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Selection of Al model for predicting
disability diseases through

bipolar complex fuzzy linguistic
multi-attribute decision-making
technique based on operators

Ubaid ur Rehman'™, Meraj Ali Khan?, Ibrahim Al-Dayel*3 & Tahir Mahmood*

The selection of suitable Al models to predict disability diseases stands as a vital multi-attribute
decision-making (MADM) task within healthcare technology. The current selection methods fail

to integrate the management of uncertainties with bipolarity while also handling additional fuzzy
information and linguistic terms during decision-making which leads to inferior model choices. To
address these limitations, this paper proposes a new MADM approach within the environment of
bipolar complex fuzzy linguistic sets (BCFLSs). In this manuscript, our primary contributions include,
the proposal of four new Maclaurin symmetric mean (MSM) operators, in the setting of BCFLSs,
analysis of properties of these operators to build the theoretical framework, development of a novel
MADM approach to address uncertainties, bipolarity (dual aspects), addition fuzzy information; and
linguistic terms (LTs), and application of the interpreted methodology to handle a real-life case study
containing Al model selection for predicting disability disease. The case study of disability disease
prediction results shows TensorFlow Neural Network achieved superior performance than other

Al models with a score value of 7.776 using bipolar complex fuzzy linguistic MSM (BCFLMSM) and
1.943 using bipolar complex fuzzy linguistic weighted MSM (BCFLWMSM) operators while Support
Vector Machine delivered the highest score (0.44 with bipolar complex fuzzy linguistic dual MSM
(BCFLDMSM) and 0.006 with bipolar complex fuzzy linguistic weighted dual MSM (BCFLWDMSM)
operators) based on different attribute interrelationships. Comparing the presented approach with
the existing methodologies shows that the proposed approach is more efficient for handling complex
decision situations. The findings suggest that our method offers more robust and accurate assessments
by taking into account different aspects of uncertainty and system intricacy in the decision-making
context.

Keywords Disability disease, Artificial intelligence, Bipolar complex fuzzy linguistic set, Maclaurin
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MADM Multi-attribute decision-making

BCFLS Bipolar complex fuzzy linguistic set

LTs Linguistic terms

MSM Maclaurin symmetric mean

BCFLMSM Bipolar complex fuzzy linguistic Maclaurin symmetric mean
BCFLWMSM Bipolar complex fuzzy linguistic weighted Maclaurin symmetric mean
BCFLDMSM Bipolar complex fuzzy linguistic dual Maclaurin symmetric mean

BCFLDWMSM  Bipolar complex fuzzy linguistic dual weighted Maclaurin symmetric mean
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DM Decision-making

MD Membership degree

PMD Positive membership degree
NMD Negative membership degree
ES Fuzzy set

CF Complex fuzzy

BFS Bipolar fuzzy set

BCFS Bipolar complex fuzzy set
AOs Aggregation operators

Al Artificial intelligence

Disability disease prediction by Artificial Intelligence models can be described as elaborate algorithms aimed
at processing medical data and finding markers of the disease with high accuracy. These complex algorithmic
systems use large volumes of medical data such as patient history, genetic information, clinical evaluations,
imaging studies, and physiological monitoring to derive the prognosis of disability-related conditions. While
using diagnostic models, which are based on Al it is possible to analyze multiple parameters at once, and the
algorithm will be able to identify connections that are not quite noticeable to the human eye. These models
become especially useful for disability diseases that are determined by neurological, genetic, and environmental
factors. They can combine streams of data of an individual, like neuroimaging scans, genetic sequencing data,
patient diary of symptoms, and patient long-term health records to develop high-level prognostic models.
These models use several forms of artificial intelligence such as deep neural networks, support vector machines,
decision trees, and ensemble learning algorithms for many machine learning tasks encompassing probability of
disease manifestation, disease progression rates, and possible therapeutic approaches. The basic purpose of such
Al models is not just a diagnostic tool per se but also to use diagnostic data to construct early warning systems
that may be able to arrest or perhaps contain diseases with proper medical intervention.

The decision-making process of selecting an appropriate AI model for predicting disability diseases turns
out to be a classic example of an MCDA problem because of the complexity and the multiple criteria involved
in the decision-making process. Those who are involved in decision-making processes in the field of healthcare
technology work in an environment in which no one factor can be used to assess the appropriateness of an
Al model. The MCDM approach emerges as critical since it enables an integrated evaluation of several, and
sometimes competing, criteria at once. When applied to disability disease prediction, decision experts are
faced with several conflicting goals such as prediction accuracy, computational cost, model explainability, and
transferability across different populations. The traditional decision-making models are insufficient to solve the
problem because they do not allow for the proper consideration of these multiple attributes and their trade-offs.
An Al model may possess high predictability, but it may consume a lot of computational power, or it may be very
explainable but less accurate. The MCDM framework offers a systematic approach to measure these competing
dimensions in both a quantitative and qualitative way so that the decision-makers can develop an effective
scoring system that is more sophisticated than the mere linear trade-off. Using AHP, TOPSIS, or WASPAS, for
instance, healthcare technology experts can create a sound, justified, and unchallengeable approach to choosing
the right AI model. This approach recognizes that the selection is not about searching for the ideal model but
looking for the best solution that provides the best fit of several important performance measures in the context
of disability diseases.

The information or data is becoming more complicated with the development of the world and over time.
Thus, the notion of a crisp set was not enough to handle such tricky and awkward information or data, Therefore,
Zadeh! described the fuzzy set (FS) theory. Each element of FS has a membership degree (MD) between 0 and 1,

including 0 and 1. Afterward, numerous scholars employed this FS in various disciplines. FS has demonstrated
encouraging and powerful contributions to human-based knowledge to accomplish advancements in multiple
departments, such as image coding, data analysis, intelligence systems, etc. FS can successfully manage a wide
range of issues of genuine life through collaboration, which might be past the capacity of traditional methods.
Thus, FS could deal with numerous problems, such as DM, processing information, optimization, pattern
recognition, etc. Zhou and Wang? interpreted the fuzzy order (FO) equivalent class. The classification in a server-
to-client architecture based on fuzzy relation (FR) inequality was investigated by Xiao et al.%. Behzadipour et al.#
devised a hierarchical dynamic group decision approach within FS. Raiabpour et al® initiated fuzzy AHP and
DEMATEL for type 2 fuzzy and Saranya and Saravanan® diagnosed fuzzy DRASTIC and fuzzy DRASTIC-L.
Gitinavard et al.” devised a ranking and balancing approach within hesitant FS and Gitinavard and Zarandi®
discussed the soft computing method with hesitant FS. Borujeni et al.” devised a group decision analysis within
intuitionistic FS. A mixed expert assessment approach and group outranking technique for interval-valued
hesitant FS were interpreted by Gitinavard and Zarandi'® and Gitinavard et al.!! respectively. Various scholars
generalized FS, and the notion of bipolar fuzzy (BF) set (BFS) is one of the generalizations of FS diagnosed by
Zhang!? to overcome the lack presented in the structure of FS, i.e., the negative aspects. Each element of the BF
set has a positive membership degree (PMD) between 0 and 1, including 0 and 1 as well as a negative membership
degree (NMD) between —1 and 0, including —1 and 0. The BF set is utilized in graph theory by various scholars
such as Poulik and Ghorai!? initiated graphs complete degree, Akram'* defined BF graphs and their applications,
Rajeshwari et al.! initiated BF graphs on topological indices, Lu et al.!® diagnosed cyclic connectivity index of BF
incidence graph, Sarwar and Akram et al.'” explored BF competition graphs. Singh'® interpreted the BF notions
reduction utilizing granular-based weighted entropy. Abughazalah et al.! described certain ideals in BCI algebra
by employing the BF set. Alghamdi et al.?’ initiated BF BCK submodules. For the BF set, a lot of scholars defined
various methods such as Garai et al.?! and Alghamdi et al.?? defined multi-criteria DM (MCDM), Zhao et al.?*
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initiated the CPT-TODIM method, Akram and Arshad?* defined TOPSIS and ELECTRIC-I, and Akram and Al-
Kenani? defined ELECTRE-II. Also, certain researchers investigated AOs for BF sets like Riaz et al.?® initiated
trigonometric AOs, and Jana et al.?”?® explored Dombi and prioritized AOs. Zararsiz and Riaz?® developed BF
metric spaces. Jamil and Riaz* initiated TPOSIS and ELECTRE-I for the cubic BF set.

