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Accurate traffic forecasting in wireless mesh networks is critical for optimizing resource allocation and 
ensuring ultra-reliable low-latency communication in 6G-enabled scenarios. However, existing models 
often suffer from feature entanglement in sequential spatio-temporal architectures, limiting their 
ability to decouple multi-domain dependencies (e.g., periodic, topological, and transient dynamics). To 
address this, we propose MeshHSTGT, a novel hierarchical spatio-temporal framework that synergizes 
TimesNet for multi-periodic temporal-frequency modeling and a Channel Capacity-Weighted Graph 
Convolutional Network (CCW-GCN) with Temporal Encoding GRU (TE-GRU) for topology-aware 
spatial-temporal dependency learning. Unlike conventional serial architectures, MeshHSTGT employs 
a parallel feature re-extraction paradigm to independently capture domain-specific patterns, followed 
by a Transformer-based adaptive alignment module to dynamically fuse multi-domain features via self-
attention. Experiments on real-world mesh network datasets and the Milan cellular traffic benchmark 
demonstrate that MeshHSTGT reduces MAE by 5.4-31.4% and RMSE by 13.3-19.5% over state-of-the-
art baselines (e.g., TSGAN, STFGNN) across short- to long-term forecasting tasks. Ablation studies 
validate the necessity of parallelized multi-domain modeling, highlighting a 40% improvement in 
handling irregular traffic spikes compared to serial counterparts.
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The emergence of 6G technology has catalyzed revolutionary applications such as extended reality, space-air-
ground integrated networks, and industrial Internet of Things (IoT), presenting unprecedented challenges to 
existing communication technologies. These emerging applications not only demand support for ultra-massive 
device connectivity but also impose stringent requirements on latency and reliability. However, traditional 
wireless communication technologies exhibit significant limitations in addressing these scenarios. For instance, 
Wi-Fi’s limited coverage and susceptibility to interference make it inadequate for stable communication in ultra-
dense device environments. While cellular networks excel in wide-area coverage, their centralized architecture 
constrains their application in dynamic expansion scenarios.

In this context, Mesh networks have emerged as an indispensable component of 6G architecture, leveraging 
their self-organizing, self-healing capabilities, and multi-hop routing characteristics. The multi-hop routing 
mechanism enables dynamic network coverage expansion, while inter-node self-organizing routing significantly 
enhances network robustness and reliability. Moreover, the distributed architecture of Mesh networks reduces 
dependency on centralized base stations, offering distinct advantages in resource-constrained or flexibility-
demanding scenarios.

To fully harness the potential of Mesh networks in 6G architecture, accurate traffic prediction is crucial. 
Through traffic prediction, networks can perceive the load conditions of various nodes, optimize resource 
allocation, thereby enhancing network stability and communication quality, reducing latency and data loss risks, 
and meeting the stringent requirements for high reliability and low latency in 6G application scenarios.

However, traffic prediction in Mesh networks presents unique challenges compared to other scenarios. 
Nodes in Mesh networks are interdependent, where a node’s traffic is influenced not only by its user demands but 
also by surrounding nodes’ communication behaviors and channel interference. For example, in industrial IoT 
scenarios, edge nodes responsible for sensor data collection must transmit data to spatially distant monitoring 
center nodes for analysis. Network nodes in close spatial proximity may undertake similar data transmission 
tasks. This spatial correlation, encompassing both near and far dependencies, significantly increases the 
complexity of traffic prediction and must be thoroughly considered in prediction models.
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Furthermore, traffic exhibits multi-periodic fluctuations due to varying user behaviors and environmental 
changes. For instance, on a daily scale, traffic gradually rises during daytime, peaks, and then declines at 
night. On a weekly scale, traffic fluctuations may show predictable patterns following periodic user behavior 
repetitions. Meanwhile, sudden events like disaster relief operations can cause dramatic traffic fluctuations, 
rendering traditional time series methods inadequate. Therefore, Mesh network traffic prediction models must 
possess high adaptability to accurately predict traffic under anomalous conditions, providing timely and effective 
information support for network dynamic optimization.

In recent years, deep learning has become the mainstream approach in network traffic prediction due to its 
advantages in modeling complex nonlinear patterns. Various studies have employed different deep learning 
architectures, such as such as LSTM1–3, ConvLSTM4,5, T-GCN6,7, STGCN8–13, to effectively capture temporal 
and topological features of traffic data. However, most existing models adopt cascade architectures for modeling 
multi-domain feature relationships, typically processing temporal features before topological features, or vice 
versa. For instance, T-GCN captures topological and temporal features sequentially through GCN and GRU, 
ASTGCN14 introduces attention mechanisms for weighted fusion after temporal and spatial convolutions, and ST-
GRAT15 enhances selective feature modeling at the topological level through Graph Attention Networks (GAT), 
first modeling temporal features before adjusting topological features. Although these cascade architectures 
can effectively capture multi-domain features to some extent, they often lead to feature entanglement, making 
it difficult to clearly decouple information from different dimensions, thereby affecting prediction accuracy. 
More importantly, this cascade architecture fails to fully consider the independence of temporal and topological 
features at different levels, limiting the model’s expressiveness and generalization capability.

To address these challenges, we propose a novel modeling concept-feature re-extraction. This concept aims 
to achieve independent modeling of multi-dimensional features through hierarchical feature extraction and 
parallel architecture, thereby avoiding interference between different feature dimensions. We apply this concept 
to our MeshHSTGT model and enhance model performance through the following approaches:

(1) First, We introduce the application of TimesNet for deep modeling of time series data. The TimesNet 
module is employed to independently extract temporal and frequency domain features, enabling the model to 
precisely capture multi-periodic fluctuations in traffic and effectively resolve the issue of mixed periodic features. 
By leveraging this dual-domain modeling capability, our approach improves the accuracy of capturing dynamic 
patterns in traffic flow.

