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Intelligent transportation systems (ITSs) significantly enhance traffic safety and management 
globally. A critical component of these systems is vehicle classification (VC), which supports vital 
applications such as congestion control, traffic monitoring, accident avoidance, etc. Traditional 
classification algorithms rely heavily on visual or sensor-based data (e.g., radar or image signals), often 
compromised by adverse weather, poor lighting, or occlusion. To address these limitations, this paper 
introduces a novel VC technique that leverages seismic data to detect vehicle-generated vibrations, 
thereby reducing susceptibility to environmental conditions and privacy concerns. We propose a 
self-supervised contrastive learning approach for seismic signal classification, eliminating the need 
for labeled data for feature extraction and representation. Our method employs specialized data 
augmentation techniques to create positive and negative pairs, enhancing feature representation. 
The encoder network extracts meaningful features from seismic signals while the projection head 
refines latent space representation. Training with contrastive loss ensures that positive pairs are closely 
aligned and negative pairs are distinctly separated in the latent space. Experimental results validate 
the efficacy of our approach, achieving state-of-the-art performance using seismic signal classification 
tasks with limited training data. Our approach achieves an impressive accuracy of 99.8%, underscoring 
its potential for robust and precise VC in ITSs using seismic data, particularly in data-scarce scenarios. 
The code is publicly available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​M​o​h​a​​m​e​d​H​a​​s​s​a​n​S​a​​​a​d​/​V​e​h​​i​c​​l​e​-​​C​l​a​s​s​i​f​i​ c​a​t​​i​o​n​.​g​i​t​.
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Due to its potential to support future exciting applications like autonomous driving, smart cities, etc., 
intelligent transportation systems (ITSs) have attracted a lot of research attention1,2. Vehicle classification (VC), 
which entails classifying cars into predetermined categories, is a crucial component of these systems3. Many 
applications require precise VC, including those from agencies that design and manage roads and highways. 
Developing and redesigning road infrastructure can be more effective when authorities know vehicle types, 
quantities, accident anticipation, and other characteristics4,5. Additionally, VC is essential for streamlining traffic, 
effectively distributing resources, and enhancing general road safety. These applications include toll collecting, 
autonomous driving, traffic flow management, automated parking, health monitoring, roadway monitoring, etc. 
Recent development of VC systems has been driven by notable developments in sensing and machine learning 
(ML) technologies, which have significantly improved classification accuracy and efficiency6–8. Nevertheless, 
these systems differ regarding features, needs, and operational conditions, including sensor types, parameter 
configurations, and financial implications. Generally, VC can be addressed using sensor-aided and image-based 
approaches9–13, as shown in Fig. 1.
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The most popular camera-aided vision-based VC techniques have demonstrated remarkable classification 
accuracy 90–99%3,14. Camera-assisted VC covers large zones, making them ideal directions for broadband traffic 
surveillance activities. However, these systems are vulnerable to external factors, such as bad weather and difficult 
lighting conditions, making it challenging to detect cars that bigger ones hide. Furthermore, implementing such 
systems requires large expenditures on infrastructure during critical security and privacy issues15.

Inductive loop detectors, which use magnetic properties as an alternate solution, are now widely used in 
traffic monitoring systems to identify and categorize vehicles. These sensors use a wire coil placed under the road 
to record variations in electromagnetic profile signals, including amplitude, phase, and frequency, while cars 
drive over them16. Numerous investigations have repeatedly shown that loop detectors reach excellent levels of 
accuracy. Nevertheless, affordability and ease of installation impede the widespread adoption of loop detectors, 
mainly because coils must be embedded below the road’s surface. Given the inherent drawbacks and trade-offs of 
using loop detectors and traditional camera-based systems, our work aims to address these issues by employing 
seismic data collected by geophones.

Geophones are pivotal sensors that capture seismic signals, which are then processed to classify vehicular 
activities. These devices consist of a spring-mounted magnet moving within a coil, converting ground motion 
into electrical signals. The obtained signals are inherently noisy and require preprocessing to extract meaningful 
features. In our case, they are less vulnerable to external factors like weather and lighting, yet they yield insightful 
data about vehicle dynamics and features. We can identify unique characteristics and patterns in vehicle 
movement and vibration through seismic data analysis and overcome the limitations of Camera-based systems 
by employing geophones. Because road networks can strategically install geophones across them, seismic data 
can cover vast areas without requiring substantial infrastructure investments. The generated seismic data is 
valuable because it protects privacy and doesn’t record visual information about people or cars, unlike its typical 
camera-based competitors. However, the fluctuating and time-varying qualities of seismic data recorded by 
geophones make it challenging to extract significant patterns and characteristics.

Nevertheless, Seismic data presents unique challenges compared to traditional visual or sensor-based data, 
primarily due to its inherent noise and variability influenced by environmental factors, necessitating robust 
preprocessing techniques. Feature extraction from seismic signals requires specialized methods to transform 
raw data into a format suitable for classification, often involving advanced signal processing and domain-specific 
knowledge. The temporal dynamics of seismic signals add complexity to classification algorithms, as they must 
account for sequential data and potential temporal dependencies. Adequate training of deep learning models 
on seismic data also demands diverse and representative samples, achieved through complex augmentation 
techniques like time-shifting and noise injection. Additionally, leveraging self-supervised contrastive learning to 
eliminate the need for labeled data requires a carefully designed framework to ensure the model can learn from 
the inherent structure of seismic signals without explicit labels.

