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Contour error is a critical factor influencing machining quality. This paper proposes a combined contour 
error control method for five-axis machine tools based on digital twin. The proposed method combines 
pre-compensation implemented in digital twin with feedback control in the real-time controller. After 
obtaining the tool path input, the digital twin performs interpolation and applies model predictive pre-
compensation control to the interpolated commands to control modeled errors. The pre-compensated 
commands and interpolation data are sent to the real-time controller where contour error is estimated 
and controlled in each control cycle through feedback control to control unmodeled errors. Using the 
S-shaped curve as the test case, the maximum tool tip position contour error is reduced by 77.78%, 
with an average reduction of 83.90%. The maximum tool orientation contour error decreased by 
79.05%, with an average reduction of 86.66%. The experimental results demonstrate that the 
proposed method significantly reduces tool contour error.

Keywords  Contour error control, Digital twin, Model predictive pre-compensation control, Five-axis 
machine tool

Five-axis machine tools are widely used for machining complex parts. The limited dynamic bandwidth of servo 
axes leads to tracking errors during motion. These tracking errors are kinematically transferred to the tool of 
five-axis machine tools and result in tool deviations from the intended tool path. These deviations are defined 
as contour error.

Improving the bandwidth of each axis can reduce contour error indirectly but cannot address the dynamic 
performance mismatches between axes. Therefore, direct control of contour error is currently the focus of 
research, which can be divided into two directions: contour error estimation (CEE) and contour error control 
(CEC).

For CEE, since real-time controllers operate in discrete systems, discrete interpolation points are typically 
used to approximate the ideal curve for contour error estimation. Yang et al.1 proposed a fast iterative method that 
approximates the ideal contour as a straight line. Yang et al.2 used three interpolation points to fit an intended arc 
for calculating the contour error. Chen et al.3 conducted a comparative analysis of the computational efficiency 
of various approximation methods, including straight lines, arcs, and their linear combinations. Pi et al.4 used 
Ferguson curves to refit the interpolation points. Liu et al.5 proposed a CEE method based on Taylor series 
expansion and the Frenet-Serret frame to consider the effects of curvature and torsion. Yang et al.6 identified 
high-curvature regions and modified the contour error vector to avoid abrupt changes. Wang et al.7 proposed an 
iterative method with Aitken acceleration. Li et al.8 employed a moving window method to compare reference 
positions and search for the optimal solution. Ghaffari et al.9 proposed a dynamic CEE algorithm based on the 
Newton update algorithm.

For CEC, typical control methods include feedback control, pre-compensation control, and predictive 
control10. Control structures of these three methods are illustrated in Fig. 1.

Feedback control calculates the current contour error in each control cycle, decomposes the contour error 
into each axis, and compensates it by adjusting the control inputs of each axis in the next cycle. Lu et al.11 
designed a single-neuron adaptive cross-coupled controller, which dynamically adjusts its weights through 
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a single-neuron learning algorithm to enhance control precision. Zhao et al.12 proposed a controller that 
integrates feedforward, feedback, and cross-coupled control. Feedback control is simple to implement and can 
handle the effects of unknown disturbances. However, feedback control always lags the contour error. To address 
these limitations, researchers have investigated pre-compensation control. Pre-compensation control optimizes 
control commands in advance through simulation or modeling, enabling compensation before contour errors 
occur. Pre-compensation control does not rely on the real-time state of the system, so it can be completed in 
offline conditions. Xu et al.13 proposed a 1DCNN-BiLSTM-Attention model to predict and compensate contour 
errors. Wang et al.14 proposed an iterative pre-compensation method based on a predictive model. Xiao et al.15 
proposed a model predictive contour error pre-compensation method. Wang et al.16 analyzed the composition 
of contour errors in three-axis machine tools and designed a pre-compensation controller. Pi et al.17 further 
considered the influence of cutting force disturbances. Lyu et al.18 and Duong et al.19 achieved pre-compensation 
by offline adjustment of servo control gains. Although pre-compensation method can control contour error in 
advance, its effectiveness depends on the model accuracy which is not easy to fulfill. Recently, predictive control 

