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The electroencephalography (EEG) signals are very important for obtaining information from the 
brain, and EEG signals are one of the cheapest methods to gather information from the brain. EEG 
signals have commonly been used to detect epilepsy. Therefore, the main objective of this research 
is to demonstrate the epilepsy detection capability of the presented new-generation relation-
centric feature extraction function. In this research, we have presented a new-generation EEG signal 
classification model, and this model is an explainable feature engineering (XFE) model. To present this 
XFE model, a feature extraction function, termed friend pattern (FriendPat), has been introduced. 
The presented FriendPat is a distance- and voting-based feature extraction function. By deploying 
the introduced FriendPat, features have been extracted. The generated features have been selected 
using a cumulative and iterative feature selector, and the selected features have been classified using 
a t algorithm-based k-nearest neighbors (tkNN) classifier. By using channel information and Directed 
Lobish’s (DLob) look-up table based on the brain cap used, DLob symbols have been generated, and 
these symbols create the DLob string for artifact classification. By using this generated DLob string 
and statistical analysis, explainable results have been obtained. To investigate the classification 
performance of the presented FriendPat XFE model, we have used a publicly available EEG epilepsy 
detection dataset. The presented model attained 99.61% and 79.92% classification accuracies using 10-
fold cross-validation (CV) and leave-one-subject-out (LOSO) CV, respectively. This XFE model generates 
a connectome diagram for epilepsy detection.
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Electrical brain  activity is to be detected in a non-invasive way, electroencephalography (EEG) is frequently 
used1,2. Commonly used for the diagnosis of neurological disorders, particularly epilepsy3. Epilepsy is a 
neurological disorder that occurs when recurrent episodes of seizures having a wide variety of symptoms, 
which  affect millions of people worldwide and can be diagnostic problems4. The correct identification of epilepsy 
using  EEG signals is a vital process in clinical environments as it supports timely treatment and management5.

EEG signals are complicated and very dynamic requiring new advanced techniques in understanding and 
interpreting6,7. However, these signals differ by brain regions, signal frequencies, and amplitudes, all of which 
can be used to recognize abnormal phenomena in  the brain8. Furthermore, brain wave activity can be similar 
during active seizure and non-seizure states, making it difficult for EEG data alone to provide a clear  diagnosis 
for epilepsy9.

With the development of feature extraction and signal classification techniques, researchers have been 
able to utilize  EEG data more efficiently10. These improvements focus on enhancing diagnostic efficiency and 
decreasing  computational overhead1. These methods form the basis for the development of robust tools that can 
be  integrated into clinical workflows for optimal patient care11.

This, primarily focused on better interpretability and classification of EEG signals, is still an area 
of  research10,12. This not only allows for detection of abnormalities but also provides the ability to explain what 
mechanisms underlie  these patterns so that more efficient and explainable diagnostic solutions could emerge13.

Literature review
Current studies on epilepsy diagnosis models presented in the literature are given below.

