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The selection of suitable AI models to predict disability diseases stands as a vital multi-attribute 
decision-making (MADM) task within healthcare technology. The current selection methods fail 
to integrate the management of uncertainties with bipolarity while also handling additional fuzzy 
information and linguistic terms during decision-making which leads to inferior model choices. To 
address these limitations, this paper proposes a new MADM approach within the environment of 
bipolar complex fuzzy linguistic sets (BCFLSs). In this manuscript, our primary contributions include, 
the proposal of four new Maclaurin symmetric mean (MSM) operators, in the setting of BCFLSs, 
analysis of properties of these operators to build the theoretical framework, development of a novel 
MADM approach to address uncertainties, bipolarity (dual aspects), addition fuzzy information; and 
linguistic terms (LTs), and application of the interpreted methodology to handle a real-life case study 
containing AI model selection for predicting disability disease. The case study of disability disease 
prediction results shows TensorFlow Neural Network achieved superior performance than other 
AI models with a score value of 7.776 using bipolar complex fuzzy linguistic MSM (BCFLMSM) and 
1.943 using bipolar complex fuzzy linguistic weighted MSM (BCFLWMSM) operators while Support 
Vector Machine delivered the highest score (0.44 with bipolar complex fuzzy linguistic dual MSM 
(BCFLDMSM) and 0.006 with bipolar complex fuzzy linguistic weighted dual MSM (BCFLWDMSM) 
operators) based on different attribute interrelationships. Comparing the presented approach with 
the existing methodologies shows that the proposed approach is more efficient for handling complex 
decision situations. The findings suggest that our method offers more robust and accurate assessments 
by taking into account different aspects of uncertainty and system intricacy in the decision-making 
context.
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DM	� Decision-making
MD	� Membership degree
PMD	� Positive membership degree
NMD	� Negative membership degree
FS	� Fuzzy set
CF	� Complex fuzzy
BFS	� Bipolar fuzzy set
BCFS	� Bipolar complex fuzzy set
AOs	� Aggregation operators
AI	� Artificial intelligence

Disability disease prediction by Artificial Intelligence models can be described as elaborate algorithms aimed 
at processing medical data and finding markers of the disease with high accuracy. These complex algorithmic 
systems use large volumes of medical data such as patient history, genetic information, clinical evaluations, 
imaging studies, and physiological monitoring to derive the prognosis of disability-related conditions. While 
using diagnostic models, which are based on AI, it is possible to analyze multiple parameters at once, and the 
algorithm will be able to identify connections that are not quite noticeable to the human eye. These models 
become especially useful for disability diseases that are determined by neurological, genetic, and environmental 
factors. They can combine streams of data of an individual, like neuroimaging scans, genetic sequencing data, 
patient diary of symptoms, and patient long-term health records to develop high-level prognostic models. 
These models use several forms of artificial intelligence such as deep neural networks, support vector machines, 
decision trees, and ensemble learning algorithms for many machine learning tasks encompassing probability of 
disease manifestation, disease progression rates, and possible therapeutic approaches. The basic purpose of such 
AI models is not just a diagnostic tool per se but also to use diagnostic data to construct early warning systems 
that may be able to arrest or perhaps contain diseases with proper medical intervention.

The decision-making process of selecting an appropriate AI model for predicting disability diseases turns 
out to be a classic example of an MCDA problem because of the complexity and the multiple criteria involved 
in the decision-making process. Those who are involved in decision-making processes in the field of healthcare 
technology work in an environment in which no one factor can be used to assess the appropriateness of an 
AI model. The MCDM approach emerges as critical since it enables an integrated evaluation of several, and 
sometimes competing, criteria at once. When applied to disability disease prediction, decision experts are 
faced with several conflicting goals such as prediction accuracy, computational cost, model explainability, and 
transferability across different populations. The traditional decision-making models are insufficient to solve the 
problem because they do not allow for the proper consideration of these multiple attributes and their trade-offs. 
An AI model may possess high predictability, but it may consume a lot of computational power, or it may be very 
explainable but less accurate. The MCDM framework offers a systematic approach to measure these competing 
dimensions in both a quantitative and qualitative way so that the decision-makers can develop an effective 
scoring system that is more sophisticated than the mere linear trade-off. Using AHP, TOPSIS, or WASPAS, for 
instance, healthcare technology experts can create a sound, justified, and unchallengeable approach to choosing 
the right AI model. This approach recognizes that the selection is not about searching for the ideal model but 
looking for the best solution that provides the best fit of several important performance measures in the context 
of disability diseases.

The information or data is becoming more complicated with the development of the world and over time. 
Thus, the notion of a crisp set was not enough to handle such tricky and awkward information or data, Therefore, 
Zadeh1 described the fuzzy set (FS) theory. Each element of FS has a membership degree (MD) between 0 and 1, 
including 0 and 1. Afterward, numerous scholars employed this FS in various disciplines. FS has demonstrated 
encouraging and powerful contributions to human-based knowledge to accomplish advancements in multiple 
departments, such as image coding, data analysis, intelligence systems, etc. FS can successfully manage a wide 
range of issues of genuine life through collaboration, which might be past the capacity of traditional methods. 
Thus, FS could deal with numerous problems, such as DM, processing information, optimization, pattern 
recognition, etc. Zhou and Wang2 interpreted the fuzzy order (FO) equivalent class. The classification in a server-
to-client architecture based on fuzzy relation (FR) inequality was investigated by Xiao et al.3. Behzadipour et al.4 
devised a hierarchical dynamic group decision approach within FS. Raiabpour et al5 initiated fuzzy AHP and 
DEMATEL for type 2 fuzzy and Saranya and Saravanan6 diagnosed fuzzy DRASTIC and fuzzy DRASTIC-L. 
Gitinavard et al.7 devised a ranking and balancing approach within hesitant FS and Gitinavard and Zarandi8 
discussed the soft computing method with hesitant FS. Borujeni et al.9 devised a group decision analysis within 
intuitionistic FS. A mixed expert assessment approach and group outranking technique for interval-valued 
hesitant FS were interpreted by Gitinavard and Zarandi10 and Gitinavard et al.11 respectively. Various scholars 
generalized FS, and the notion of bipolar fuzzy (BF) set (BFS) is one of the generalizations of FS diagnosed by 
Zhang12 to overcome the lack presented in the structure of FS, i.e., the negative aspects. Each element of the BF 
set has a positive membership degree (PMD) between 0 and 1, including 0 and 1 as well as a negative membership 
degree (NMD) between −1 and 0, including −1 and 0. The BF set is utilized in graph theory by various scholars 
such as Poulik and Ghorai13 initiated graphs complete degree, Akram14 defined BF graphs and their applications, 
Rajeshwari et al.15 initiated BF graphs on topological indices, Lu et al.16 diagnosed cyclic connectivity index of BF 
incidence graph, Sarwar and Akram et al.17 explored BF competition graphs. Singh18 interpreted the BF notions 
reduction utilizing granular-based weighted entropy. Abughazalah et al.19 described certain ideals in BCI algebra 
by employing the BF set. Alghamdi et al.20 initiated BF BCK submodules. For the BF set, a lot of scholars defined 
various methods such as Garai et al.21 and Alghamdi et al.22 defined multi-criteria DM (MCDM), Zhao et al.23 
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initiated the CPT-TODIM method, Akram and Arshad24 defined TOPSIS and ELECTRIC-I, and Akram and Al-
Kenani25 defined ELECTRE-II. Also, certain researchers investigated AOs for BF sets like Riaz et al.26 initiated 
trigonometric AOs, and Jana et al.27,28 explored Dombi and prioritized AOs. Zararsiz and Riaz29 developed BF 
metric spaces. Jamil and Riaz30 initiated TPOSIS and ELECTRE-I for the cubic BF set.

Another generalization of FS is the complex fuzzy (CF) set investigated by Ramot et al.31 to overcome the 
deficiency, presented in the structure of FS i.e. 2nd dimension (extra fuzzy information). Each element of the 
CF set has MD within a unit circle of a complex plane. Tamir et al.32 also examined the CF set and considered 
a unit square in a complex plan for each MD. The MD is of polar form in the notion defined by Ramot et al.31 
and in the shape of cartesian form in the notion of Tamir et al.32. Singh33 investigated crisply generated CF 
concepts analysis employing Shannon entropy. Hu et al.34 presented homogeneity of CF operations. Khan et 
al.35 investigated signal processing under the CF setting. Bi et al.36,37 propounded arithmetic and geometric 
AOs. After that, Mahmood and Rehman38 further generalized the FS notion and constructed a bipolar complex 
fuzzy (BCF) set (BCFS) to overcome the deficiencies, presented in the structure of FS i.e. 2nd dimension (extra 
fuzzy information) and negative aspects of the information. Each element of the BCF set has PMD within the 
first quadrant of the unit square as well as NMD within the third quadrant of the unit square of a complex plane. 
Rehman and Mahmood39 described generalized dice similarity measures (SMs) for the BCF set. Mahmood 
et al.40 introduced AOs under the BCF setting. Ur Rehman et al.41 introduced an analytical hierarchy process 
for BCF set under frank AOs. Mahmood et al.42 defined Bonferroni mean operators for BCF sets. Dombi and 
Hamacher AOs for BCF sets are investigated by Mahmood and Rehman43 and Mahmood et al.44 respectively. 
The notion of the BCF soft set was introduced by Mahmood et al.45.

Motivation and research problem
The current method of selecting AI models for disability disease prediction lacks sufficient solutions to handle 
multiple uncertainties that appear during decision-making processes. This research examines a fundamental 
problem given as follows

“How does an integrated bipolar complex fuzzy linguistic framework enhance disability disease prediction 
model selection accuracy through simultaneously addressing uncertainty, bipolarity, extra fuzzy information, 
and linguistic imprecision?”

In the current approach to selecting AI models for predicting disability diseases, a major gap is that the 
decision-making (DM) process involves various uncertainties and bipolarity that are not well addressed, such as 
Kumar et al.46 devised a MCDM for disease prediction, Freitas47 devised multi-criteria technique for predicting 
and diagnosing mental disabilities, Lin et al.48 discussed machine learning approach for predicting disease 
status, Kumar et al.49 devised a MCDM approach for disease prediction. These unaddressed aspects form a big 
problem when it comes to model selection. In many cases, the attributes that are involved in the selection process 
are ambiguous, have a bipolar nature, may contain extra information, and use linguistic terms that are not fully 
addressed in the existing selection methodologies. The previous strategies for selecting models for disability 
disease prediction have been mainly conventional and do not incorporate the DM processes adequately. The 
current AI model selection processes depend on deterministic approaches without sufficient capability to 
handle complexities that include attribute vagueness measurement bipolar evaluation criteria and extra fuzzy 
information and linguistic terms. The lack of these essential dimensions leads to an insufficient method for 
choosing AI models that predict disability diseases. The current decision-making methods show inherent 
limitations because they miss essential facets needed for good decision processes. This research develops a 
new MADM approach that provides an enhanced realistic framework for decision-making. The new model 
employs systematic methods to handle vague information while integrating bipolarity additional fuzzy data and 
linguistic term interpretation. The approach delivers a wider strategic framework for model selection which 
includes contextual awareness. This paper emphasizes the necessity of developing such an advanced approach. 
The selection of AI models for predicting disability diseases becomes fundamentally flawed and potentially 
suboptimal when this approach is absent. This proposed method for MADM technology delivers an improved 
approach to model selection in medical research because it creates more accurate assessments of suitable AI 
solutions.