Fig. 1.  Three contour error control methods: (a) feedback control; (b) pre-compensation control; (c) predictive 
control.
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methods such as MPC20–22 and generalized predictive control (GPC)5,23 have been applied to contour error 
control. Based on the current state of the machine tool, predictive control solves multi-objective optimization 
problems by predicting future states over multiple steps, thereby obtaining the optimal control commands for 
the current cycle. Compared with pre-compensation control, predictive control compensates based on the 
system’s current actual state, so it can compensate for errors caused by unmodeled disturbances. Compared with 
feedback control, predictive control compensates through multi-step prediction and rolling optimization, so 
the compensation does not lag the occurrence of errors. However, predictive control involves numerous matrix 
calculations, which result in a significant computational load on the real-time controller. The application of 
MPC and GPC in contour error control is mainly focused on two-axis or three-axis platforms. Therefore, it is 
necessary to consider combining those methods to fully leverage the advantages of each.

As a digital mirror of the real world, digital twin technology has obtained significant attention in recent years24. 
Many scholars have explored the application of digital twin in CNC machine tools for commissioning25,26, virtual 
machining27,28, optimization29–32 and monitoring33,34. However, in the above research, digital twin primarily 
optimizes the machining process by adjusting feedrate override and few studies have explored combining digital 
twins with real-time controllers for contour error control. Digital twin can synchronously update with physical 
machine tools35,36 and handle greater computational loads through cloud computing service37, which meets 
the requirements of model precision and computation capability of MPC. Therefore, developing a combined 
contour error control method based on the digital twin effectively meets the requirements for both control 
accuracy and computational load.

This paper presents a combined contour error control method based on the digital twin. After obtaining 
the tool path input, the digital twin performs interpolation and applies model predictive pre-compensation 
control (MPCC) to the interpolated commands to control modeled errors. The pre-compensated commands and 
interpolation data are sent to the real-time controller which estimates and controls contour error in each control 
cycle by feedback control to control unmodeled errors.

The remaining sections of this paper are organized as follows: “Principle of proposed method” introduces 
the principle of the proposed method. Section “Digital twin for contour error control” describes the software 
architecture of the digital twin, as well as the servo dynamic model and the machine kinematics model. 
Section  “Combined contour error control method” presents the offline model predictive pre-compensation 
control and the online feedback control method. Finally, “Experiment” demonstrates the experimental results 
and discusses their implications.

Principle of proposed method
The combined contour error control method for five-axis machine tools based on digital twin is shown in Fig. 2. 
The contour error control is divided into two steps: offline pre-compensation implemented in the digital twin 
and online control executed in the real-time controller.

The NURBS toolpath and processing information generated by CAM are input into the digital twin. The 
NURBS direct interpolator of the digital twin processes the tool path to generate interpolation commands. 
Subsequently, the simulation module, which includes the machine tool kinematics model and servo dynamics 
model, executes simulations of the interpolation commands. Meanwhile, the pre-compensation module 
simultaneously compensates for the interpolation commands and ultimately generates the pre-compensated 
commands. Then the interpolation commands, the pre-compensated commands, and other required data are 
sent to the real-time controller via the Beckhoff Automation Device Specification (ADS) protocol.

In the real-time controller, the online controller estimates the contour error in each control cycle and 
generates compensation commands. The resulting commands are then transmitted via the industrial ethernet to 
the servo drives. The real-time data (axis position, axis velocity, axis current, etc.) sampled at each interpolation 
cycle is also transmitted to the digital twin adapter via EtherCAT and formatted into structured data. Then the 
formatted data is sent to the database as machining history data for storage via ethernet. The machine status data 
is transmitted to the digital twin monitoring module via ADS every 100 ms. The digital twin periodically reads 
machining historical data from the database, analyzes machining performance and updates simulation model 
parameters through parameter identification module. If the machining quality still fails to meet requirements, 
the feedrate and toolpath can be further optimized using methods from the reference30,38–40 to enhance the 
accuracy of subsequent machining processes.

Digital twin for contour error control
Architecture of the digital twin
The functional architecture of the digital twin developed in this paper is shown in Fig.  3. The software was 
developed using C + + on the Visual Studio 2019 platform, with the visualization interface implemented using 
Qt 5.

Servo dynamic model
Currently, the servo feed axis commonly employs proportional-proportional-integral (PPI) control. The control 
model of servo axis is illustrated in Fig. 4.