This paper presents a VC scheme within the realm of ITSs, utilizing seismic data acquired through geophones. 
This typical data source is characterized by its robustness in adverse environmental conditions and intrinsic 

Fig. 1.  Vehicle classification schemes summary.
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privacy-preserving qualities, addressing privacy concerns. The study thoroughly investigates various data 
augmentation techniques tailored to seismic data, encompassing temporal manipulations to enrich the training 
dataset. A self-supervised contrastive learning framework is highlighted, designed to promote proximity among 
positive pairs (seismic waves from the same vehicle class) and segregation of negative pairs (seismic signals 
from different vehicle categories) within the latent space, optimized using the information noise-contrastive 
estimation (InfoNCE) loss function. The architecture of the encoder network includes 1D Convolutional Layers 
and a global average pooling (GAP) 1D Layer, along with the projection head, which is detailed later, and a 
classification head is added for VC after the contrastive learning phase. Our approach includes specialized 
noise reduction techniques and data augmentation strategies tailored to seismic data, ensuring robust feature 
extraction and classification. Seismic sensors have been effectively used in monitoring traffic flow, congestion 
control, detecting unauthorized vehicles in restricted areas, and even earthquake early warning systems, ensuring 
our approach’s robustness and precision in real-world scenarios. The paper validates the approach’s efficacy, 
demonstrating superior accuracy, particularly with the hybrid augmentation technique, even in scenarios of 
limited labeled data. Comparative evaluations against traditional classifiers consistently highlight the proposed 
method’s performance advantages. The paper underscores the practical relevance of the approach, emphasizing 
its accuracy and computational efficiency for applications in seismic analysis and related fields, offering a cost-
effective and privacy-preserving solution without sacrificing performance.

To the best of our knowledge, we are the first pioneers to leverage contrastive learning for VC in ITS 
using seismic data with limited labeled data and semi-supervised learning. We have rigorously evaluated its 
effectiveness in high-noise environments and demonstrated its superior performance compared to existing 
techniques. The key contributions of this paper can be highlighted as follows:

•	 Novel seismic-based vehicle classification : We introduce a pioneering approach that leverages seismic data 
collected through geophones for VC within ITSs. This method is robust in adverse environmental conditions 
and preserves data privacy.

•	 Self-supervised contrastive learning framework:  We propose a self-supervised contrastive learning framework 
for classifying seismic signals, which operates without needing labeled data for feature extraction and rep-
resentation. This approach enhances feature representation and achieves high accuracy, even with limited 
labeled data.

•	 Comprehensive data augmentation techniques:  We explore various data augmentation techniques tailored to 
seismic data, including time shifting, time reversal, sample down-sampling, sample up-sampling, and hybrid 
augmentation. These techniques enrich the training dataset and improve model robustness.

•	 Evaluations:  We validate the efficacy of the proposed approach through a robust empirical validation process. 
The paper performs comparison analyses using conventional classifiers, which include logistic regression, 
naive Bayes (NB), support vector machines (SVM), convolutional neural networks (CNN), and long-term 
short-term memory (LSTM). The results consistently highlight the proposed methodology’s performance 
benefits.

Our proposed approach reduces costs and protects privacy without sacrificing performance, which makes it 
more appealing and functional in real-world applications, such as traffic management, improved safety with 
quicker accident detection, cost-effective and reliable solutions unaffected by weather conditions, privacy-
preserving highway toll gates, controlling road lanes (emergency lanes), intelligent infrastructure maintenance, 
environmental monitoring, and heightened security by detecting unauthorized vehicles.

The remainder of the paper flows as follows: The related work is summarized in Section “Related work”. Our 
entailed VC system model is detailed in “VC system overview”. Furthermore, Section “Proposed contrastive 
learning method” highlights our proposed contrastive learning approach for VC. Evaluation results and findings 
are detailed in Section “Results and discussion”. Finally, the completed thoughts and future directions are carried 
out in Section “Conclusion and future directions”.

Related work
Lately, burgeoning research has focused on harnessing VC approaches to develop more intelligent ITSs.1,3 
presented an extensive survey covering various VC techniques for ITSs. Recent research highlights significant 
challenges related to data privacy and the reliance on extensive training datasets. While methods like those 
in17–19 utilize AI and IoT to enhance transportation safety and efficiency, they face privacy concerns and 
infrastructure requirements due to their dependence on image data. Approaches such as20,21 incorporate deep 
learning techniques but still require large, labeled datasets, raising scalability and privacy issues. However, 
methods like22, which introduce active learning frameworks, aim to address the need for smaller datasets and 
improved accuracy. Additionally,23 extends ego-vehicle perception through non-visual methods, reducing 
privacy concerns, while24,25 have leveraged advanced CNN techniques to minimize computational demands. 
Despite these advancements, privacy issues and dataset dependency remain ongoing challenges, with many 
methods still needed to balance efficiency and data sensitivity.

Nevertheless, although the above-stated techniques are helpful, they frequently disregard privacy concerns 
and necessitate big image datasets for testing and training. Another study area explores DL techniques for 
VC using temporal seismic data, as seen in26–29. These methods show promising solutions for reducing data 
requirements and enhancing privacy but are still in the early stages of development. The work of30 proposed 
a deep CNN architecture combined with a log-scaled frequency cepstral coefficient (LFCC) matrix to classify 
vehicles using seismic signals. However, their solution needs more improvements. Furthermore, the SenseMag 
method introduced in16 makes use of two noninvasive magnetic sensors that are placed strategically along road 
sections. Surprisingly, the trials on Chinese highways produced an astounding VC accuracy of 90%. However, 
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this approach requires specific sensor placements and may not be scalable. The work of31 practically developed an 
innovative, flexible magnetometer sensor to count and classify vehicles with promising classification capabilities. 
While effective, this method requires specialized sensors and installation. Another classification idea depends 
on investigating the WIFI channel state information of the moving vehicles32. This approach requires extensive 
infrastructure and is susceptible to interference. Besides, acoustic sensors can be distributed using fiber optic 
cables for intelligent traffic monitoring by transforming telecommunications cables into seismic sensors as in33. 
Still, these techniques suffer from the need for an extensive infrastructure, complicated installation techniques, 
and susceptibility to damage.

The work of34 applied contrastive learning for impulse radio ultrawideband (IR-UWB) radar for VC. While 
this approach shows promise in improving VC accuracy, it requires specialized radar equipment, which can 
be costly and complex to deploy at scale. Also, a contrastive learning-aided approach was used to effectively 
classify Synthetic aperture radar (SAR) images in35. Although effective, this method relies on high-resolution 
SAR images, which can be expensive to obtain and process and may not be feasible for real-time applications. 
The authors of36 applied supervised contrastive learning (ResNet) and transfer learning techniques for vehicle 
intrusion systems to prevent car hacking. Nevertheless, this approach requires extensive labeled data for training, 
which can be challenging to acquire and maintain. Furthermore, a semi-supervised Contrastive Learning 
approach was proposed in37 to aid in autonomous vehicle driving via proper video-to-video distances known as 
ego vehicle actions. While this method reduces the need for labeled data, it still requires significant computational 
resources. Furthermore, the work of38 introduced a multi-view graph contrastive learning (MVGCL) method to 
handle uniform vehicle routing problems (VRPs). Although innovative, this approach relies on complex graph 
structures and may require substantial computational power, making it less practical for large-scale deployment. 
A self-supervised bidirectional trajectory contrastive learning (BTCL) model for driving intention prediction 
was proposed in39 with an excellent ability to learn high-quality trajectory representations without labeled data. 
Still, our proposed method addresses privacy concerns, reduces data requirements, and offers a cost-effective 
solution without sacrificing performance.