Further, because of the socioeconomic environment’s growing difficulty and the inherent subjectivity of 
human thought, numerical data may not always be sufficient to address ambiguous and unclear data in real-
life DM dilemmas, particularly when it comes to qualitative factors. However, giving the evaluation values in 
the shape of linguistic variables (LVs) is much easier. Thus, Zadeh50 described the notion of linguistic terms 
(LTs) set (LTS). Peng et al.51 investigated an interactive fuzzy LT set. Wang et al.52 introduced intuitionistic 
linguistic (IL) AOs, and Ju et al.53 initiated IL AOs based on MSM. Erol et al.54 investigated hesitant fuzzy LT 
sets. Geo et al.55 presented an interval-valued bipolar uncertain linguistic set. The theory of MSM can explore the 
interrelationship among the input arguments, which is the main difference between MSM operators from other 
AOs. The conception of MSM is a significant and impressive technique for handling DM issues. In the last few 
years, MSM got a lot of attention in the setting of FS such as Qin and Liu56 explored MSM AOs for intuitionistic 
FS (IFS), Wei and Lu57 initiated MSM AOs for Pythagorean FS (PFS), etc. Moreover, the already defined MSM 
operators have only the capability of aggregating the data in the structure of crisp, IFS, PFS, ILFS, etc., but are 
unproductive in the circumstances where the information or data is in the structure of BCFLS. Further, this article 
develops an extension of the new MADM method and MSM operators within the BCFLS framework. Multiple 
generalized frameworks of fuzzy sets exist in literature with unique benefits like neutrosophic sets58 which 
enable direct modeling of indeterminacy by employing an additional membership function. Various scholars 
have contributed to neutrosophic theory, such as Ali and Smarandache59 interpreted complex neutrosophic 
sets, and Broumi60 devised the concept of neutrosophic graphs. Our research concentrates on both positive 
and negative aspects of the criteria along with linguistic terms but neutrosophic sets fail to address the negative 
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aspects of the criteria and linguistic terms despite their many advantages. The article uses BCFLSs because this 
framework meets the requirements needed to achieve our research objectives.

Contribution and novelty
This research presents bipolar complex fuzzy linguistic Maclaurin symmetric mean (BCFLMSM) operators for 
MCDM which serve as a modern solution for selecting optimal AI models for disability disease prediction while 
handling uncertainty alongside bipolarity and additional fuzzy information and linguistic assessments. This 
research has the following novel contributions.

•	 MSM operators within BCFLS: This paper introduces four pioneering operators known as bipolar complex 
fuzzy linguistic MSM (BCFLMSM), weighted MSM (BCFLWMSM), Dual MSM (BCFLDMSM), and weight-
ed Dual MSM (BCFLWDMSM) which provide entirely new capabilities to handle multidimensional uncer-
tain information.

•	 The theoretical foundation for decision-making within BCFLS: A strong theoretical structure exists that demon-
strates the necessary mathematical aspects of these operators to ensure reliable and consistent decision-mak-
ing processes in complicated BCFLS implementation.

•	 Novel MADM methodology: This paper develops a complete bipolar complex fuzzy linguistic MADM (BC-
FL-MADM) technique that integrates four essential information processing elements:

•	 Uncertainty handling through fuzzy set operations
•	 Bipolarity management through positive and negative membership degrees
•	 Additional fuzzy information via complex number representation
•	 Linguistic term integration through specialized linguistic variables

•	 Real-world validation: Our framework proves its excellence by applying it to disability disease prediction 
model selection where it generates superior results when compared to traditional methods.

The methodology we developed makes a substantial improvement to decision theory through: A mathematically 
sophisticated integration of advanced operators, and superior management of multifaceted information, and this 
framework provides an advanced solution system for addressing challenging healthcare technology selection 
problems The new method advances current medical AI model selection practices through its establishment of a 
decision-making framework which considers multiple information dimensions simultaneously.

Layout of the manuscript
In “Preliminaries” section, this paper interprets the theory of BCFLS and related outcomes. In “BCF linguistic 
Maclaurin symmetric mean AOs” section of this paper expand the MSM in the setting of BCFLS and interpreted 
AOs for aggregation BCFLNs such as BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM operators. 
In “Bipolar complex fuzzy linguistic MADM approach” section, contain a MADM approach based on the 
defined MSM operators and in the setting of BCFLS and then present a case study of the selection of an AI 
model for predicting disability diseases. “Comparison analysis” section compares the investigated theory with a 
few current theories depicting the defined conception of power and domination. The concluding remark of this 
manuscript is investigated in “Conclusions” section.

Preliminaries
Inspired by the conception of BCFS presented by Mahmood and Ur Rehman33, here we interpret the most 
valuable and meaningful conception, called BCF linguistic set (BCFLS), to give the PMD and NMD of an element 
to a certain LT variable at once. Let H be a universal set, and S  be a continuous LT set of S = {�0, �1, . . . , �ψ}.

Definition 1  61 A BCFLS on H is of the structure

	 Z =
{(

h, �ϕ(h), (µP −Z (h) , µN−Z (h))
)

|h ∈ H
}

where, �ϕ(h) ∈ S , µP −Z (h) = µRP −Z (h) + ιµIP −Z (h) is a PMD and 
µN−Z (h) = µRN−Z (h) + ιµIN−Z (h) is an NMD with µRP −Z (h) , µIP −Z (h) ∈ [0, 1] 
and µRN−Z (h) , µIN−Z (h) ∈ [−1, 0], of an element h ∈ H to the LT �ϕ(h). The set 
Z =

(
�ϕ(h), (µP −Z (h) , µN−Z (h))

)
=

(
�ϕ(h), (µRP −Z (h) + ιµIP −Z (h) , µRN−Z (h) + ιµIN−Z (h))

)
, 

epitomized the BCFLN.

Definition 2  61 The score value (SV) of a BCFLN 
Z = (�ϕ, (µP −Z , µN−Z)) = (�ϕ, (µRP −Z + ιµIP −Z , µRN−Z + ιµIN−Z)) is discovered as

	
SLSF (Z) = 1

4 (2 + µRP −Z + µIP −Z + µRN−Z + µIN−Z) × �ϕ

Definition 3  61 The accuracy value (AV) of a BCFLN 
Z = (�ϕ, (µP −Z , µN−Z)) = (�ϕ, (µRP −Z + ιµIP −Z , µRN−Z + ιµIN−Z)) is discovered as
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HLAF (Z) = µRP −Z + µIP −Z − µRN−Z − µIN−Z

4 × �ϕ,

The comparison laws among two BCFLNs rely on the SV SLSF  and the AV HLAF  discovered above are 
described below

Theorem 1  Z1 = (�ϕ1 , (µP −Z1 , µN−Z1 )) = (�ϕ1 , (µRP −Z1 + ιµIP −Z1 , µRN−Z1 + ιµIN−Z1 )) and 
Z2 = (�ϕ2 , (µP −Z2 , µN−Z2 )) = (�ϕ2 , (µRP −Z2 + ιµIP −Z2 , µRN−Z2 + ιµIN−Z2 )) are two BCFLNs, then 

	1.	 if SLSF (Z1) < SLSF (Z2), then Z1 < Z2;
	2.	 if SLSF (Z1) > SLSF (Z2), then Z1 > Z2;
	3.	 if SLSF (Z1) = SLSF (Z1), then
	1.	 if HLAF (Z1) < HLAF (Z2) , then Z1 < Z2;
	2.	 if HLAF (Z1) > HLAF (Z2) , then Z1 > Z2;
	3.	 if HLAF (Z1) = HLAF (Z2) , then Z1 = Z2.

BCF linguistic Maclaurin symmetric mean AOs
This part of the paper expands the MSM in the setting of BCFLS and interpret AOs for BCFLNs such as 
BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM operators. For that, we interpret operations for 
BCFLNs.

Definition 4  Suppose Z1 = (�ϕ1 , (µP −Z1 , µN−Z1 )) = (�ϕ1 , (µRP −Z1 + ιµIP −Z1 , µRN−Z1 + ιµIN−Z1 )) 
and Z2 = (�ϕ2 , (µP −Z2 , µN−Z2 )) = (�ϕ2 , (µRP −Z2 + ιµIP −Z2 , µRN−Z2 + ιµIN−Z2 )) are two BCFLNs 
with ∂ > 0, then

Z1 ⊕ Z2 =
(
�ϕ1+ϕ2

(
µRP −Z1 + µRP −Z2 − µRP −Z1 µRP −Z2 + ι (µIP −Z1 + µRP −Z2 − µIP −Z1 µIP −Z2 ) ,

− (µRN−Z1 µRN−Z2 ) + ι (− (µIN−Z1 µIN−Z2 ))
))

Z1 ⊗ Z2 =
(
�ϕ1×ϕ2

(
µRP −Z1 µRP −Z2 + ιµIP −Z1 µIP −Z2 ,

µRN−Z1 + µRN−Z2 µRN−Z1 + µRN−Z2 + ι (µIN−Z1 + µIN−Z2 µIN−Z1 + µIN−Z2 )
))

∂Z1 =
(
∂ × �ϕ1 ,

(
1 − (1 − µRP −Z1 )∂ + ι

(
1 − (1 − µIP −Z1 )∂

)
, −|µRN−Z1 |∂ + ι

(
−|µIN−Z1 |∂

)))

Z1
∂ =

(
�ϕ∂

1
,
((

(µRP −Z1 )∂ + ι(µIP −Z1 )∂ , −1 + (1 + µRN−Z1 )∂ + ι
(
−1 + (1 + µIN−Z1 )∂

))))

BCF linguistic MSM operator
Following we introduce the BCFLMSM operator.

Definition 5  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) 
is a group of BCFLNs and q = 1, 2, . . . , ψ, then the BCFLMSM operator is a function BCF LMSM : Zψ → Z , 
explained as

	

BCF LMSM(q) (Z1, Z2, Z3, . . . , Zψ) =




⊕
1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊗
1=ג

Z⌉ג

)

∁qψ




1
q

where ∁qψ = ψ!
q!(ψ−q)!

 is a binomial coefficient and (⌉1, ⌉2, . . . , ⌉ψ) tracks q− tuple combination of (1, 2, 3, . . . , ψ).