Another generalization of FS is the complex fuzzy (CF) set investigated by Ramot et al.>! to overcome the
deficiency, presented in the structure of FS i.e. 2nd dimension (extra fuzzy information). Each element of the
CF set has MD within a unit circle of a complex plane. Tamir et al.? also examined the CF set and considered
a unit square in a complex plan for each MD. The MD is of polar form in the notion defined by Ramot et al.>!
and in the shape of cartesian form in the notion of Tamir et al.?2. Singh®® investigated crisply generated CF
concepts analysis employing Shannon entropy. Hu et al.* presented homogeneity of CF operations. Khan et
al.*® investigated signal processing under the CF setting. Bi et al.***” propounded arithmetic and geometric
AOs. After that, Mahmood and Rehman®® further generalized the FS notion and constructed a bipolar complex
fuzzy (BCF) set (BCES) to overcome the deficiencies, presented in the structure of FS i.e. 2nd dimension (extra
fuzzy information) and negative aspects of the information. Each element of the BCF set has PMD within the
first quadrant of the unit square as well as NMD within the third quadrant of the unit square of a complex plane.
Rehman and Mahmood® described generalized dice similarity measures (SMs) for the BCF set. Mahmood
et al.® introduced AOs under the BCF setting. Ur Rehman et al.*! introduced an analytical hierarchy process
for BCF set under frank AOs. Mahmood et al.*? defined Bonferroni mean operators for BCF sets. Dombi and
Hamacher AOs for BCF sets are investigated by Mahmood and Rehman*® and Mahmood et al.* respectively.
The notion of the BCF soft set was introduced by Mahmood et al.*>.

Motivation and research problem

The current method of selecting AT models for disability disease prediction lacks sufficient solutions to handle
multiple uncertainties that appear during decision-making processes. This research examines a fundamental
problem given as follows

“How does an integrated bipolar complex fuzzy linguistic framework enhance disability disease prediction
model selection accuracy through simultaneously addressing uncertainty, bipolarity, extra fuzzy information,
and linguistic imprecision?”

In the current approach to selecting AI models for predicting disability diseases, a major gap is that the
decision-making (DM) process involves various uncertainties and bipolarity that are not well addressed, such as
Kumar et al.*® devised a MCDM for disease prediction, Freitas?” devised multi-criteria technique for predicting
and diagnosing mental disabilities, Lin et al.*® discussed machine learning approach for predicting disease
status, Kumar et al.*” devised a MCDM approach for disease prediction. These unaddressed aspects form a big
problem when it comes to model selection. In many cases, the attributes that are involved in the selection process
are ambiguous, have a bipolar nature, may contain extra information, and use linguistic terms that are not fully
addressed in the existing selection methodologies. The previous strategies for selecting models for disability
disease prediction have been mainly conventional and do not incorporate the DM processes adequately. The
current Al model selection processes depend on deterministic approaches without sufficient capability to
handle complexities that include attribute vagueness measurement bipolar evaluation criteria and extra fuzzy
information and linguistic terms. The lack of these essential dimensions leads to an insufficient method for
choosing AI models that predict disability diseases. The current decision-making methods show inherent
limitations because they miss essential facets needed for good decision processes. This research develops a
new MADM approach that provides an enhanced realistic framework for decision-making. The new model
employs systematic methods to handle vague information while integrating bipolarity additional fuzzy data and
linguistic term interpretation. The approach delivers a wider strategic framework for model selection which
includes contextual awareness. This paper emphasizes the necessity of developing such an advanced approach.
The selection of Al models for predicting disability diseases becomes fundamentally flawed and potentially
suboptimal when this approach is absent. This proposed method for MADM technology delivers an improved
approach to model selection in medical research because it creates more accurate assessments of suitable AI
solutions.

Further, because of the socioeconomic environment’s growing difficulty and the inherent subjectivity of
human thought, numerical data may not always be sufficient to address ambiguous and unclear data in real-
life DM dilemmas, particularly when it comes to qualitative factors. However, giving the evaluation values in
the shape of linguistic variables (LVs) is much easier. Thus, Zadeh® described the notion of linguistic terms
(LTs) set (LTS). Peng et al.>! investigated an interactive fuzzy LT set. Wang et al.>? introduced intuitionistic
linguistic (IL) AOs, and Ju et al.* initiated IL AOs based on MSM. Erol et al.>* investigated hesitant fuzzy LT
sets. Geo et al.” presented an interval-valued bipolar uncertain linguistic set. The theory of MSM can explore the
interrelationship among the input arguments, which is the main difference between MSM operators from other
AOs. The conception of MSM is a significant and impressive technique for handling DM issues. In the last few
years, MSM got a lot of attention in the setting of FS such as Qin and Liu*® explored MSM AOs for intuitionistic
FS (IFS), Wei and Lu®’ initiated MSM AOQs for Pythagorean FS (PFS), etc. Moreover, the already defined MSM
operators have only the capability of aggregating the data in the structure of crisp, IFS, PFS, ILFS, etc., but are
unproductive in the circumstances where the information or data is in the structure of BCFLS. Further, this article
develops an extension of the new MADM method and MSM operators within the BCFLS framework. Multiple
generalized frameworks of fuzzy sets exist in literature with unique benefits like neutrosophic sets®® which
enable direct modeling of indeterminacy by employing an additional membership function. Various scholars
have contributed to neutrosophic theory, such as Ali and Smarandache® interpreted complex neutrosophic
sets, and Broumi®® devised the concept of neutrosophic graphs. Our research concentrates on both positive
and negative aspects of the criteria along with linguistic terms but neutrosophic sets fail to address the negative
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aspects of the criteria and linguistic terms despite their many advantages. The article uses BCFLSs because this
framework meets the requirements needed to achieve our research objectives.

Contribution and novelty

This research presents bipolar complex fuzzy linguistic Maclaurin symmetric mean (BCFLMSM) operators for
MCDM which serve as a modern solution for selecting optimal AI models for disability disease prediction while
handling uncertainty alongside bipolarity and additional fuzzy information and linguistic assessments. This
research has the following novel contributions.

o MSM operators within BCFLS: This paper introduces four pioneering operators known as bipolar complex
fuzzy linguistic MSM (BCFLMSM), weighted MSM (BCFLWMSM), Dual MSM (BCFLDMSM), and weight-
ed Dual MSM (BCFLWDMSM) which provide entirely new capabilities to handle multidimensional uncer-
tain information.

o The theoretical foundation for decision-making within BCFLS: A strong theoretical structure exists that demon-
strates the necessary mathematical aspects of these operators to ensure reliable and consistent decision-mak-
ing processes in complicated BCFLS implementation.

o Novel MADM methodology: This paper develops a complete bipolar complex fuzzy linguistic MADM (BC-
FL-MADM) technique that integrates four essential information processing elements:

o Uncertainty handling through fuzzy set operations

« Bipolarity management through positive and negative membership degrees
« Additional fuzzy information via complex number representation

« Linguistic term integration through specialized linguistic variables

o Real-world validation: Our framework proves its excellence by applying it to disability disease prediction
model selection where it generates superior results when compared to traditional methods.