Where Kp is the proportional gain coefficient of the position loop. Kv is the proportional gain coefficient of 
the velocity loop. Kiv is the integral gain coefficient of the velocity loop. Kt is the torque constant of motor. Jm 
is the equivalent mass. Cm is the equivalent damping coefficient and rg is the transmission coefficient. Tload is 
the external load torque including Coulomb friction fc. pcmd is the command input position, pact is the actual 
response position, ω act is the actual angular velocity, oact is the output of the velocity loop integrator. Let the 
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state vector be x = [ pact ω act oact ]T, output vector be y = [pact], input vector be u = [pcmd] and 
disturbance vector be d = [Tload], the above system can be described as Eq. (1).

	

{
ẋ = Acx + Bcu + F cd

y = Cx � (1)

where

	
Ac =

[ 0 rg 0
− KpKvKt

Jm
− KvKt+Cm

Jm
Kt
Jm

−KpKiv −Kiv 0

]
, Bc =

[ 0
KpKvKt

Jm
KpKiv

]
, C = [ 1 0 0 ] , F c =

[ 0
− 1

Jm
0

]

Assuming that u and d remain constant in an interpolation cycle, the system described by Eq.  (1) can be 
discretized using a zero-order hold (ZOH). The resulting discrete system can be expressed as Eq. (2):

	

{
x (k + 1) = Ax (k) + Bu (k) + F d (k)

y (k) = Cx (k) � (2)

where

Fig. 2.  Schematic diagram of combined contour error method for five-axis machine tools based on digital 
twin.
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Fig. 4.  Servo dynamic model.

 

Fig. 3.  Architecture of the digital twin.
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A = eAcqTs , B =

(∫ Ts

0
eActdt

)
Bc, F =

(∫ Ts

0
eActdt

)
F c

The position loop proportional gain coefficient, velocity loop proportional gain coefficient, velocity loop integral 
gain coefficient, and torque constant in the above model can typically be obtained directly from the servo driver. 
Parameters such as mass, viscous friction, and Coulomb friction can be identified using the methods described 
in references4,41.

Machine tool kinematic model
As illustrated in Fig. 5, this paper uses an AC head-type CNC machine tool as an example. The forward and 
inverse kinematics transformations are established using the method described in reference42.

Let the tool tip coordinates be denoted as [ptx, pty, ptz]T, the tool orientation vector as [Oti, Otj , Otk]T. 
and servo axis coordinates as [pmx, pmy, pmz, pma, pmc]T The forward kinematics transformation is expressed 
in Eq. (3).

	





ptx = pmx − x0 + Lsinpmasinpmc

pty = pmy − y0 − Lsinpmacospmc

ptz = pmz − z0 + Lcospma

Oti = −sin (pma − a0) sin (pmc − c0)
Otj = sin (pma − a0) cos (pmc − c0)

Otk = −cos (pma − a0)

� (3)

where x0, y0, z0, a0, c0 are the zero offsets from the workpiece coordinate system (WCS) to the machine 
coordinate system (MCS). L is the tool length and in this paper L = 75 mm.

From Eq. (3), the inverse kinematics equations can be obtained as Eq. (4).

Fig. 5.  AC head-type motion platform.
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


pma = arccos (−Otk)
pmc = arctan

(
− Oti

Otj

)

pmx = ptx + x0 − Lsinpmasinpmc

pmy = pty + y0 + Lsinpmacospmc

pmz = ptz + z0 − Lcospma

� (4)

Combined contour error control method
Definition of contour error
As shown in Fig. 6, C (u) is the ideal tool tip position path, and P rt, Ort are the ideal interpolation tool tip 
position (TTP) and tool orientation (TORI) vectors. P at (k) , Oat (k) represent the actual TTP and TORI at 
the k-th cycle. The five-axis contour error encompasses both TTP error and TORI error. In current research, 
contour error is often defined as the shortest distance or normal distance from the actual position to the ideal 
trajectory. The point on the ideal trajectory closest to the actual position is identified as the foot point P f, with 
the corresponding tool orientation being Of. Considering computational stability and efficiency, this paper 
employs the iterative method proposed in reference1 to find P f.