Theorem 2  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) is 
a group of BCFLNs, then after utilizing the BCFLMSM operator the outcome is BCFLN, granted as

	

BCF LMSM(q) (Z1, Z2, Z3, . . . , Zψ)

=




�(∑
1≤⌉1<⌉2<···<⌉q≤ψ

(∏q
1=ג

ϕ⌉ג

)
∁q

ψ

) 1
q
,




(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µRP −Z⌉ג

)) 1
∁q

ψ

) 1
q
+

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µIP −Z⌉ג

)) 1
∁q

ψ

) 1
q

−1 +
(

1−
∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µRN−Z⌉ג

)))∣∣∣
1

∁q
ψ

) 1
q
+

ι

(
−1 +

(
1 −

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µIN−Z⌉ג

)))∣∣∣
1

∁q
ψ

) 1
q
)







� (1)

Proof  By employing Def (4) we have

	

q
⊗
1=ג

Z⌉ג =
(
�

∏q
1=ג

ϕ⌉ג
,

( ∏q
1=ג µRP −Z⌉ג

+ ι
∏q

1=ג µIP −Z⌉ג
,

−1 +
∏q

1=ג

(
1 + µRN−Z⌉ג

)
+ ι

(
−1 +

∏q
1=ג

(
1 + µIN−Z⌉ג

))
))
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⊕
1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊗
1=ג

Z⌉ג

)
=



�

∑
1≤⌉1<⌉2<···<⌉q≤ψ

(∏q
1=ג

ϕ⌉ג

),




1 −
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µRP −Z⌉ג

)
+

ι
(

1 −
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µIP −Z⌉ג

))
,

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µRN−Z⌉ג

))
+

ι
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µIN−Z⌉ג

)))







	

⊕
1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊗
1=ג

Z⌉ג

)

∁qψ
= �

∑
1≤⌉1<⌉2<···<⌉q≤ψ

(∏q
1=ג

ϕ⌉ג

)
∁q

ψ

,




1 −
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µRP −Z⌉ג

)) 1
∁q

ψ +

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µIP −Z⌉ג

)) 1
∁q

ψ

)

−
∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µRN−Z⌉ג

)))∣∣∣
1

∁q
ψ +

ι

(
−

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µIN−Z⌉ג

)))∣∣∣
1

∁q
ψ

)




Therefore,

	

BCF LMSM(q) (Z1, Z2, Z3, . . . , Zψ)

=




�(∑
1≤⌉1<⌉2<···<⌉q≤ψ

(∏q
1=ג

ϕ⌉ג

)
∁q

ψ

) 1
q
,




(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µRP −Z⌉ג

)) 1
∁q

ψ

) 1
q
+

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג µIP −Z⌉ג

)) 1
∁q

ψ

) 1
q

−1 +
(

1−
∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µRN−Z⌉ג

)))∣∣∣
1

∁q
ψ

) 1
q
+

ι

(
−1 +

(
1 −

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µIN−Z⌉ג

)))∣∣∣
1

∁q
ψ

) 1
q
)







The discovered BCFLMSM operator fulfills the below axioms.

Theorem 3  Suppose Zג = (�ϕג (µP −Zג , µN−Zג)) = (�ϕג (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) and 
Z”

ג =
(
�ϕג′

(
µP −Z”

ג
, µN−Z”

ג

))
=

(
�ϕג′

(
µRP −Z”

ג
+ ιµIP −Z”

ג
, µRN−Z”

ג
+ ιµIN−Z”

ג

))
,
(
ג̇ = 1, 2, 3, . . . , ψ

)
 

are two groups of BCFLNs, then

	1. 	 (Idempotency) If Zג = Z∀ג, then BCF LMSM(q) (Z1, Z2, Z3, . . . , Zψ) = Z .

	2.	 (Monotonicity) If µRP −Zג ≤ µRP −Z”
ג
, µIP −Zג ≤ µIP −Z”

ג
µRN−Zג ≤ µRN−Z”

ג
µIN−Zג ≤ µIN−Z”

ג , 
then

	 BCF LMSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ BCF LMSM(q) (
Z”

1 , Z”
2 , Z”

3 , . . . , Z”
ψ

)
.

	3.	 (Boundedness) Suppose Z
− =

(
min

ג
{µRP −Zג} + ιmin

ג
{µIP −Zג} , max

ג
{µRN−Zג} + ιmax

ג
{µIP −Zג}

)
, and 

Z+ =
(
max

ג
{µRP −Zג} + ιmax

ג
{µIP −Zג} , min

ג
{µRN−Zג} + ιmin

ג
{µIP −Zג}

)
, then

	 Z− ≤ BCF LMSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ Z+.

Particular cases
Here, we discuss the special cases of the interpreted BCFLMSM operator.

Case 1: If we take q = 1 in Eq. (1), then we discover the bipolar complex fuzzy linguistic average (BCFLA) 
operator as below

	

BCF LMSM (1) (Z1, Z2, Z3, . . . , Zψ)

=




�(∑
1≤⌉1<⌉2<···<⌉1≤ψ

(∏1
1=ג

ϕ⌉ג

)
∁1

ψ

) 1
1

,




(
1 −

(∏
1≤⌉1<⌉2<···<⌉1≤ψ

(
1 −

∏1
1=ג µRP −Z⌉ג

)) 1
∁1

ψ

) 1
1

+

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉1≤ψ

(
1 −

∏1
1=ג µIP −Z⌉ג

)) 1
∁1

ψ

) 1
1

−1 +
(

1−
∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉1≤ψ

(
−1 +

∏1
1=ג

(
1 + µRN−Z⌉ג

)))∣∣∣
1

∁1
ψ

) 1
1

+

ι

(
−1 +

(
1 −

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉1≤ψ

(
−1 +

∏1
1=ג

(
1 + µIN−Z⌉ג

)))∣∣∣
1

∁1
ψ

) 1
1
)






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=




�

∑
1≤⌉1≤ψ

ϕ⌉ג
ψ

,




1 −
(∏

1≤⌉1≤ψ

(
1 − µRP −Z⌉1

)) 1
ψ

+

ι

(
1 −

(∏
1≤⌉1≤ψ

(
1 − µIP −Z⌉1

)) 1
ψ

)

−
∣∣∣
(

−
∏

1≤⌉1≤ψ

(
µRN−Z⌉1

))∣∣∣
1
ψ

+

ι

(
−

∣∣∣
(

−
∏

1≤⌉1≤ψ

(
µIN−Z⌉1

))∣∣∣
1
ψ

)







	

=




�

∑n

⌉1=1
ϕ⌉

ψ

,




1 −
(∏ψ

⌉1=1

(
1 − µRP −Z⌉1

)) 1
ψ

+

ι

(
1 −

(∏ψ

⌉1=1

(
1 − µIP −Z⌉1

)) 1
ψ

)

−
∣∣∣−

(∏ψ

⌉1=1 µRN−Z⌉1

)∣∣∣
1
ψ

+

ι

(
−

∣∣∣−
(∏ψ

⌉1=1 µIN−Z⌉1

)∣∣∣
1
ψ

)







let ⌉1 = ⌉. Then

	

=




�

∑n

⌉=1
ϕ⌉

ψ

,




1 −
(∏ψ

⌉=1

(
1 − µRP −Z⌉

)) 1
ψ

+

ι

(
1 −

(∏ψ

⌉=1

(
1 − µIP −Z⌉

)) 1
ψ

)

−
∣∣∣
(

−
∏ψ

⌉=1 µRN−Z⌉

)∣∣∣
1
ψ

+

ι

(
−

∣∣∣
(

−
∏ψ

⌉=1 µIN−Z⌉

)∣∣∣
1
ψ

)







	 = BCF LA (Z1, Z2, Z3, . . . , Zψ)

Case 2: If we take q = 2 in Eq. (1), then we discover bipolar complex fuzzy linguistic Bonferroni mean (BCFBM) 
operator as below

	

BCF LMSM (2) (Z2, Z2, Z3, . . . , Zψ)

=




�(∑
1≤⌉1<⌉2<···<⌉2≤ψ

(∏2
2=ג

ϕ⌉ג

)
∁2

ψ

) 1
2

,




(
1 −

(∏
1≤⌉1<⌉2<···<⌉2≤ψ

(
1 −

∏2
2=ג µRP −Z⌉ג

)) 1
∁2

ψ

) 1
2

+

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉2≤ψ

(
1 −

∏2
2=ג µIP −Z⌉ג

)) 1
∁2

ψ

) 1
2

−1 +
(

1−
∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉2≤ψ

(
−1 +

∏2
2=ג

(
1 + µRN−Z⌉ג

)))∣∣∣
1

∁2
ψ

) 1
2

+

ι

(
−1 +

(
1 −

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉2≤ψ

(
−1 +

∏2
2=ג

(
1 + µIN−Z⌉ג

)))∣∣∣
1

∁2
ψ

) 1
2
)







	

=




�(
2

ψ(ψ−1)

∑
1≤⌉1⌉2≤ψ

(ϕ⌉1 ϕ⌉2 )
) 1

2
,




(
1 −

(∏
1≤⌉1<⌉2≤ψ

(
1 −

(
µRP −Z⌉1

) (
µRP −Z⌉2

))) 2
ψ(ψ−1)

) 1
2

+

ι

(
1 −

(∏
1≤⌉1<⌉2≤ψ

(
1 −

(
µIP −Z⌉1

) (
µIP −Z⌉2

))) 2
ψ(ψ−1)

) 1
2

−1 +
(

1−
∣∣∣
(

−
∏

1≤⌉1<⌉2≤ψ

(
−1 +

(
1 +

(
µRN−Z⌉1

) (
µRN−Z⌉2

))))∣∣∣
2

ψ(ψ−1)
) 1

2

+

ι

(
−1 +

(
1−

∣∣∣
(

−
∏

1≤⌉1<⌉2≤ψ

(
−1 +

(
1 +

(
µIN−Z⌉1

) (
µIN−Z⌉2

))))∣∣∣
2

ψ(ψ−1)
) 1

2
)







	

=




�
 2

ψ(ψ−1) × 1
2

∑ψ

⌉1, ⌉2 = 1
⌉1 ̸= ⌉2

(ϕ⌉1 ϕ⌉2 )




1
2

,





1 −





∏ψ

⌉1, ⌉2 = 1
⌉1 ̸= ⌉2

(
1 −

(
µRP −Z⌉1

) (
µRP −Z⌉2

))






1
ψ(ψ−1)




1
2

+

ι


1 −


∏ψ

⌉1, ⌉2 = 1
⌉1 ̸= ⌉2

(
1 −

(
µIP −Z⌉1

) (
µIP −Z⌉2

))



1
ψ(ψ−1)




1
2

−1 +


1−

∣∣∣∣∣∣


−

∏ψ

⌉1, ⌉2 = 1
⌉1 ̸= ⌉2

(
−1 +

(
1 +

(
µRN−Z⌉1

) (
µRN−Z⌉2

)))



∣∣∣∣∣∣

1
ψ(ψ−1)




1
2

+

ι


−1 +


1−

∣∣∣∣∣∣


−

∏ψ

⌉1, ⌉2 = 1
⌉1 ̸= ⌉2

(
−1 +

(
1 +

(
µIN−Z⌉1

) (
µIN−Z⌉2

)))



∣∣∣∣∣∣

1
ψ(ψ−1)




1
2








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	 BCF BM (Z2, Z2, Z3, . . . , Zψ)

Case 3: If we take q = ψ in Eq. (8), then we discover the bipolar complex fuzzy linguistic geometric (BCFLG) 
operator as below

	

BCF LMSM (ψ) (Z1, Z2, Z3, . . . , Zψ)