(2) Next, We enhance the representation of network topology through the modeling of Mesh network 
topological features with TE-GRU and CCW-GCN. The Temporal Encoding Gated Recurrent Unit (TE-GRU) 
effectively extracts short-term temporal correlations, demonstrating strong responsiveness to burst traffic events 
such as peak congestion and node anomalies. Meanwhile, the Channel Capacity-Weighted GCN (CCW-GCN) 
accurately models spatial dependencies between nodes using channel capacity-weighted adjacency matrices, 
providing a more adaptive representation of the mesh network’s topological structure.

(3) To ensure a seamless and efficient integration of these extracted features, we introduce the fusion of 
multi-domain features via a Transformer-based adaptive alignment module. This module dynamically fuses 
temporal, frequency, and topological domain features through a self-attention mechanism, which models 
interactions between these three domains while dynamically allocating feature weights based on prediction 
task requirements. This approach guarantees independent modeling of each feature type while ensuring their 
effective collaboration, thereby optimizing prediction performance.

The remainder of this paper is structured as follows. Related works are described in section"Related work". 
Section"Methodology"details the technical aspects of the MeshHSTGT model. Experimental results are presented 
in Section"Experiments", evaluating model performance and analyzing the contribution of each component 
through ablation studies. Finally, we conclude this paper in section"Conclusion".

Related work
With the rapid advancement of deep learning, numerous approaches have been proposed for network traffic 
prediction. We categorize existing methods into three main streams: spatial-temporal graph neural networks, 
temporal modeling approaches, and hybrid attention-based methods.

Spatial-temporal graph neural networks
Graph-based approaches have been widely adopted in network traffic prediction due to their effectiveness in 
capturing spatial relationships between nodes. Fang et al16. proposed Graph Convolutional LSTM (GCLSTM), 
which models topological features through dependency graphs and applies graph convolutions to each LSTM 
gate. Yang et al17. introduced Spatial-Temporal Chebyshev Graph Neural Network (ST-ChebNet), combining 
LSTM with Chebyshev Graph Neural Networks for comprehensive feature learning. More recently, Pan et 
al18. developed Dual-Channel Graph Convolutional Networks (DC-STGCN), integrating DCGCN with 
GRU to simultaneously capture node connectivity and temporal features. Yao et al19. proposed a multi-view 
spatiotemporal graph network (MVSTGN), which integrates attention and convolution mechanisms into traffic 
pattern analysis. Liu et al20. proposed a spatiotemporal event cross-attention graph convolutional neural network 
(STECA-GCN), which incorporates event dimension features while also enabling direct cross-fusion among 
different features. Shao et al21. proposed D2STGNN, which incorporates a dynamic graph learning module to 
model the evolving characteristics of the network and capture changes in spatial dependencies. However, its 
performance heavily depends on the quantity and quality of training data, potentially limiting its generalization 
ability in regions with sparse data or insufficient infrastructure. Fang et al22. proposed STWave+, which 
introduces a multi-scale efficient spectral graph attention network to capture the multi-scale characteristics of 
spatial dependencies and integrates long-term historical trend knowledge through a self-supervised learning 
approach. However, its computational cost is high in ultra-large-scale networks.
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Temporal modeling approaches
Models focusing on temporal dynamics have emerged as another crucial direction in traffic prediction. Wang 
et al.23 developed TSGAN, utilizing Dynamic Time Warping (DTW) to compute temporal similarities in traffic 
data. Wang et al15. designed TSENet with a Temporal Transformer module that captures both short-term and 
periodic fluctuations in network traffic. These approaches excel in modeling complex temporal patterns but may 
overlook important spatial dependencies. Wu et al24. proposed the Autoformer model, which adopts an Auto-
Correlation mechanism that performs remarkably well in capturing periodic patterns. However, its modeling 
capability may be limited when dealing with non-periodic or noisy data. Chen et al25. point out that Transformer-
based models have revolutionized sequence modeling in fields such as NLP. However, in time series forecasting, 
the permutation-invariant self-attention mechanism results in the loss of temporal information.

Hybrid attention-based methods
Recent studies have explored attention mechanisms to enhance feature extraction and fusion. He et al26. 
proposed Graph Attention Spatial-Temporal Network (GASTN), employing structured RNNs with dual 
attention mechanisms to integrate multi-scale features. Cao et al27. introduced Hypergraph Attention Recurrent 
Network (HARN), capturing local trends through spatial trend-aware attention mechanisms. Bai et al28. 
developed A3 T-GCN, which combines GCN with attention mechanisms for improved feature learning. Cai et 
al29. proposed a traffic prediction method that fuses multimodal data features, using a KNN graph and a dual-
branch spatiotemporal graph neural network (DBSTGNN-Att).Fang et al30. enhanced the prediction efficiency 
of Transformer-based frameworks through an innovative spatial partitioning technique. However, the model 
exhibits high sensitivity to certain architectural components, and modifications to the attention mechanism can 
result in a substantial decline in predictive accuracy.

Despite these advances, most existing models employ cascade architectures that process temporal and 
topological features sequentially, leading to feature entanglement issues. While these architectures might 
perform adequately in static scenarios, they struggle to handle complex interactions and fluctuations in dynamic 
Mesh network environments. Our work addresses these limitations by proposing a novel parallel architecture 
that enables independent feature modeling while maintaining effective feature collaboration.

Methodology
Overview of MeshHSTGT architecture
In Mesh networks, traffic patterns exhibit complex characteristics stemming from multiple| factors: spatial 
dependencies between nodes, temporal variations across different time scales, and the dynamic nature of 
network topology. Traditional cascade architectures, while capable of modeling these features sequentially, often 
suffer from feature entanglement issues, leading to suboptimal prediction performance, especially in dynamic 
scenarios.

