dimensionality, resulting in a more
efficient model. This improves classification accuracy and mitigates computational overhead.

o The MMDoWA-ARDL methodology uses the BMNet-based architecture, which combines Bi-LSTM with
multi-head self-attention to capture both temporal dependencies and contextual associations in the data. This
approach enables more accurate and adaptive detection of DoW attacks. Using these advanced techniques,
the model improves robustness in handling complex attack scenarios.

o The MMDoWA-ARDL method implements the SBOA technique to fine-tune the model’s hyperparameters,
optimizing its learning process. This approach systematically searches for the optimum configuration, en-
hancing overall model efficiency and accuracy. SBOA ensures the model operates at its peak performance.

« by improving parameter settings.

« Integrating CSO, BMNet, and SBOA into a unified framework presents a novel approach to attack mitigation
by integrating advanced optimization, DL, and attention mechanisms. This novel combination improves fea-
ture selection, model robustness, and hyperparameter tuning, addressing complex security challenges. The
novelty is in the seamless synergy between these techniques, which has not been explored in the existing
literature on such attack scenarios.
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Review of literature

Lu et al.!! projected an intellectually improving localized GNSS monitoring method that incorporates artificial
intelligence (AI) and blockchain (BC) technology. Initially, this study utilizes BCT to ensure GNSS monitoring
reliability and tamper resistance of the data. It employs a distributed ledger framework for recognizing the
decentralization of data transmission and storage, thus improving the anti-threat reliability and ability of the
method. Then, the long short-term memory (LSTM) method is used for forecasting and examining the vast
number of monitoring data in the real world, allowing the intellectual recognition of GNSS signal deviations
and anomalies and presenting real-world timely warnings to enhance the monitoring impacts. In'?, a BC-based
Operational Threat Intelligence architecture, OTI-IoT, is projected. During Level 1, this consortium BC system
validators utilize the IPS component from smart contracts for access control and attack prevention. Ullah et
al.!? improve the management and access control of electronic health records (EHR) by utilizing purpose-based
access control (PBAC), BC, Smart Contracts, and interplanetary file systems (IPFS). de Lima et al.'* detect
economic denial of sustainability (EDoS) attacks by integrating the synthetic minority oversampling technique
(SMOTE), edited nearest neighbour rule (ENN), Random Forest (RF), and XGBoost (XGB) classifiers. The
classifiers are optimized utilizing nature-inspired metaheuristics, specifically the bat algorithm (BA), and
hyperparameter tuning techniques like random and Bayesian search. Manh et al.!* developed a novel packing
model using a single-instruction-multiple-data (SIMD) method, allowing effective training on Homomorphic
Encryption (HE)-encrypted data. Developing this deep neural network (DNN) training model enhanced for
encoded data. A privacy-preserving distributed learning method depending on the Fed Avg model was projected
that parallelizes the training through several workers, substantially enhancing the computation period. Sangore
and Patil'® improve threat detection in blockchain-based Bitcoin systems by integrating ensemble learning,
water cycle algorithm (WCA), and dynamic optimization (DO) for improved accuracy and real-time response
to emerging threats. Almazroi'” utilizes EffilncepNet, an ensemble DL method, for BC security and medical data
classification. The aim is to develop an efficient, scalable, and robust method that reduces security attacks and
functions well. EffilncepNet enhances the accuracy of classification and effectiveness of execution by associating
InceptionResNetv2 and EfficientNet structures. EffilncepNet data classification, internal BC performance to
terminate doubtful transactions, and continuous system monitoring with models that look for strange behaviours
are each part of the 3-phase security framework.

Rani et al.'® projected a sophisticated neural network and AdaHessian optimizer model for defence and
cryptojacking prediction. This method gives an advanced DNN cryptojacking threat prediction method
utilizing AdaHessian optimizer, pruning, and post-training quantization. A novel structure for rapid
DNN training using AdaHessian optimizer can identify cryptojacking endeavours by reducing the cost of
computation. Renukadevi et al.!® propose the fusion of optimization with deep wavelet neural networks on
the denial of wallet attack detection (FODWNN-DoWAD) methhodology. The mobile utilizes min-max-based
normalization, pair barracuda swarm optimization (PBSO)-based optimal feature selection, deep wavelet
neural network (DWNN)-based attack detection, and hierarchical learning-based chaotic crayfish optimizer
(HLCCO)-based tuning. Ramos et al.20 analyze how technical events like attacks, hard forks, and wallet breaches
affect the financial performance of Proof-of-Work cryptocurrencies. The study also utilizes models such as the
capital asset pricing model (CAPM), mean adjusted return (MAR), and arbitrage pricing theory (APT); the
study quantifies abnormal returns to evaluate the economic effects of these cyber-attacks and inform regulatory
decisions. Li et al.?! developed FaaSMT. This framework enables real-time security checks and performance-
cost optimization in serverless applications utilizing parallel log collection, Merkle tree (MT) algorithms, and
heuristic optimization (HO). Joshi et al.?> develop and provide a specialized dataset for detecting DoW attacks in
serverless architectures, assisting in creating effective security solutions for containerized applications. Krishna
et al.” explore advanced encryption and security techniques, including AI, BC, and compliance measures, to
improve cloud computing data protection and threat detection. Mora et al.>* create a realistic dataset simulating
function calls to detect DoW attacks using ML and neural networks. Ranganatha and Mustafa®® utilize a
bidirectional 3d quasi-recurrent neural network (Bi-3DQRNN) model, with self-adaptive synthetic over-
sampling technique (SASOS) for data balancing, enhanced artificial gorilla troops optimization (EAGTO) for
parameter tuning, and Proof of Voting (PoV) consensus BC for secure transaction forecasting. Xiong et al.?®
expose and analyze the Warmonger attack, a DoS threat in serverless platforms, resulting from shared egress IPs
being blocked due to malicious function behaviour. Musamih et al.>” employ BC, composable NFTs, threshold
cryptography, fully homomorphic encryption (FHE), and decentralized storage via IPFS. Lavi et al.?® developed
an extendable security threat detection model for serverless computing, utilizing native cloud monitoring tools
to detect anomalous behaviour and compromised serverless functions. Table 1 summarizes the key findings and
models on serverless safety threat detection.