=




�(∑
1≤⌉1<⌉2<···<⌉ψ≤ψ

(∏ψ

1=ג
ϕ⌉ג

)
∁ψ

ψ

) 1
ψ

,




(
1 −

(∏
1≤⌉1<⌉2<···<⌉ψ≤ψ

(
1 −

∏ψ

1=ג µRP −Z⌉ג

)) 1
∁ψ

ψ

) 1
ψ

+

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉ψ≤ψ

(
1 −

∏ψ

1=ג µIP −Z⌉ג

)) 1
∁ψ

ψ

) 1
ψ

−1 +

(
1−

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉ψ≤ψ

(
−1 +

∏ψ

1=ג

(
1 + µRN−Z⌉ג

)))∣∣∣
1

∁ψ
ψ

) 1
ψ

+

ι


−1 +

(
1 −

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉ψ≤ψ

(
−1 +

∏ψ

1=ג

(
1 + µIN−Z⌉ג

)))∣∣∣
1

∁ψ
ψ

) 1
ψ










	

=




�(∏ψ

1=ג
ϕ⌉ג

) 1
ψ

,




(∏ψ

1=ג µRP −Z⌉ג

) 1
ψ

+

ι

((∏ψ

1=ג µIP −Z⌉ג

) 1
ψ

) 1
ψ

−1 +
(

1 −
∣∣∣
(

1 −
∏ψ

1=ג

(
1 + µRN−Z⌉ג

))∣∣∣
) 1

ψ
+

ι

(
−1 +

(
1 −

∣∣∣
(

1 −
∏ψ

1=ג

(
1 + µIN−Z⌉ג

))∣∣∣
) 1

ψ

)







Let ⌉ג =  and ג
∏ψ

1=ג

(
1 + µRN−Z⌉ג

)
∈ [0, 1] for all ג, thus, ∣∣∣

(
1 −

∏ψ

1=ג

(
1 + µRN−Z⌉ג

))∣∣∣ =
(

1 −
∏ψ

1=ג

(
1 + µRN−Z⌉ג

))
, then

	

=




�(∏ψ

1=ג
ϕג

) 1
ψ

,




(∏ψ

1=ג µRP −Zג

) 1
ψ

+

ι

((∏ψ

1=ג µIP −Zג

) 1
ψ

) 1
ψ

−1 +
(

1 −
(

1 −
∏ψ

1=ג (1 + µRN−Zג)
)) 1

ψ
+

ι

(
−1 +

(
1 −

(
1 −

∏ψ

1=ג (1 + µIN−Zג)
)) 1

ψ

)







	

=




�(∏ψ

1=ג
ϕג

) 1
ψ

,




(∏ψ

1=ג µRP −Zג

) 1
ψ

+

ι

((∏ψ

1=ג µIP −Zג

) 1
ψ

) 1
ψ

−1 +
(∏ψ

1=ג (1 + µRN−Zג)
) 1

ψ
+

ι

(
−1 +

(∏ψ

1=ג (1 + µIN−Zג)
) 1

ψ

)







	 = BCF LG (Z1, Z2, Z3, . . . , Zψ) .

BCF linguistic weighted MSM operator
The above-discovered BCFLMSM operator doesn’t think about the significance of the attributes. However, in 
numerous pragmatic circumstances, particularly in MADM the weights of the attributes assume a significant 
part in the procedure of aggregation. To handle this, here, we discover the BCFLWMSM operator.

Definition 6  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) 
is a group of BCFLNs and q = 1, 2, . . . , ψ, then the BCFLWMSM operator is a function BCF LMSM : Zψ → Z , 
explained as

	

BCF LW MSM(q) (Z1, Z2, Z3, . . . , Zψ) =




⊕
1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊗
1=ג

(
Z⌉ג

ג⌈†(

)

∁qψ




1
q
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where † = (†1, †2, . . . , †ψ) is weight vector (WV) with 0 ≤ ג† ≤ 1 and 
∑ψ

1=ג ג† = 1 and (⌉1, ⌉2, . . . , ⌉ψ) 
tracks q− tuple combination of (1, 2, 3, . . . , ψ).

Theorem 4  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) is 
a group of BCFLNs, then after utilizing the BCFLWMSM operator the outcome is BCFLN, granted as

	

BCF LW MSM(q) (Z1, Z2, Z3, . . . , Zψ)

=




�


∑
1≤⌉1<⌉2<···<⌉q≤ψ

(∏q
1=ג

(
ϕ⌉ג

ג⌈†(

)

∁q
ψ




1
q
,




(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µRP −Z⌉ג

ג⌈†(
)) 1

∁q
ψ

) 1
q
+

ι

(
1 −

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µIP −Z⌉ג

ג⌈†(
)) 1

∁q
ψ

) 1
q

−1 +
(

1−
∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µRN−Z⌉ג

ג⌈†(
))∣∣∣

1
∁q

ψ

) 1
q
+

ι

(
−1 +

(
1 −

∣∣∣
(

−
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
−1 +

∏q
1=ג

(
1 + µIN−Z⌉ג

ג⌈†(
))∣∣∣

1
∁q

ψ

) 1
q
)







Theorem 5  Suppose Zג = (�ϕג (µP −Zג , µN−Zג)) = (�ϕג (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) and 

Z”
ג =

(
�ϕג′

(
µP −Z”

ג
, µN−Z”

ג

))
=

(
�ϕג′

(
µRP −Z”

ג
+ ιµIP −Z”

ג
, µRN−Z”

ג
+ ιµIN−Z”

ג

))
,
(
ג̇ = 1, 2, 3, . . . , ψ

)
 

are two groups of BCFLNs, then

	1.	 (Idempotency) If Zג = Z∀ג, then BCF LW MSM(q) (Z1, Z2, Z3, . . . , Zψ) = Z

	2.	 (Monotonicity) If µRP −Zג ≤ µRP −Z”
ג
, µIP −Zג ≤ µIP −Z”

ג
µRN−Zג ≤ µRN−Z”

ג
µIN−Zג ≤ µIN−Z”

ג , 
then

	 BCF LW MSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ BCF LW MSM(q) (
Z”

1 , Z”
2 , Z”

3 , . . . , Z”
ψ

)

	3.	 (Boundedness) Suppose 

Z− =
(
min

ג
{µRP −Zג} + ιmin

ג
{µIP −Zג} , max

ג
{µRN−Zג} + ιmax

ג
{µIP −Zג}

)
, and 

Z+ =
(
max

ג
{µRP −Zג} + ιmax

ג
{µIP −Zג} , min

ג
{µRN−Zג} + ιmin

ג
{µIP −Zג}

)
, then

	 Z− ≤ BCF LW MSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ Z+.

BCF linguistic dual MSM operator
Following, we introduce the BCFLDMSM operator.

Definition 7  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) 
is a group of BCFLNs and q = 1, 2, . . . , ψ, then the BCFLDMSM operator is a function BCF LDMSM : Zψ → Z , 
explained as

	
BCF LDMSM(q) (Z1, Z2, Z3, . . . , Zψ) = 1

q

(
⊗

1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊕
1=ג

Z⌉ג

) 1
∁q

ψ

)

where ∁qψ = ψ!
q!(ψ−q)!

 is a binomial coefficient and (⌉1, ⌉2, . . . , ⌉ψ) tracks q− tuple combination of (1, 2, 3, . . . , ψ).

Theorem 6  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, , 2, 3, . . . , ψ

) is 
a group of BCFLNs, then after utilizing the BCFLDMSM operator the outcome is BCFLN, granted as

	

BCF LDMSM(q) (Z1, Z2, Z3, . . . , Zψ)

=




�

1
q

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(∑ψ

1=ג
ϕ(Z⌉ג)

) 1
∁q

ψ

),




1 −
(

1 −
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µRP −Z⌉ג

)) 1
∁q

ψ

) 1
q
+

ι

(
1 −

(
1 −

∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µIP −Z⌉ג

)) 1
∁q

ψ

) 1
q
)

,

−

(∣∣∣∣−1 +
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µRN−Z⌉ג

)) 1
∁q

ψ

)∣∣∣∣
1
q
)

+

ι

(
−

(∣∣∣∣−1 +
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µIN−Z⌉ג

)) 1
∁q

ψ

)∣∣∣∣
1
q
))







Proof  By employing Def (4) we have
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q
⊕
1=ג

Z⌉ג =
(
�

∑ψ

1=ג
ϕ⌉ג

,

(
1 −

∏q
1=ג

(
1 − µRP −Z⌉ג

)
+ ι

(
1 −

∏q
1=ג

(
1 − µIP −Z⌉ג

))
,

−
∏q

1=ג

(
µRN−Z⌉ג

)
+ ι

(
−

∏q
1=ג

(
µIN−Z⌉ג

))
))

	

(
q
⊕
1=ג

Z⌉ג

) 1
∁q

ψ =


�(∑ψ

1=ג
ϕ⌉ג

) 1
∁q

ψ

,




(
1 −

∏q
1=ג

(
1 − µRP −Z⌉ג

)) 1
∁q

ψ + ι

((
1 −

∏q
1=ג

(
1 − µIP −Z⌉ג

)) 1
∁q

ψ

)
,

−1 +
(
1 −

∏q
1=ג

(
µRN−Z⌉ג

)) 1
∁q

ψ + ι

(
−1 +

(
1 −

∏q
1=ג

(
µIN−Z⌉ג

)) 1
∁q

ψ

)







	

⊗
1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊕
1=ג

Z⌉ג

) 1
∁q

ψ =




�∏
1≤⌉1<⌉2<···<⌉q≤ψ

(∑ψ

1=ג
ϕ⌉ג

) 1
∁q

ψ

,




∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µRP −Z⌉ג

)) 1
∁q

ψ +

ι

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µIP −Z⌉ג

)) 1
∁q

ψ

)
,

−1 +
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µRN−Z⌉ג

)) 1
∁q

ψ +

ι

(
−1 +

∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µIN−Z⌉ג

)) 1
∁q

ψ

)







	

1
q

(
⊗

1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊕
1=ג

Z⌉ג

) 1
∁q

ψ

)

=




�

1
q

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(∑ψ

1=ג
ϕ(Z⌉ג)

) 1
∁q

ψ

),




1 −
(

1 −
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µRP −Z⌉ג

)) 1
∁q

ψ

) 1
q
+

ι

(
1 −

(
1 −

∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µIP −Z⌉ג

)) 1
∁q

ψ

) 1
q
)

,

−

(∣∣∣∣−1 +
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µRN−Z⌉ג

)) 1
∁q

ψ

)∣∣∣∣
1
q
)

+

ι

(
−

(∣∣∣∣−1 +
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µIN−Z⌉ג

)) 1
∁q

ψ

)∣∣∣∣
1
q
))







Therefore,

	

BCF LDMSM(q) (Z1, Z2, Z3, . . . , Zψ)

=




�

1
q

(∏
1≤⌉1<⌉2<···<⌉q≤ψ

(∑ψ

1=ג
ϕ(Z⌉ג)

) 1
∁q

ψ

),




1 −
(

1 −
∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µRP −Z⌉ג

)) 1
∁q

ψ

) 1
q
+

ι

(
1 −

(
1 −

∏
1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
1 − µIP −Z⌉ג

)) 1
∁q

ψ

) 1
q
)

,

−

(∣∣∣∣−1 +
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µRN−Z⌉ג

)) 1
∁q

ψ

)∣∣∣∣
1
q
)

+

ι

(
−

(∣∣∣∣−1 +
(∏

1≤⌉1<⌉2<···<⌉q≤ψ

(
1 −

∏q
1=ג

(
µIN−Z⌉ג

)) 1
∁q

ψ

)∣∣∣∣
1
q
))







The discovered BCFLDMSM operator fulfills the below axioms.