Since the interpolation cycle is typically very short, the command trajectory between two adjacent 
interpolation points can be approximated as a straight line. At this time, P f lies on the line 

−−−−−−−−−−−−→
P rt (i − 1) P rt (i) 

formed by the two adjacent interpolation points P rt (i − 1) , P rt (i), and can be expressed as

	 P f = P rt (i − 1) − hi (P rt (i) − P rt (i − 1)) � (5)

where

Fig. 6.  Schematic diagram of contour error.
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hi =

−−−−−−−−−→
P rt (i − 1) P f

−−−−−−−−−−−−→
P rt (i − 1) P rt (i)

From the geometric relationship, it is known that 
−−−−−−−→
P at (k) P f ⊥

−−−−−−−−−−−−→
P rt (i − 1) P rt (i), i.e., (−−−−−−−→

P at (k) P f

)T
·

(−−−−−−−−−−−−→
P rt (i − 1) P rt (i)

)
= 0. Substituting into Eq. (5), we have

	 hi = − (P rt(i−1)−P at(k))T(P rt(i)−P rt(i−1))
(P rt(i)−P rt(i−1))T(P rt(i)−P rt(i−1)) � (6)

During the search process, the value of hi can be categorized into five cases, as illustrated in Fig.  7. When 
0 ≤ hi ≤ 1, it indicates that P f lies between P rt (i − 1) , P rt (i). If hi < 0 occurs, the search is restarted 

forward to determine whether P f is located between P rt (i − 2) , P rt (i − 1), and this iteration continues 
until the situations shown in Fig. 7(a) or (d) are satisfied. Conversely, if hi > 1, the search proceeds backward 
until the conditions shown in Fig. 7(a) or (e) are satisfied. The process can start from the current cycle command 
point and the previous cycle command point, P rt (k) and P rt (k − 1).

After identifying the interval where P f lies, the value of P f can be determined by Eq. (5). The tool orientation 
vector Of corresponding to P f can be obtained through spherical linear interpolation of the tool orientation at 
the two interpolation points in the interval, as shown in Eq. (7)

	 Of = sin((1−hi)θ )
sinθ

Ort (i − 1) + sin(hiθ )
sinθ

Ort (i) � (7)

where θ  is the angle between Ort (i − 1) and Ort (i).
After obtaining P f and Of, the TTP contour error and TORI contour error can be calculated by Eq. (8)

	

{
ε p = ∥P at − P f∥

ε o = arccos Of· Oat
∥Of∥· ∥Oat∥

� (8)

Contour error model predictive pre-compensation control
The principle of model predictive pre-compensation control is shown in Fig. 8. In the digital twin, the predictive 
controller reads the interpolation commands from the interpolator, optimizes axis commands via predictive 
control and then outputs the pre-compensated commands for the real-time controller.

As analyzed in the previous section, the tool contour error is not equivalent to the tool tracking error. It 
depends not only on the command point but also on the characteristics of the nearby curve. And calculating 
the contour error often requires information from several adjacent command points and iterative computations, 
making it impossible to express it as a linear combination of the position of each axis. However, since the tool 
command posture must lie on the ideal contour, the tracking error of the current point P at (k) relative to its 
corresponding command point P rt (k) serves as the upper bound of its contour error. Therefore, reducing the 
tool tracking error remains beneficial for minimizing the tool contour error. Additionally, the tool tracking error 
can be conveniently linearized to facilitate pre-compensation control.

Fig. 7.  Different situations when searching for the foot point.
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Assuming that the disturbance changes slowly compared to the sampling 
control cycle, the incremental form can be used to eliminate its influence. Define 
∆ uq (k) = uq (k) − uq (k − 1) , ∆ xq (k) = xq (k) − xq (k − 1) , ∆ yq (k) = yq (k) − yq (k − 1) , (q = X, Y, Z, A, C). 
T﻿hen Eq. (2) can be written as Eq. (9):

	

{
∆ xq (k + 1) = Aq∆ xq (k) + Bq∆ uq (k)

∆ yq (k) = Cq∆ xq (k) � (9)

For a machine tool with five coordinate axes(X/Y/Z/A/C), let its state be xm =
[
xT

X xT
Y xT

Z xT
A xT

C

]T
, 

the output be the positions of each coordinate axis, i.e., ym =
[
yT

X yT
Y yT

Z yT
A yT

C

]T, and the input be the 

command positions of each axis, i.e., um =
[
uT

X uT
Y uT

Z uT
A uT

C

]T. Then, expressing the machine state in 
incremental form, we have

	