Despite the crucial improvements in security solutions for serverless and BC environments, various
limitations still exist. Existing models mainly concentrate on specific attack types, making them less adaptable
across diverse threat scenarios. Several techniques still encounter difficulty effectively handling large-scale, real-
time data processing, specifically in highly dynamic serverless platforms. Moreover, the lack of standardized,
comprehensive datasets restricts the accuracy of anomaly detection systems. While few methods incorporate
optimization and AI techniques, the efficiency of these techniques in complex, growing environments remains
questionable. Additionally, most solutions fail to address the threats of minimizing false positives and ensuring
system scalability. Lastly, integrating advanced cryptographic techniques in BC systems sometimes increases
computational costs and complexity.
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Techniques

Metrics

Findings

BC, AL, LSTM, Smart Contracts

Monitoring Accuracy, Response Speed, Data Integrity,
Anomaly Detection Rate

The system detects GNSS signal anomalies and improves
monitoring accuracy and response time.

BC, Smart Contracts, DL-based IDS, Proof of
Voting Consensus, IPS/IDS Modules

Accuracy, Precision, Recall, Sensitivity, Specificity,
FPR, F1-Score, MCC

The framework mitigates detection/validation time and
boosts attack prevention, making it ideal for real-time
use.

PBAC, BC, Smart Contracts, IPFS

Access Control Efficiency, EHR Management
Scalability, Smart Contract Execution Time

The proposed technique enhances EHR management
efficiency and scalability.

SMOTE, ENN, RFE, XGB, BA, Random and
Bayesian Search

Accuracy, Error Rate, Computational Costs,
Parameter Search Time

The BA enhanced performance, attaining higher
accuracy and a lower error rate in EDoS attack detection.

AL HE, SIMD, DNN, FedAvg Algorithm,
Privacy-preserving Distributed Learning

Detection Accuracy, Training Time, Real-world
Adaptability

The framework maintains accuracy, mitigates training
time, and adapts to real-world systems.

Ensemble Learning, WCA, DO, Threat Detection

Accuracy, Resilience Against Threats, Real-time
Detection

Improved threat detection and system adaptability
utilizing ensemble learning and WCA.

EfficientNet, Inception-ResNet-v2, Ensemble DL,
BC, Continuous network monitoring, Anomaly
detection algorithms

Classification Accuracy, AUC, Training time,
Balanced Accuracy Recall Weighted Score (BPRWS)
Metric

EffilncepNet achieved up to 98% accuracy with
enhanced scalability and security.

CNN, AdaHessian Optimization, Model Pruning,
Post-training Quantization

Accuracy, Recall, Precision, F1-Score

Attained the highest output with low resource usage and
high cryptojacking detection.

FODWNN-DoWAD, PBSO, DWNN, HLCCO

Accuracy, Recall, Precision, F1-Score, MCC

Highlighted more significant results in detecting DoW
attacks utilizing optimized neural networks.

Cryptocurrency market data and Event study
analysis, Attack type evaluation

Market Returns, Cryptocurrency Price Stability

Diverse attacks significantly affect cryptocurrency
returns and stability.

FaaSMT, Parallel Processing, MTA, HO

Attack Detection, Function Monitoring, Performance
Overhead

FaaSMT effectively detects attacks while mitigating
performance overhead.

Dataset Creation, DoW Attack Detection,
Containerized Applications, Threat
Understanding

Attack Detection, Dataset Utilization, Security
Enhancement

The dataset assists in developing stronger models for
detecting DoW attacks in serverless environments.

Al BC, and Compliance Measures

Data Protection, Threat Detection, Security Integrity

Encryption, AL and BC improve cloud security and
ensure compliance.

Synthetic Data Generation, ML

Dataset Generation, Anomaly Detection

Created a synthetic dataset for detecting DoW attacks in
serverless environments using ML.

Bi-3DQRNN, SASOS, EAGTO

Accuracy

The model attained higher accuracy than existing fraud
detection techniques in mobile transactions.