Theorem 7  Suppose Zג = (�ϕג (µP −Zג , µN−Zג)) = (�ϕג (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) and 
Z”

ג =
(
�ϕג′

(
µP −Z”

ג
, µN−Z”

ג

))
=

(
�ϕג′

(
µRP −Z”

ג
+ ιµIP −Z”

ג
, µRN−Z”

ג
+ ιµIN−Z”

ג

))
,
(
ג̇ = 1, 2, 3, . . . , ψ

)
 

are two groups of BCFLNs, then

	1.	 (Idempotency) If Zג = Z∀ג, then BCF LDMSM(q) (Z1, Z2, Z3, . . . , Zψ) = Z
	2.	 (Monotonicity) If µRP −Zג ≤ µRP −Z”

ג
, µIP −Zג ≤ µIP −Z”

ג
µRN−Zג ≤ µRN−Z”

ג
µIN−Zג ≤ µIN−Z”

ג , 
then

	 BCF LDMSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ BCF LDMSM(q) (
Z”

1 , Z”
2 , Z”

3 , . . . , Z”
ψ

)

	2.	 (Boundedness) Suppose Z− =
(
min

ג
{µRP −Zג} + ιmin

ג
{µIP −Zג} , max

ג
{µRN−Zג} + ιmax

ג
{µIP −Zג}

)
, and 

Z+ =
(
max

ג
{µRP −Zג} + ιmax

ג
{µIP −Zג} , min

ג
{µRN−Zג} + ιmin

ג
{µIP −Zג}

)
, then

	 Z− ≤ BCF LDMSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ Z+.

BCF linguistic weighted dual MSM operator
The above-discovered BCFLDMSM operator doesn’t think about the significance of the attributes. However, in 
numerous pragmatic circumstances, particularly in MADM the weights of the attributes assume a significant 
part in the procedure of aggregation. To handle this, here, we discover the BCFLWDMSM operator.

Scientific Reports |        (2025) 15:19195 10| https://doi.org/10.1038/s41598-025-01909-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Definition 8  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) 
is a group of BCFLNs and q = 1, 2, . . . , ψ, then the BCFLWDMSM operator is a function 
BCF LW DMSM : Zψ → Z , explained as

	
BCF LW DMSM(q) (Z1, Z2, Z3, . . . , Zψ) = 1

q

(
⊗

1≤⌉1<⌉2<···<⌉q≤ψ

(
q
⊕
1=ג

ג⌈Zג⌈†

) 1
∁q

ψ

)

where † = (†1, †2, . . . , †ψ) is WV with 0 ≤ ג† ≤ 1 and 
∑ψ

1=ג ג† = 1 and (⌉1, ⌉2, . . . , ⌉ψ) tracks q− tuple 
combination of (1, 2, 3, . . . , ψ).

Theorem 8  Suppose Zג = (�ϕג , (µP −Zג , µN−Zג)) = (�ϕג , (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) ,
(
ג̇ = 1, 2, 3, . . . , ψ

) is 
a group of BCFLNs, then after utilizing the BCFLWDMSM operator the outcome is BCFLN, granted as

	

BCF LW DMSM(q) (Z1, Z2, Z3, . . . , Zψ)

=




�

1
q
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ψ
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ψ

) 1
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+

ι
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∏
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ψ

) 1
q
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) 1

∁q
ψ
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1
q
)

+

ι

(
−
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∏
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(
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) 1

∁q
ψ

∣∣∣∣
1
q
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





 The discovered BCFLWDMSM operator fulfills the below axioms.

Theorem 9  Suppose Zג = (�ϕג (µP −Zג , µN−Zג)) = (�ϕג (µRP −Zג + ιµIP −Zג , µRN−Zג + ιµIN−Zג)) and 

Z”
ג =

(
�ϕג′

(
µP −Z”

ג
, µN−Z”

ג

))
=

(
�ϕג′

(
µRP −Z”

ג
+ ιµIP −Z”

ג
, µRN−Z”

ג
+ ιµIN−Z”

ג

))
,
(
ג̇ = 1, 2, 3, . . . , ψ

)
 

are two groups of BCFLNs, then

	1.	  (Idempotency) If Zג = Z∀ג, then BCF LW DMSM(q) (Z1, Z2, Z3, . . . , Zψ) = Z
	2.	 (Monotonicity) If µRP −Zג ≤ µRP −Z”

ג
, µIP −Zג ≤ µIP −Z”

ג
µRN−Zג ≤ µRN−Z”

ג
µIN−Zג ≤ µIN−Z”

ג , 
then

	 BCF LW DMSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ BCF LW DMSM(q) (
Z”

1 , Z”
2 , Z”

3 , . . . , Z”
ψ

)

	3.	 (Boundedness) Suppose 

Z− =
(
min

ג
{µRP −Zג} + ιmin

ג
{µIP −Zג} , max

ג
{µRN−Zג} + ιmax

ג
{µIP −Zג}

)
, and 

Z+ =
(
max

ג
{µRP −Zג} + ιmax

ג
{µIP −Zג} , min

ג
{µRN−Zג} + ιmin

ג
{µIP −Zג}

)
, then

	 Z− ≤ BCF LW DMSM(q) (Z1, Z2, Z3, . . . , Zψ) ≤ Z+

Bipolar complex fuzzy linguistic MADM approach
Consider that there are ψ number of alternatives i.e. Z = {Z1, Z2, .., Zψ} and τ  number 
of attributes N = {N1,N2, . . . ,Nτ } with WV † = (†1, †2, . . . , †τ ) and 0 ≤ †ς ≤ 1 and ∑τ

ς=1 †ς = 1. Keep in mind these attributes the expert or specialist would describe his/
her opinion (information) against each alternative in the structure of BCFLS that is 
Z =

(
�ϕ(h), (µP −Z (h) , µN−Z (h))

)
=

(
�ϕ(h), (µRP −Z (h) + ιµIP −Z (h) , µRN−Z (h) + ιµIN−Z (h))

)
 

and form a decision matrix (D-M). Now to get the result, we designate the following stages.
Stage 1: If the data belonging to the decision matrix is benefit sort then the normalization process is not 

obligatory but if the data belonging to the decision matrix is cost sort then the normalization process is obligatory 
and would be done by the underneath formula

	
NBCF LS =

{ (
�ϕ(h), (µP −Z (h) , µN−Z (h))

)
forbenefit(

�ϕ(h), (µP −Z (h) , µN−Z (h))c
)

forcost

where, (µP −Z (h) , µN−Z (h))c = (1 − µRP −Z (h) + ι (1 − µIP −Z (h)) , −1 − µRN−Z (h) + ι (−1 − µIN−Z (h))).
Stage 2: This stage contains the aggregated values of the decision matrix or normalized decision matrix 

determined by employing one of the defined BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM 
operators.
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Stage 3: Attain the SV through Def (8), and in case the SVs of any two alternatives become the same, then 
attain accuracy value (AV) through Def (9).

Stage 4: List the ranking of alternatives relying on the attained SVs and AVs.
The flowchart of the proposed method is shown in Fig. 1.

Case study
Over the years, however, the healthcare industry has been experiencing a dramatic transformation, particularly 
in the use of artificial intelligence in diagnosis and preventive medicine. As a result of the multifactorial and 
multifaceted nature of disability diseases, diagnostic difficulties have long been observed in the early stages of 
the disease. In those chronic and complex diseases, conventional diagnostic approaches may fall short since 
the etiologic and pathophysiologic features are complex and not easy to detect and capture; hence, appreciated 
delays in their management and unfavorable patient outcomes. Disability diseases are on the increase across 
the world and this has called for better diagnostic techniques. As per the latest trends in epidemiological 
research, diseases like multiple sclerosis, Parkinson’s disease, and other neurodegenerative diseases, have been 
on the rise, especially among the elderly. Not only does it signal morbidity in patient populations, but also 
creates a significantly high cost to overall global health economies. Recent and ongoing advancements in the 
field of machine learning especially in artificial intelligence have created new vistas in medical science. These 
technologies provide capabilities that are new in the way they can identify patterns, analyze data, and make 
predictions. However, the healthcare sector faces a critical challenge: choosing the right AI model that can best 
suit disability disease prediction in this complex world.

A healthcare research institution seeks to identify the best AI model for predicting disability diseases because 
the selection of the model greatly influences early detection, patient care, and resource utilization. The decision 
expert of the healthcare research institution analyzed different AI models for disability disease prediction. After 
careful assessment and the first round of selection, they decided to focus on four promising approaches for 
medical prediction tasks, interpreted in Table 1.

Symbols AI models Explanation

Z1
TensorFlow Neural 
Network

An artificial neural network that is intended to mimic the structure of higher-order brain networks, with the ability to identify 
non-linear relationships in medical data. Its performance in non-linear actions is excellent and can simultaneously process a 
variety of input features. The model is especially suited for image-based medical diagnosis and the analysis of time-series medical 
data

Z2 Random Forest Classifier
A method of learning where an algorithm forms several decision trees during training. This model is not prone to overfitting and it 
has a great feature importance analysis. The results are particularly impressive when applied to the medical data with a well-defined 
structure, providing the analysis of various aspects that may influence the disability disease

Z3 Support Vector Machine
A highly complex statistical learning model that is very effective in data spaces of high dimensionality. It is especially effective 
in learning the best decision boundaries in large medical data sets. The model is quite effective in solving linear and non-linear 
classification problems with high levels of accuracy

Z4
XGBoost Predictive 
Model

An advanced gradient boosting algorithm is presumed to be highly accurate when making predictions and economical in time. 
It accumulates several small prediction models that in turn form a large and powerful prediction model. The model is especially 
useful for dealing with unbalanced medical data and is characterized by fast training and prediction

Table 1.  The AI models with explanation.

 

Fig. 1.  The flowchart of the proposed bipolar complex fuzzy linguistic DM method.
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The evaluation of disability disease prediction models includes four AI systems which are presented in Table 1. 
Each model offers distinct capabilities: TensorFlow Neural Network excels at handling non-linear relationships in 
medical data and image-based diagnosis; Random Forest Classifier demonstrates strong resistance to overfitting 
with excellent feature importance analysis; Support Vector Machine effectively manages high-dimensional data 
spaces with strong classification capabilities; and XGBoost combines multiple small prediction models to create a 
powerful predictive tool that performs well with unbalanced medical data. Multiple AI-based disease prediction 
methods exist as the leading approaches in modern medical diagnostics.

After the selection of alternatives, the decision maker very thoroughly identified the key attributes that would 
be used to make the evaluation. These attributes were selected following a series of consultations with medical 
practitioners, data scientists, and healthcare technology specialists to ensure the assessment was holistic. These 
attributes are devised in Table 2.