For patient-independent seizure classification, Aboyeji et al.14 employed the CHB-MIT  EEG dataset which 
comprised recordings from 22 pediatric patients. In their method, Dilated Convolutional Squeeze and Excitation 
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Networks (DCSENets) were used alongside spectrograms derived from the short-time Fourier transform 
augmented with taping functions (Hann and Gaussian) to  minimize spectral distortion. Leave-one-patient-out 
cross-validation yielded accuracies of  87.20% and 87.29%, respectively. Lin et al.15 introduced a framework of 
strange attractor reconstruction for  classifying epileptic seizure using EEG signals based on CHB-MIT and 
Freiburg EEG datasets. The CHB-MIT dataset had 24 cases of 23 subjects  with EEG sampled at 256 Hz, and 
the Freiburg dataset included 21 patients with invasive recordings. On the CHB-MIT dataset, this method had 
an average sensitivity of  94.58% and specificity of 93.38%. Cao et al.16 developed a  hybrid CNN-Bi-LSTM 
model for recognizing epileptic seizures from EEG signals obtained from Bonn, New Delhi, and CHB-MIT 
datasets. And the Bonn  dataset comprises five subsets consisting of 4097 data points sampled in 173.61 Hz, 
while the New Delhi and CHB-MIT datasets come with various seizure analysis. In binary classification tasks 
with the Bonn and New Delhi datasets, their approach attained 100% accuracy, sensitivity, specificity,  and F1-
score. Moreover, their model achieved  an overall accuracy of 98.43% on the CHB-MIT dataset. Using the Bonn 
EEG dataset, Verma et al.17 developed an epilepsy detection system, this dataset comprising of 500 segments of 
23.6s each sampled at 173.61 Hz. By using Continuous Wavelet Transform (CWT) and  subsequently a deep 
CNN with transfer learning, they attained 94.5% validation accuracy. The CNN-Informer model for detecting 
epileptic seizure  was proposed by Li et al.18 and was tested on the CHB-MIT and SH-SDU datasets. The 
CHB-MIT dataset  consisted of 983 h of EEG recordings from 23 pediatric patients and the SH-SDU dataset 
contained 143  h from 10 adult patients. Their model trained on the CHB-MIT dataset acquired an average 
sensitivity of 99.54% and specificity of 98.55%, while on the SH-SDU dataset an average sensitivity of 94.83% 
with 1.24/h false detection  rate was achieved. Using the CHB-MIT and Bonn datasets, Liu et al.19 presented a 
dual-stream CNN model for seizure detection  with EEG signals. The  CHB-MIT data set consisted of 980 h 
of EEG recordings of 24 patients, and the Bonn dataset consisted of five subsets of EEG segments sampled at 
173.61 Hz. On the CHB-MIT dataset,  their model attained an average sensitivity of 79.59% and specificity of 
92.23%. Using the EPItect dataset, which consists of 4340 h of 21-channel EEG recordings at 256 Hz from 90 
patients, el-Dajani et al.20 introduced a CNN-LSTM model for the detection of epileptic seizures. Using full 10–
20 system electrodes it was reported  that their model achieved a sensitivity of 73% and false alarm rates of 9.9 
per hour. In mobile scenarios with electrodes placed behind the ear, sensitivity dropped to 68% with  10 false-
positive events per hour. Khalfallah et al.21 investigated the application effectiveness of the machine learning and 
deep learning techniques on the EEG-based neurological disorder classification over datasets CHB-MIT, IBIB 
PAN, and  AHEPA. They preprocessed the EEG signals using FIR filters followed by ICA and used bandpower 
and Shannon  entropy as features. 99.85% accuracy using Random Forest for autism classification, and 100% 
accuracy using Support  Vector Machines for dementia detection. The deep learning models, in this case CNN 
and ChronoNet  demonstrated diagnostic accuracies between 92.5% and 100%. Pain et al.22 introduced the 
MSSTNet model for detecting mind wandering (MW) episodes using electroencephalogram  (EEG) recordings. 
The publicly available EEG dataset used in the study included recordings from two  subjects, with 22 sessions 
sampled at 1024 Hz. Their model had a 95.07%  mixed-subject classification accuracy with intra- and cross-
subject accuracies of 94.48% and 83.13%, respectively.

Literature gaps

•	 Deep learning models are very popular in the EEG signal classification14,23,24 but these model’s time complex-
ities are exponential25,26. Therefore, the deep learning models are expensive models for EEG signal classifi-
cation27.

•	 The most of the researchers have focused to classification performance28,29. However, explainable artificial 
intelligence (XAI) in the shadow for EEG signal classification.

Motivation and our method
The main motivation of this research is to demonstrate effectiveness of a new relation-based feature extraction 
function, and this feature extraction function is named Friend Pattern (FriendPat). The introduced FriendPat 
computes the distances between the channels of each point. By utilizing the distances of the channel values, the 
feature vector has been generated using a counter-based voting model. Moreover, we are motivated to fill the 
given literature gaps.

To fill the first literature gap, we have presented a new feature engineering model. This feature engineering 
model has been designed to show the classification ability of the introduced FriendPat. Moreover, we have 
integrated two self-organized models into the presented FriendPat to obtain classification results. These models 
are the cumulative weighted iterative neighborhood component analysis (CWINCA)30 feature selector and the 
t algorithm-based k-nearest neighbors (tkNN)31 classifier. CWINCA generates various selected feature vectors 
and selects the best feature vector for classification, while tkNN produces multiple classification outputs and 
automatically chooses the best output among the generated results. By utilizing the classification power of both 
CWINCA and tkNN self-organized methods, we have demonstrated the classification capability of the presented 
FriendPat. Also, the presented feature engineering model has linear time complexity since the methods used 
have linear time complexities. Moreover, the presented FriendPat-centric XFE model is a highly accurate EEG 
signal classification model.

In order to fill the second literature gap, the Directed Lobish (DLob)32 symbolic language has been integrated 
into the presented FriendPat-centric model. By deploying DLob, we have presented a new-generation explainable 
feature engineering (XFE) model. This XFE model has generated a DLob sentence by deploying the identities of 
the selected features. Moreover, by using the generated DLob sentence, a connectome diagram has been created. 
By using DLob, we have presented interpretable results.