26

Warmonger Attack, Egress IP Analysis

Egress IP Usage Patterns, Number of Egress IPs per
Serverless Service Providers (SSP)

Small egress IP sets in serverless platforms allow
malevolent users to trigger IP blocking, causing DoS.

BC, NFTs, Threshold Cryptography, FHE, IPFS,
Smart Contracts, Composable NFTs

Privacy Preservation, Data Traceability, Cost
Evaluation, Feasibility and User-friendliness

The model ensures efficient, private, traceable genomic
data management and monetization.

Native Monitoring Tools

Attack Detection Rate, False Alarm Rate

The methodology detects overall simulated attacks with
minimal false alarms.

Table 1. Summary of key findings and techniques of studies on serverless security threat detection.

Materials and methods

This study proposes the MMDoWA-ARDL approach. The primary purpose of the model effectively detects
and mitigates malicious attacks in serverless environments using an advanced DL model. Figure 1 depicts the
workflow of the MMDoWA-ARDL model.

Z-score normalization

At first, the presented MMDoWA-ARDL model applies data pre-processing using Z-score normalization
to transform input data into a helpful format?. This is chosen for its effectualness in standardizing data by
transforming features with a mean of 0 and a standard deviation of 1. The model confirms that the overall
input factors play a crucial role in equally contribution to the learning process, averting bias produced by scale
differences. Unlike min-max normalization, which can be sensitive to outliers, Z-score is more robust in datasets
with varying distributions. It also enhances the stability and convergence speed of optimization approaches.
Moreover, it improves model generalization by mitigating the impact of noisy or extreme values. These merits
make Z-score normalization an ideal choice for pre-processing in ML processes. At first, this is used to measure
input data. This method is selected for data pre-processing owing to its efficacy in normalizing features. It
converts them into a general measure with an SD of 1 and a mean of 0. This model is mainly beneficial when
managing databases that display fluctuating measures and allocations. This standardization safeguards the shape,
which makes it suitable for techniques that pretend to spread data typically. Furthermore, this approach enables
quicker convergence throughout the optimizer, as it helps uphold a constant input value, eventually improving
the model’s performance. Its efficiency and simplicity in enhancing comparability and understandability through
features uphold its extensive usage in the applications of ML. Thus, this normalization is a statistical method
for regularizing the features of the data. It transforms the data into an SD (o ) of 1 and a mean (4 ) of 0. The
mathematical formulation is shown as follows:

(z—p)

(1)

z =
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Fig. 1. Workflow of MMDoWA-ARDL approach.

While z denotes an original value, 0 displays the SD, and p represents the mean of the feature.

CS0-based feature selection

Next, the FS process-based CSO efficiently identifies the most impactful attributes related to potential malicious
activity>. This model is chosen for to its robust global search capability and simplicity of implementation. Inspired
by the brood parasitism behaviour of cuckoos, CSO effectually explores the search space to detect the most
relevant features while averting local minima. Compared to conventional methods such as genetic algorithms
(GAs) or particle swarm optimization (PSO), CSO gives improved convergence rates and requires fewer
parameter adjustments. Its use of Lévy flights improves exploration, making it appropriate for high-dimensional
and complex datasets. By choosing optimal features, CSO mitigates computational costs and enhances the
accuracy and interpretability of the model. Figure 2 portrays the working flow of the CSO methodology.

The features were recognized using the CSO technique from the set of features. This method is dependent
upon cuckoo types, which perform resource exploitation by egg-laying in other crowded birds” nests. The host
bird will also throw the eggs away as they do not fit into the nest or will build a novel nest by deserting the
present one. Regarding the computational procedure, every egg in the nest signifies the solution, where the
precise cuckoo egg maps to the novel solution. The cuckoo technique selects features by repeatedly hunting for
an optimum subset of features. It develops the searching space, assesses the fitness of every feature sub-set, and
upgrades the solutions depending upon the behaviour of the cuckoo that aims to enhance accuracy, decrease
overfitting, and improve efficacy. A better solution is achieved by substituting the old cuckoo egg with a novel
one that fits well in the nest. The instructions behind CSO are denoted below:

o Atatime, a cuckoo rests only one egg, thrown in any chosen nest randomly.

o The fine eggs in the best nest are delivered to the next generation.

 Only a fixed amount of host nests are obtainable, and the likelihood of discovering a foreign egg is set within
the range of [0,1]. With this likelihood, the egg is dropped by the host bird or dumped and transferred into a
newly made nest in another position.

Depending upon the rules above, the cuckoo search is prolonged as below,
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Fig. 2. Working flow of CSO technique.
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Throughout the procedure of making solutions, the novel generations (t 4 1), for example, Levy flight, is
formulated as

mgtﬂ) = :rgt) +a ® Levy(\) (2)
In the abovementioned formulation, o denotes the size of size, which differs based on the issue. Frequently, the
o value is equivalent to 1. The B symbol means the entry-wise multiplications. The Levy flight delivers a vital

random walk, while the length of the step is drawn at random from the distribution of Levy.