The methodology we developed makes a substantial improvement to decision theory through: A mathematically
sophisticated integration of advanced operators, and superior management of multifaceted information, and this
framework provides an advanced solution system for addressing challenging healthcare technology selection
problems The new method advances current medical AT model selection practices through its establishment of a
decision-making framework which considers multiple information dimensions simultaneously.

Layout of the manuscript

In “Preliminaries” section, this paper interprets the theory of BCFLS and related outcomes. In “BCF linguistic
Maclaurin symmetric mean AOs” section of this paper expand the MSM in the setting of BCFLS and interpreted
AOs for aggregation BCFLNs such as BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM operators.
In “Bipolar complex fuzzy linguistic MADM approach” section, contain a MADM approach based on the
defined MSM operators and in the setting of BCFLS and then present a case study of the selection of an Al
model for predicting disability diseases. “Comparison analysis” section compares the investigated theory with a
few current theories depicting the defined conception of power and domination. The concluding remark of this
manuscript is investigated in “Conclusions” section.

Preliminaries
Inspired by the conception of BCFS presented by Mahmood and Ur Rehman®, here we interpret the most
valuable and meaningful conception, called BCF linguistic set (BCFLS), to give the PMD and NMD of an element

to a certain LT variable at once. Let H be a universal set, and S be a continuous LT set of S = {s0, 1, ..., Sy }.
Definition 1 ¢! A BCFLS on H is of the structure
Z={(b,5600), (np—z (h) ,un—= (h))) |h € H}

where, $p(h) € S, P
pn-z (b) = pry-z (b) + pin -
and  prn-z (h),pin-z (h) € [
Z = (sg(n), (pp—z (b) ,un—z (
epitomized the BCFLN.

(h) = prp—z (h) + tprp-z (h) is a PMD and
(h) is an  NMD  with  prp—z(h),prp—z (h) €[0,1]
17 0], of an element heH to the LT s4p). The set

($¢(n) prp—z (h) +eprp—z (), prn—z (h) + Lprn—z (h))) ,

zZ
zZ

Definition 2 61 The score value (SV) of a BCFLN
Z = (s¢, (up-z,uN-2)) = (S¢, (HRP—2 + tp1P—2, URN -2 + tpIN—z)) is discovered as

1
SLsr (2) = 1 (24 prP-2z + p1P—2 + URN-2Z + pIN-Z) X 8¢
Definition 3 ol The accuracy value (AV) of a BCFLN

Z = (¢, (up—z,uNn-z)) = (8¢, (WRP—2 + tpiP—z, pRN—2 + tpt1N—z)) is discovered as
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URP—2Z + UIP—Z — URN—Z — HIN—Z
4

HLAF (Z): X S,

The comparison laws among two BCFLNs rely on the SV SLsr and the AV HL 4 discovered above are
described below

7716076”1 1 21 = (8¢1, (P-21,iN-2,)) = (861, (WRP—2, + thIP—2,, iRN—2, + LpiIN-2,))  and
= ($¢o, (UP—25, UN—-25)) = (S¢s, (WRP—2Z, + LUIP— 2y, LRN—Z, + LLIN—Z,)) are two BCFLNs, then

if SLsr (21) < SLsr (22), then Z1 < Za;
if SLsp (Z21) > SLsr (22),then Z1 > Zo;
ifSLSF (21) SLSF Zl) then
1
1
1

,_.,_.

ifHLar (Z ) < HLap (ZQ) then Z1 < Zs;
if HLAp (Z ) > HLap (22) then Z1 > Zo;
if HLaAp (Z ) HLap (Zz) then 21 = Zs.

S e

BCF linguistic Maclaurin symmetric mean AOs

This part of the paper expands the MSM in the setting of BCFLS and interpret AOs for BCFLNs such as
BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM operators. For that, we interpret operations for
BCFLNs.

Definition 4 Suppose Z1 = (8¢, (Lp—2,, UN-21)) = (S¢1, (WRP-2, + Ul1P— 21, LRN -~ 2, + LHIN-2,))
and 22 = ($¢g, (HP—2, IN-25)) = (862, (WRP—Z2 + tUIP— 25, RN~ 25 + LUIN-2,)) are two BCFLNs
with @ > 0, then
. WRP—2, + WRP—Zy — WRP—2 URP—2Zs + L (WIP—2, + LRP—Zy — HIP—Z, IP—Zs) » ))
218 2, ($¢1+¢2 ( — (BRN—2  PRN-2,) + (= (BIN-2, flIN-2,))

2@ 2y = (S ( HRP—2Z, URP—Zo + LUIP—Z, LI P—Z5, ))
1 2 P1X82 \ pN_z, + MRN—ZoMRN—21 + BRN—25 + L (WIN—2Z1 + HIN—Za WIN—2Z; + HIN—Z5)

0Z1 = (0 x 89, (1— (1 — prr—z,)" +1 (1-@a- MIP—Zl)a) S (*|H1N—Zl|a)))
2,9 = ($¢<197 (((NRszl)a + L(MIP—Zl)ay -1+ (1+ MRNle)a + (*1 + 1+ “INle)a))))

BCF linguistic MSM operator
Following we introduce the BCFLMSM operator.

Definition 5 Suppose Z3 = (S63, (0P—23, i -23)) = (80, (UrP—23 + thirP—25, AN - 23 + LN -23)) (I=1,2,3,...,9)
isa group of BCFLNsand , = 1,2, ..., 1), then the BCFLMSM operator isa function BCFLMSM : 2% — Z,
explained as

7
@ (® Z]:)
1<hi<]e<+<],<y

G,

BCFLMSM®) (Z21,22,23,...,2y) =

where(/, = wi')‘ isabinomial coefficientand (|1, ]2, . - ., |y ) tracks ,— tuple combinationof (1, 2, 3, . .. , ).
)

Al

Theorem 2 Suppose 23 = (So3, (P23, iN—-23)) = (So3, (HRP-23 + th1P—23, IRN - 23 + LHIN-23)) (A=1,2,3,...,9) i
a group of BCFLNG, then after utilizing the BCFLMSM operator the outcome is BCFLN, granted as

BOFLMSMY) (2,25, Z5,..., 2,)
1 1
, 7\’
<1 - <H1§h<12<-~<1,9» (1-Th., “RP*ZWJD ”) +
B%
L<1 - (H15h<12<m<1,§w (-1, F”P*Zw;)) ) (1)
1,
4 & 7 > /‘
<Zl§1<72<' '<P;TS“’ (HJ*I 13)) -1+ (1* ‘(* H1§11<12<.._<1,Su‘r (71 + HS:I (1 + “’RN’ZWJ))) v
¢ (‘1 + <1 - ‘(_H1§h<h<---<1,£w (=141, (1 ‘*’“11"*21;)))

= B

Proof By employing Def (4) we have

7 7
szl HRP—zy Tt HJ:l HIP—z)

® 21, —< - 1¢1:’< 1+ [T, (L +prv-z,) + o (1415, 1+ pinv-z,,)) ))
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1- H1§h<12<~~<1/§w (1 - H;:l “RP*ZWJ) +

L(1*H15h<12<~~<1,§w (1*1_[7: 1 HIP— Zh)?
)+

»
[} ® Z =|s ’ s ,
1< <2< <, <9 (le h) 21§1,<12< <1,§w(H§:1ml) _HISM<12<"<T,SW (*1+H/ (1+#R'\ Z)
v *H191<12<---<1,§x (=1 + T, (1 + prw- -2y, ))

1
, o
1- (H1511<12< w<,<w (-1l “”’*Zh)) v+

7 1
4 Z _ _TT . 4
|§1|<12CE--<1,§¢, (]gl h) . L(l (ngh<h<m<1,§w (1 Hg—lf“’*zw;)) ‘”)
c, Y I, #.)° v
o 1<]1<]2< <1; ( 1=1 J) _)(_H1§h<h<m<1,§w (_]+H/ 1+HRN ZW:) ) v 4+
1
T
¢ <7 ‘(7 H15h<72<~~<1,§v ( 1 +l_IJ 1 (1 +HiN- 213 ))) )

Therefore,
BOFLMSMY) (21,25, 25,..., 2,)
NS
y v\
(1 - <H1gh<12<-~<1,gw (1-The, “RP*ZWJD ”) +
NS
, v\
L<1 - (H1§h<12<4- <1,<v (1 1 F”P*Zh)) )
1,
7 /'
<Z'SM<12<- ,?Sw(H;:\ ‘“J)> —1+ (1— ‘(f [lct, ctocar,w (C1+ T (1 +ﬂmv—2u)))

= B

1 1

v <_1 + <1 - ‘(_H1§h<h<---<1,§w (_1 + H§:1 (1 +‘”N*Zh))> >;>

+

i

=

The discovered BCFLMSM operator fulfills the below axioms.