Scientific Reports |        (2025) 15:16951 2| https://doi.org/10.1038/s41598-025-01747-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Innovations and contributions
Innovations:

•	 In this research, a new-generation feature extraction function has been presented and this feature extraction 
function is termed FriendPat.

•	 In order to investigate the classification ability of the presented FriendPat, we have presented a new genera-
tion XFE model. Also, as our knowledge, this research is the first epilepsy diagnosis research with DLob XAI 
method.

Contributions:

•	 The introduced FriendPat-centric XFE model has tested on a big EEG epilepsy detection dataset. This dataset 
contains more than 10,000 EEG signals. We have tested the presented FriendPat-centric XFE model deploy-
ing both 10-fold cross-validation (CV) and leave-one subject-out (LOSO) CV. The presented model attained 
99.61% and 79.92% classification accuracies with 10-fold CV and LOSO CV respectively. In this aspect, the 
presented XFE model is a competitor model to deep learning models and our presented FriendPat-centric 
model contributes to feature engineering research area.

•	 To understand the hidden mechanism of the epilepsy detection, DLob has been used in this research. By using 
the presented DLob, the presented XFE-based interpretable results has been extracted. For this point, this 
model contributes the neurology.

Dataset
To test the introduced FriendPat-centric model, we have used a publicly available dataset, which is an EEG 
epilepsy detection dataset33,34. It has 35 channels and two classes: epilepsy and control. The data were collected in 
a hospital. Neurologists removed noise and cropped the region of interest before release. We downloaded these 
preprocessed recordings and did not apply any further cleaning. This EEG epilepsy dataset contains two classes 
and these are (i) epilepsy and (ii) control. Data were collected from 50 epilepsy participants, and there are EEG 
signals from 71 control participants. The lengths of the EEG signals are equal, each being 15 s. Additionally, the 
sampling frequency of the brain cap used is 500 Hz (Hz). In this dataset, there are 10,356 EEG signals, of which 
4,465 are epilepsy signals, and the remaining 5,891 are control signals.

Friend pattern
In this research, a new-generation feature extraction function has been presented, and the introduced feature 
extraction function is termed FriendPat. The presented FriendPat is a channel-based feature extractor. In this 
feature extractor, a channel vector has been created from each point, and the distance matrix of each channel 
vector has been generated. By using these distances, a feature vector has been created. In this feature generation 
process, the average distance has been computed, and smaller or equal points have been incremented, while the 
counters of the remaining points have been decremented. At this point, the introduced FriendPat is a simple 
yet effective feature extractor. To provide a clearer explanation of the introduced FriendPat, the general block 
diagram of the presented FriendPat is shown in Fig. 1.

Figure 1 demonstrates the graphical outline of the presented FriendPat feature extractor, and we have used 
a 5 × 5 example for clarification. In this research, the dataset used has 35 channels; therefore, the size of the 
distance matrix is computed as 35 × 35. To clarify this model further, the steps have been demonstrated below.

S1: Create the channel vector deploying each point of the used multichannel EEG signal.

	 cv = signal (i, 1 : nc) , i ∈ {1, 2, . . . , len} � (1)

Herein, cv: channel vector, nc: number of channel and len: length of the EEG signal.
S2: Compute the distance matrix of the created channel vector. Herein, we have used L1-norm distance 

metric.

	 Dk,l = |cvk − cvl| , k ∈ {1, 2, . . . , nc − 1} , l ∈ {k + 1, k + 2, . . . , nc} � (2)

where D: distance matrix.
S3: Compute the average value of the distance matrix to create pivot value for creating friendship matrix.

	
av = 1

nc nc
2

nc−1∑
k=1

nc∑
l=k+1

Dk,l � (3)

Here, av: average distance value.
S4: Create the friendship matrix using average distance value. The initial values of the distance matrix are 

zero.

	
Fk,l =

{
Fk,l + 1, Dk,l ⩽ av
Fk,l − 1, Dk,l > av � (4)

where F : friendship matrix.
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S5: Identify the indices of the minimum and maximum values in the distance matrix, and adjust the 
corresponding values by applying + 1 or – 1, respectively.

	 [r1, c1] = argmin (D) � (5)

	 [r2, c2] = argmax (D) � (6)

	 Fr1,c1 = Fr1,c1 + 1� (7)

	 Fr2,c2 = Fr2,c2 − 1� (8)

Here, r: row value, c: column value. By applying the above process, the minimum and maximum distance points 
are increased and decreased twice.