Levy~ u=1t",(1<X <4) (3)

Initialize init_pop, n_host_nests
while (t < max_gen) or stop
rand(say, i), substitute the solution with levy_ flights
assess fitness Fi
pick nest between n rand (say, j)
if (Fi < Fj)
j < —new_sol
end if
pa < —fraction of worst nest over newly constructed nests
keep the finest solution
rank the solution and substitute the old with the present best
next_gen(current best)

end while

Algorithm 1. Pseudocode of CSO.

In the CSO model, the purposes are united into a single objective formulation, and a present weight
categorizes every objective’s significance. An FF that unites both FSs is used, as shown in Eq. (4).

Fitness(X)=a - E(X)+f ( _|]}$|) @

Here, Fitness (X) is the fitness value of a sub-set X, E (X) represents the classifier rate of error in the
X subset, |[N| and |R| means a quantity of original features and amount of chosen features in the dataset
correspondingly, 8 and « means a decrease ratio and weights of classifier error, @ € [0,1]and 8 = (1 — a).

DoW attack mitigation process using BMNet
For the attack mitigation process, the BMNet model is utilized®'. This approach is chosen because it captures
transaction data’s sequential patterns and contextual dependencies. By incorporating Bi-LSTM and multi-head
self-attention, BMNet effectually learns long-term dependencies and concentrates on crucial aspects in past and
future contexts. This dual capability outperforms conventional RNNs or CNNs, which may face difficulty with
temporal dynamics or attention mechanisms. BMNet model improves detection accuracy in complex, growing
attack scenarios and gives robustness against subtle anomalies. Its architecture confirms high sensitivity and
adaptability, making it ideal for securing BC-based wallets. Figure 3 portrays the BMNet architecture.

The Bi-LSTM method develops time-based dependencies, exploiting its capability to handle time-based data
bi-directionally. BILSTM concurrently handles data at every time step over both backward and forward layers.
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Fig. 3. Structure of BMNet model.

For every input L, the Bi-LSTM produces backward and forward hidden layers (HLs) for every time step,
which are then linked to yield a feature representation h; that creates both backward and forward time-based
relationships:

hi = BiLSTM (Ly), hy € R? (5)
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While, h; signifies the temporal feature of ¢th, and d means a dimension of HL. The Bi-LSTM method makes a
complete time-series feature matrix H by doing backwards and forward calculations on the complete sequence:

H =1[h1, ha, ..., hr], He RT*? (6)

Here, T signifies the number of features. This feature matrix efficiently considers time-based dependencies,
delivering more informative inputs for the following self-attention mechanism.

Afterwards, the time-based features made by the Bi-LSTM are distributed to the multi-head self-attention
mechanism (MHSA) to improve the spatiotemporal feature-capturing ability by utilizing manifold attention
heads to emphasize the global relations among dissimilar landmark features simultaneously. The MHSA aids
in recognizing anomalies in local features from the spatio-temporal dimension and holds global data of the
temporal sequence.

In BMNet, an input to the MHSA component is the time-series feature matrix H handled by the Bi-LSTM,
which efficiently shows the global dependencies. It focuses on local feature variations and also captures temporal
consistency. For every attention head, the key K, query @), and value V are made utilizing weighting matrices
Wq, Wk, and Wy . The last attention output, Z, is gained by computing the attention score A:

Q=WqH, K=WgH, V=WyvH @)
A = softmax (%) (8)
Z=AV ©)

The last MHSA output is gained by calculating the outputs of manifold attention heads Z; in analogous:

Zymusa = Concat (Z1, Za, ..., Zn) (10)
Here, h denotes the number of attention heads, and Znsms4 is the output feature of MHSA.

SBOA-based parameter tuning
Finally, the hyper-parameter tuning model is implemented by SBOA to enhance the classification outcomes of
the BMNet model. This method is chosen due to its dynamic balance between exploration and exploitation.
Inspired by the hunting strategy of secretary birds, SBOA effectively searches the hyperparameter space to find
optimal configurations with lesser iterations. SBOA adapts better to complex, non-linear problem spaces than
conventional grid or random search methods. It mitigates the chances of getting stuck in local optima and
accelerates convergence. Its lightweight computation and robust global search abilities make it ideal for tuning
DL models, ultimately improving performance and stability. Table 2 describes the hyperparameters of CSO and
SBOA models. Figure 4 illustrates the steps comprised in the SBOA approach.

The SBOA model is a population-based metaheuristic technique that makes a set of candidate solutions at
random in the search space®.

r1,1 T2 o Tl ot X1,D
T21 X222 -t X245 -+ X2D
X=| 00w o owl, o ap ()
ITN,1 ITN,2 v+ IN,j *++ XN,D NxD
Algorithm | Hyperparameter Description Typical Value/Range
CSO NO_of_Nests Overall candidate solutions (POPULACE_SIZE) 15-50
DISCOVERY_Rate_of_Alien_Eggs (p.a.) | Probability of finding a bad solution and replacing it | 0.25-0.35
MAX_Iterations MAX_NO_of_Generations 100-1000
SIZE_of_Step (a) Regulates the scale of random walk (Lévy flight) 0.01-1
SBOA POPULACE_Size OVERALL_Search_Agents 20-50
MAX_Iterations NO_of_OPTZ_Cycles 100-1000
ESCAPE_Energy (E) Regulates the behaviour of exploration vs. exploitation | 0 to 1 (adaptive)
FLIGHT_Angle_Factor () Governs the variability of the search direction 71/6 to 11/3 (radians)
CONVERGENCE_CCoefficient (C) Adjusts the intensity of dislocation towards prey 0.5-2

Table 2. Hyperparameters and their typical values for CSO and SBOA, utilized to control exploration,
convergence, and overall optimization performance.
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Fig. 4. Steps involved in the SBOA method.