Table 2 describes the four essential attributes that serve as fundamental evaluation criteria for medical AI 
model assessment. The fundamental performance metrics that matter in medical diagnostics are measured 
through Prediction Accuracy by assessing sensitivity and specificity. Computational Efficiency determines the 
necessary resource utilization which proves essential for healthcare implementation. Medical practitioners 
develop trust in AI models through their ability to understand model operations. Generalizability assesses how 
well AI models perform when treating patients of multiple backgrounds with various healthcare backgrounds. A 
group of multidisciplinary experts carefully chose these evaluation attributes through consultation to establish 
a complete assessment framework.

As attributes contain the bipolarity and extra fuzzy information, thus, the assessment values of these AI 
models will be in the BCFLN that is revealed in Table 3. Also, the expert interprets the weight vectors to the 
attributes that are (0.3, 0.1, 0.3, 0.4).

Table 3 presents the complete assessment values for each AI model regarding the four attributes through 
bipolar complex fuzzy linguistic numbers (BCFLNs). The assessment values include both positive and negative 
membership degrees and additional fuzzy information presented through complex numbers which provide 
enhanced expert evaluation capabilities. The weight vector (0.3, 0.1, 0.3, 0.4) demonstrates the relative 
significance of each attribute where Generalizability stands as the most important followed by Prediction 
Accuracy and Interpretability which share equal importance, and Computational Efficiency holds the least 
significance.

Stage 1: As the data in Table 3 is beneficial sort, there is no need for stage 1.
Stage 2: This stage established the aggregated values of the data portrayed in Table 3 by employing defined 

BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM operators as described in Table 4.
Table 4 shows the aggregated evaluation results from applying the four proposed operators BCFLMSM, 

BCFLWMSM, BCFLDMSM, and BCFLWDMSM. The evaluation data from multiple dimensions gets 
transformed into unified comprehensive values through each aggregation approach according to the results. 
Each aggregation method demonstrates different priorities in evaluation criteria which produces a more well-
rounded analysis than using a solitary operator evaluation approach.

N1 N2 N3 N4

Z1

(
�5,

(
0.97 + ι0.7,

−0.15 − ι0.2

)) (
�4,

(
0.79 + ι0.6,
−0.5 − ι0.5

)) (
�4,

(
0.67 + ι0.5,

−0.35 − ι0.45

)) (
�3,

(
0.5 + ι0.39,
−0.6 − ι0.8

))

Z2

(
�3,

(
0.49 + ι0.51,

−0.51 − ι0.61

)) (
�2,

(
0.3 + ι0.4,

−0.6 − ι0.7

)) (
�4,

(
0.6 + ι0.5,

−0.31 − ι0.49

)) (
�1,

(
0.1 + ι0.2,

−0.4 − ι0.6

))

Z3

(
�1,

(
0.25 + ι0.3,
−0.4 − ι0.3

)) (
�4,

(
0.5 + ι0.54,

−0.37 − ι0.43

)) (
�1,

(
0.2 + ι0.15,

−0.55 − ι0.45

)) (
�3,

(
0.67 + ι0.56,

−0.35 − ι0.43

))

Z4

(
�3,

(
0.51 + ι0.7,
−0.2 − ι0.1

)) (
�5,

(
0.8 + ι0.7,

−0.14 − ι0.34

)) (
�1,

(
0.05 + ι0.2,
−0.7 − ι0.4

)) (
�2,

(
0.4 + ι0.2,

−0.4 − ι0.5

))

Table 3.  The assessment values of AI models are interpreted by experts (hypothetical data).

 

Symbols Attribute Explanation

Z1 Prediction accuracy
Assesses the performance of the model in the identification and prediction of disability diseases. These are accuracy, sensitivity, specificity, 
and the overall performance of the diagnostic test. The attribute takes into account false positive and false negative rates which in medical 
prediction are very vital

Z2
Computational 
efficiency

Measures the time taken by the model, memory used, and the amount of computations needed by the model. This attribute is useful for 
practical implementation in healthcare facilities with low technological support

Z3 Interpretability
Evaluate the model’s openness in decision-making. This includes the ability to provide information about how a prediction is arrived at which 
is very important in making medical practitioners and patients trust. Interpretable models enable doctors to know why a particular prediction 
was made

Z4 Generalizability Defines the model’s efficiency when it comes to various patient outcomes. This attribute focuses on the model’s performance of delivering equal 
precision regardless of the demographic similarity or dissimilarity of the test data, the given medical history, or indeed, differences in data

Table 2.  The attribute and explanation.
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Stage 3: Attained the SVs through score function and interpreted in Table 5 and graphically interpreted in 
Fig. 2.

The score values from Table 5 represent the complete performance metrics of each AI model across all 
attributes. Model Z1( TensorFlow Neural Network) produces superior performance scores of 7.776 and 1.943 
when BCFLMSM and BCFLWMSM operators are utilized. The Support Vector Machine operator (Model Z1) 
demonstrates superior performance when using BCFLDMSM and BCFLWDMSM operators but achieves this 
result with reduced margins. The results show that model selection choices depend heavily on aggregation 
methods because different operators affect which models get chosen for implementation.

The score values of each AI model appear in Fig. 1 across the four aggregation operators. The performance 
data in Fig. 1 demonstrates that Model Z1 stands out with BCFLMSM evaluation but displays similar results 
with other aggregation operators. The visual display provides action-makers with immediate recognition of 
performance trends as well as pairwise model ranking achievements under multiple evaluation metrics.

Stage 4: The ranking of alternatives relying on the attained SVs is shown in Table 6.

Fig. 2.  The score values.

 

Method SLSF (Z1) SLSF (Z2) SLSF (Z3) SLSF (Z4)
BCFLMSM 7.776 3.155 2.612 3.597
BCFLWMSM 1.943 1.57 1.518 1.62
BCFLDMSM 0.394 0.33 0.44 0.413
BCFLWDMSM 0.005 0.003 0.006 0.004

Table 5.  The score values of AI models.

 

Method Z1 Z2 Z3 Z4

BCFLMSM

(
�8.875,

(
0.951+
ι0.881,
−0.1

−ι0.23

)) (
�3.919,

(
0.648+
ι0.754,
−0.048
−ι0.13

)) (
�2.817,

(
0.927+
ι0.888,
−0.048
−ι0.06

)) (
�4.236,

(
0.808+
ι0.72,

−0.067
−ι0.06

))

BCFLWMSM

(
�1.96,

(
0.998+
ι0.993,
−0.005
−ι0.022

)) (
�1.605,

(
0.947+
ι0.974,
−0.001
−ι0.008

)) (
�1.523,

(
0.996+
ι0.992,
−0.001
−ι0.002

)) (
�1.644,

(
0.979+
ι0.967,
−0.002
−ι0.002

))

BCFLDMSM

(
�2.404,

(
0.121+
ι0.063,
−0.782
−ι0.746

)) (
�2.025,

(
0.011+
ι0.021,
−0.719
−ι0.661

)) (
�1.961,

(
0.115+
ι0.071,
−0.606
−ι0.683

)) (
�1.868,

(
0.038+
ι0.014,
−0.445
−ι0.723

))

BCFLWDMSM

(
�1.19,

(
0.009+
ι0.002,
−0.996
−ι0.999

)) (
�1.07,

(
0.0002+
ι0.0004,
−0.99

−ι0.998

)) (
�0.899,

(
0.007+
ι0.003,
−0.99

−ι0.992

)) (
�0.88,

(
0.001+
ι0.0003,
−0.991
−ι0.993

))

Table 4.  The aggregated result of the AI models after aggregating by developed operators.
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The score values and ranking devised in Tables 5 and 6 provide that according to BCFLMSM and BCFLWMSM 
operators, the AI model Z1 is the most suitable one and according to BCFLDMSM and BCFLWDMSM operators, 
Z3 is the most suitable one.

The case study outcomes provide vital information about selecting AI models for disability disease prediction 
through detailed examination. The evaluation results show that TensorFlow Neural Network achieved top 
performance under BCFLMSM and BCFLWMSM operators with scores of 7.776 and 1.943 but Support Vector 
Machine demonstrated superior results through BCFLDMSM and BCFLWDMSM operators with scores of 
0.44 and 0.006. The selection outcomes depend heavily on the evaluation framework’s mathematical structure 
which demonstrates that healthcare institutions need to evaluate their specific needs when selecting evaluation 
methodologies. The authors stress that their approach which handles uncertainty alongside bipolarity additional 
fuzzy information and linguistic imprecision matches the complex medical diagnosis process where doctors 
manage competing priorities. The better match of decision-making methods to real-life complex situations 
results in more precise selection processes. Decision-makers need to implement specific multi-dimensional 
evaluation systems instead of standard single-factor evaluation procedures to obtain better diagnostic capacities 
that enhance patient results. The paragraph should appear in the “Conclusions” section before future work 
discussions to establish a link between mathematical results and healthcare practicality.

Sensitivity analysis
Here, we analyze the sensitivity of the proposed method by changing the assessment values of the alternatives 
based on the criteria given in the case study. The new assessment values are devised in Table 7 and the new eight 
of each criterion are 0.1, 0.3, 0.4, and 0.2 respectively.

Now to solve this data, we again use the invented method, and the result is displayed in Table 8 and Fig. 3
The solution of new assessment values showed that by aggregating the information through BCFLMSM 

and BCFLWDMSM operators Z3 is the finest alternative and using the BCFLWMSM operator Z4 is the finest 
alternative and employing the BCFLDMSM operator Z2 is the finest one. We can also observe that by changing 
the assessment values we achieved different results. This implies that, when the data is changed the proposed 
approach will give different and accurate results.

Comparison analysis
This section compares the investigated theory with a few current theories depicting the defined conception of 
power and domination. For this purpose, we consider the approaches and AOs investigated by Wang et al.52, Ju 

Method SLSF (Z1) SLSF (Z2) SLSF (Z3) SLSF (Z4) Ranking

BCFLMSM 4.083 4.714 6.627 6.242 Z3 > Z4 > Z2 > Z1

BCFLWMSM 1.619 1.786 1.753 1.787 Z4 > Z2 > Z3 > Z1

BCFLDMSM 2.211 2.42 2.305 2.365 Z2 > Z4 > Z3 > Z1

BCFLWDMSM 1.386 1.458 1.489 1.45 Z3 > Z2 > Z3 > Z1

Table 8.  The score values of alternatives are based on new assessment values.

 

N1 N2 N3 N4

Z1

(
�3,

(
0.63 + ι0.41,

−0.28 − ι0.43

)) (
�1,

(
0.26 + ι0.71,

−0.15 − ι0.53

)) (
�3,

(
0.27 + ι0.56,

−0.64 − ι0.35

)) (
�4,

(
0.44 + ι0.65,

−0.11 − ι0.25

))

Z2

(
�2,

(
0.83 + ι0.63,

−0.85 − ι0.34

)) (
�5,

(
0.74 + ι0.37,

−0.16 − ι0.54

)) (
�2,

(
0.54 + ι0.53,

−0.65 − ι0.43

)) (
�5,

(
0.9 + ι0.46,

−0.43 − ι0.54

))

Z3

(
�5,

(
0.2 + ι0.17,

−0.27 − ι0.35

)) (
�2,

(
0.75 + ι0.13,

−0.18 − ι0.45

)) (
�5,

(
0.28 + ι0.23,

−0.43 − ι0.42

)) (
�2,

(
0.75 + ι0.11,
−0.2 − ι0.24

))

Z4

(
�4,

(
0.92 + ι0.76,

−0.27 − ι0.64

)) (
�3,

(
0.76 + ι0.45,

−0.47 − ι0.55

)) (
�3,

(
0.67 + ι0.75,

−0.71 − ι0.54

)) (
�4,

(
0.89 + ι0.35,

−0.65 − ι0.64

))

Table 7.  The new assessment values.