{
∆ xm (k + 1) = Am∆ xm (k) + Bm∆ um (k)

∆ ym (k) = Cm∆ xm (k) � (10)

where

Fig. 8.  Principle of model predictive pre-compensation control.
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	 Am = diag (AX , AY , AZ , AA, AC)

	 Bm = diag (BX , BY , BZ , BA, BC)

	 Cm = diag (CX , CY , CZ , CA, CC)

Since the rotational axes generally rotate at a slower speed, it is assumed that the angular increment within an 
interpolation cycle is very small. Under this assumption, the approximations sin (θ + ∆ θ ) ≈ sinθ + ∆ θ cosθ  
and cos (θ + ∆ θ ) = cosθ − ∆ θ sinθ  can be applied. Taking ptx in Eq. (3) as an example, we obtain

	
∆ ptx (k) ≈ ptx (k) − ptx (k − 1) = ∆ pmx + L (sin (pma + ∆ pma) sin (pmc + ∆ pmc) − sinpmasinpmc)

= ∆ pmx + L (∆ pmacospmasinpmc + ∆ pmcsinpmacospmc + ∆ pma∆ pmccospmacospmc) # � (11)

Since the angular increment is very small, ∆ pma∆ pmc can be regarded as higher-order infinitesimal quantities 
relative to the angular increment. Therefore, Eq. (11) can be approximated as Eq. (12).

	 ∆ ptx (k) ≈ ∆ pmx + L (∆ pmacospmasinpmc + ∆ pmcsinpmacospmc) � (12)

Equation (3) can be approximated and expressed in incremental form as shown in Eq. (13).

	




∆ ptx = ∆ pmx + L (∆ pmacospmasinpmc + ∆ pmcsinpmacospmc)
∆ pty = ∆ pmx − L (∆ pmacospmacospmc − ∆ pmcsinpmasinpmc)

∆ ptz = ∆ pmz − L∆ pmasinpma

∆ Oti = −∆ pmacospmasinpmc − ∆ pmcsinpmacospmc

∆ Otj = ∆ pmacospmacospmc − ∆ pmcsinpmasinpmc

∆ Otk = ∆ pmasinpma

� (13)

Equation (13) can be written as Eq. (14):

	

∆ yt =




∆ ptx

∆ pty

∆ ptz

∆ Oti

∆ Otj

∆ Otk


 =

[
I3× 3 −LT R
03× 3 T R

]



∆ pmx

∆ pmy

∆ pmz

∆ pma

∆ pmc


 = Ct∆ xm � (14)

where

	
T R =

[
−cospmasinpmc −sinpmacospmc

cospmacospmc −sinpmasinpmc

sinpma 0

]

Then the incremental form of the system can be written as Eq. (15).

	

{
∆ xm (k + 1) = Am∆ xm (k) + Bm∆ um (k)

∆ ym (k) = Cm∆ xm (k)
∆ yt (k) = Ct∆ xm (k)

� (15)

This paper employs MPC method to implement pre-compensation control. By looking ahead N steps and using 
the incremental form, the system state can be expressed as Eq. (16).

	




∆ xm (k + 1) = Am∆ xm (k) + Bm∆ um (k)
∆ xm (k + 2) = A2

m∆ xm (k) + AmBm∆ um (k) + Bm∆ um (k + 1)
...

∆ xm (k + N) = AN
m∆ xm (k) + AN−1

m Bm∆ um (k) + · · ·
+AmBm∆ um (k + N − 2) + Bm∆ um (k + N − 1)

� (16)

Let the N-step ahead prediction state be defined as 
Xm (k + N) =

[
xT

m (k + 1) xT
m (k + 2) · · · xT

m (k + M)
]T

, and the N-step ahead control 
command as Um (k + N) =

[
uT

m (k + 1) uT
m (k + 2) · · · uT

m (k + M)
]T. Then we have

	 ∆ Xm (k + N) = Afx∆ xm (k) + Bfx∆ Um (k + N) � (17)

where

	

Afx =




Am
A2

m
...

AN
m


 , Bfx =




Bm 0 · · · 0
AmBm + Bm Bm · · · 0

...
...