Here, X signifies the population of secretary birds, X; means the location of the i'" secretary bird, x;,; specifies
the location information of the ;" problem variable for i‘" secretary birds, and N represents the population
dimension. D refers to the dimension of problem variables.

The Secretary Birds initial locations are defined at random depend upon Eq. (12):

Tij = (ubj - lbj) x 11+ 1b; (12)
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While, x;,; signifies the initial value of decision variable j for it? candidate solutions; ubj; and 1b; refer to the

upper and lower boundaries, correspondingly; and r1 denotes an arbitrarily created number within the interval
of (0,1).

Hunting behaviour (exploration)

This kind of behaviour naturally contains 3 phases: prey searching (P1), prey exhausting (P:), and prey
attacking (Ps). In the prey search phase, Secretary Birds are probable prey. If the prey is recognized, then they
arrive at the prey-exhausting phase. With the firm decision of the prey’s actions, the Secretary Birds easily fly,
jump, and aggravate near the snake, exhausting the enemy’s energy. Once the stamina of the prey is completely
exhausted, then they will start an attack. This procedure was demonstrated utilizing Eqs. (13) and (14).

Pr:oxij+reX (Tr, —Try), if iter < %T
newl _ Ps : Xpest + exp iter)* X (RB —0.5) X (Tbest — i), of i7 <gter < 2T
T4 5 T 3 3 (13)
iter (2>< it’lér)
P3: Tpest + (1 — T) X x5 X RL, else

Xnewl i F_newl < F’L
X { ’ X,;, T else (14)
While, iter means the present count of iteration, 7" embodies the maximum iteration count, Ximwl specifies
the novel state of i*" secretary bird in the 1st phase, and x,1 and 2 are candidate solutions at random for
the 1st phase iteration. 72 represents a generated array at random dimension 1x D within the range of [0,1].
275" means the location data of its j*" dimension, while F;*“*" represents its objective function fitness value.
RB implies a range of sizes 1 X D produced randomly, and Xp.s; signifies the finest solution attained until
now. RL denotes the function of Lévy flight, which is computed utilizing Eq. (15).

RL = 0.5 x Levy (Dim)
Levy (Dim) = 0.01 x **{

[v] 7
I' (14n)x sin(%)

r () xal7)

While 7 represents a fixed constant with a value of 1.5, u and v denote produced numbers randomly in the
range of [0, 1],and I" embodies the gamma function.

Escape strategy (exploitation)

Secretary birds might tackle attacks from predators or attempts to catch its prey. Due to its cleverness, they
frequently use avoidance tactics to defend themselves. These tactics were mainly separated into dual kinds: one
includes soaring or running to escape (S), whereas others involve utilizing ecological colours or constitute
camouflage (.5), which makes it firmer for predators to perceive them. This procedure is demonstrated utilizing
Egs. (16) and (17).

, 2 )
m:};wQ — S1: Thest + (2 X RB — 1) X (1 — ”;T) X Xij, ’qu <7Trs3 (16)
’ So i Zij+ 714 X (Trand — Tij) , else

B X':n,ch i F'ner < Fz
Xi = { k 7XJ:, ezlse (17)
In the above equation, ¢ = 0.5, r3, and 74 signify sets of dimensions (1 x D) produced arbitrarily from a
standard distribution. Z,qnq4 means a produced candidate solution randomly in the present iteration, and 1
denotes a selected number at random of either 1 or 2.

Fitness choice is a crucial factor in manipulating SBOA performance. The hyper-parameter range procedure
contains the solution-encoded system for appraising the effectiveness of the candidate solution. The SBOA
reflects accuracy as the foremost measure to project the fitness function. It is shown below:

Fitness = max (P) (18)

TP
P=_—1—— 19
TP+ FP (19)

Here, TP and F'P signifies the true and positive values.

Experimental analysis

The performance evaluation of the MMDoWA-ARDL methodology is examined under a benchmark dataset™®.
The dataset covers 100,000 samples below dual classes, with every class comprising 50,000 samples, as defined in
Table 3. It includes 17 features, out of which 14 are selected. Table 4 outlines key metrics utilized to detect DoW
behaviour in serverless function invocations.
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Transactions No. of transactions
Attack transactions 50,000
Legitimate transactions 50,000
Total transactions 100,000

Table 3. Details of the dataset.

Feature Description Relevance to DoS/DDoS attacks

1D Unique identifier for every entry. Assists in tracking particular requests and analyzing attack patterns.