 

Method Ranking

BCFLMSM Z1 > Z4 > Z2 > Z3

BCFLWMSM Z1 > Z4 > Z2 > Z3

BCFLDMSM Z3 > Z4 > Z1 > Z2

BCFLWDMSM Z3 > Z1 > Z4 > Z2

Table 6.  The ranking of AI models for predicting disability diseases.
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et al.53, Gao et al.55, and Mahmood et al.44 and the defined approach and MSM AOs. Table 9 contains the results 
after utilizing the considered approaches and operators, and Table 10 contains their ranking order.

Wang et al.52 investigated AOs and DM approach and Ju et al.54 AOs based on MSM and DM approach in 
the setting of intuitionistic fuzzy LS (IFLS). The theory of IFLS can’t model the data with extra information and 
negative aspects. Thus, it is clear that these operators and approaches are unproductive for the data displayed in 
Table 3. Gao et al.55 investigated a DM approach in the setting of interval-valued bipolar uncertain LS (IVBULS). 
The theory of IVBULS can’t model the data with 2nd dimension. Thus, the interpreted approach is unproductive 
for the data displayed in Table 3. Mahmood et al.44 investigated Hamacher AOs and DM techniques for BCFS. 
The theory of BCFS can model both extra information and negative aspects but in this theory, the LT is missing 
thus, BCFS is unproductive for data in Table 3. These current approaches and operators are unproductive in the 

Method Ranking

Wang et al. 52 Unproductive

Ju et al. 53 Unproductive

Gao et al. 55 Unproductive

Mahmood et al. 44 Unproductive

BCFLMSM Z1 > Z4 > Z2 > Z3

BCFLWMSM Z1 > Z4 > Z2 > Z3

BCFLDMSM Z3 > Z4 > Z1 > Z2

BCFLWDMSM Z3 > Z1 > Z4 > Z2

Table 10.  The ranking of the comparison of existing and proposed methods.

 

Method SLSF (Z1) SLSF (Z2) SLSF (Z3) SLSF (Z4)
Wang et al. 52 Unproductive Unproductive Unproductive Unproductive

Ju et al. 53 Unproductive Unproductive Unproductive Unproductive

Gao et al. 55 Unproductive Unproductive Unproductive Unproductive

Mahmood et al. 44 Unproductive Unproductive Unproductive Unproductive

BCFLMSM 7.776 3.155 2.612 3.597
BCFLWMSM 1.943 1.57 1.518 1.62
BCFLDMSM 0.394 0.33 0.44 0.413
BCFLWDMSM 0.005 0.003 0.006 0.004

Table 9.  The comparison among prevailing and interpreted methodologies.

 

Fig. 3.  The score values of new assessment values.
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detection and diagnosis of lung cancer in a patient. The defined conception and approach are productive for the 
data initiated in Table 1. The result is displayed in Table 9 along with the ranking in Table 10 and Fig. 4. According 
to BCFLMSM and BCFLWMSM operators, the patient has lung nodules and according to BCFLDMSM and 
BCFLWDMSM operators, the patient has small cell lung cancer. Therefore, the initiated conception is more 
generalized and richer.

Conclusions
The selection of appropriate AI models for disability disease prediction needs decision-making tools that handle 
various uncertainties and information types. The research addresses this essential knowledge gap through a new 
framework that handles various dimensions of uncertainty and complexity within DM processes. The current 
research delivers multiple theoretical and practical advancements to MADM research. The BCFL setting benefits 
from the new MSM operators which include BCFLMSM, BCFLWMSM, BCFLDMSM, and BCFLWDMSM 
to tackle complex DM situations. The operators demonstrate strong mathematical reliability and create an 
extensive structure to unite multiple information types. A comprehensive theoretical foundation exists for 
implementing these operators in real-world DM situations because of their characteristic analysis. The MADM 
technique showed better performance than traditional methods because it managed to process uncertainties 
alongside bipolarity and additional fuzzy information and linguistic terms simultaneously. The disability disease 
prediction case study demonstrated TensorFlow Neural Network as the superior choice through its score values 
of 7.776( BCFLMSM) and 1.943( BCFLWMSM) while Support Vector Machine achieved the best results 
under BCFLDMSM and BCFLWDMSM operators with scores of 0.44 and 0.006 respectively. Our proposed 
method captures subtle performance differences through its 7.776 score difference between the TensorFlow 
model and SVM model operating under BCFLMSM statistically. The model ranking order under BCFLMSM 
and BCFLWMSM operators follows Z1 > Z4 > Z2 > Z3 while BCFLDMSM and BCFLWDMSM operators 
produce the opposite ranking pattern of Z3 > Z4 > Z1 > Z2 and Z3 > Z1 > Z4 > Z2 respectively. The 
framework shows its capability to analyze models through multiple perspectives which gives decision-makers 
complete insights to make technology selection decisions. This is evident from our case study on the use of AI 
model selection for disability disease prediction. The results indicate that our method yields more accurate and 
diverse evaluations than conventional methods, especially when applied to realistic medical decision-making 
situations. These implications are significant for theoretical research and practical use in healthcare technology 
management decisions. The framework we have presented gives the decision-makers a better tool to evaluate 
the AI models, which may result in better effectiveness in the prediction and management of disability diseases. 
The work presented in this paper makes a valuable research contribution both for enhancing the theoretical 
developments of MADM methodologies and for applying them to the selection of healthcare technology. The 
proposed approach can be a more suitable and accurate guide to making crucial decisions in medical technology 
implementation than the current methods, which may lead to enhanced patient care results due to the selection 
of the right AI model.

Limitation and future direction
The framework shows various limitations that reduce its effectiveness for real-time clinical implementation 
through its expert-driven methodology and dependent parameters. Further, the proposed work can’t handle 
the information of various other mathematical structures such as complex intuitionistic FS (CIFS)62, complex 
hesitant fuzzy rough set CHFRS63, spherical fuzzy rough set (SFRS)64, dual hesitant FS (DHFS)65, etc. Thus, 

Fig. 4.  The comparison among existing and interpreted methods.
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in the future, we aim to address these limitations and expand the proposed theories in other mathematical 
frameworks such as CHFRS, CIFS, SFRS, and DHFS, etc. Moreover, in the future, we would like to integrate the 
notion of bipolar complex fuzzy set (BCFS) and neutrosophic set to develop the notion of neutrosophic BCFS. 
Also, we aim to expand this work in the framework of Heptapartitioned neutrosophic soft set66, and interval 
neutrosophic sets67.

Data availability
The data utilized in this manuscript are hypothetical and artificial, and one can use these data before prior per-
mission by just citing this manuscript. For data one can contact the corresponding author.

Received: 28 December 2024; Accepted: 9 May 2025

References
	 1.	 Zadeh, L. A. Fuzzy sets. Inf. Control 8(3), 338–353 (1965).
	 2.	 Zhou, W. & Wang, M. Fuzzy order equivalent class with uncertainty. J. Syst. Sci. Syst. Eng. 14(2), 231–239 (2005).
	 3.	 Xiao, G., Hayat, K., & Yang, X. Evaluation and its derived classification in a Server-to-Client architecture based on the fuzzy 

relation inequality. Fuzzy Optim. Decis. Mak. 1–33 (2022).
	 4.	 Behzadipour, A., Gitinavard, H., & Akbarpour Shirazi, M. A novel hierarchical dynamic group decision-based fuzzy ranking 

approach to evaluate the green road construction suppliers. Scientia Iranica. (2022).
	 5.	 Rajabpour, E., Fathi, M. R., & Torabi, M. Analysis of factors affecting the implementation of green human resource management 

using a hybrid fuzzy AHP and type-2 fuzzy DEMATEL approach. Environ. Sci. Pollut. Res. 1–16 (2022).
	 6.	 Saranya, T., & Saravanan, S. A comparative analysis of groundwater vulnerability models—fuzzy DRASTIC and fuzzy DRASTIC-L. 

Environ. Sci. Pollut. Res. 1–15 (2021).
	 7.	 Gitinavard, H., Mousavi, S. M., & Vahdani, B. A balancing and ranking method based on hesitant fuzzy sets for solving decision-

making problems under uncertainty. Int. J. Eng. Trans. B Appl. (2014).
	 8.	 Gitinavard, H., Mousavi, S. M., Vahdani, B. & Siadat, A. Project safety evaluation by a new soft computing approach-based last 

aggregation hesitant fuzzy complex proportional assessment in construction industry. Scientia Iranica 27(2), 983–1000 (2020).
	 9.	 Borujeni, M. P., Behzadipour, A. & Gitinavard, H. A dynamic intuitionistic fuzzy group decision analysis for sustainability risk 

assessment in surface mining operation projects. J. Sustain. Min. 24(1), 15–31 (2025).
	10.	 Gitinavard, H. & Zarandi, M. H. F. A mixed expert evaluation system and dynamic interval-valued hesitant fuzzy selection 

approach. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 10, 337–345 (2016).
	11.	 Gitinavard, H., Ghaderi, H. & Pishvaee, M. S. Green supplier evaluation in manufacturing systems: A novel interval-valued 

hesitant fuzzy group outranking approach. Soft. Comput. 22, 6441–6460 (2018).
	12.	 Zhang, W. R. Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision 

analysis. In NAFIPS/IFIS/NASA’94. Proceedings of the First International Joint Conference of The North American Fuzzy Information 
Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, 305–309 (IEEE, 1994).

	13.	 Poulik, S. & Ghorai, G. Applications of graph’s complete degree with bipolar fuzzy information. Complex Intell. Syst. 8(2), 1115–
1127 (2022).

	14.	 Akram, M. Bipolar fuzzy graphs with applications. Knowl.-Based Syst. 39, 1–8 (2013).
	15.	 Rajeshwari, M., Murugesan, R., Kaviyarasu, M. & Subrahmanyam, C. Bipolar fuzzy graph on certain topological indices. J. Algebr. 

Stat. 13(3), 2476–2481 (2022).
	16.	 Lu, J., Zhu, L. & Gao, W. Cyclic connectivity index of bipolar fuzzy incidence graph. Open Chem. 20(1), 331–341 (2022).
	17.	 Sarwar, M. & Akram, M. Novel concepts of bipolar fuzzy competition graphs. J. Appl. Math. Comput. 54(1), 511–547 (2017).
	18.	 Singh, P. K. Bipolar fuzzy concepts reduction using granular-based weighted entropy. Soft Comput. 1–13. (2022).
	19.	 Abughazalah, N., Muhiuddin, G., Elnair, M. E. & Mahboob, A. Bipolar fuzzy set theory applied to the certain ideals in BCI-

algebras. Symmetry 14(4), 815 (2022).
	20.	 Alghamdi, M. A., Muthana, N. M. & Alshehri, N. O. Novel Concepts of Bipolar Fuzzy BCK-Submodules (Discrete Dynamics in 

Nature and Society, 2017).
	21.	 Garai, T., Biswas, G., & Santra, U. A novel MCDM method based on possibility mean and its application to water resource 

management problem under bipolar fuzzy environment. In International Conference on Intelligent and Fuzzy Systems, 405–412 
(Springer, 2022).