Feature entanglement occurs when sequential processing of multi-domain features causes one domain’s 
characteristics to influence or distort the extraction of features from subsequent domains. This phenomenon 
manifests in several measurable ways in traffic prediction models: (1) Cross-domain inter ference: When 
temporal features are processed before spa tial features (as in T-GCN architectures), temporal patterns can 
dominate the model’s attention, causing it to undervalue important topological relationships. In our preliminary 
experi ments, we observed that cascade models showed a 23% higher prediction error during network topology 
changes (e.g., node failures or link quality degradation) compared to periods with stable topology but similar 
temporal patterns. (2) Diminished feature expressiveness: In cascade architectures, later stages receive features 
that have already been transformed by earlier stages, limiting their ability to extract domain-specific patterns. 
We quantified this by measuring feature variance preservation across model layers, finding that the final layer 
of cascade models preserved only 42% of the original variance in spatial features when temporal features were 
processed first. (3) Gradient interference: During backpropagation in cascade ar chitectures, gradients flowing 
through earlier layers can dom inate those in later layers, creating training imbalances. We observed that in 
cascade models, the magnitude of gradients in spatial processing layers was consistently 2.7x smaller than in 
temporal processing layers, indicating suboptimal training of spatial feature extractors.

To address these challenges, we propose MeshHSTGT, a novel architecture that fundamentally reimagines 
how multi-domain features are extracted and integrated. As illustrated in Fig. 1, our model consists of three 
primary components: (a) a time-frequency domain feature extraction module based on TimesNet, (b) a spatial-
temporal graph convolution module for topology modeling, and (c) an adaptive feature alignment module for 
multi-domain feature fusion.

Time-frequency multi-period feature extraction
Mesh network traffic exhibits intricate temporal patterns characterized by multiple periodicities and irregular 
fluctuations. For instance, traffic volumes typically show daily patterns with peak hours during working hours 
and valleys during nighttime, weekly patterns reflecting workday-weekend variations, and sudden spikes during 
special events or network anomalies. Traditional time series models often struggle to capture these multi-scale 
temporal dependencies simultaneously.

To address this challenge, we employ TimesNet31 to decompose temporal variations into different frequency 
components, enabling the model to capture both regular patterns and anomalous behaviors. The module 
processes temporal data through the following steps:

Period identification Given a one-dimensional time series X1D ∈ RT ×C , where T denotes the sequence 
length and C represents the number of channels, we first perform Fast Fourier Transform (FFT) to identify 
dominant periodic components:
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	 A = Avg (Amp (FFT (X1D)))� (1)

where A ∈ RT  represents the magnitude of each frequency component.
Period selection We select the k most significant frequencies f1, f2, . . . , fk  and determine their 

corresponding period lengths:

	
p1, . . . , pk =

⌈
T

f1

⌉
, . . . ,

⌈
T

fk

⌉
� (2)

In our implementation, we set k = 4, selecting the four dominant frequency components based on empirical 
evaluation. This value provides an optimal balance between computational efficiency and feature representation 
capacity, capturing daily (24-hour), half-daily (12-hour), weekly, and monthly patterns that are particularly 
prevalent in mesh network traffic. Extensive experiments showed that increasing k beyond 4 yielded diminishing 
returns in prediction accuracy while significantly increasing computational overhead.

Dimensional transformation. For each identified period pi, we reshape the original sequence into a 2 D 
tensor:

	 Xi
2D = Reshapepi

(Padding (X1D)) , i ∈ {1, . . . , k}� (3)

Feature extraction. We employ Vision Transformer (ViT) to process these 2D representations:

	 T i
2D = Vision Transformer

(
Xi

2D

)
� (4)

Feature aggregation. The extracted features are transformed back to 1D space:

	
T̂ i

1D = Trunc
(

Reshape1,(pi×fi)

(
T̂ i

2D

))
, i ∈ {1, . . . , k}� (5)

This systematic decomposition allows our model to capture both intra-period dynamics and inter-period 
variations, providing a comprehensive understanding of traffic patterns across different time scales.

TimesNet transforms one-dimensional time series data into a two-dimensional tensor, which enables the 
model to capture multiple periodic features. This approach is analogous to convolutional neural networks 
(CNNs), where the computational complexity for each layer’s convolution operation is O(T · K · Cin · Cout · k2) 

Fig. 1.  Architecture of the proposed MeshHSTGT model. The framework consists of three parallel 
components: (a) Time-Frequency Multi-Period Feature Extraction module based on TimesNet for capturing 
temporal patterns, (b) Spatial-Temporal Graph Convolution module combining TE-GRU and CCW-GCN 
for topology modeling, and (c) Adaptive Feature Alignment module for dynamic feature fusion. Solid arrows 
indicate the main data flow, while dashed arrows represent feature interactions.
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Here, T  is the sequence length, K  is the number of periods, Cin and Cout represent the input and output 
channels, respectively, and k denotes the kernel size. Given that K  is typically small (for instance, K = 4), and 
the computation is accelerated by GPUs, TimesNet efficiently processes sequences of varying lengths T .

Spatial temporal graph convolution
Temporal encoding-gated recurrent unit (TE-GRU)
In Mesh networks, temporal dependencies are not purely sequential but are deeply intertwined with network 
events and operational patterns. Traditional GRU models, while effective for sequential data, lack the ability to 
explicitly model time-aware patterns and sudden traffic variations caused by network events such as congestion, 
node failures, or maintenance windows.

To address this limitation, we enhance the traditional GRU architecture with temporal encoding, allowing 
the model to be aware of specific temporal contexts such as time of day, maintenance windows, or peak traffic 
periods. This enhancement is particularly crucial for Mesh networks where traffic patterns can vary significantly 
based on temporal context.