S6: Repeat steps S1–S4 for each point in the EEG signal, and generate the friendship matrix.
S7: Apply matrix to vector conversion and obtain feature vector.

	
fvc = Fk,l, c ∈

{
1, 2, . . . , nc

nc

2

}
� (9)

Herein, fv: the feature vector generated with a length of nc nc
2 .

These seven steps defined above represent the FriendPat.

The FriendPat-centric XFE model
In order to investigate the classification capability of the presented FriendPat, we have developed a FriendPat-
centric XFE model. In this XFE model, the features have been extracted using the introduced FriendPat, and 
the most informative features have been selected using the CWINCA feature selector. The features selected by 
CWINCA have been used for both classification and XAI results generation. Moreover, the CWINCA feature 
selector is a self-organized feature selector. In the classification phase, the tkNN self-organized classifier has 

Fig. 1.  The block diagram of FriendPat is illustrated with a numerical example. In this example, the maximum 
distance is highlighted in bold, and the minimum distance is highlighted in italics. Distances smaller than or 
equal to the average are incremented by + 1, while the smallest distance is further increased by + 2. Conversely, 
distances larger than the average are decremented by – 1, and the maximum distance is further decreased by – 
2. This approach represents friendships as a feature vector.
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been used to obtain the classification results. In the last (fourth) phase, DLob has been employed to produce the 
XAI results. The general block diagram (graphical overview) of the presented FriendPat-centric XFE model is 
depicted in Fig. 2.

The defined phases of the presented FriendPat-centric XFE shown in Fig. 2 model are also explained below:
Phase 1: Extract the features of the used EEG signals deploying the introduced FriendPat.

	 X = F P (data) � (10)

Fig. 2.  The schematic overview of the presented FriendPat-centric XFE model.
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where, X: the created feature matrix, data : the used EEG signal dataset and F P (.): the introduced FriendPat 
feature extractor.

Phase 2: Choose the most distinctive features using the CWINCA32 feature selector. The CWINCA feature 
selector is an improved version of the NCA35 and INCA36 feature selectors. The NCA feature selector is a 
distance-based feature selector, and selecting the optimal number of features is a challenging process for the 
NCA feature selector. Therefore, INCA was introduced by Tuncer et al.36 in 2020, and they solved this problem 
using an iterative feature selection methodology. They employed an iterative checking process. However, for 
INCA, determining the loop’s start and stop values is a challenging problem. To address this issue, Tuncer et al.32 
presented CWINCA in 2024. The start and stop values of the loop have been computed using the cumulative 
weights of the features in the CWINCA feature selector. Therefore, CWINCA has been utilized as the feature 
selection function in this study. Additionally, CWINCA is a self-organized feature selector like INCA.

	 [id, sX] = CW N (X, y) � (11)

Herein, id: identities of the chosen features, sX : the selected feature matrix, CW N (., .): the used CWINCA 
feature selection and y: the real label. The used threshold values to detect range of the loop are 0.5 and 0.9999.

Phase 3: Generate the classification outcomes for the proposed FriendPat-centric XFE model using the 
tkNN31 classifier. The tkNN is an iterative, ensemble-based, and self-organizing classifier designed to enhance the 
classification efficiency of the kNN algorithm. For this reason, it was selected for use in this study. Additionally, 
both tkNN and CWINCA are distance-based methods. We have combined these methods to achieve the 
probable maximum classification performance.

	 ct = tkNN (sX, y) � (12)

Here, ct: the computed classification outcome and tkNN (., .) : the used tkNN classifier.
Phase 4: Produce the XAI results using the DLob32 symbolic language. In this research, we have used an EEG 

dataset with 35 channels. Therefore, a look-up table (LUT) based on the used channels has been employed. By 
using the identities of the selected features and the created LUT, DLob symbols have been generated. The DLob 
symbol extraction method used is defined below.

	
px = idw − 1

nc
(mod nc) + 1, w ∈ {1, 2, . . . , sn} , x ∈ {1, 3, . . . , 2sn − 1}� (13)

	 px+1 = idw − 1 (mod nc) + 1� (14)

Herein, p: the pointer of the channels and sn: the number of the selected features. By using the generated pointer 
and LUT, the DLob symbols have been extracted as below.

By utilizing the channel information and LUT, symbols have been created.

	 DSx = LUT (px)� (15)

Herein, DS: the created DLob string.
The DLob and Cardioish symbols are defined in Table 1.
By using these symbols and meaning of them, we have extracted explainable results. In this research, we have 

used 13 out of the 16 DLob symbols based on the brain cap used.