VC system overview
Figure 2 presents the main components of the proposed VC system model. The following subsections describe 
each model in detail.

Data collection
Herein, geophones were used to gather seismic data from passing vehicles at Kyushu University, Japan in July 
2020, as shown in Fig. 3. The geophones were positioned at three stations, each 15 meters apart and located 0.5 
meters from the road, capturing vertical vibrations at a sampling rate of 250 Hz. The vehicles were categorized 
into three groups by size: large (such as buses and trucks), medium (private cars), and small (motorcycles and 
scooters). Vehicle speeds ranging from 25 to 35 km/h with a maximum of 45 km/h were estimated using seismic 
signals from the three stations (Herein, road regulations limit vehicle speeds to 40 km/h). A video camera 
provided visual guidance for manually preparing the training dataset only clear signals from vehicle events 
were chosen to avoid model overfitting, excluding those with noise or overlapping vehicle signals. The selected 
events were converted into 5-s windows with a 250 Hz sampling rate, ensuring the inclusion of the entire seismic 
waveform. In total, 600 waveforms were created from the three vehicle categories. Each category contained 200 
waveforms, while an additional 300 windows representing noise from various sources (e.g., wind, pedestrians, 
road work) were included. Augmented data were only used in the training phase while testing used original 
unseen data.

Using geophones facilitated precise seismic activity measurement, providing high-resolution records of 
ground motions in the road environment. These data offer valuable insights into vehicle characteristics and 
dynamics for further analysis and classification. Figure 4 shows the t-SNE visualization of the collected seismic 
data, which reveals overlapping clusters for different vehicle types and highlights the potential challenge in 
classification and the need for further feature extraction.

Fig. 2.  Proposed contrastive learning aided VC technique.
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Data preprocessing
Data pre-processing is crucial for enhancing the quality and dependability of seismic data by ensuring it is 
clean, normalized, and properly prepared for further analysis. Figure 5 illustrates the data before and after 
preprocessing to decrease noise for different vehicle types (bus, car, and motorcycle). Seismic data naturally 
exhibits amplitude variations due to factors like the distance from the source and the sensitivity of the receiver. 
To mitigate these effects, we applied a band-pass filter with a frequency range of 5–35 Hz to remove unwanted 
low-frequency noise and high-frequency interference. Additionally, a Hamming window was used to minimize 
spectral leakage and enhance signal clarity. Finally, min-max normalization was performed to scale the seismic 
data to a standardized range between 0 and 1, as demonstrated in the following equation:

	
x′ = x − min(x)

max(x) − min(x) � (1)

Fig. 4.  t-SNE visulization of raw data.

 

Fig. 3.  Seismic signals and spectrograms of a (a) motorcycle and (b) bus recorded by a sensor. (c) Sensor 
location at Kyushu University Ito Campus, Fukuoka, Japan, shown using a satellite image from Google Earth40 
(© Google, Image Landsat/Copernicus), prepared and annotated with PyGMT (v0.14.2, https://www.pygmt.
org).
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Here, x represents the original seismic data, while x′ denotes the normalized version. Using the min-max 
normalization technique, the seismic data is scaled to a uniform range between 0 and 1. This normalization 
process improves data compatibility across various sources and receivers, facilitating more precise and insightful 
analysis.

Data augmentation
Seismic signals exhibit considerable variability due to external factors such as environmental noise, road surface 
conditions, and sensor sensitivity. This variability poses a significant challenge for vehicle classification, as 
similar vehicles may produce slightly different signals under varying conditions. To address this, we incorporate 
a different data augmentation strategy that enhances the contrastive learning framework, improves feature 
extraction, and promotes class separability in the latent space. Augmentation is a crucial component in 
contrastive learning, as it allows the model to generate multiple representations of the same underlying signal 
while maintaining the essential characteristics that define the vehicle class. This enables the model to learn 
robust representations of minor perturbations and domain shifts, ultimately improving classification accuracy.

The augmentation process involves generating positive pairs by applying transformation techniques to seismic 
signals while ensuring that the fundamental characteristics of the waveform remain intact. This is particularly 
important in contrastive learning, where the model is trained to minimize the distance between positive pairs 
in the latent space while maximizing the separation between negative pairs. Without augmentation, the learned 
feature space may become overly dependent on the specific characteristics of individual signals, limiting the 
generalization capability of the model. To prevent this, we leverage a suite of augmentation techniques, including 
time shifting, time reversal, down-sampling, up-sampling, and hybrid augmentation, each designed to enhance 
the diversity of training samples while preserving the critical structural patterns in the seismic data.

•	 Time shifting: modifies the temporal alignment of the seismic signal by shifting the waveform forward or 
backward along the time axis, as shown in Fig. 6b. This transformation simulates real-world variations caused 
by differences in vehicle speed, sensor placement, or slight inconsistencies in recording timestamps. By apply-
ing time shifts, the model learns to recognize the core structural patterns of the signal rather than relying on 
the absolute positioning of peaks and troughs in the waveform. This ensures that classification performance 

Fig. 6.  Example of augmentation techniques applied to a normalized seismic signal from a bus.

 

Fig. 5.  Collected Seismic Data of (a) Bus (b) Car (c) Motorcycle (Top: Raw data & Bottom: Processed Data).
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remains unaffected by minor temporal misalignments. However, excessive time shifting can distort the re-
lationship between key signal components, making it necessary to optimize the shift magnitude to preserve 
essential signal characteristics.