P SOURCE_IP address. Utl.hz'ed to detect the origin of attack requests. The high frequency may exhibit bot
activity.

Bot FLAG_if_IP_is_Bot (TRUE/FALSE). The presence of a Bot is a key indicator of automated attack traffic.

Functionld Identifier of the specific function being triggered. Function call patterns can assist in detecting unusual requests and illustrating an attack.

FunctionTrigger FUNCTION_Trigger (e.g., notification). Malicious activity may be the result of anomalous function triggers.

Timestamp TIMESTAMP_Request. It assists in detecting the time of attack and correlates with high traffic spikes.

SubmitTime TIME_to_Submit a request. Longer submission times may hint at attack attempts like flooding.

Round-Trip Time (RTT) TIME_for_Signal to travel to the destination and back. | High RTT values may show network congestion due to an attack.

InvocationDelay DELAY_before_Function_Invoke Enhanced delays may suggest throttling from attack traffic.

ResponseDelay E;;gg;: between getting the request and sending a Delays in responses show resource saturation, which is usual in DoS/DDoS.

FunctionDuration DURATION_Function_Runs. Long durations reflect attacks that overload system functions.

ActiveFunctionsAtRequest

ACTIVEFUNCTIONS_during_Request.

Higher numbers could indicate system stress from attack traffic.

ActiveFunctionsAtResponse

Number of active functions at the time of response.

A higher number may indicate overloading, revealing DoS attacks.

MaxCPU

MAX_CPU_USAGE during the request.

Enhanced CPU usage may show resource exhaustion from an attack.

AvgCPU AVG_CPU_USAGE during the request. Higher average CPU usage can illustrate a DoS/DDoS§ attack.

P95MaxCPU The 95th percentile of maximum CPU usage. It assists in highlighting outliers in CPU usage and helps detect spikes caused by attacks.
VMCategory Category of virtual machine (e.g., Delay-insensitive). | VM classes assist in correlating attack types, such as delay-sensitive traffic overload.
VMCoreCountBucket CPU_No. cores in the VM bucketed into categories. Unusual core usage patterns may depict resource hogging from attack traffic.
VMMemoryBucket Bucket for VM memory allocation. Memory usage spikes may show resource exhaustion during an attack.

Table 4. Summary of features relevant to the detection of DoW attacks.

Figure 5 established a set of confusion matrices created by the MMDoWA-ARDL technique on several epochs.
On 500 epochs, the MMDoWA-ARDL technique has accepted 49,477 samples into attack transactions and 49,712
samples into legitimate transactions. Followed by, on 1000 epochs, the MMDoWA-ARDL methodology has
known 49,515 samples into attack transactions and 49,707 samples into legitimate transactions. Simultaneously,
on 1500 epochs, the MMDoWA-ARDL methodology has accepted 49,536 samples into attack transactions and
49,699 samples into legitimate transactions. Moreover, in the 2000 epochs, the MMDoWA-ARDL approach has
known 49,583 samples for attack transactions and 49,706 samples for legitimate transactions. Eventually, on
3000 epochs, the MMDoWA-ARDL technique has realized 49,659 samples into attack transactions and 49,730
samples into legitimate transactions.

In Table 5; Fig. 6, the DoW attack recognition results of the MMDoWA-ARDL methodology are shown
below in various epochs. The outcomes identified that the MMDoWA-ARDL methodology correctly recognized
the attack and legitimate transaction samples. With 500 epochs, the MMDoWA-ARDL methodology attains
an average accuy of 99.19%, precy of 99.19%, reca; of 99.19%, Fineasure of 99.19%, MCC of 98.38%, and
Kappa of 98.63%. Besides, with 1000 epochs, the MMDoWA-ARDL methodology attains an average accu, of
99.22%, precy 0of 99.22%, reca; of 99.22%, Fricasure of 99.22%, MCC of 98.44%, and Kappa of 98.67%. At the
same time, with 1500 epochs, the MMDoWA-ARDL methodology accomplishes an average accu, of 99.24%,
precy 0£99.24%, reca; 0f 99.24%, Frecasure 0f 99.23%, MCC of 98.47%, and Kappa of 98.78%. Also, with 2000
epochs, the MMDoWA-ARDL model accomplishes an average accuy of 99.29%, precn of 99.29%, reca; of
99.29%, Frmeasure 0f 99.29%, MCC of 98.58%, and Kappa of 99.01%. At the same time, with 3000 epochs, the
MMDoWA-ARDL model obtains an average accuy of 99.39%, prec, of 99.39%, reca; of 99.39%, Frcasure Of
99.39%, MCC of 98.78%, and Kappa of 99.09%. These outputs highlight the consistent and robust performance
of the MMDoWA-ARDL model across varying training durations.