Experimental results
The experimental setup, computational complexity analysis and results (classification and XAI) have been 
presented in this section.

Experimental setup
First, we describe the experimental setup of this research. The implementation was carried out using the MATLAB 
(version 2024a) programming environment. The introduced FriendPat-based model was programmed using 
functions, and these functions were stored as .m files. The utilized parameters of this model are listed in Table 2.

Computational complexity analysis
This model is considered a lightweight XFE model due to its linear time complexity. The time complexity of 
the introduced FriendPat-centric XFE model has been computed using Big O notation, and the computation is 
provided below. Additionally, the parameters used in this study are outlined below.

FriendPat-based feature extraction: The presented FriendPat is a distance-based feature extractor. Thus, the 
complexity of the FriendPat feature extractor is O

(
cn2L

)
. Herein, cn: the number of the channels and L: length 

of the signal and cn < L.
CWINCA: It is an iterative feature selection process. Therefore, the time complexity of it is 

O (C + N + IK + G). Here, C: time complexity of the cumulative weight computation, N: time complexity of 
the NCA, I: range of the iteration, K: time complexity of the utilized classifier and G: time burden coefficient of 
the greedy algorithm.

tkNN: The tkNN classifier is an iterative and self-organizing classifier. This classifier generates both parameters-
based and voted outcomes. In this aspect, the time complexity of this classifier is equal to O (P K + V + G). 
Where, P: number of parameters and V: time complexity of the IMV.
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Phase Parameters

Feature extraction
The main feature extraction function is FriendPat and the FriendPat
feature extractor is a distance-based feature extractor
A 35 channeled EEG dataset was used. Therefore, the presented
FriendPat extracts 595 features from each EEG signal

Feature selection

CWINCA is utilized to feature selection. This feature selector is an iterative
and self-organizing feature selector. The paramaters of the utilized CWINCA
are given as follows. Herein, the threshold points were chosen as 0.5 and
0.9999. By utilizing these values, the start index was detected as 5 and
the stop index was computed as 120. In this aspect, 116 feature vectors
selected were generated. The optimal length of the selected features
was computed as 82

Classification

In the classification phase, tkNN has been utilized. For the used tkNN, the
iteratively changed parameters are k values (from 1 to 5), distances (Manhattan,
Cosine, Euclidean) and weights (Inverse, Equal). In this aspect, 30 (= 5 × 3 × 2)
parameters-wise outcomes have been generated. By deploying iterative
majority voting, 28 voted outcomes were created since the range of the
iteration of the IMV is from 3 to 30 and the used voting function is the
mode function. In this iteration, we have sorted the parameters-based
outcomes according to their classification accuracy. In the greedy
algorithm, the best outcome (the outcome with maximum
classification accuracy) was selected automatically

XAI

DLob XAI generator is used in this phase. In this research, we use 13
DLob symbols to code channels of the used EEG signal dataset and the
used DLob symbols are FL, FR, Fz, TL, TR, PL, PR, Pz, OL, OR, CL, CR
and Cz. Moreover, cortical connectome diagram and information entropy of
the created DLob string have been computed. Due to 13 DLob symbols
have been used in this research, the maximum information entropy is
equal to 3.7004 (= log213). To compute the complexity
ratio of the generated DLob symbol, the information entropy of the
created DLob sentence is divided by the maximum entropy

Table 2.  The utilized parameters in FriendPat-based EEG signal classification model.

 

No Symbol Area Meaning

1 FL Frontal left It responsible for planning, logical thinking,
and problem-solving

2 FR Frontal right It involved in creativity, emotional
regulation, and intuition

3 Fz Frontal midline It is important for attention, focus,
and executive control

4 TL Temporal left TL processes language, memory,
and auditory information

5 TR Temporal right TR manages emotions, memory,
and non-verbal auditory signals

6 CL Central left It involved in motor control and
body coordination

7 CR Central right CR supports motor control and
sensory-motor integration

8 Cz Central midline It is crucial for motor planning
and coordination

9 PL Parietal left It handles sensory integration and
spatial awareness

10 PR Parietal right It processes sensory input
and spatial orientation

11 Pz Parietal midline It is responsible for integrating sensory
data and spatial reasoning

12 OL Occipital left OL processes visual information
like shapes and colors

13 OR Occipital right OR focuses on visual-spatial
processing and recognition

14 Oz Occipital midline It is vital for overall visual
perception

15 AL Auditory left It is located behind the left ear
and processes sounds from the left ear

16 AR Auditory right It is located behind the right ear
and processes sounds from the right ear

Table 1.  The meaning of the DLob and cardioish symbols.
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XAI: In the XAI phase, we have used DLob and statistical analysis. Thus, the time complexity of this phase is 
O (sn). Here, sn: the number of the selected features.