•	 Time reversal: flips the order of the waveform, effectively generating a mirrored version of the seismic signal. 
Unlike time shifting, which preserves the original signal sequence, time reversal alters the directionality of 
temporal features while retaining the overall spectral composition, as shown in Fig. 6c. This augmentation 
forces the model to learn directionally invariant representations, particularly useful in seismic signal process-
ing, where symmetrical waveforms often arise due to reflections from the road surface or underlying struc-
tures. By training on both original and reversed waveforms, the model gains the ability to recognize vehicles 
based on frequency and amplitude patterns rather than strict temporal ordering, improving generalization 
across diverse signal conditions.

•	 Down-sampling: reduces the resolution of the seismic signal by selectively removing data points, as shown in 
Fig. 6d. This transformation forces the model to extract coarser, high-level features that remain stable across 
different resolutions. By reducing the dependency on high-frequency variations, down-sampling improves 
the model’s ability to focus on global signal patterns rather than overfitting to fine-grained noise. This is par-
ticularly useful in environments where sensor quality or data transmission rates may vary.

•	 Up-sampling: Conversely, it increases the temporal resolution of the signal by interpolating additional data 
points. This augmentation ensures that important waveform structures are preserved even when signals 
are subjected to compression or lower sampling rates, as shown in Fig. 6e. By exposing the model to both 
down-sampled and up-sampled versions of the data, we improve its ability to handle real-world variations in 
seismic recordings.

•	 Hybrid augmentation: combines multiple augmentation techniques to introduce higher-order variations 
while preserving essential class-defining features. Unlike individual augmentations, which apply a single 
transformation simultaneously, hybrid augmentation leverages complementary perturbations in sequence. 
For instance, time shifting followed by down-sampling ensures that the model remains invariant to both tem-
poral misalignments and resolution variations. In contrast, time reversal followed by up-sampling enhances 
directional robustness while preserving fine-grained details. Hybrid augmentation maximizes intra-class di-
versity while maintaining inter-class discrimination, leading to a more structured latent space that facilitates 
improved classification.

The effectiveness of data augmentation in improving class separability is demonstrated in Fig. 7, which presents 
t-SNE visualizations of the learned feature space under different augmentation schemes. Without augmentation 
(Fig. 7a), the feature clusters exhibit significant overlap, indicating that raw seismic signals alone do not provide 
sufficient discriminatory power for vehicle classification. When applying individual augmentations, such as time 
shifting or time reversal (Fig. 7b–e), some degree of separation is observed, but the clusters remain partially 
entangled. However, when hybrid augmentation is employed (Fig.  7f), the clusters become more distinct, 
with clear boundaries between vehicle classes. This highlights the ability of augmentation to reduce intra-class 
variance while maximizing inter-class separation, an essential characteristic for effective contrastive learning.

Beyond improving class separability, data augmentation plays a crucial role in feature extraction by 
exposing the model to multiple transformations of the same sample. This encourages the encoder network (in 
Subsection “Encoder network”) to learn domain-invariant features that remain stable across different conditions. 
These refined features are further optimized by the contrastive loss function (described in Subsection “Contrastive 
loss”), which ensures that signals from the same vehicle class remain close in the latent space while signals 
from different classes are pushed apart. The result is a well-structured feature space that enables high-accuracy 
classification, even in low-data or high-noise environments.

Proposed contrastive learning method
This section introduces the self-supervised contrastive learning framework proposed for seismic-based 
vehicle classification. The rationale behind adopting contrastive learning stems from the inherent challenges 
of seismic signal classification. Seismic signals exhibit high intra-class variance due to environmental noise, 
road surface variations, and sensor positioning, making feature extraction challenging. Traditional supervised 
learning methods, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), 
require extensive labeled data to learn class-specific patterns. However, annotating seismic signals is costly 
and impractical, particularly in large-scale intelligent transportation systems. Our self-supervised contrastive 
learning framework overcomes these limitations by leveraging unlabeled seismic signals to pre-train the model, 
which is later fine-tuned on a small labeled subset for classification.

Compared to supervised learning, our approach offers several key advantages. First, it eliminates the need 
for large labeled datasets by learning feature representations in an unsupervised manner. Second, it improves 
class separability by structuring the learned representations in a way that maximizes intra-class similarity while 
maintaining inter-class separation. Third, it enhances model robustness to environmental variations, as the 
augmentation-based contrastive training ensures that the model generalizes well across diverse conditions. The 
effectiveness of this approach is validated through t-SNE visualizations (see Fig. 9) and empirical evaluations, 
demonstrating that contrastive learning significantly outperforms traditional classifiers in terms of feature 
discrimination and classification accuracy.

The proposed technique consists of three primary components (see Fig. 8): (1) an encoder network that 
extracts meaningful features from seismic signals, (2) a projection head that refines these features in a contrastive 
learning space, and (3) a contrastive loss function that optimizes the model by ensuring that similar signals are 
mapped closer together while dissimilar signals remain well-separated.
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The network architecture consists of two 1D Convolutional Layers followed by ReLU activations, a global 
average pooling 1D Layer for feature extraction, and a Dense layer with ReLU activation for projection into a 
compact latent space. Contrastive loss, specifically InfoNCE loss, encourages positive pairs of seismic waves 
from the same class to be closer and negative pairs from different classes farther apart in the latent space. By 
optimizing the contrastive loss during training, the model learns to extract meaningful and discriminative 
features from seismic signals (as shown in Fig. 9), leading to state-of-the-art performance on classification tasks. 
The model is further fine-tuned on labeled data to adapt the learned features for the specific classification task, 
yielding accurate and efficient seismic signal classification. Table 1 summarizes the architecture of the proposed 
CL model.

Encoder network
The encoder network extracts meaningful features from the seismic signal data. It is designed to capture low-
level and high-level patterns and correlations essential for accurate classification. The architecture of the encoder 
network comprises the following components:

•	 Two 1D Convolutional Layers: The first Conv1D layer performs a 1D convolution operation with 32 filters 
and a kernel size of three. It focuses on detecting local patterns and low-level features in the input seismic 
signal. The second Conv1D layer follows with 64 filters and a kernel size of 3, capturing higher-level features 
that represent more abstract patterns in the signal.

•	 ReLU Activation Function: After each convolutional layer, we apply the ReLU activation function ele-
ment-wise. ReLU introduces non-linearity to the network, allowing it to more effectively capture complex 
relationships and representations in the data.