Theorem 3 Suppose Z3 = (s¢3 (P23, UN—23)) = (So3 (WRP—23 + ti1P— 23, LRN—23 + LUIN - 2;)) and
ZJ” = ($¢>:f (“P7257#N725)> = ($¢>:' (HRszg + tWrp—zlsHRN-2] + Llu'INfz_;)) ) (J =1,2,3,.. ~7¢’)

are two groups of BCFLNG, then

1. (Idempotency) If Z; = 21, then BOFLMSMW) (2,25, 25,..., 24) = Z.

2. (Monotonicity) 1f HRP—Zs < Hrp—z]  HIP—Z; < Krp—z HRN—2; < HRN -zl MIN—2; < Pin-z],

then

BCFLMSMWY) (21,25, 2s,..., 2,) < BOFLMSMY) (2], 2, 25,..., 2,).
z

3. (Boundedness) Suppose
zt = (mjax {urp—z;3} +umax{urp—z; } , min {prN—2;} + umin {MIP—ZJ}>, then

2~ < BOFLMSMWY (2,25, 25,...,2,) < 2™.

Particular cases
Here, we discuss the special cases of the interpreted BCFLMSM operator.

T = (mjin {urp—z5} + min {prp—z,}, max {ury—z;} + emax {prp—z; }> , and

Case 1: If we take , = 1 in Eq. (1), then we discover the bipolar complex fuzzy linguistic average (BCFLA)

operator as below
BCFLMSMW (2,25, Zs,..., Zy)
1 1-T1: o)’
- H1£h<12<~»<hgu: ( - HJ:I ”RP*ZW;) K +

1N\ T

1 T
”<1 - (H1§h<h<~-<h§w (1 -1l l‘“’*z';)) >

= 3 1, 1

(ZKM@Z< T (HJ 1%)>1’ o <17‘(7H1Sh<12<.._<h§w (*1+H§:1 (1+/JRN721;))> ¢>T+
L<—1+ (1 (et o (LTI, (1 sv-2,)) ) ’) )
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<=

1= (nghsw (1- /‘RP—ZM))

1_(H1§h§w (1_“”’—311)) )
B R v
e *‘(*Hlshgw(””—zn)) +
1
P
v (“(_nghsw (MIN_ZM))
1
P

1= (I (= ne-z,) )

_ (- (Tt )
) S# —)— (Hﬁ:lum_zh) i
(- (W2

&=

let |1 = . Then
+

<=

(I (1~ re-z,))
1| e
=5, e ’( 10 s Z'\)%

T

g
 Zp)

)

<=

I)

= BCFLA (21,22, 2s, ...

Case 2: If we take , = 2in Eq. (1), then we discover bipolar complex fuzzy linguistic Bonferroni mean (BCFBM)

operator as below
BCOFLMSM® (25,25, Zs,...,Zy)
2 CAR
1- (H1g11<12<~-<12§w (1~ T mrer Zh)) S
i
3

)
W

2
L<1 - <H1§h<h<»--<bgw‘ (1= Tlszpmrr-z ))
1
C

~——

=

l<
-1+ <1_ ‘( Hl<h<h<---<h§w (_l + Hj_z (l + 1rN Z\:))

= By

- ‘<Z1<h<12< <la<v (H: z”’h))
' <_1 i (1 B K_ H1g11<12<-~<12§w (_1 + H§:2 (1 F N -2y )))

L< (Hl<h<h§w (1= (up-zy,) (M,LZM))) e 1))

(mzléhbéw(éhob))i 71+< |( IT.< 1<]2<4 (71+(1+(“R“"*Zh) (”RV ZL))))
[ (N e G 0 vz ) 7))
‘ TO-T z
1- ((Huhﬂz1 (“(NW%)(HW%)))) +
Ti# 12 :
1) 2
¢ 1‘(1_[1}11)}21 (1—(/’”211)(/“*’212)))
. T #12
- ) 3 T
w0 I)X%ZL']I la=1 (@1, 41,) -1+ 1- < H"l ,=1 (1+(1+(HRVZM)(HRI\ZD)))> +
T 712 Th #12
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BCFBM (22,22, Zs, ..., Zy)

Case 3: If we take , = 1) in Eq. (8), then we discover the bipolar complex fuzzy linguistic geometric (BCFLG)

operator as below
BCFLMSM®™ (2,,25,Z;,..., Z,)

1

RN
y ®
<1 - (H|§h<12<---<1wgu‘: (1 -1l ALRP—ZVJ» ”’) +

1
v

=)

1

= 5

N
c¥
b

cv
W

" i,
<21SM<12<» <M‘Sw(H;:1 ‘*’1;)) i

" [
/‘<1 - (H1§h<12< <y <w <1 -1 ’”P’Zh)) )

-1+ (1 (* Ilicy,<toccrpze (*1 +II, (1 “’RN*ZWJ)))

)

o
<&

/)

1/ <1 ’ (1 B ‘(7 H191<12<»..<1¢-§v’ (71 +II (1 +’”N’Z':)))

1
v
(H;bzl MR}LZH) +

) S( le:)i’ —l (1 B '(1 - H?:l (1+HRN_21:)>D%+
t (_1 + (1 - ‘ (1 - H;bzl (1 + NIN—ZH)) ’) w)
Let 1a=1 and H;p:1 (1 + MRN—ZH) € [0,1] for all 1 thus,
’(1 B Hz‘il (1 +MRN*ZW:))‘ = (1 - H;lp:1 (1 +MRN721:)) , then
(H;bzl ILRpfzj) 3 +
L((H;bl lupzj)i)w
=|s, ., 1, X
( 11 ¢:) Z 14 (1 — (1 — H_}f:l (1+ NRN—Z:))) v
L (_1 + (1 - (1 - H;b:l 1+ MINfzj))) 1t)

1

v
(H;,pzl MRP—Z:) +

. ( (HL uu:_z;) 1}’)

71+( ?:1 (1+HRN_Z:))’/
L (_1 * (ngil (1 +/”N—Zj)>w)

A

<k

1

+

= BCFLG (21,22, Z3, ..

BCEF linguistic weighted MSM operator
The above-discovered BCFLMSM operator doesn’t think about the significance of the attributes. However, in

numerous pragmatic circumstances, particularly in MADM the weights of the attributes assume a significant
part in the procedure of aggregation. To handle this, here, we discover the BCFLWMSM operator.

Definition 6 Suppose Z3 = (8¢y, (P23, UN—-25)) = (S¢5, (LRP— 25 + LUIP—Z5, URN—Z5 + LUIN-Z5)) , (J =1,2,3,... ,w)
isagroupof BCFLNsand, = 1,2, ..., ¢,thenthe BCFLWMSM operatorisafunction BCF LM SM : ZY 5 Z,

explained as

é (Zh)h:>

@ (
1<]1<]2<<],<v \I=1

v,

BCFLWMSMY) (21, 25, 25,...,2,) =
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where T = (f1,T2,...,Ty) is weight vector (WV) with 0 < 3 <1 and Z;pzl f1=1and (]1,]2,---, o)
tracks ,— tuple combination of (1,2, 3,...,%).