Given input xt at time step t, the TE-GRU computations are as follows:

	
Time sin = sin

(
2π · time T

T

)
� (6)

	
Timecos = cos

(
2π · time T

T

)
� (7)

The input is then augmented with temporal encoding:

	 x′
t = [xt, (Timesin, Timecos)]� (8)

The modified GRU operations are:

	

zt = σ
(
Wz ·

[
ht−1, x′

t

])

rt = σ
(
Wr ·

[
ht−1, x′

t

])

h̃t = tanh
(
W ·

[
rt ∗ ht−1, x′

t

])

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t

� (9)

Where zt is the update gate used to control the proportion of new information flowing into the hidden state; rt 
is the reset gate used to determine how much information from the previous hidden state should be retained; σ 
and tanh denote the sigmoid function and the hyperbolic tangent function, respectively; and Wz, Wr , and W 
are the trainable weight matrices.

The temporal encoding parameters in the Temporal Encoding-GRU are learned during training. Specifically, 
at each time step t, the input to the GRU includes a temporal encoding vector Et, which is generated by a 
learnable embedding layer. This embedding layer is trained alongside other model parameters, allowing Et to 
adapt to the specific temporal patterns in the dataset. The GRU cell itself uses the same set of weights across all 
time steps, following the standard architecture of recurrent neural networks. Thus, while the temporal encodings 
Et are unique for each time step, they are produced by a shared mechanism (the embedding layer), ensuring 
consistency in how temporal positions are encoded throughout the sequence.

TE-GRU’s computational complexity is related to the sequence length T  and is given by O(T · F 2), with 
F  representing the number of hidden units. This type of complexity makes TE-GRU suitable for processing 
long sequences. On the extensibility front, TE-GRU can scale effectively with the increase in T , particularly 
under hardware acceleration, ensuring the processing capacity remains stable. In terms of computational 
efficiency, GRU can efficiently handle sequential data with relatively low computational overhead, especially 
when optimized within deep learning frameworks and combined with GPU acceleration. This allows for the 
high-performance execution of time series modeling tasks.

Channel capacity-weighted GCN (CCW-GCN)
Traditional graph neural networks treat all node connections equally, which is inadequate for Mesh networks 
where link qualities vary significantly based on factors such as signal strength, distance, and interference. This 
limitation becomes particularly apparent in scenarios where network topology dynamically changes due to link 
quality variations.

We propose CCW-GCN, which incorporates channel capacity information into the graph structure. The 
channel capacity weight Cij  between nodes i and j is computed as:

	

Cij = B · log2


1 +

Pt · Gi · Gl ·
(

λ
4πdij

)2

N


� (10)
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Where Gi and Gj  are the antenna gains at the transmitting and receiving ends, respectively (with higher gains 
improving link performance between nodes), dij  is the physical distance between nodes i and j (with longer 
distances typically leading to poorer link quality), λ is the signal wavelength (with higher frequencies generally 
experiencing greater attenuation), B represents the bandwidth between nodes i and j, and N represents the noise 
of the link.

The weighted adjacency matrix is normalized as:

	 ÃQ = D
− 1

2
Q AQD

− 1
2

Q
� (11)

Where DQ is the degree matrix of AQ

The CCW-GCN layer operation is then defined as:

	 H(l+1) = σ
(
ÃQH(l)W (l))� (12)

Where H(l) is the node feature matrix at the 1-th layer, W (l) is the learnable weight matrix, and σ is the 
activation function (e.g., ReLU)

CCW-GCN’s computational complexity is derived from the graph structure. For a graph with V  vertices 
and E edges, the computational complexity per layer is O(E · F 2), where F  represents the feature dimension. 
In graph networks, the edge density is typically sparse (E ≪ V 2), which reduces computational overhead. On 
the extensibility front, CCW-GCN can effectively handle the addition of both nodes and edges. In terms of 
computational efficiency, CCW-GCN leverages sparse matrix operations to optimize calculations, allowing 
deep learning frameworks to support high-performance computation, particularly during GPU execution, 
significantly reducing the demand for computational resources.

The CCW-GCN leverages domain knowledge of wireless communications, where signal strength and 
interference significantly affect traffic flow. Unlike standard distance-based adjacency matrices, which focus on 
geographical proximity, or data similarity-based matrices, which may struggle without sufficient representative 
data, CCW-GCN’s weighting based on channel capacity provides a more robust graph structure. This enhances 
the model’s ability to capture spatial dependencies in wireless mesh networks, particularly under varying link 
qualities and interference conditions

Adaptive multi-domain feature alignment
The effectiveness of multi-domain feature fusion is crucial for accurate traffic prediction in Mesh networks. 
Traditional fusion approaches often use fixed weights or simple concatenation, which may not adapt well to 
varying network conditions and different types of traffic patterns.

Our adaptive alignment module employs a Transformer-based architecture to dynamically adjust the 
importance of different feature domains based on the current network state and prediction requirements. This 
approach is particularly valuable in Mesh networks where the relative importance of spatial and temporal features 
can vary significantly depending on network conditions. Given spatial-temporal features H(l) ∈ RN×dH  and 
time-frequency features T (l) ∈ RN×dT , we first concatenate them:

	 Y (l) = contact
(
H(l), T (l))� (13)

Multi-head attention is then applied:

	 Qm = H(l)W m
H , Km = T (l)W m

T , V m = Y (l)W m
Y � (14)

	
headm (Qm, Km, V m) = SoftMax

(
Qm (Km)T

√
dk

)
V m � (15)

Where W m
H ∈ R(dH ×dk), W m

T ∈ R(dT ×dk), W m
Y ∈ R(dH +dT )×dV  are the learnable parameter matrices 

of the multi-head attention mechanism, with dk  and dv  representing the dimensions of the query and value 
vectors, respectively.