Fig. 7.  t-SNE visualization of different augmentation techniques.
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•	 GlobalAveragePooling1D Layer: This layer pools the spatial information in the output of the second Conv1D 
layer and computes the average value across all data points. The resulting fixed-length feature vector repre-
sents each seismic sample’s condensed and informative representation, regardless of its original length. This 
step enables the model to handle variable-length input signals efficiently during classification.

Projection head
The projection head is an additional component that takes the extracted features from the encoder and maps them 
into a more informative and compact latent space representation. This step aims to enhance the discriminative 
power of the learned features and facilitate better clustering of similar samples. The projection head consists of a 
Dense layer with 128 units and a ReLU activation function.

•	 Dense Layer: The dense layer transforms the extracted features from the encoder network and projects them 
into a more meaningful and condensed representation.

•	 ReLU Activation Function: We apply the ReLU activation function after the Dense layer to introduce non-lin-
earity, enabling the model to capture complex and non-linear relationships in the latent space.

The encoder network comprises two 1D convolutional layers followed by a global average pooling (GAP) 
layer, allowing it to capture fine-grained local patterns and global temporal structures within seismic signals. 

Fig. 9.  Comparison between the supervised learning approach vs the proposed CL using t-SNE visualization.

 

Fig. 8.  Contrastive learning-based network architecture for VC.
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The extracted feature representations are then passed through the projection head, a dense layer with ReLU 
activation. It refines and maps them into a lower-dimensional space optimized for contrastive learning. This 
design enhances feature separability, reducing intra-class variance while maximizing inter-class differences. To 
validate the effectiveness of this architecture, t-SNE visualizations of the latent space of the proposed method 
in Fig. 9b demonstrate that seismic signals from the same vehicle category form well-clustered groups while 
different vehicle types are distinctly separated. Additionally, the low contrastive loss values (0.010–0.015) 
observed during training indicate that the learned feature representations effectively discriminate between 
vehicle classes. The combination of the encoder and projection head ensures the robustness of the self-supervised 
contrastive learning framework, improving classification performance even in high-noise environments with 
limited labeled data.

Contrastive loss
The contrastive loss is a key component of our self-supervised contrastive learning approach. Its objective is 
to encourage positive pairs closer in the latent space while pushing negative pairs further apart. We use the 
InfoNCE (information noise-contrastive estimation) loss function. Positive pairs are formed by pairing seismic 
waves from the same class, while negative pairs consist of seismic waves from different classes. The InfoNCE loss 
compares the cosine similarity between anchor-positive and anchor-negative pairs, encouraging positive pairs 
to have higher similarity than negative pairs. By minimizing this loss, the model learns to create meaningful 
clusters of similar samples in the latent space, enabling effective feature extraction.

The InfoNCE loss for a single anchor-positive pair and a set of negative pairs can be written as:

	

InfoNCE Loss = − log


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where vi, v+
i  are embedding an anchor seismic wave and positive pair seismic wave (from the same class), 

respectively. v−
j  refers to the embedding of a negative pair seismic wave (from a different class), sim(vi, v+

i ) 
represent the cosine similarity between vectors, τ  defines the temperature parameter controlling the smoothness 
of the distribution, and Nis the number of negative pairs considered for each anchor-positive pair.

The contrastive learning approach ensures the model captures relevant patterns and correlations in the seismic 
data, leading to superior classification performance. The model acquires a rich latent space representation that 
effectively clusters similar seismic signals and maintains clear separations between different classes by optimizing 
the contrastive loss. By optimizing the contrastive loss during training, the model learns to extract relevant and 
discriminative features from the seismic signal data, ultimately leading to improved classification performance.

Model training
Positive and negative pairs are iteratively fed through the encoder network during training. The contrastive loss 
is calculated for each pair, and the model’s parameters are updated using backpropagation to minimize the loss. 

Layer type Output shape Parameters

Input layer (128, 128, 1) 0

Conv2D (64 filters, 3 × 3) (126, 126, 64) 640

BatchNorm2D (126, 126, 64) 256

ReLU activation (126, 126, 64) 0

MaxPooling2D (2 × 2) (63, 63, 64) 0

Conv2D (128 filters, 3 × 3) (61, 61, 128) 73,856

BatchNorm2D (61, 61, 128) 512

ReLU activation (61, 61, 128) 0

MaxPooling2D (2 × 2) (30, 30, 128) 0

Conv2D (256 filters, 3 × 3) (28, 28, 256) 295,168

BatchNorm2D (28, 28, 256) 1,024

ReLU activation (28, 28, 256) 0

MaxPooling2D (2 × 2) (14, 14, 256) 0

Flatten (50176) 0

Dense (512 units) (512) 25,690,624

Dropout (0.2) (512) 0

Dense (128 units) (128) 65,664

Dense (feature embedding) (128) 16,512

Contrastive loss layer (128) 0

Table 1.  Summary of the proposed contrastive learning model.
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The model learns to generate meaningful and compact representations for the seismic data by repeating this 
process for multiple epochs.

The objective function, representing the contrastive loss, is given by:

	
J = 1

M

M∑
i=1

1
K

K∑
j=1

L(i, j, k),� (3)

where L(i, j, k) is the contrastive loss for a pair (i, j, k), M is the total number of seismic samples, and K is the 
number of positive pairs for each original seismic sample.

The optimization step involves updating the model parameters through gradient descent:

	 θ ← θ − η∇θJ ,� (4)

where θ represents the model parameters, η is the learning rate, and ∇θJ  is the gradient of the objective 
function concerning the model parameters.

Classification head
It plays a crucial role in the final stages of the model, aiming to perform the ultimate classification task after the 
contrastive learning step. In this phase, the latent space representations, carefully derived from the projection 
head, become pivotal. These representations are input into a fully connected layer, meticulously designed with 
four units, each corresponding to one of the four vehicle classes (bus, noise, Moto, or auto).

The fully connected layer is mathematically represented as follows:

	 Class Scores = Wclass · Latent Space + bclass,� (5)

Here, Wclass signifies the weight matrix, Latent Space represents the output of the projection head, and bclass 
is the bias vector.

Subsequently, the Softmax Activation Function is applied to the obtained class scores:

	 Class Probabilities = Softmax(Class Scores)� (6)

This activation function is pivotal in transforming raw scores into meaningful class probabilities. The 
classification head’s meticulous design and mathematical representation ensure the effective utilization of latent 
space representations for accurate and meaningful classification. The Softmax activation function, applied to 
the class scores, further refines the model’s predictions, converting them into interpretable class probabilities.