Theorem 4 Suppose 23 = (8¢5, (up—z3, iN—-23)) = (803, (BRP—23 + th1P—23, RN - 23 + LHIN-23)) (3=1,2,3,...,9) i
a group of BCFLNG, then after utilizing the BCFLWMSM operator the outcome is BCFLN, granted as

BOFLWMSM®) (2,, 25, 2s,..., Z,)

N

=\|s

1,
, i ; ,
(El<h<b< <W’S‘; (H/::] (mh) J)) - <17 ‘(7 Hlih<12<»~<1,§':" (71 +1T (1 +MRN’ZWJ)MJ)>
13
v <_1 + (1 - ‘(_ H1§h<12<~-<1,§w (_1 +1T., (1 +“’N’Zh) ‘:))

Theorem 5 Suppose Z1 = ($¢5 (P—21, UN-23)) = (8¢5 (MRP—23 + Lp1P—2q, HRN—2Z5 + LUIN-2;)) and

Z = ($¢:' (ﬂpfz;vﬂzvfzg)> = <$¢>:' (MRP—Z; tbpzl RNz Tt L/"IN—ZE{)) ; (J =1,2,3,... 7211)
are two groups of BCFLNG, then

1. (Idempotency) If 25 = 21, then BOFLWMSMY) (21, 25, 25,...,2,) = 2
2. (Monotonicity) If HRP—Z3 < Hrp-z;, HIP—2; < Krp—z HRN-2; < HRN-zHIN-Z; < KiN-z],
then

BCFLWMSMY) (21, 25, 2s,...,2,) < BOFLWMSMY) (2], 2,, ;. ..., Z)

3. (Boundedness) Suppose

Z7 = (In_'jin {,URP—Z;} + LIIljin {ﬂ[p_zz},m?x{uRN_Z:} + LmJaX{ILL[p_Z:}) s and

zt = (Hl?X {urP-z;} +umax {urp—z; }, min {purN—z;} + emin {prp—z, })> then
Z- < BOFLWMSMWY) (2,25, 25,...,2,) < Z".

BCF linguistic dual MSM operator
Following, we introduce the BCFLDMSM operator.

Definition 7 Suppose £3 = (S63, (0P—23, un-25)) = (80, (URrP—2; + tlrP—25, AN - 23 + LN -23)) (3=123,...,9)
isagroupofBCFLNsand, = 1, 2, . .., ¢,thentheBCFLDMSMoperatorisafunction BCF LDM SM : Z¥ o Z,

explained as

0) ! 5 2,
BCFLDMSM\V) (21,25, Z3,...,2y) = = ® ® 2,
1<]1 <2<+ <, <y \I=1

where(/, = '(;/’7')‘ isabinomial coefficientand (|1, ]2, . - ., |y ) tracks ,— tuple combinationof (1,2, 3, . .. , ).
A(b=)!

Theorem 6 Suppose 23 = (o3, (P23, N -23)) = (So3; (HRP-23 + th1P—23; URN-23 + IHIN-23)) (I=1.23,....9)
a group of BCFLNG, then after utilizing the BCFLDMSM operator the outcome is BCFLN, granted as

BOFLDMSMY) (2,, 25, 2s,..., Z,)

1
7
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L <1 ) <1 ~Ihenapena,ze (- Tho (- pr-z,)) 0;,) ) .
LII (Zw oz ))ﬁ B / D% /
7 1<11<]2< <], <0 1=1 P\ 51 —||-1+ H1§h<b<»~<1,§¢ (1 - HJ:1 (HR’N’ZWJ)) g n
1
4 7
. (* (‘71 + <H1§W|<Tz<m<17§w (1 =TTy (uin-z,,)) % >

= 3

-
~—

Proof By employing Def (4) we have
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BCFLDMSMY) (2,25, 25,..., 2,)

1
Nt
, 7\
' (1 B H1§11<1:<---<1,Sw (=TT (1 - ”RP’ZWJ)) u) *
Nt
#=\7~
v (1 - (l - H191<12<---<1,gw (1 - H§:1 (1 - ““3’21:)) w> ) ’
s FRN N
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The discovered BCFLDMSM operator fulfills the below axioms.

Theorem 7 Suppose Z3 = (s, (P23, A —23)) = (863 (P23 + 1P~ 23, LN~ 23 + 1IN~ 23)) and

Z]

are

1.
2.

= (9545:' (H’szgv/“LN—Z;)) = ($¢:' (N’Rszj” + tWrp—z7s HRN - 2] + LNINfz_L;)) ) (J =1,2,3,... 71/))
two groups of BCFLNG, then

(Idempotency) If Z9 = ZV], then BCFLDMSM®) (21,22, 23,...,2y) =2

(Monotonicity) If HRP—Z3 < Hrp—z;, HIP-2; < Hip—z] HRN—2; < HRN-z]HIN—Z3 < Kin-z],
then

BCFLDMSMY) (21,25, 25,...,2,) < BOFLDMSMY) (2], 2;, 25, 2))

. (Boundedness) Suppose 2 = (mjm {urp-z;} +umin {prp—z;}, max {urN-z;} + tmax {MIP—Z:}> , and

zt = (Hljax {urP-z;} +umax {urp—z; }, min {urN—z; } + emin {prp—z, })> then

2~ < BOFLDMSMY) (2,25, 25,...,2,) < Z*.

BCF linguistic weighted dual MSM operator

The

above-discovered BCFLDMSM operator doesn’t think about the significance of the attributes. However, in

numerous pragmatic circumstances, particularly in MADM the weights of the attributes assume a significant
part in the procedure of aggregation. To handle this, here, we discover the BCFLWDMSM operator.
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Definition 8 Suppose Z3 = (S¢q, (WP—23, UN-25)) = (8¢5, (URP—23 + LUIP— 23, IRN 25 + LUIN-23)) , (j =1,23,... ,w)
is a group of BCFLNs and ,=1,2,...,9, then the BCFLWDMSM operator is a function

BCFLWDMSM : 2% — Z, explained as

1
BCFLWDMSM® (21,25, 25,..., Z,) = ~ ( ® (é T1JZ1:> ”’)
q \1<]i<]2<<],<9 \I=1

where T = (1, t2,.-., ) is WV with 0 < 13 < 1 and Zil t1=1and (]1,]2,.-., ) tracks ,— tuple
combination of (1,2,3,...,1).

Theorem 8 Suppose 23 = (8¢5, (W23, iN—-23)) = (803, (BRP—23 + th1P—23, RN =23 + LHIN-23)) (A=1,23...,9)
a group of BCFLNG, then after utilizing the BCFLWDMSM operator the outcome is BCFLN, granted as
BCFLWDMSMY) (2,,2,,25,..., 2,)
1- (1 | (T (1 -, (1— HRP—ZH)T'J)%> n
. <1 - (1 o I PR (1 Tk, (1 7"”’*%)“’)%)7

: ) |
) - ('71 + H1g11<12<---<b£'~” (1 -1k "uHN*ZWJ‘ J) :

3 T
L (’ <‘*1 + H1g]<12<~»<1,gw (1 -1l |‘“"‘V*Zh| h) *

=1|s

<+

%(H191<12< <1,<w (Z;:; TW:‘”W:)

The discovered BCFLWDMSM operator fulfills the below axioms.