Figure 7 illustrates the TRA accu,( TRAAY) and validation accu,( VLAAY) outcomes of the MMDoWA-
ARDL technique. The accu,, analysis is calculated under 0-3000 epochs. The figure highlights that the TRAAY
and VLAAY analysis showed an increasing trend, which informed the capacity of the MMDoWA-ARDL
technique with higher outcomes across diverse iterations. Similarly, the TRAAY and VLAAY exhibit close
epochs, indicating minimal overfitting and confirming the robustness of the MMDoWA-ARDL model under
unseen data.
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Fig. 5. Confusion Matrix of MMDoWA-ARDL approach (a-f) Epochs 500-3000.

Figure 8 depicts the TRA loss (TRALO) and VLA loss (VLALO) curves of the MMDoWA-ARDL method.
The loss is computed across an interval of 0-3000 epochs. It is also shown that the TRALO and VLALO analysis
establishes a diminishing algorithm, which informed the capability of the MMDoWA-ARDL technique to
balance a trade-off between data fitting and generalization. There is a continuous reduction in loss, besides
assurances of the more excellent performance of the MMDoWA-ARDL technique and tuning of the prediction
outputs over time.

In Fig. 9, the precision-recall (PR) graph results of the MMDoWA-ARDL methodology below several epochs
deliver clarification into its solution by plotting PR for each class. The steady increase in PR analysis between
each class label describes the effectiveness of the MMDoWA-ARDL approach in the classification process.

Figure 10 inspects the ROC graph of the MMDoWA-ARDL methodology below several epochs. The
results suggest that the MMDoWA-ARDL methodology gains more excellent ROC analysis across all classes,
demonstrating an essential capacity for discerning classes. This constant trend of maximum ROC analysis
across several classes means the capable outcomes of the MMDoWA-ARDL method on predicting class labels,
highlighting the robust behaviour of the classification process.

To exhibit the proficiency of the MMDoWA-ARDL methodology, a thorough comparison investigation is
conducted in Table 6; Fig. 112%4-37_ The table values depicted that the MMDoWA-ARDL methodology archives
superior performance. Based on accu,, the MMDoWA-ARDL methodology provides a better accu, of 99.39%.
At the same time, NB, DBN, SVM, DQSP, DQN, DNN, Inception-ResNet, CAPM, MAR, and APT models have
achieved lesser accuy values of 95.13%, 94.01%, 99.05%, 91.60%, 90.79%, 97.10%, 90.59%, 92.36%, 91.39%, and
97.88%, respectively. Afterwards, based on precn, the MMDoWA-ARDL approach presents a higher prec, of
99.39%, where NB, DBN, SVM, DQSP, DQN, DNN, Inception-ResNet, CAPM, MAR, and APT techniques have
attained lower prec,, values of 92.82%, 97.01%, 97.34%, 90.58%, 98.34%, 97.64%, 92.22%, 91.34%, 99.05%, and
98.24%, correspondingly. Simultaneously, depending on the reca;, the MMDoWA-ARDL approach presents
a maximum reca; of 99.39%. In contrast, Naive Bayes (NB), DBN, SVM, DQSP, DQN, DNN, Inception-
ResNet, CAPM, MAR, and APT methodologies have accomplished lower reca; values of 97.09%, 95.00%,
90.11%, 99.01%, 91.30%, 96.17%, 92.79%, 99.13%, 91.93%, and 96.94%, subsequently. Lastly, for Fircasure,
the MMDoWA-ARDL approach presents a superior Freasure 0f 99.39%. In contrast, NB, DBN, SVM, DQSP,
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Class Labels ‘ Accuy ‘ Prec,, ‘ Reca; ‘ Ffeasure | MCC | Kappa
Epoch - 500

Attack Transactions 98.95 99.42 98.95 99.19 98.38 | 98.55
Legitimate Transactions | 99.42 98.96 99.42 99.19 98.38 | 98.71
Average 99.19 99.19 99.19 99.19 98.38 | 98.63
Epoch —1000

Attack Transactions 99.03 99.41 99.03 99.22 98.44 | 98.80
Legitimate Transactions | 99.41 99.03 99.41 99.22 98.44 | 98.54
Average 99.22 99.22 99.22 99.22 98.44 | 98.67
Epoch —-1500

Attack Transactions 99.07 99.40 99.07 99.23 98.47 | 99.21
Legitimate Transactions | 99.40 99.08 99.40 99.24 98.47 | 98.34
Average 99.24 99.24 99.24 99.23 98.47 | 98.78
Epoch —-2000

Attack Transactions 99.17 99.41 99.17 99.29 98.58 | 99.11
Legitimate Transactions | 99.41 99.17 99.41 99.29 98.58 | 98.90
Average 99.29 99.29 99.29 99.29 98.58 | 99.01
Epoch -2500

Attack Transactions 99.17 99.43 99.17 99.30 98.60 | 99.00
Legitimate Transactions | 99.43 99.17 99.43 99.30 98.60 | 99.12
Average 99.30 99.30 99.30 99.30 98.60 | 99.06
Epoch —-3000

Attack Transactions 99.32 99.46 99.32 99.39 98.78 | 98.67
Legitimate Transactions | 99.46 99.32 99.46 99.39 98.78 | 99.50
Average 99.39 99.39 99.39 99.39 98.78 | 99.09

Table 5. DoW attack detection of MMDoWA-ARDL method under various epochs.