Fine-tuning
Finally, the model undergoes fine-tuning on the labeled training data to adapt the learned features specifically 
for the seismic signal classification task. The fine-tuning Loss (Cross-Entropy) is given by:

	
Lfine-tune(xi, yi) = −

C∑
c=1

yi,c log(Softmax(Wclass · Latent Space + bclass)),� (7)

where yi is the one-hot encoded label for sample xi, and C  is the number of classes.
The fine-tuning objective is formulated as:

	
Jfine-tune = 1

N

N∑
i=1

Lfine-tune(xi, yi)� (8)

The overall fine-tuning objective is to minimize the average fine-tuning loss over the labeled data. The fine-
tuning optimization is expressed as:

	 θ ← θ − η∇θJfine-tune,� (9)

Here, θ represents the model parameters, and they are updated using gradient descent during the fine-tuning 
process.

This process optimizes the model parameters further by minimizing the average fine-tuning loss. The 
comprehensive approach, encompassing self-supervised contrastive learning, data augmentation, and a carefully 
designed encoder network architecture, ensures accurate and efficient classification of seismic signals. The 
contrastive learning process facilitates the acquisition of meaningful feature representations. At the same time, 
the fine-tuning step tailors the model to the specific classification task, resulting in state-of-the-art performance 
on seismic signal classification tasks. This approach is a valuable and effective tool for various applications in 
seismic analysis and beyond.
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Results and discussion
Herein, we evaluate the performance of the proposed VC scheme. Table  2 details the dataset parameters 
conducted in the evaluation process. Also, Table   3 highlights the hyperparameter details of the compared 
methods (SVM,CNN, and LSTM), including our proposed CL approach. To promote a thorough assessment, the 
data was divided into three subsets: (20%) for training purposes, (60%) for validation, and (20%) for testing. This 
distribution guaranteed an equitable representation and dependable analysis. The testing set was an impartial 
evaluation of the model’s generalization ability. The performance evaluation used response time and VC accuracy 
as primary metrics. By employing these metrics, the system’s effectiveness was evaluated. Response time assesses 
the system’s velocity and effectiveness in producing outcomes, whereas VC accuracy evaluates the system’s 
capability to identify and categorize vehicles accurately. The obtained results from the self-supervised contrastive 
learning approach for vehicle seismic signal classification exhibit robustness and effectiveness, especially when 
combined with various data augmentation techniques.

Figure 10 illustrates the model’s accuracy as the size of the training dataset increases. With a dataset size 
of 145 samples, the model achieves 82.4% accuracy. As the dataset size increases to 290 samples, the accuracy 
improves to 89.8%. Further increasing the dataset size to 580 samples leads to a significant improvement in 
accuracy, reaching 93.6%. With 1162 samples, the accuracy reaches 95.8%. The model achieves a high accuracy 
of 98.5% and 99.8% when the dataset size is increased to 2325 and 4650 samples, respectively. These results 
demonstrate the importance of having a more extensive training dataset to achieve higher model performance. 
As the dataset size increases, the model can learn more comprehensive representations and generalize better, 
improving accuracy.

Figure 11 compares the model’s accuracy using different data augmentation techniques on a dataset of 580 
samples. Without any data augmentation, the model achieves an accuracy of 70.6%. Applying the “reversal” 
augmentation technique improves the accuracy to 80.8%. The “Down” and “Up” augmentation methods result 

Fig. 10.  Accuracy comparison of different dataset sizes.

 

Model SVM CNN LSTM Proposed CL

Batch size N/A 32 64 128

Learning rate N/A 0.001 0.0005 0.0003

Optimizer N/A Adam RMSprop AdamW

Loss function Hinge loss Cross-entropy Cross-entropy InfoNCE loss

Epochs N/A 100 120 150

Dropout N/A 0.5 0.3 0.2

Regularization L2 (C = 1.0) L2 (0.0001) L2 (0.0005) Weight decay (0.001)

Table 3.  Hyperparameter settings for investigated models.

 

Parameter Value

Data collection size 930

The training data size after augmentation 4650

The sampling rate of the data collection process 250 Hz

The Number of geophones 3

The distance from the geophones to the road 0.5 m

Table 2.  Parameters employed by default in the evaluation.
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in accuracies of 83.1% and 83.2%, respectively. The “Shifting” augmentation technique further boosts the 
accuracy to 86.3%. Combining multiple techniques, the “Hybrid” augmentation achieves the highest accuracy of 
93.6%. These results demonstrate the effectiveness of data augmentation in improving the model’s performance, 
especially when the training dataset is relatively small. The “Hybrid” approach, which leverages multiple 
augmentation techniques, is the most beneficial in enhancing the model’s accuracy.

Figure 12 compares the accuracy of the proposed approach and the latest technique on 580 samples. To ensure 
a fair comparison, we tested the same dataset using the previous algorithms with the identical hyperparameters 
they employed, i.e., convolutional neural networks (CNN), Naive Bayes (NB), Long Short-Term Memory 
(LSTM), as in26,27,29, respectively. The NB classifier27 achieves an accuracy of 61.2% on the dataset with 580 
samples. The CNN model achieves an accuracy of 80.1% on the 580-sample dataset. The LSTM model29 achieves 
an accuracy of 82.4% on the 580-sample dataset. The proposed approach achieves the highest accuracy of 93.6% 
on the 580-sample dataset. The results demonstrate that the proposed approach significantly outperforms 
the latest techniques, including NB27, CNN26, and LSTM29, on the 580-sample dataset. This indicates that the 
proposed method can effectively utilize the available data and learn more comprehensive representations, leading 
to superior performance compared to the state-of-the-art models. The considerable gap between the accuracy 
of the proposed approach (93.6%) and the other techniques (61.2% for NB, 80.1% for CNN, and 82.4% for 
LSTM) highlights the effectiveness and robustness of the proposed method. This finding is particularly notable, 
as it demonstrates the proposed approach’s ability to achieve high accuracy even with a small dataset size of 580 
samples. These results indicate that the proposed approach outperforms the latest techniques across all dataset 
sizes. This confirms the importance of data augmentation in improving the model’s ability to learn diverse and 
representative features. As the dataset size decreases (1162, 580, 290, and 145 samples), the performance of 
individual augmentation techniques gradually diminishes while the proposed hybrid approach remains more 
robust.