Overall: The calculated computational complexities have also been given in Table 3 to compute overall time 
complexity.

According to Table  3 of the presented FriendPat-centric XFE model is computed as O

(
cn2L 

+C + N + IK + P K + V + G + sn

)
    and this time complexity openly illustrated that the presented 

FriendPat-centric XFE model has linear time complexity.

Classification results
The first output of the introduced FriendPat-centric XFE model is the classification output. Using this output, the 
classification results were computed, which include (i) accuracy, (ii) sensitivity, (iii) specificity, (iv) precision, (v) 
F1-score, and (vi) geometric mean. To compute these results, we utilized two validation techniques: (1) 10-fold 
CV and (2) LOSO CV.

The computed confusion matrices for these validation techniques are shown in Fig. 3.
According to Fig. 3, the computed classification performances have been tabulated in Table 4.
Table  4 demonstrates that the introduced FriendPat-centric XFE model achieved 79.92% and 99.61% 

classification accuracies using LOSO CV and 10-fold CV, respectively. In this regard, the presented model 
exhibits high classification performance.

Interpretable results
The second output of the introduced FriendPat-centric XFE model is the XAI. The generated XAI results are 
shown in Fig. 4.

Per Fig. 4, the most frequently used DLob symbol is TR, demonstrating that most of the collected epileptic 
EEGs belong to temporal epilepsy. However, other symbols have also been used to detect epilepsy. Additionally, 

Fig. 3.  The computed confusion matrices. Here, 1: Epilepsy, 2: Control.

 

Method Computation complexity

FriendPat O
(

cn2L
)

CWINCA O (C + N + IK + G)

tkNN O (P K + V + G)

DLob O (sn)

Total O
(

cn2L + C + N + IK + P K + V + G + sn
)

Table 3.  Time complexity analysis of the introduced friendpat XFE model.
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the information entropy of the DLob string has been computed as 2.3408, and the complexity ratio of this DLob 
string is calculated as 63.26%. In this regard, epilepsy is predictable according to DLob, and the created DLob 
string is provided below.

TRPRTRCzTRFLTRFLTRFRTRFRTRCLTRFRTRPRTRFRTRCRTRFLTRFRTRTRTRPRTR
FRTRPRTRPRTRTRTRPLTRFLTRORTRTLTRTRTRFRTRPRTRTRTRFzTRCRTRCzTRFz
TRFRTRPRTRCRTRCLTRTRTRFRTRTLTRPLTRPLTRFzTRFLTRTLTRTRTRCzTRTRTR
PRTRCRTRTLTRTRTRTRTRFRTRPRTRPRTRFRTRCRTRCLTRORTRFLTRFRTRTLTRC
RTRFLTRFLTRTRTRCzTRCLTRFLTRFRTRFzTRCLTRCLTRTLTRCLTROLTRPzTRFRT
RTRTRTRTRFRTRTRTRPR.

Discussions
The results and findings of the recommended paper have been discussed in this section.

Overview
This research presents a new-generation feature extraction function called FriendPat. To investigate the 
classification and explainable capabilities of the introduced FriendPat, an XFE model has been proposed. 
The presented XFE model utilizes FriendPat for feature extraction, CWINCA for feature selection, tkNN for 
classification, and DLob for XAI results generation.

In this XFE model, CWINCA is a critical component for obtaining both classification and interpretable 
results. The CWINCA feature selector is a self-organized model that selects the most informative feature vectors 
through an iterative selection process, while tkNN is a self-organized classifier. By deploying the tkNN classifier, 
higher classification performance has been achieved.

Comparisons
To demonstrate the superior performance of the tkNN classifier, comparisons were made with Decision Tree 
(DT), Linear Discriminant (LD), Quadratic Discriminant (QD), Binary Generalized Linear Model Logistic 

Fig. 4.  The XAI results computed.

 

Classification metric LOSO CV 10-fold CV

Accuracy 79.92 99.61

Sensitivity 67.77 99.01

Specificity 89.12 99.68

Precision 82.52 99.57

F1-score 74.42 99.29

Geometric mean 77.72 99.34

Table 4.  The classification results (%) computed of the introduced FriendPat-centric XFE model.

 

Scientific Reports |        (2025) 15:16951 9| https://doi.org/10.1038/s41598-025-01747-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Regression (BGLMLR), Naïve Bayes (NB), Support Vector Machine (SVM), kNN, Neural Network (NN), and 
Bagged Tree (BaT). These comparative results were obtained using 10-fold CV and are presented in Fig. 5.