The final fused features are obtained by:

	 F (l) = Concat ( head 1, head2, . . . , headM ) W C � (16)

Experiments
In this section, we present comprehensive experimental evaluations of our proposed MeshHSTGT model. 
We first introduce our novel real-world dataset and experimental setup, then demonstrate the effectiveness of 
MeshHSTGT against state-of-the-art baselines through extensive comparisons. Finally, we conduct detailed 
ablation studies to analyze the contribution of each model component.

Dataset. We evaluate our approach on a large-scale real-world mesh network dataset collected through 
collaboration between the Key Laboratory of Wireless Communications, Jiangsu Province and Shenzhen 
Friendcom Technology Co., Ltd. The dataset captures multi-dimensional network measurements from 213 
router nodes deployed in an operational wireless mesh network environment over a 30-day period with 5-minute 
sampling intervals. This temporal granularity enables analysis of both short-term fluctuations and long-term 
trends in network behavior. The dataset was divided into training, validation, and testing subsets in a ratio of 

Scientific Reports |        (2025) 15:20411 6| https://doi.org/10.1038/s41598-025-01943-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


7:1:2, respectively, ensuring the model is trained on a substantial portion while reserving enough for validation 
and testing to accurately assess performance.To standardize input features for deep learning models sensitive 
to feature scales, we applied z-score normalization, centering the data by subtracting the mean and scaling by 
the standard deviation, resulting in features with a mean of 0 and a standard deviation of 1. Missing values, 
common in real-world wireless networks due to node failures, packet loss, or sensor errors, were handled using 
linear interpolation, effective for filling short-term gaps while maintaining temporal continuity. The dataset 
encompasses comprehensive network measurements carefully designed to capture key aspects of mesh network 
dynamics. The network operates in a wireless mesh topology, where each node is connected to its neighboring 
nodes to form a multi-hop communication network. This decentralized structure allows for increased network 
reliability and fault tolerance, as data can be routed through alternative paths in case of node or link failures. The 
mesh network employs a combination of ad-hoc and infrastructure-based communication, where each router 
node can act as both a host and a relay point for data traffic, ensuring seamless connectivity between nodes 
even in remote or less accessible areas. The communication protocols used in the network include common 
standards such as IEEE 802.11 s for mesh networking and optimized routing protocols designed specifically for 
wireless mesh networks, such as AODV (Ad hoc On-demand Distance Vector) and OLSR (Optimized Link State 
Routing). These protocols ensure efficient data routing and dynamic path adjustments in response to network 
topology changes or varying network load. The 213 router nodes deployed in the network are of diverse types, 
each serving a unique role in the mesh infrastructure. Some nodes are strategically placed as gateway routers, 
responsible for bridging the mesh network to external networks such as the internet. Other nodes serve as 
intermediate routers, which relay traffic between different parts of the network. Additionally, certain nodes 
function as access points, allowing end-user devices to connect to the network. The diversity of node types helps 
to create a robust and scalable mesh network, capable of supporting a wide range of communication needs. The 
dataset encompasses comprehensive network measurements carefully designed to capture key aspects of mesh 
network dynamics:

Traffic flow data. Per-node traffic measurements capturing data transmission volumes over specified time 
intervals, providing the temporal evolution of network load distribution.

Antenna properties. Node-specific antenna gain values characterizing signal reception capabilities in 
different directions, critical for understanding wireless link quality.

Channel information. Channel bandwidth between node pairs, reflecting link transmission capacity; Signal 
propagation frequency bands affecting attenuation patterns; Noise levels including background noise and 
interference, impacting communication reliability.

Network topology. Detailed routing information capturing: Direct connectivity between nodes indicating 
immediate communication paths; Multi-hop routing paths for nodes without direct links, essential for 
understanding traffic flow through indirect connections.

Compared methods. To validate the effectiveness of our proposed MeshHSTGT model, we compare it 
against the following state-of-the-art baseline methods:

Feed-forward neural network (FNN)32. A standard fully-connected neural network serving as a basic deep 
learning baseline.

Fully-connected LSTM (FC-LSTM)5. A classical LSTM network with fully-connected hidden units that 
captures temporal dependencies in network traffic data.

Graph WaveNet (GWN)11. Incorporates adaptive dependency matrices and dilated 1D convolutions in 
graph convolution modules. The dilated convolution structure enables an expanding receptive field with network 
depth, enhancing long-term temporal modeling capabilities.

Spatio-temporal Chebyshev Network (ST-ChebNet)17. Combines spatio-temporal graph convolutions with 
Chebyshev polynomial approximations to efficiently capture spatio-temporal dependencies in complex graph-
structured data.

Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN)33. Constructs localized spatio-
temporal graphs and employs synchronous graph convolutions to jointly model topological and temporal 
dependencies.

Spatial-Temporal Fusion Graph Neural Network (STFGNN)34. Utilizes Dynamic Time Warping (DTW) 
for temporal graph construction and implements a fusion mechanism to synchronously capture spatial and 
temporal correlations.

Time-series Similarity-based Graph Attention Network (TSGAN)35. Constructs adjacency matrices based 
on temporal similarities using DTW and leverages graph attention mechanisms to model both topological and 
temporal dependencies.

Evaluation metrics. In our evaluation, we employed Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Mean Absolute Percentage Error (MAPE) as metrics to assess prediction accuracy. To ensure the 
reliability of MAPE, we adopted a masking technique, excluding data points with actual traffic values below 
10 during its calculation. This threshold was determined based on both dataset characteristics and domain 
knowledge. Specifically, data points with traffic values below 10 account for less than 5% of the dataset and 
typically correspond to periods of extremely low network activity (e.g., late-night hours or maintenance 
windows), which fall outside the primary focus of our forecasting task.

Root Mean Square Error (RMSE):

	

RMSE =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2� (17)
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It measures the standard deviation of the residuals (prediction errors), which indicates the spread of the 
prediction errors.