Theorem 9 Suppose Z3 = (8¢5 (WP—z3, IN-25)) = (8¢5 (WRP—25 + Up1P— 23, KRN - 23 + LUIN - 25)) and

Zi = ($¢:' (H’szgv/“LN—Z;)) = ($¢:' (N’Rszg + thrp-z7s HRN 2] + L/'LINfz_l;)) ) (J =1,2,3,... ,w)

are two groups of BCFLNS, then

1. (Idempotency) If 23 = 21, then BOFLWDMSMY) (2,25, 25,...,24) = 2
2. (Monotonicity) 1f HRP—Z3 S Hpp_zl,WP-23 S [ijp_zMRN-23 S PpN_z]MIN-Z3 S JN_z]
then

BCFLWDMSMY) (21,25, 2s,..., 2,) < BOFLWDMSMY) (2], 25, 2, )

3. (Boundedness) Suppose
ZzZT = <m__jin {rP—2;} + LIIljin {prp—z5}, m?X {rN=2z5} + Lm__?x {,u]p,z]}> , and

zZt = (mjax {urp-z;3} +max {prp—z;}, min {pry-z;} +omin {purp—z, }), then
2~ < BOFLWDMSMUY) (2., 25, 25,...,2,) < 2+

Bipolar complex fuzzy linguistic MADM approach
Consider that there are ¢ number of alternatives ie. Z = {Z1,25,..,Z4} and 7 number
of attributes M= {M,MNo,..., N>} with WV  t=(f1,%2,...,7r) and 0<{.<1 and

22:1 f¢ =1. Keep in mind these attributes the expert or specialist would describe his/
her opinion (information) against each alternative in the structure of BCFLS that is
Z = (s(n), (pp—z (0) ,un—z (1)) = (See): (krRP—2 (0) + trp—z (b) ,prN -2 (h) + tpin—z (B)))
and form a decision matrix (D-M). Now to get the result, we designate the following stages.

Stage 1: If the data belonging to the decision matrix is benefit sort then the normalization process is not
obligatory but if the data belonging to the decision matrix is cost sort then the normalization process is obligatory
and would be done by the underneath formula

N _ ($o(n), (up—z (h) , un—z (h)))  forbenefit
ports ($o(0), (up—z (0) ,un—z (h))°)  forcost

where, (p—z (h) ,un-z (h) = (1 — prr-z (h) + ¢ (1 — prp—z (), =1 — prn—2 () + ¢ (=1 — pv—z (h))).

Stage 2: This stage contains the aggregated values of the decision matrix or normalized decision matrix
determined by employing one of the defined BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM
operators.
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Fig. 1. The flowchart of the proposed bipolar complex fuzzy linguistic DM method.

Symbols | AT models Explanation
An artificial neural network that is intended to mimic the structure of higher-order brain networks, with the ability to identify
TensorFlow Neural non-linear relationships in medical data. Its performance in non-linear actions is excellent and can simultaneously process a
Network variety of input features. The model is especially suited for image-based medical diagnosis and the analysis of time-series medical
data
A method of learning where an algorithm forms several decision trees during training. This model is not prone to overfitting and it
Zy Random Forest Classifier | has a great feature importance analysis. The results are particularly impressive when applied to the medical data with a well-defined
structure, providing the analysis of various aspects that may influence the disability disease
A highly complex statistical learning model that is very effective in data spaces of high dimensionality. It is especially effective
Z3 Support Vector Machine | in learning the best decision boundaries in large medical data sets. The model is quite effective in solving linear and non-linear
classification problems with high levels of accuracy
- An advanced gradient boosting algorithm is presumed to be highly accurate when making predictions and economical in time.
XGBoost Predictive 2 . £ . .
Z4 It accumulates several small prediction models that in turn form a large and powerful prediction model. The model is especially
Model . . . ] . S L
useful for dealing with unbalanced medical data and is characterized by fast training and prediction

Table 1. The AI models with explanation.

Stage 3: Attain the SV through Def (8), and in case the SVs of any two alternatives become the same, then
attain accuracy value (AV) through Def (9).

Stage 4: List the ranking of alternatives relying on the attained SVs and AVs.

The flowchart of the proposed method is shown in Fig. 1.

Case study

Over the years, however, the healthcare industry has been experiencing a dramatic transformation, particularly
in the use of artificial intelligence in diagnosis and preventive medicine. As a result of the multifactorial and
multifaceted nature of disability diseases, diagnostic difficulties have long been observed in the early stages of
the disease. In those chronic and complex diseases, conventional diagnostic approaches may fall short since
the etiologic and pathophysiologic features are complex and not easy to detect and capture; hence, appreciated
delays in their management and unfavorable patient outcomes. Disability diseases are on the increase across
the world and this has called for better diagnostic techniques. As per the latest trends in epidemiological
research, diseases like multiple sclerosis, Parkinson’s disease, and other neurodegenerative diseases, have been
on the rise, especially among the elderly. Not only does it signal morbidity in patient populations, but also
creates a significantly high cost to overall global health economies. Recent and ongoing advancements in the
field of machine learning especially in artificial intelligence have created new vistas in medical science. These
technologies provide capabilities that are new in the way they can identify patterns, analyze data, and make
predictions. However, the healthcare sector faces a critical challenge: choosing the right AI model that can best
suit disability disease prediction in this complex world.

A healthcare research institution seeks to identify the best AI model for predicting disability diseases because
the selection of the model greatly influences early detection, patient care, and resource utilization. The decision
expert of the healthcare research institution analyzed different AI models for disability disease prediction. After
careful assessment and the first round of selection, they decided to focus on four promising approaches for
medical prediction tasks, interpreted in Table 1.
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Symbols | Attribute Explanation
Assesses the performance of the model in the identification and prediction of disability diseases. These are accuracy, sensitivity, specificity,
Z1 Prediction accuracy | and the overall performance of the diagnostic test. The attribute takes into account false positive and false negative rates which in medical
prediction are very vital
=z Computational Measures the time taken by the model, memory used, and the amount of computations needed by the model. This attribute is useful for
2 efficiency practical implementation in healthcare facilities with low technological support
Evaluate the model’s openness in decision-making. This includes the ability to provide information about how a prediction is arrived at which
Z3 Interpretability is very important in making medical practitioners and patients trust. Interpretable models enable doctors to know why a particular prediction
was made
= Generalizabilit Defines the model’s efficiency when it comes to various patient outcomes. This attribute focuses on the model’s performance of delivering equal
4 Y precision regardless of the demographic similarity or dissimilarity of the test data, the given medical history, or indeed, differences in data

Table 2. The attribute and explanation.

RIS

0.97 + 0.7, 0.79 + :0.6, 0.67 + 0.5, 0 +0.39,
Z1 —0.15 — ¢0.2 54\ —05—-105 8 —0.35 — 10.45 0.6 — 0.8

0.49 + 10.51, 0.3 + 0.4, 0.6 + 0.5, 0.1+ :0
Z2 | \®3 | —0.51 — .0.61 %2, —0.6 —10.7 %4>\ —0.31 —10.49 —0.4

0.25 + :0.3, 0.5 + 10.54, 0.2 4 ¢0.15, 0.67 + ¢0.56,
Zs | |\%1 | Z0.4—.0.3 54\ —0.37 —10.43 —0.55 — 10.45 ~0.35 — 10.43

0.51 + 0.7, 0.8 + ¢0.7, 0.05 + ¢0.2, 0.4+ 0.2,
Za | \%3: | Z0.2-.0.1 %5\ —0.14 —.0.34 31, —0.7—-.04 0.4 — 0.5

Table 3. The assessment values of AI models are interpreted by experts (hypothetical data).

The evaluation of disability disease prediction models includes four Al systems which are presented in Table 1.
Each model offers distinct capabilities: TensorFlow Neural Network excels at handling non-linear relationships in
medical data and image-based diagnosis; Random Forest Classifier demonstrates strong resistance to overfitting
with excellent feature importance analysis; Support Vector Machine effectively manages high-dimensional data
spaces with strong classification capabilities; and XGBoost combines multiple small prediction models to create a
powerful predictive tool that performs well with unbalanced medical data. Multiple Al-based disease prediction
methods exist as the leading approaches in modern medical diagnostics.