DQN, DNN, Inception-ResNet, CAPM, MAR, and APT approaches have reached minimal Fi,cqsure values of
94.99% 97.56%, 91.20%, 97.34%, 91.69%, 90.57%, 95.01%, 97.84%, 92.20%, and 91.26%, subsequently.

The computation time (CT) outcomes of the MMDoWA-ARDL approach are compared to other existing
methods in Table 7; Fig. 12. The results signified that the MMDoWA-ARDL approach achieves an inferior CT
of 5.72s. On the other hand, the NB, DBN, SVM, DQSP, DQN, DNN, Inception-ResNet, CAPM, MAR, and
APT methods achieve increased CT values of 8.60s, 9.63s, 8.74s, 19.52s, 17.37s, 16.68s, 18.32s, 11.90s, 10.56s,
and 12.25s, correspondingly. Thus, the MMDoWA-ARDL approach is used to mitigate malicious DoW attacks.

Table 8; Fig. 13 demonstrates the ablation study of the MMDoWA-ARDL approach. Four models namely
CSO, SBOA, BMNet, and the proposed MMDoWA-ARDL model are analyzed under accuy, prec,, recay,
Frneasure; MCC, Kappa. The CSO and SBOA models illustrates competitive results, attaining accu, of 97.35%
and 97.86%, respectively. BMNet additionally enhanced performance with an accu, of 98.65%. However,
the proposed MMDoWA-ARDL model outperformed all baselines, attaining a consistent 99.39% across all
metrics. These results confirm that the integration of attribute reduction and DL techniques in the MMDoWA-
ARDL model significantly improves detection capabilities, validating its robustness and superiority in securing
serverless applications against DoW attacks.

Conclusion

In this study, the MMDoWA-ARDL approach is proposed. The primary purpose of the MMDoWA-ARDL
approach is to propose a novel framework that effectively detects and mitigates malicious attacks in serverless
environments using an advanced DL model. At first, the presented MMDoWA-ARDL model applies data
pre-processing using Z-score normalization to transform input data into a valid format. Furthermore, the FS
process-based CSO efficiently identifies the most impactful attributes related to potential malicious activity. The
BMNet model is employed for the attack mitigation process. Finally, SBOA accomplishes the parameter tuning
method to enhance the classification outcomes of the BMNet model. A wide-ranging experimental investigation
is conducted using a benchmark dataset to exhibit the superior performance of the proposed MMDoWA-ARDL
technique. The comparison study of the MMDoWA-ARDL model portrayed a superior accuracy value of 99.39%
over existing techniques.
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Fig. 6. Average result of MMDoWA-ARDL method below several epochs.
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Fig. 7. Accu, curve outcome of MMDoWA-ARDL method (a-f) Epochs 500-3000
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Fig. 8. Loss graph outcome of MMDoWA-ARDL approach (a—f) Epochs 500-3000.
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Fig. 9. PR curve outcome of MMDoWA-ARDL approach (a-f) Epochs 500-3000.
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Fig. 10. ROC analysis outcome of MMDoWA-ARDL model (a-f) Epochs 500-3000.

Classifier Accuy | Prec,, |Reca; | Fajeasure
NB 95.13 92.82 97.09 94.99
DBN Model 94.01 97.01 95.00 97.56
SVM Method 99.05 97.34 90.11 91.20
DQSP Model 91.60 90.58 99.01 97.34
Deep Q-Network | 90.79 98.34 91.30 91.69
DNN Algorithm 97.10 97.64 96.17 90.57
Inception-ResNet | 90.59 92.22 92.79 95.01
CAPM 92.36 91.34 99.13 97.84
MAR 91.39 99.05 91.93 92.20
APT 97.88 98.24 96.94 91.26
MMDoWA-ARDL | 99.39 99.39 99.39 99.39

Table 6. Comparative outcome of MMDoWA-ARDL approach with existing methods?%34-37.
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Fig. 11. Comparative outcome of MMDoWA-ARDL approach with existing methods.

Classifier CT (sec)
NB 8.60
DBN Model 9.63
SVM Method 8.74
DQSP Model 19.52

Deep Q-Network | 17.37

DNN Algorithm 16.68

Inception-ResNet | 18.32

CAPM 11.90
MAR 10.56
APT 12.25

MMDoWA-ARDL | 5.72

Table 7. CT outcome of MMDoWA-ARDL technique with existing models.
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Fig. 12. CT outcome of MMDoWA-ARDL technique with existing models.

Classifier Accuy | Prec, |Reca; | Frreasure
CSO 97.35 97.33 97.12 97.48

SBOA 97.86 98.05 97.88 98.03
BMNet 98.65 98.84 98.62 98.6
MMDoWA-ARDL | 99.39 99.39 99.39 99.39

Table 8. Result analysis of the ablation study of MMDoWA-ARDL approach.
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Fig. 13. Result analysis of the ablation study of MMDoWA-ARDL approach.

Data availability
The data supporting this study’s findings are openly available at https://data.mendeley.com/datasets/g8g9vdxyv
n/1, reference number [33].
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