Mean Absolute Error (MAE):

	
MAE = 1

N

N∑
i=1

|ŷi − yi|� (18)

It quantifies the average magnitude of errors, disregarding whether they are over-or under-prediction.
Mean Absolute Percentage Error (MAPE):

	
MAP E = 100%

N

N∑
i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣� (19)

It provides a percentage representation of prediction accuacy, showing how much error there is on average in 
relation to the true values.

Where N denotes the number of time steps, ŷ represents predicted values, y represents ground truth values.
Hyperparameter settings. The dataset is partitioned into training, validation, and testing sets with a ratio of 

7:1:2. We evaluate the model performance across multiple prediction horizons (15, 30, 45, and 60 minutes) with 
an input sequence length of 60 time steps. For baseline methods, we adopted their recommended configurations 
and optimized parameters to ensure fair comparison. Specifically, FNN employs a three-layer architecture 
(12–128-64), while FC-LSTM uses a two-layer stacked structure. GWN consists of eight layers with dilation 
factors (1, 2, 1, 2, 1, 2, 1, 2). Both STSGCN and STFGNN are configured with a spatio-temporal graph size 
of 4 and hidden dimension of 128. TSGAN implements 3 GAT layers with 8 attention heads per layer and 
hidden dimension of 128. Our proposed MeshHSTGT comprises two parallel modules: a TimesNet module 
with 8-dimensional Q, K, V matrices, 8 attention heads, and 64-dimensional feed-forward layers (dropout rate 
0.2), and a communication-aware STGC module with 3 STGC blocks (dimensions: 32–64-64-32–128-128-128). 
These modules are connected through adaptive alignment layers, each containing 8 attention heads. The model 
was trained for 200 epochs using the Adam optimizer (learning rate 0.001), with the best-performing checkpoint 
on the validation set selected for testing. All experiments were conducted on NVIDIA Tesla V100 GPUs with 
consistent random seeds to ensure reproducibility.

Result. We conducted comprehensive performance evaluations comparing MeshHSTGT against multiple 
baseline models across different prediction horizons (10, 30, and 60 minutes). The results demonstrate the 
superior performance of our proposed architecture in capturing complex mesh network traffic patterns. As 
shown in Table 1 and Fig. 2:

Traditional neural architectures (FNN and FC-LSTM) showed significant limitations due to their single-
domain modeling approach. FNN exhibited poor performance with an MAE of 813.28 for 60-minute predictions. 
While FC-LSTM achieved marginal improvements through its gating mechanism, its MAE remained high at 
781.52 for long-term predictions, primarily due to the lack of spatial modeling capabilities in its fully-connected 
architecture. These results validate our hypothesis that purely temporal features are insufficient for effective 
mesh network traffic prediction.

Graph neural network-based approaches demonstrated improved multi-domain modeling capabilities but 
suffered from feature entanglement issues. GWN, despite its innovative combination of adaptive dependency 
matrices and dilated convolutions, achieved suboptimal performance with an MAE of 513.93 for 60-minute 
predictions, 31.4% higher than MeshHSTGT. This limitation stems from its graph convolution module’s 
inability to account for channel capacity variations. ST-ChebNet’s Chebyshev polynomial approximation, 
while computationally efficient, struggled with burst traffic patterns, resulting in a MAPE of 0.20 for 30-minute 
predictions. STSGCN’s local spatio-temporal graph structure enabled synchronized feature extraction but its 
cascading architecture led to feature entanglement, resulting in a 60-minute RMSE of 561.79, 19.5% higher than 
our model.

Model

Mesh Data (10 min/30 min/60 min)

MAE MAPE RMSE

FNN 154.98/387.25/813.28 0.24/0.25/0.30 296.83/472.83/1025.48

FC-LSTM 172.57/387.25/781.52 0.21/0.20/0.27 248.14/457.19/954.39

GWN 114.38/220.25/513.93 0.16/0.17/0.18 144.58/326.05/625.11

STChebNet 123.49/251.25/584.94 0.17/0.20/0.21 181.34/331.64/647.62

STSGCN 101.14/224.12/529.35 0.14/0.18/0.19 139.05/274.58/561.79

STFGNN 103.56/212.83/537.81 0.14/0.17/0.19 146.67/261.31/542.34

TSGAN 94.71/201.08/420.74 0.11/0.12/0.14 121.41/233.72/493.56

Ours 89.62/193.41/391.17 0.09/0.10/0.10 113.24/235.09/470.25

Table 1.  Performance comparison across different prediction horizons.
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Recent advances in feature interaction modeling, represented by STFGNN and TSGAN, showed improvements 
but remained constrained by their feature fusion strategies. STFGNN’s DTW-based dynamic temporal graph 
achieved an MAE of 212.53 for 30-minute predictions, but its fixed-weight feature fusion mechanism proved 
inadequate for handling mesh network dynamics. TSGAN’s attention-based adjacency matrix construction 
performed well for short-term predictions (MAE of 94.71 for 10-minute horizon) but struggled with longer 
horizons due to its single-stage feature extraction, resulting in a 60-minute MAPE of 0.14, 40% higher than 
MeshHSTGT.

Our proposed MeshHSTGT demonstrates superior performance across all metrics through its innovative 
feature re-extraction architecture. The TimesNet component’s time-frequency dual-domain modeling effectively 
separates mixed periodic patterns, achieving an MAE of 89.62 for 10-minute predictions, a 5.4% improvement 
over TSGAN. The enhanced CCW-GCN module’s channel capacity-weighted mechanism shows improved 
robustness to topology changes, achieving a 60-minute RMSE of 470.25, 13.3% lower than STFGNN. The 
adaptive alignment module’s self-attention mechanism enables dynamic feature fusion, significantly improving 
long-term prediction stability. These results validate the effectiveness of our parallel feature re-extraction 
architecture in addressing the feature entanglement issues prevalent in traditional approaches, establishing a 
new paradigm for complex mesh network traffic prediction.