According to Fig. 5, the best classifier is the tkNN classifier, as it achieved 99.61% classification accuracy on 
the used dataset. Additionally, kNN and SVM achieved 99.53% and 99.51% accuracy, respectively. Among the 
others, kNN performed the best. Therefore, we selected the tkNN classifier for this study.

The presented model has low time complexity while also demonstrating high classification performance. 
It achieved 99.61% and 79.92% classification accuracies using 10-fold CV and LOSO CV, respectively. In this 
regard, the introduced FriendPat-centric XFE model is both highly accurate and lightweight. Furthermore, this 
model is a strong competitor to deep learning models.

To highlight the high classification performance of the presented model, we have included a comparative 
results table. In this table, the presented model is compared to state-of-the-art models. These results are provided 
in Table 5.

Model

Validation

10-fold CV LOSO CV

Transformers37 85 –

Hypercube pattern33 87.78 79.07

MobileNet38 91.66 –

InceptionV339 93.75 –

The CWT-based DNN40 95.99 –

FriendPat-based XFE 99.61 79.92

Table 5.  The comparative results (%).

 

Fig. 5.  Comparative results of the classifiers.
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Table  5 clearly demonstrates that the presented FriendPat-centric XFE model achieved the highest 
classification accuracies among the state-of-the-art (SOTA) models. It also highlights that the introduced 
FriendPat-centric model is a strong competitor to deep learning models.

Testing additional dataset
To demonstrate the general classification ability of the proposed FriendPat-XFE, we used the publicly available 
MAT dataset41. It contains recordings from 36 healthy subjects performing arithmetic tasks, labeled as “good” 
(1) or “bad” (0). The dataset includes 1,149 good and 449 bad EEG segments recorded with a 23-channel cap. 
FriendPat extracts 253 features, of which CWINCA selects 34. Using tkNN, the model achieved 99.87% accuracy 
under 10-fold CV. The resulting confusion matrix is shown in Fig. 6.

Per Fig. 6, the FriendPat XFE attained 99.87% classification accuracy and 99.84% geometric mean. We have 
compared the computed results to the state-of-the-art (SOTA) models and these comparative results were listed 
in Table 6.

These results demonstrate that the proposed model achieves excellent classification performance on the MAT 
dataset.

Discussion of the interpretable results
The introduced FriendPat-centric XFE model has the ability to generate explainable results. Based on the 
generated explainable results, the DLob sentence is shown to be predictable, with a complexity calculated as 
63.26%. This finding clearly indicates that epilepsy can be detected using the DLob sentence. Additionally, for 
this dataset, the most frequently used DLob symbol is TR, which shows that most of the collected epilepsy cases 

Research Method Validation Accuracy (%)

Yedukondalu et al., 2024 42 Bi-LSTM 10-fold CV 99.88

Yedukondalu et al., 2025 43 Optimization-based feature
selection and classification 10-fold CV 97.4

Aslam et al., 202544 EMD-based feature extraction
and random forest classifier 10-fold CV 98.33

Our FriendPat + CWINCA + tkNN 10-fold CV 99.87

Table 6.  Comparative results for the MAT dataset.

 

Fig. 6.  Confusion matrix of the presented FriendPat XFE for MAT dataset.
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are temporal epilepsy. Furthermore, there is evidence of frontal and parietal activation in the generated DLob 
sentence. This demonstrates the high discriminative ability of the DLob sentence, and a cortical connectome 
diagram has been generated for epilepsy detection.

Highlights
The most important points of this research are discussed below:

Findings:

•	 The presented FriendPat has used a channel distance matrix to detect channel relations.
•	 To get high classification performance in this model, two self-organized methods which are CWINCA and 

tkNN have been used.
•	 The introduced FriendPat extracts 595 features and the CWINCA used selected 82 out of the generated 595 

features.
•	 The tkNN classifier attained 99.61% and 79.92% accuracies deploying 10-fold CV and LOSO CV consecu-

tively.
•	 The generated DLob sentence has 164 (= 82 × 2) DLob symbols since the generated each feature contain two 

channel information.
•	 By deploying DLob sentence produced, a cortical connectome diagram has been created. This connectome 

diagram highlighted that the center node is TR.
•	 According to the generated DLob sentence, the most activated lobe is temporal lobe. This depicted that the 

collected most epilepsy are temporal epilepsy.
•	 In the DLob sentence generated, the frontal and parietal lobe activated. It shown that there are parietal and 

frontal epilepsies in this dataset.
•	 The complexity of the DLob sentence produced is 63.26%. It is highlighted that epilepsy is a predictable pro-

cess for cortical languages.