Figure 13 compares the time taken by the proposed approach and the latest techniques. The NB classifier 
has the fastest inference time of 15.9 ms. The proposed approach takes 16.1 ms, slightly higher than NB but 
significantly faster than the other techniques. The SVM and LSTM models take 31.1 and 26.3 ms, respectively. 
The Logistic Regression (LR) and CNN models have the longest inference times of 20.2 and 41.7 s, respectively. 
These results demonstrate that the proposed approach balances accuracy and inference time well, making it a 
practical and efficient solution for real-world applications. The relatively fast inference time of the proposed 
approach is a desirable characteristic, especially in scenarios where quick decision-making is required. The 
results presented in Figs. 5, 6, 7 and 8 provide a comprehensive evaluation of the proposed approach and its 

Fig. 12.  Accuracy comparison of the proposed approach and the latest technique on 580 samples.

 

Fig. 11.  Accuracy comparison of different data augmentation methods on 580 samples.
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performance compared to the latest techniques. The findings highlight the advantages of the proposed method in 
terms of accuracy, dataset efficiency, and inference time, making it a compelling choice for practical applications. 
The comprehensive results indicate that the self-supervised contrastive learning approach, especially with hybrid 
data augmentation, is highly effective for seismic signal classification. It consistently outperforms traditional 
classifiers, yielding state-of-the-art accuracy rates and demonstrating its potential for real-world applications 
in seismic analysis and related fields. Combining data augmentation and self-supervised learning is a powerful 
strategy for extracting meaningful and discriminative features from seismic signals, leading to superior 
classification performance across diverse dataset sizes. The self-supervised contrastive learning approach, in 
combination with hybrid data augmentation, presents a compelling solution for seismic signal classification 
tasks. The results indicate its effectiveness in extracting meaningful features from seismic signals and achieving 
state-of-the-art accuracy, especially in scenarios with limited labeled data.

Table 4 summarizes the performance metrics obtained from the fivefold cross-validation for our proposed 
approach. The model consistently demonstrated high accuracy, precision, recall, and F1 scores, with minimal 
variation across the folds. Contrastive loss remained low throughout, indicating the model’s efficiency in 
separating seismic signal data from different vehicle classes. The results from the fivefold cross-validation clearly 
illustrate the model’s effectiveness and reliability in vehicle classification using seismic data. For further details, 
fivefold cross-validation divides the dataset into five equal parts or folds. The model is trained on four folds 
and tested on the remaining one. This process is repeated five times, with each fold acting as the test set once. 
This approach ensures the model performs well across different parts of the dataset, providing a more accurate 
assessment of its ability to generalize to unseen data. In this study, the model achieved impressive accuracy 
scores, ranging from 99.5 to 99.8% across all folds. This highlights its capability to classify different types of 
vehicles based on seismic signals, regardless of the test data. Such consistent accuracy suggests that the model 
is generalizing well and not overfitting to specific parts of the data. The data augmentation techniques used 
to expand the training dataset artificially were key to this success, ensuring more diverse and robust learning 
from seismic signals. These techniques helped prevent overfitting, enabling the model to perform well even 
with a limited dataset. The contrastive loss values remained low across all folds (between 0.010 and 0.015), a 
positive indicator of the model’s ability to differentiate between seismic signals from different vehicle classes. 
This is critical because lower loss values mean seismic signals from the same vehicle class are closely grouped. In 
contrast, signals from other classes are more distinctly separated, leading to higher classification accuracy. The 
high precision (up to 99.4%) and recall (up to 99.6%) further confirm the model’s effectiveness. High recall means 
that the model correctly identifies vehicles, while high precision shows that it avoids incorrect classifications. 
This balance is essential for traffic monitoring and accident prevention applications, where misclassifications 
can have serious consequences.

Figure 14 illustrates the relationship between dataset size and model accuracy, with a 95% confidence interval 
(CI) for each model. The results clearly demonstrate that CL consistently outperforms CNN and LSTM across 
all dataset sizes. CL achieves higher accuracy, showcasing its robust feature extraction capabilities. Even with a 
limited dataset of 145 samples, CL significantly outperforms CNN and LSTM, proving its effectiveness in data-

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%) Contrastive loss

1 99.5 98.7 99.2 98.9 0.015

2 99.7 98.9 99.4 99.1 0.012

3 99.6 99.0 99.5 99.2 0.014

4 99.8 99.3 99.6 99.4 0.010

5 99.8 99.4 99.6 99.5 0.011

Table 4.  Performance metrics for fivefold cross-validation of the self-supervised contrastive learning model 
for vehicle classification using seismic data.

 

Fig. 13.  Comparison of the proposed approach with the latest techniques in terms of time.
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scarce environments. As the dataset size increases, CL maintains its advantage, reaching near 100% accuracy at 
4650 samples. CNN and LSTM exhibit gradual performance improvements as dataset size increases; however, 
their accuracy plateaus at lower levels than CL. This suggests that CNN and LSTM require larger datasets to 
enhance classification performance effectively. Additionally, all models show a steep accuracy increase when 
dataset size grows from 145 to 1162 samples, highlighting the importance of data availability. The confidence 
intervals indicate that CL exhibits higher stability (narrower CI), whereas CNN and LSTM have higher variance, 
mainly when working with smaller datasets. These findings reinforce the superiority of CL in seismic-based 
vehicle classification, demonstrating its strong generalization capabilities and making it an optimal choice for 
real-world deployment in ITSs.

The results presented in boxplot Fig. 15 and pairwise t-test Table 5 provide a comprehensive statistical 
evaluation of model performance differences in seismic-based vehicle classification. The ANOVA and boxplot 
analysis clearly indicate that CL achieves the highest accuracy compared to CNN, LSTM, and SVM. The boxplot 
visualization further highlights CL’s superior performance, demonstrating both higher accuracy and minimal 

Comparison t-statistic p value Significance

CL vs. SVM 32.1 < 0.0001 Significant

CL vs. CNN 28.5 < 0.0001 Significant

CL vs. LSTM 25.7 < 0.0001 Significant

Table 5.  Pairwise t-test results (CL vs. others).