After the selection of alternatives, the decision maker very thoroughly identified the key attributes that would
be used to make the evaluation. These attributes were selected following a series of consultations with medical
practitioners, data scientists, and healthcare technology specialists to ensure the assessment was holistic. These
attributes are devised in Table 2.

Table 2 describes the four essential attributes that serve as fundamental evaluation criteria for medical Al
model assessment. The fundamental performance metrics that matter in medical diagnostics are measured
through Prediction Accuracy by assessing sensitivity and specificity. Computational Efficiency determines the
necessary resource utilization which proves essential for healthcare implementation. Medical practitioners
develop trust in AT models through their ability to understand model operations. Generalizability assesses how
well AT models perform when treating patients of multiple backgrounds with various healthcare backgrounds. A
group of multidisciplinary experts carefully chose these evaluation attributes through consultation to establish
a complete assessment framework.

As attributes contain the bipolarity and extra fuzzy information, thus, the assessment values of these AI
models will be in the BCFLN that is revealed in Table 3. Also, the expert interprets the weight vectors to the

attributes that are (0.3,0.1,0.3,0.4).

Table 3 presents the complete assessment values for each AI model regarding the four attributes through
bipolar complex fuzzy linguistic numbers (BCFLNSs). The assessment values include both positive and negative
membership degrees and additional fuzzy information presented through complex numbers which provide
enhanced expert evaluation capabilities. The weight vector (0.3,0.1,0.3,0.4) demonstrates the relative
significance of each attribute where Generalizability stands as the most important followed by Prediction
Accuracy and Interpretability which share equal importance, and Computational Efficiency holds the least
significance.

Stage 1: As the data in Table 3 is beneficial sort, there is no need for stage 1.

Stage 2: This stage established the aggregated values of the data portrayed in Table 3 by employing defined
BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM operators as described in Table 4.

Table 4 shows the aggregated evaluation results from applying the four proposed operators BCFLMSM,
BCFLWMSM, BCFLDMSM, and BCFLWDMSM. The evaluation data from multiple dimensions gets
transformed into unified comprehensive values through each aggregation approach according to the results.
Each aggregation method demonstrates different priorities in evaluation criteria which produces a more well-
rounded analysis than using a solitary operator evaluation approach.
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Method 2, Zs 23 =2
0.951+4 0.648+ 0.927+ 0.808+
0.881, 0.754, 0.888, 0.72,
BCFLMSM sss75, [ 01 $3.019, [ 20 043 $2.817 | 20048 sa236 [ 0067
—:0.23 —:0.13 —10.06 —10.06
0.998+ 0.9474 0.996+ 0.979+4
0.993 0.974 0.992 0.967
BCFLWMSM $1.96, L_0.005’ $1.605, L_O_()Ol7 $1.523, L_0.001’ $1.644, L_O_oog7
—:0.022 —:0.008 —10.002 —:0.002
0.121+ 0.011+4 0.115+ 0.038+
0.063 0.021 0.071 0.014
BCFLDMSM $2.404, L,O~782’ $2.025, L,O"né $1.961, 10.60é $1.868, 10‘445
—10.746 —10.661 —10.683 —10.723
0.009+ 0.0002+ 0.007+ 0.001+
0.002 0.0004 0.003 0.0003
BCFLWDMSM $1.19, ’;0.99(’3 %1.07, L,O‘gg’ %0.899, L,O‘gg’ %0.88, L,O'ggl’
—:0.999 —10.998 —10.992 —:0.993

Table 4. The aggregated result of the Al models after aggregating by developed operators.

Method SLsr (21) | SLsr (22) | SLsr (23) | SLsr (24)
BCFLMSM 7.776 3.155 2.612 3.597
BCFLWMSM | 1,943 1.57 1.518 1.62
BCFLDMSM | 0,394 0.33 0.44 0.413
BCFLWDMSM | 0.005 0.003 0.006 0.004

Table 5. The score values of AI models.

Method Comparison Across Z Values

Values

0z

BCFLMSM
BCFLWMSM
BCFLDMSM

Methods BCFLWDMSM

Z Values

Fig. 2. The score values.

Stage 3: Attained the SVs through score function and interpreted in Table 5 and graphically interpreted in

Fig. 2.

The score values from Table 5 represent the complete performance metrics of each AI model across all
attributes. Model Z1( TensorFlow Neural Network) produces superior performance scores of 7.776 and 1.943
when BCFLMSM and BCFLWMSM operators are utilized. The Support Vector Machine operator (Model Z1)
demonstrates superior performance when using BCFLDMSM and BCFLWDMSM operators but achieves this
result with reduced margins. The results show that model selection choices depend heavily on aggregation
methods because different operators affect which models get chosen for implementation.

The score values of each AI model appear in Fig. 1 across the four aggregation operators. The performance
data in Fig. 1 demonstrates that Model Z; stands out with BCFLMSM evaluation but displays similar results
with other aggregation operators. The visual display provides action-makers with immediate recognition of
performance trends as well as pairwise model ranking achievements under multiple evaluation metrics.

Stage 4: The ranking of alternatives relying on the attained SVs is shown in Table 6.
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Method Ranking

BCFLMSM Z1> 24> Z2 > 23
BCFLWMSM | 2y > Z4 > Z5 > Z3
BCFLDMSM | Z3 > Z4 > Z1 > Z5
BCFIWDMSM | Z3 > Z; > Z4 > 2o

Table 6. The ranking of AI models for predicting disability diseases.

N4y
0.63 + 00.41, 0.26 + ¢0.71, 0.27 + 10.56, 0.44 + 00.65,
Z1 0.28 — 10.43 ~20.15 — 10.53 0.64 — 10.35 $4: | —0.11 —10.25
0.83 + 10.63, 0.74 + ¢0.37, 0.54 + 10.53, 9+L046
Z2 —0.85 — 10.34 —0.16 — 10.54 —0.65 — 00.43 $55 0.43 — 10.54
0.2 4 :0.17, 0.75 + ¢0.13, 0.28 + 10.23, 0.75 + ¢0.11,
Z3 —0.27 — 10.35 —0.18 — ¢0.45 —0.43 — 10.42 $2, | Z0.2 - 10.24
= 0.92 + 10.76, 0.76 + 10.45, 0.67 + 10.75, 0.89 +00.35,
4 | (%4 | —0.27—.0.64 $3, | —0.47 — 00.55 83, | —0.71 — 10.54 $4, 0.65 — 10.64
Table 7. The new assessment values.
Method SLSF (zl) SLSF (22) SLSF (23) SLSF (24) Ra.nking
BCFLMSM 4.083 4.714 6.627 6.242 23> 24> 23> 2
BCFLWMSM | 1,619 1.786 1.753 1.787 Z4> 22> 23> 2
BCFLDMSM | 2. 211 2.42 2.305 2.365 Zy> 24> 23> 2
BCFLWDMSM | 1,386 1.458 1.489 1.45 23> 29> 23> 2

Table 8. The score values of alternatives are based on new assessment values.

The score values and ranking devised in Tables 5 and 6 provide that according to BCFLMSM and BCFLWMSM
operators, the Al model Z; is the most suitable one and according to BCFLDMSM and BCFLWDMSM operators,

Z3 is the most suitable one.