Case study: cellular traffic prediction in Milan. To validate the generalization capability of our proposed 
MeshHSTGT model across different traffic prediction scenarios, we conducted extensive experiments on the 
Milan cellular traffic dataset36 provided by Telecom Italia. This dataset comprises Internet activity call records 
sampled at 10-minute intervals over 62 days, offering rich temporal patterns in an urban context and presenting 
unique challenges for traffic prediction models. As shown in Table 2:

Accurate prediction of urban cellular traffic patterns is crucial for government agencies and network operators 
to optimize resource allocation and anticipate potential congestion issues. This is particularly critical in large 
metropolitan areas where prediction accuracy directly impacts traffic management efficiency. We evaluated 
MeshHSTGT against multiple baseline methods (FNN, FC-LSTM, GWN, ST-ChebNet, STSGCN, STFGNN, 
and TSGAN) across different prediction horizons.

The results demonstrate MeshHSTGTs robust performance in capturing network demand variations across 
different urban areas. Our model’s success can be attributed to its effective integration of time-frequency domain 
features and topological relationships through the parallel feature re-extraction architecture. While TSGAN 
shows competitive performance, particularly in short-term predictions, MeshHSTGT maintains superior 
accuracy across all prediction horizons, with notably better performance in longer-term predictions (60-minute 
horizon shows approximately 14.8% improvement in MAE).

Model

Traffic Data in city of Milan (10 min/30 min/60 min)

MAE MAPE RMSE

FNN 30.04/93.67/158.79 0.19/0.24/0.21 42.54/129.20/270.11

FC-LSTM 33.94/102.69/229.28 0.18/0.21/0.25 40.75/124.78/272.09

GWN 26.52/65.91/143.48 0.13/0.12/0.13 36.12/101.34/186.32

ST-ChebNet 29.20/87.89/190.73 0.17/0.18/0.21 36.81/108.58/231.19

STSGCN 28.61/74.53/144.64 0.13/0.14/0.15 36.62/104.30/183.11

STFGNN 27.34/72.13/139.65 0.13/0.14/0.14 37.13/109.44/189.43

TSGAN 25.67/66.16/141.18 0.13/0.12/0.13 35.95/98.67/185.71

MeshHSTGT 25.01/59.71/120.35 0.13/0.11/0.12 34.13/90.04/170.57

Table 2.  Traffic prediction performance on Milan dataset.

 

Fig. 2.  Relative improvement of MeshHSTGT (%).
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These findings validate MeshHSTGT’s effectiveness in real-world urban scenarios, demonstrating its 
capability to capture complex spatio-temporal dependencies in cellular network traffic. The model’s strong 
performance on this independent dataset confirms its generalization ability beyond mesh networks, suggesting 
its potential applicability in diverse network traffic prediction scenarios.

Ablation Studies. To systematically evaluate the contribution of each architectural component to mesh 
network traffic prediction performance, we conducted comprehensive ablation studies comparing our 
full MeshHSTGT model against three variant architectures: TimesNet (focusing on temporal-frequency 
modeling), STGCN (emphasizing topological features), and TimesNet_STGCN (a cascaded combination of 
both components). The experimental results reveal crucial insights into the effectiveness of different modeling 
approaches and validate our architectural design choices. As shown in Fig. 3:

The standalone TimesNet module, while adept at capturing temporal-frequency patterns and periodic 
fluctuations in network traffic, demonstrates limitations in handling complex node interactions due to its 
lack of topological modeling. This deficiency manifests in relatively poor performance metrics (MAE: 139.38, 
270.51, 564.62; RMSE: 105.13, 218.31, 438.46) across different prediction horizons, particularly during network 
events involving sudden traffic variations or node failures. In contrast, the STGCN variant, incorporating TE-
GRU and CCW-GCN components, shows improved capability in modeling spatial dependencies and handling 
burst traffic patterns. However, its inability to capture multi-periodic characteristics results in suboptimal 
performance (MAE: 136.75, 282.42, 551.19; MAPE: 0.17, 0.17, 0.18), despite showing advancement over the 
TimesNet architecture.

The cascaded TimesNet_STGCN architecture attempts to bridge this gap by sequentially combining 
temporal-frequency and topological modeling. While this approach theoretically captures all necessary feature 
dimensions, the sequential nature of feature processing introduces feature entanglement issues, resulting in 
performance metrics (MAE: 105.13, 218.31, 438.46; MAPE: 0.14, 0.16, 0.16) that fall short of our full model’s 
capabilities. This observation underscores a critical insight: while comprehensive feature capture is essential, the 
method of feature integration significantly impacts prediction accuracy.

These initial ablation results strongly validate the superiority of the parallel architecture proposed in 
MeshHSTGT. By modeling temporal, frequency, and topological features independently yet concurrently, and 
effectively fusing them through feature re-extraction and adaptive alignment, our approach effectively addresses 
the limitations observed in the aforementioned variants.

To further validate the effectiveness of key components within our model, we first evaluated the graph 
weighting strategy of the proposed CCW-GCN. We compared it against alternative graph weighting strategies 
commonly used in traffic prediction tasks. Specifically, we tested the following variants:

CCW-GCN. The channel capacity-weighted adjacency matrix used in the original MeshHSTGT model.
Distance-based adjacency matrix. An adjacency matrix constructed based on the geographical distance 

between nodes, weighted using a Gaussian kernel.
Data similarity-based adjacency matrix. An adjacency matrix constructed based on the similarity of traffic 

patterns between nodes, using Dynamic Time Warping (DTW) for feature extraction and Pearson correlation 
coefficient for similarity calculation.

These models were trained and evaluated on the same dataset and under identical conditions. The performance 
metrics, including Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for prediction horizons 
of 15, 30, and 60 minutes, are presented in Fig. 4.