Advantages:

•	 The introduced FriendPat-centric XFE model is a highly accurate model since it yielded 99.61% and 79.92% 
accuracies classification accuracies deploying 10-fold CV and LOSO CV consecutively. By deploying 10-fold 
CV and LOSO CV together, we attained both comparative and reliable results. According to the comparative 
results table, the presented model is a competitive model to deep learning model since this XFE model at-
tained higher classification performances than deep learning model for the used dataset.

•	 As our knowledge, for this dataset, the presented FriendPat-centric XFE model is the first model which used 
DLob. By deploying DLob, we have detected types of the epilepsies in this dataset.

•	 In this research, we have presented lightweight, high accurate and explainable model for epilepsy detection.

Limitations and future directions
Limitation:

•	 The LOSO CV-based results like sensitivity are relatively lower than 10-fold CV-based results.

Future directions:

•	 We plan to develop a new generation of FriendPat-like models to improve classification performance under 
LOSO CV. To achieve this, our plans are as follows:

	– We will design new FriendPat-like extractors that incorporate cross-subject normalization and domain-ad-
aptation techniques. This should reduce variability between training and test subjects and boost LOSO CV 
sensitivity.

	– By integrating channel- and temporal-attention mechanisms, the model can learn to focus on the most 
discriminative signal segments for each subject.

•	 This model can be applied to other biomedical signal dataset for instance ECG, EMG.
•	 New deep learning models can be presented by using FriendPat and attention mechanism together.
•	 DLob can be improved to get more interpretable results.

Potential applications:

•	 Personalized medicine applications can be developed for epilepsy deploying FriendPat-centric XFE model.
•	 DLob can be integrated to user interface of the EEG devices for simplification manual EEG reading.
•	 The recommended FriendPat-centric XFE model can be used to monitor effect of the epilepsy treatments and 

medications.
•	 Epileptic drugs’ effects can be followed using an application based on the introduced FriendPat-centric XFE 

model.
•	 New generation FriendPat-centric XFE model-based smart applications can be used in the medical centers 

and hospitals to diagnose epilepsy and type of the epilepsy.

Scientific Reports |        (2025) 15:16951 12| https://doi.org/10.1038/s41598-025-01747-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusions
This research introduces the FriendPat-centric XFE model, an innovative and explainable approach for EEG 
signal classification, particularly for epilepsy detection. The model combines the FriendPat feature extraction 
function, CWINCA feature selector, tkNN classifier, and DLob symbolic language to achieve high classification 
accuracy and interpretability. It demonstrated its effectiveness by achieving 99.61% accuracy with 10-fold CV 
and 79.92% accuracy with LOSO CV on a large EEG epilepsy dataset containing more than 10,000 EEG signals. 
Additionally, the complexity ratio of the DLob string generated by the model is calculated as 63.26%. The 
complexity ratio computed also indicates that epilepsy has a predictable structure in the cortex. The classification 
results highlight the model’s ability to outperform feature engineering and deep learning models, making it a 
competitive and lightweight alternative.

The FriendPat-centric XFE model is computationally efficient due to its linear time complexity. Therefore, 
the presented XFE model is well-suited for real-time and resource-constrained applications. The integration 
of DLob enhances interpretability by generating symbolic representations and cortical connectivity diagrams, 
providing insights into the underlying mechanisms of epilepsy. For instance, the model identifies that most 
epileptic cases in the dataset are linked to temporal lobe activity, with fewer cases related to frontal and parietal 
regions, consistent with the dataset’s annotations. These findings demonstrate the model’s ability to detect 
epilepsy while offering clinically relevant and explainable insights, supporting its application in personalized 
medicine and clinical settings.

Overall, the FriendPat-centric XFE model is a robust solution for epilepsy detection, combining high 
accuracy, computational efficiency, and interpretability. It has the potential to be integrated into EEG device 
interfaces for diagnosis, treatment monitoring, and simplifying manual interpretation. This research paves the 
way for the next generation of XAI-based medical applications across various fields.

Data availability
We have used a publicly available dataset [33,34]. The dataset used can be downloaded from this link ​h​t​t​p​s​:​​/​/​w​w​
w​.​​k​a​g​g​l​e​​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​b​u​r​a​k​t​a​c​i​/​t​u​r​k​i​s​h​-​e​p​i​l​e​p​s​y​.​​
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