	22.	 Zhao, M., Wei, G., Wei, C. & Guo, Y. CPT-TODIM method for bipolar fuzzy multi-attribute group decision making and its 
application to network security service provider selection. Int. J. Intell. Syst. 36(5), 1943–1969 (2021).

	23.	 Alghamdi, M. A., Alshehri, N. O. & Akram, M. Multi-criteria decision-making methods in bipolar fuzzy environment. Int. J. Fuzzy 
Syst. 20(6), 2057–2064 (2018).

	24.	 Akram, M. & Arshad, M. Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis. Comput. Appl. Math. 39(1), 
1–21 (2020).

	25.	 Akram, M. & Al-Kenani, A. N. Multiple-attribute decision making ELECTRE II method under bipolar fuzzy model. Algorithms 
12(11), 226 (2019).

	26.	 Riaz, M., Pamucar, D., Habib, A., & Jamil, N. Innovative bipolar fuzzy sine trigonometric aggregation operators and SIR method 
for medical tourism supply chain. Math. Probl. Eng. 2022 (2022).

	27.	 Jana, C., Pal, M. & Wang, J. Q. Bipolar fuzzy Dombi aggregation operators and its application in multiple-attribute decision-
making process. J. Ambient. Intell. Humaniz. Comput. 10(9), 3533–3549 (2019).

	28.	 Jana, C., Pal, M. & Wang, J. Q. Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision making. Soft. 
Comput. 24(5), 3631–3646 (2020).

	29.	 Zararsız, Z. & Riaz, M. Bipolar fuzzy metric spaces with application. Comput. Appl. Math. 41(1), 1–19 (2022).
	30.	 Jamil, N., & Riaz, M. Bipolar disorder diagnosis with cubic bipolar fuzzy information using TOPSIS and ELECTRE-I. Int. J. 

Biomath. 2250030 (2022).
	31.	 Ramot, D., Milo, R., Friedman, M. & Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2002).
	32.	 Tamir, D. E., Jin, L. & Kandel, A. A new interpretation of complex membership grade. Int. J. Intell. Syst. 26(4), 285–312 (2011).
	33.	 Singh, P. K. Crisply generated complex fuzzy concepts analysis using shannon entropy. Neural Process. Lett. 1–25. (2022).
	34.	 Hu, B., Wu, W. & Dai, S. Homogeneity of complex fuzzy operations. Axioms 11(6), 274 (2022).
	35.	 Khan, M., Rehman, R. F. U., Anis, S., & Zeeshan, M. Denoising Data in Signal Processing under the Complex Fuzzy Environment. 

(2022).
	36.	 Bi, L., Dai, S., Hu, B. & Li, S. Complex fuzzy arithmetic aggregation operators. J. Intell. Fuzzy Syst. 36(3), 2765–2771 (2019).
	37.	 Bi, L., Dai, S. & Hu, B. Complex fuzzy geometric aggregation operators. Symmetry 10(7), 251 (2018).

Scientific Reports |        (2025) 15:19195 18| https://doi.org/10.1038/s41598-025-01909-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	38.	 Mahmood, T. & Ur Rehman, U. A novel approach towards bipolar complex fuzzy sets and their applications in generalized 
similarity measures. Int. J. Intell. Syst. 37(1), 535–567 (2022).

	39.	 Ur. Rehman, U. and Mahmood, T.,. The generalized dice similarity measures for bipolar complex fuzzy set and its applications to 
pattern recognition and medical diagnosis. Comput. Appl. Math. 41(6), 1–30 (2022).

	40.	 Mahmood, T., Rehman, U. U., Ali, Z., Aslam, M. & Chinram, R. Identification and classification of aggregation operators using 
bipolar complex fuzzy settings and their application in decision support systems. Mathematics 10(10), 1726 (2022).

	41.	 Rehman, U. U., Mahmood, T., Albaity, M., Hayat, K. & Ali, Z. Identification and prioritization of DevOps success factors using 
bipolar complex fuzzy setting with frank aggregation operators and analytical hierarchy process. IEEE Access 10, 74702–74721 
(2022).

	42.	 Mahmood, T., ur Rehman, U., Ali, Z. & Aslam, M. Bonferroni mean operators based on bipolar complex fuzzy setting and their 
applications in multi-attribute decision making. AIMS Math. 7(9), 17166–17197 (2022).

	43.	 Mahmood, T. & Ur Rehman, U. A method to multi-attribute decision making technique based on Dombi aggregation operators 
under bipolar complex fuzzy information. Comput. Appl. Math. 41(1), 1–23 (2022).

	44.	 Mahmood, T., Rehman, U. U., Ahmmad, J. & Santos-García, G. Bipolar complex fuzzy Hamacher aggregation operators and their 
applications in multi-attribute decision making. Mathematics 10(1), 23 (2021).

	45.	 Mahmood, T., Rehman, U. U., Jaleel, A., Ahmmad, J. & Chinram, R. Bipolar complex fuzzy soft sets and their applications in 
decision-making. Mathematics 10(7), 1048 (2022).

	46.	 Kumar, A., Singh, A. K. & Garg, A. Evaluation of machine learning techniques for heart disease prediction using multi-criteria 
decision making. J. Intell. Fuzzy Syst. 46(1), 1259–1273 (2024).

	47.	 Freitas, P., Antunes, C. H., & Dias, J. A multi-criteria sorting approach for diagnosing mental disabilities. In  International 
Conference on Operations Research and Enterprise Systems, vol. 2, 392–398 (SCITEPRESS, 2012).

	48.	 Lin, Y. C. et al. Disability prediction in ageing population based on disease status: machine learning approaches. In ISEE Conference 
Abstracts, vol. 2023, no. 1 (2023).

	49.	 Kumar, A., Singh, R., & Kumar, S. Application of multi-criteria decision-making in health care towards various disease prediction. 
In 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM), 1–5 (IEEE, 2024).

	50.	 Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975).
	51.	 Peng, D., Wang, J., Liu, D., & Cheng, Y. The interactive fuzzy linguistic term set and its application in multi-attribute decision 

making. Artif. Intell. Med. 102345. (2022).
	52.	 Wang, X. F., Wang, J. Q. & Yang, W. E. Multi-criteria group decision making method based on intuitionistic linguistic aggregation 

operators. J. Intell. Fuzzy Syst. 26(1), 115–125 (2014).
	53.	 Ju, Y., Liu, X. & Ju, D. Some new intuitionistic linguistic aggregation operators based on Maclaurin symmetric mean and their 

applications to multiple attribute group decision making. Soft. Comput. 20(11), 4521–4548 (2016).
	54.	 Erol, I., Ar, I. M., Peker, I. & Searcy, C. Alleviating the impact of the Barriers to circular economy adoption through blockchain: 

An investigation using an integrated MCDM-based QFD with hesitant fuzzy linguistic term sets. Comput. Ind. Eng. 165, 107962 
(2022).

	55.	 Gao, H., Wu, J., Wei, C. & Wei, G. MADM method with interval-valued bipolar uncertain linguistic information for evaluating the 
computer network security. IEEE Access 7, 151506–151524 (2019).

	56.	 Qin, J. & Liu, X. An approach to intuitionistic fuzzy multiple attribute decision making based on Maclaurin symmetric mean 
operators. J. Intell. Fuzzy Syst. 27(5), 2177–2190 (2014).

	57.	 Wei, G. & Lu, M. Pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. Int. J. Intell. Syst. 
33(5), 1043–1070 (2018).

	58.	 Smarandache, F. A unifying field in logics: neutrosophic logic. In Philosophy, 1–141 (American Research Press, 1999).
	59.	 Ali, M. & Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 28, 1817–1834 (2017).
	60.	 Broumi, S. Secure dominance in neutrosophic graphs. Neutrosophic Sets Syst. 56(1), 7 (2023).
	61.	 Mahmood, T., Rehman, U. U. & Naeem, M. Prioritization of strategies of digital transformation of supply chain employing bipolar 

complex fuzzy linguistic aggregation operators. IEEE Access 11, 3402–3415 (2023).
	62.	 Fang, H., ur Rehman, U. & Mahmood, T. Identification of eco-friendly transportation mode by employing complex intuitionistic 

fuzzy multi-criteria decision-making approach based on probability aggregation operators. IEEE Access. (2024).
	63.	 Albaity, M., ur Rehman, U. & Mahmood, T. Data source selection for integration in data sciences via complex hesitant fuzzy rough 

multi-attribute decision-making method. IEEE Access 12, 110146–110159 (2024).
	64.	 Zheng, L., Mahmood, T., Ahmmad, J., Rehman, U. U. & Zeng, S. Spherical fuzzy soft rough average aggregation operators and their 

applications to multi-criteria decision making. IEEE Access 10, 27832–27852 (2022).
	65.	 Ur Rehman, U., Mahmood, T., Ali, Z. & Panityakul, T. A novel approach of complex dual hesitant fuzzy sets and their applications 

in pattern recognition and medical diagnosis. J. Math. 2021(1), 6611782 (2021).
	66.	 Broumi, S. & Witczak, T. Heptapartitioned neutrosophic soft set. Int. J. Neutrosophic Sci. 18(4), 270–290 (2022).
	67.	 Zhang, H. Y., Wang, J. Q. & Chen, X. H. Interval neutrosophic sets and their application in multicriteria decision making problems. 

Sci. World J. 2014(1), 645953 (2014).

Acknowledgements
The authors extend their appreciation to the King Salman center for Disability Research for funding this work 
through Research Group no KSRG-2024-065.

Author contributions
All authors contribute equal.

Declarations

Ethics declaration statement
The authors state that this is their original work, and it has not been submitted to or under consideration in 
any other journal simultaneously.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to U.u.R.

Scientific Reports |        (2025) 15:19195 19| https://doi.org/10.1038/s41598-025-01909-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:19195 20| https://doi.org/10.1038/s41598-025-01909-z

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Selection of AI model for predicting disability diseases through bipolar complex fuzzy linguistic multi-attribute decision-making technique based on operators
	﻿Motivation and research problem
	﻿Contribution and novelty
	﻿Layout of the manuscript
	﻿﻿Preliminaries
	﻿﻿BCF linguistic Maclaurin symmetric mean AOs
	﻿BCF linguistic MSM operator
	﻿Particular cases
	﻿BCF linguistic weighted MSM operator


	﻿BCF linguistic dual MSM operator
	﻿BCF linguistic weighted dual MSM operator

	﻿﻿Bipolar complex fuzzy linguistic MADM approach
	﻿Case study
	﻿Sensitivity analysis

	﻿﻿Comparison analysis
	﻿﻿Conclusions
	﻿Limitation and future direction

	﻿References