As shown in Fig. 4, the proposed CCW-GCN consistently demonstrated superior performance across 
all prediction horizons (15, 30, and 60 minutes) compared to the alternative graph construction strategies. 
Examining the MAE and RMSE metrics reveals that CCW-GCN achieved lower prediction errors than both the 
Distance-Based and Data Similarity-Based approaches. For example, at the 60-minute horizon, CCW-GCN’s 
MAE (391.17) and RMSE (470.25) were notably better than those from the Distance-Based (MAE 550.62, RMSE 
662.65) and Data Similarity-Based methods (MAE 522.19, RMSE 508.31). This trend of improved accuracy 

Fig. 3.  Ablation study results of different models in terms of MAE, MAPE and RMSE metrics.
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with CCW-GCN holds consistently across the shorter 15-minute and 30-minute horizons as well, as detailed 
in Fig. 4. This quantitative improvement highlights the benefit of incorporating domain-specific knowledge 
(channel capacity), which better reflects dynamic link quality and interference than static geographical distance 
or historical traffic pattern similarity alone. These results confirm that CCW-GCN is a crucial component for 
accurate traffic prediction in wireless mesh networks, justifying its application within the MeshHSTGT model.

Furthermore, we evaluated the contribution of the Adaptive Alignment Module in the MeshHSTGT model. 
To this end, we conducted additional ablation experiments comparing the full model against variants using 
simpler fusion techniques: Concatenation Fusion and Summation Fusion. The aim was to assess the impact of 
removing the adaptive fusion mechanism. We tested the following variants:

Attention-based fusion. This is the complete MeshHSTGT model, where the adaptive alignment module 
dynamically adjusts the fusion of spatio-temporal features.

Concatenation fusion. In this variant, we replaced the adaptive alignment module with a simpler 
concatenation-based fusion method. Specifically, the temporal features (output from TimesNet) and spatial 
features (output from CCW-GCN) are concatenated along the feature dimension to form a higher-dimensional 
feature vector, which is then passed into the subsequent layers of the model. This approach does not involve 
dynamic weighting and instead completes the fusion via simple feature concatenation.

Summation fusion. In this variant, we replaced the adaptive alignment module with a summation-based 
fusion method. The temporal and spatial features are fused by element-wise addition.

Similarly, as depicted in Fig. 5, the Attention-Based Fusion strategy (representing our proposed adaptive 
alignment approach) consistently yielded the most accurate predictions across all horizons (15, 30, and 60 minutes) 
when compared to simpler fusion methods like Concatenation Fusion and Summation Fusion. The MAE and 
RMSE results presented in Fig. 5 show a clear advantage for our approach. Taking the 60-minute horizon as an 
example, the Attention-Based Fusion achieved an MAE of 391.17 and RMSE of 470.25, whereas Concatenation 
Fusion resulted in higher errors (MAE 532.55, RMSE 521.17), and Summation Fusion performed similarly 
(MAE 438.46, RMSE 506.65).This performance margin favoring the Attention-Based Fusion is consistently 
observed across the 15-minute and 30-minute predictions as well. This demonstrates the effectiveness of the 
adaptive fusion mechanism, which dynamically learns to weight the importance of temporal and spatial features, 

Fig. 5.  Ablation study results of feature fusion strategies in terms of MAE, MAPE and RMSE metrics.

 

Fig. 4.  Ablation study results of graph construction strategies in terms of MAE, MAPE and RMSE metrics.
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unlike the static combination strategies of simple concatenation or summation. The data strongly supports the 
conclusion that the adaptive alignment module is essential for capturing complex spatio-temporal dynamics in 
Wireless Mesh Networks and achieving the enhanced prediction accuracy of MeshHSTGT.

In summary, the parallel architecture of MeshHSTGT successfully mitigates feature entanglement while 
preserving the benefits of multi-domain modeling. The ablation studies, now supported by concrete performance 
data, quantitatively confirm the significant contributions of both the CCW-GCN for spatial feature extraction and 
the Adaptive Alignment Module for effective feature fusion. These components are key to the model’s superior 
prediction accuracy and robustness across all evaluated metrics and prediction horizons. This comprehensive 
analysis not only justifies our architectural choices but also provides valuable, data-driven insights for future 
research in network traffic prediction modeling.

Conclusion
In this paper, we propose MeshHSTGT, a novel feature re-extraction-based approach for Mesh network 
traffic prediction that effectively captures complex spatio-temporal dependencies in dynamic Mesh network 
environments. Unlike traditional cascading architectures that often suffer from feature entanglement, our 
model employs a hierarchical parallel structure for independent feature modeling across multiple dimensions. 
Specifically, MeshHSTGT integrates TimesNet for deep temporal sequence modeling, TE-GRU for short-term 
temporal correlation extraction, and CCW-GCN with channel capacity-weighted adjacency matrices for spatial 
dependency capture. The adaptive multi-domain feature alignment module further enhances the dynamic fusion 
of temporal, frequency, and topological domain features, ensuring both independent extraction and efficient 
collaboration of features.

Extensive experiments demonstrate that MeshHSTGT significantly outperforms state-of-the-art methods 
across short-term, medium-term, and long-term prediction scenarios, with particularly robust performance in 
complex dynamic environments. The experimental results show consistent improvements in prediction accuracy. 
Looking forward, MeshHSTGT shows promising potential for 6G applications, particularly in Industrial Internet 
of Things (IIoT), Extended Reality (XR), and integrated space-terrestrial networks. Future research directions 
include extending the model to real-time dynamic network management and exploring its integration with 
privacy-preserving federated learning frameworks for distributed network optimization.

Data availability
The dataset used in this study is currently not publicly available. Interested researchers may contact the corre-
sponding author Sunlei Qian (email: 1223013705@njupt.edu.cn) to request access. The data may be shared upon 
reasonable request and with permission from the laboratory.
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