 

Fig. 15.  Model accuracy comparison ANOVA and pairwise t-tests.

 

Fig. 14.  Model accuracy versus dataset size with 95% CL.
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variance, which confirms its stability across multiple runs. Additionally, the ANOVA test results (p value< 0.0001) 
validate that at least one model performs significantly differently from the others, reinforcing CL’s effectiveness. 
The pairwise t-test results, where all p values are< 0.0001, establish statistically significant performance differences 
among the models. The high t-statistics further confirm that CL substantially outperforms CNN, LSTM, and 
SVM in classification accuracy. While SVM is computationally efficient, its lack of deep feature extraction 
capabilities results in inferior performance, making it unsuitable for complex seismic-based vehicle classification 
tasks. Overall, CL’s significant advantage in classification accuracy, validated by ANOVA and pairwise t-tests, 
underscores its ability to learn highly discriminative features. The boxplot visualization reaffirms CL’s stable and 
consistent performance, highlighting its robustness in feature extraction and computational efficiency. These 
findings establish CL as the optimal model for real-time deployment in Intelligent Transportation Systems, 
ensuring both accuracy and efficiency in seismic-based vehicles.

The complexity analysis of the compared models, based on FLOPs and memory usage, are previewed in 
Tables 6 and 7, revealing significant differences in computational efficiency. SVM demonstrates the lowest 
computational cost with only 0.005 FLOPs and minimal memory usage (18 MB), making it the most lightweight 
model. However, its simplicity may come at the expense of performance in complex tasks. On the other hand, the 
CNN and LSTM models exhibit significantly higher FLOPs (2.3 and 4.7, respectively) and memory consumption 
(450 MB and 680 MB), indicating their substantial computational cost. LSTM, in particular, has the highest 
resource demand, which may limit its practical deployment in resource-constrained environments. Meanwhile, 
our proposed CL model achieves a balanced trade-off, requiring 1.9 FLOPs and 275 MB of memory. This 
optimized performance highlights its advantage in delivering competitive efficiency while maintaining a lower 
computational burden than CNN and LSTM. It is a more practical choice for real-world vehicle classification 
applications where accuracy, efficiency, and computational cost matter, especially since this system might be 
deployed on low-cost computers such as Raspberry Pi.

Limitations
One limitation of this study is the absence of high-speed vehicle data. The experiments were conducted at 
Kyushu University’s ITO campus, where road regulations restrict vehicle speeds to 40 km/h. Therefore, the 
impact of high-speed vehicle transitions on seismic wave characteristics was not included and left for future 
investigation. However, since vehicle combustion engines generate a partial portion of the seismic waves, their 
frequency components are relatively independent of vehicle speed41. Nonetheless, higher-speed vehicles may 
introduce additional complexities, such as increased wave energy, possible Doppler effects, and variations in 
wave propagation patterns. Future studies should investigate these factors by collecting seismic data from high-
speed vehicle environments to evaluate their impact on classification performance and model generalization.

Furthermore, our system is mainly designed to work in specific areas, such as one-lane streets, toll collections, 
intersections, etc. To accommodate any situation (multi-lane), we need to increase the number of deployed 
geophones on a large scale. Besides, our approach faces hardware limitations, such as geophone sensitivity and 
environmental interference, which can affect data accuracy. Additionally, software limitations include the need 
for significant computational resources for training and challenges in model generalization to diverse real-
world traffic conditions, necessitating further fine-tuning and validation. Moreover, extreme environmental 
perturbations, such as heavy precipitation, can significantly affect seismic sensors by attenuating surface and S 
waves, potentially leading to system failures. While such perturbations are inherently challenging to mitigate, 
we propose several procedures to minimize their impact, including improved sensor shielding, adaptive noise 
filtering techniques, and site selection strategies that enhance measurement stability.

Conclusion and future directions
This paper presents a novel vehicle classification technique that uses seismic data collected through geophones 
to improve intelligent transportation systems. The method addresses the limitations of traditional visual and 

Model Memory usage (MB)

SVM 18

CNN 450

LSTM 680

Contrastive learning 275

Table 7.  Memory usage comparison of compared models.

 

Model Flops Efficiency rank

SVM 0.005 Fastest

CNN 2.3 High cost

LSTM 4.7 Very high cost

Contrastive learning 1.9 Optimized

Table 6.  Flop comparison of compared models.
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sensor-based methods, which can be affected by harsh environmental conditions. The method is robust and 
privacy-preserving, making it a viable alternative for vehicle classification in ITSs. Key contributions include 
specialized data augmentation techniques, a self-supervised contrastive learning framework, and a detailed 
encoder network architecture and projection head architecture. Optimized with the Information Noise-
Contrastive Estimation Loss function, the contrastive learning approach effectively clusters positive pairs while 
separating negative pairs in the latent space. The method achieves 99.8% accuracy in data-scarce scenarios, 
and its hybrid augmentation technique enhances the training dataset. Comparative evaluations against 
traditional classifiers consistently demonstrate the advantages of the proposed methodology. Our VC method 
adeptly manages complex traffic environments, categorizing vehicles into small, medium, and large classes. 
Individual classification is challenging, given the vast and ever-growing variety of vehicle models. However, 
our self-supervised contrastive learning approach, bolstered by robust data augmentation, ensures the model’s 
adaptability to diverse traffic conditions. The findings highlight this seismic data-based approach’s practical 
relevance and potential real-world applications, offering a cost-effective, privacy-preserving solution without 
compromising performance. Future research will focus on expanding data collection to include both seismic 
and conventional data (e.g., visual, radar) for comprehensive performance comparisons, exploring multimodal 
approaches by integrating seismic data with visual inputs to improve classification accuracy and robustness 
and fine-tuning and validating the model in diverse real-world traffic conditions with multiple-lane scenarios. 
Furthermore, we will enhance the resilience of seismic-based VC by developing adaptive calibration for sensor 
placement, integrating advanced noise filtering, and employing domain adaptation for robust signal processing. 
Additionally, multi-sensor fusion and transfer learning will be explored to improve model generalization, 
ensuring reliable performance across diverse road configurations and dynamic traffic conditions.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding au-
thor on reasonable request.
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