The case study outcomes provide vital information about selecting AT models for disability disease prediction
through detailed examination. The evaluation results show that TensorFlow Neural Network achieved top
performance under BCFLMSM and BCFLWMSM operators with scores of 7.776 and 1.943 but Support Vector
Machine demonstrated superior results through BCFLDMSM and BCFLWDMSM operators with scores of
0.44 and 0.006. The selection outcomes depend heavily on the evaluation framework’s mathematical structure
which demonstrates that healthcare institutions need to evaluate their specific needs when selecting evaluation
methodologies. The authors stress that their approach which handles uncertainty alongside bipolarity additional
fuzzy information and linguistic imprecision matches the complex medical diagnosis process where doctors
manage competing priorities. The better match of decision-making methods to real-life complex situations
results in more precise selection processes. Decision-makers need to implement specific multi-dimensional
evaluation systems instead of standard single-factor evaluation procedures to obtain better diagnostic capacities
that enhance patient results. The paragraph should appear in the “Conclusions” section before future work
discussions to establish a link between mathematical results and healthcare practicality.

Sensitivity analysis
Here, we analyze the sensitivity of the proposed method by changing the assessment values of the alternatives
based on the criteria given in the case study. The new assessment values are devised in Table 7 and the new eight
of each criterion are 0.1, 0.3, 0.4, and 0.2 respectively.
Now to solve this data, we again use the invented method, and the result is displayed in Table 8 and Fig. 3
The solution of new assessment values showed that by aggregating the information through BCFLMSM
and BCFLWDMSM operators Z3 is the finest alternative and using the BCFLWMSM operator Z4 is the finest
alternative and employing the BCFLDMSM operator Z; is the finest one. We can also observe that by changing
the assessment values we achieved different results. This implies that, when the data is changed the proposed
approach will give different and accurate results.

Comparison analysis
This section compares the investigated theory with a few current theories depicting the defined conception of
power and domination. For this purpose, we consider the approaches and AOs investigated by Wang et al.*2, Ju
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Comparison of SLSF Values Across Methods and Datasets
T T T T
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Fig. 3. The score values of new assessment values.

Wang et al. > Unproductive | Unproductive | Unproductive | Unproductive
Juetal. > Unproductive | Unproductive | Unproductive | Unproductive
Gaoetal. > Unproductive | Unproductive | Unproductive | Unproductive

Mahmood etal. * | Unproductive | Unproductive | Unproductive | Unproductive

BCFLMSM 7.776 3.155 2.612 3.597
BCFLWMSM 1.943 1.57 1.518 1.62

BCFLDMSM 0.394 0.33 0.44 0.413
BCFLWDMSM 0.005 0.003 0.006 0.004

Table 9. The comparison among prevailing and interpreted methodologies.

Wang et al. > Unproductive
Juetal 33 Unproductive
Gaoetal. > Unproductive

Mahmood et al. * | Unproductive

BCFLMSM Z1> 24> 22> 23
BCFLWMSM Z1 > 24> 29 > 23
BCFLDMSM Z3 > 24> 21 > 2o

BCFLWDMSM Z3> 21> 24 > 29

Table 10. The ranking of the comparison of existing and proposed methods.

et al.>?, Gao et al.>>, and Mahmood et al.** and the defined approach and MSM AOs. Table 9 contains the results
after utilizing the considered approaches and operators, and Table 10 contains their ranking order.

Wang et al.>? investigated AOs and DM approach and Ju et al.>* AOs based on MSM and DM approach in
the setting of intuitionistic fuzzy LS (IFLS). The theory of IFLS can’t model the data with extra information and
negative aspects. Thus, it is clear that these operators and approaches are unproductive for the data displayed in
Table 3. Gao et al.” investigated a DM approach in the setting of interval-valued bipolar uncertain LS (IVBULS).
The theory of IVBULS can't model the data with 2nd dimension. Thus, the interpreted approach is unproductive
for the data displayed in Table 3. Mahmood et al.* investigated Hamacher AOs and DM techniques for BCFS.
The theory of BCES can model both extra information and negative aspects but in this theory, the LT is missing
thus, BCFS is unproductive for data in Table 3. These current approaches and operators are unproductive in the
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Comparison of Methods across Z Values

Unproductive Methods:
e Wang et al. [43]

o Juetal. [44]

® Gao et al. [45]

© Mahmood et al. [39]

6

Values

BCFLMSM
BCFLWMSM
BCFLDMSM

> BCFLWDMSM
72 Methods 0

Z Values

Fig. 4. The comparison among existing and interpreted methods.

detection and diagnosis of lung cancer in a patient. The defined conception and approach are productive for the
data initiated in Table 1. The result is displayed in Table 9 along with the ranking in Table 10 and Fig. 4. According
to BCFLMSM and BCFLWMSM operators, the patient has lung nodules and according to BCFLDMSM and
BCFLWDMSM operators, the patient has small cell lung cancer. Therefore, the initiated conception is more
generalized and richer.

Conclusions

The selection of appropriate AI models for disability disease prediction needs decision-making tools that handle
various uncertainties and information types. The research addresses this essential knowledge gap through a new
framework that handles various dimensions of uncertainty and complexity within DM processes. The current
research delivers multiple theoretical and practical advancements to MADM research. The BCFL setting benefits
from the new MSM operators which include BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM
to tackle complex DM situations. The operators demonstrate strong mathematical reliability and create an
extensive structure to unite multiple information types. A comprehensive theoretical foundation exists for
implementing these operators in real-world DM situations because of their characteristic analysis. The MADM
technique showed better performance than traditional methods because it managed to process uncertainties
alongside bipolarity and additional fuzzy information and linguistic terms simultaneously. The disability disease
prediction case study demonstrated TensorFlow Neural Network as the superior choice through its score values
of 7.776( BCFLMSM) and 1.943( BCFLWMSM) while Support Vector Machine achieved the best results
under BCFLDMSM and BCFLWDMSM operators with scores of 0.44 and 0.006 respectively. Our proposed

method captures subtle performance differences through its 7.776 score difference between the TensorFlow
model and SVM model operating under BCFLMSM statistically. The model ranking order under BCFLMSM
and BCFLWMSM operators follows Z1 > Z4 > Z> > Z3 while BCFLDMSM and BCFLWDMSM operators
produce the opposite ranking pattern of Z3 > Z4 > Z1 > Z and 23 > Z1 > Z4 > 2 respectively. The
framework shows its capability to analyze models through multiple perspectives which gives decision-makers
complete insights to make technology selection decisions. This is evident from our case study on the use of AI
model selection for disability disease prediction. The results indicate that our method yields more accurate and
diverse evaluations than conventional methods, especially when applied to realistic medical decision-making
situations. These implications are significant for theoretical research and practical use in healthcare technology
management decisions. The framework we have presented gives the decision-makers a better tool to evaluate
the AT models, which may result in better effectiveness in the prediction and management of disability diseases.
The work presented in this paper makes a valuable research contribution both for enhancing the theoretical
developments of MADM methodologies and for applying them to the selection of healthcare technology. The
proposed approach can be a more suitable and accurate guide to making crucial decisions in medical technology
implementation than the current methods, which may lead to enhanced patient care results due to the selection
of the right AT model.

Limitation and future direction

The framework shows various limitations that reduce its effectiveness for real-time clinical implementation
through its expert-driven methodology and dependent parameters. Further, the proposed work can’t handle
the information of various other mathematical structures such as complex intuitionistic FS (CIFS)®2, complex
hesitant fuzzy rough set CHFRS®, spherical fuzzy rough set (SFRS)®*, dual hesitant FS (DHFS)®, etc. Thus,
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in the future, we aim to address these limitations and expand the proposed theories in other mathematical
frameworks such as CHFRS, CIFS, SFRS, and DHFS, etc. Moreover, in the future, we would like to integrate the
notion of bipolar complex fuzzy set (BCFS) and neutrosophic set to develop the notion of neutrosophic BCFS.
Also, we aim to expand this work in the framework of Heptapartitioned neutrosophic soft set®, and interval
neutrosophic sets®’.

Data availability
The data utilized in this manuscript are hypothetical and artificial, and one can use these data before prior per-
mission by just citing this manuscript. For data one can contact the corresponding author.
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