. . .
...∑

N−1
i=0 Ai

mBm
∑

N−2
i=0 Ai

mBm · · · Bm




Scientific Reports |        (2025) 15:17809 10| https://doi.org/10.1038/s41598-025-02047-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The N-step ahead output incremental state can be described as Eq. (18):

	

{
∆ Y m (k + N) = Afy∆ xm (k) + Bfy∆ Um (k + N)
∆ Y t (k + N) = Aft∆ xm (k) + Bft∆ Um (k + N) � (18)

where

	

Afy =




CmAm
CmA2

m
...

CmAN
m


 , Bfx =




CmBm 0 · · · 0
CmAmBm + CmBm CmBm · · · 0

...
...

. . .
...∑

N−1
i=0 CmAi

mBm
∑

N−2
i=0 CmAi

mBm · · · CmBm




	

Aft =




CtAm
CtA

2
m

...
CtA

N
m


 , Bft =




CtBm 0 · · · 0
CtAmBm + CtBm CtBm · · · 0

...
...

. . .
...∑

N−1
i=0 CtA

i
mBm

∑
N−2
i=0 CtA

i
mBm · · · CtBm




The N-step ahead output states are:

	

{
ym (k + j) = ym (k) +

∑ j
i=1∆ ym (k + i)

yt (k + j) = yt (k) +
∑ j

i=1∆ yt (k + i) � (19)

Therefore, we have

	

{
Y m (k + N) = Hmym (k) + AFy∆ xm (k) + BFy∆ Um (k + N)

Y t (k + N) = Htyt (k) + AFt∆ xm (k) + BFt∆ Um (k + N) � (20)

where

	 {Hm}5N× 5N = diag (I5× 5, I5× 5, · · · , I5× 5) , {Ht}6N× 6N = diag (I6× 6, I6× 6, · · · , I6× 6)

	

AFy =




CmAm
CmA2

m + CmAm
...∑

N
i=1CmAi

m


 , BFy =




CmBm 0 · · · 0
CmAmBm + CmBm CmBm · · · 0

...
...

. . .
...∑

N−1
i=1 CmAi

mBm
∑

N−2
i=1 CmAi

mBm · · · CmBm




	

AFt =




CtAm
CtA

2
m + CtAm

...∑
N
i=1CtA

i
m


 , BFt =




CtBm 0 · · · 0
CtAmBm + CtBm CtBm · · · 0

...
...

. . .
...∑

N−1
i=1 CtA

i
mBm

∑
N−2
i=1 CtA

i
mBm · · · CtBm




Define pre-compensation increment v(k)5N× 1, the final reference command is defined as 
ur (k) = um (k) + v (k). Equation (20) can be rewritten as:

	

{
Y m (k + N) = Hmym (k) + AFy∆ xm (k) + BFy∆ Um (k + N) + BFyV (k + N)

Y t (k + N) = Htyt (k) + AFt∆ xm (k) + BFt∆ Um (k + N) + BFyV (k + N) � (21)

where V (k + N) =
[

vT (k) vT(k + 1) · · · vT(k + N)
]T

Let the desired positions of each axis and the desired tool posture be denoted as Y mr (k + N) , Y mt (k + N), 
respectively. The cost function is taken as

	

J = [Ymr (k + M) − Ym (k + M)]TQm [Ymr (k + M) − Ym (k + M)]︸ ︷︷ ︸
axis tracking error

+ [Ytr (k + M) − Yt (k + M)]TQt [Ytr (k + M) − Yt (k + M)]︸ ︷︷ ︸
tool tracking error

+ ∆V T (k) Qu∆V (k)︸ ︷︷ ︸
pre−compensation increment

� (22)

where {Qm}5N× 5N , {Qt}6N× 6N , {Qu}5N× 5N  are weight matrices. The diagonal elements of these matrices 
represent the weights assigned to each predicted quantity, all of which are real numbers greater than 0, while the 
off-diagonal elements are set to 0.

Equation (22) indicates that the cost function incorporates the tracking errors of each axis, the tool tracking 
errors, and the pre-compensation increment. The next step involves determining its minimum value.

Let
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	 Em (k) = Y mr (k + M) − Hmym (k) − AFy∆ xm (k) − BFy∆ Um (k + N)

	 Et (k) = Y tr (k + M) − Htyt (k) − AFt∆ xm (k) − BFt∆ Um(k + N)

Taking the derivative of Eq. (22), we have

	
∂ J

∂ V (k) = −2BT
y Qm [Em − By∆ U (k)] − 2BT

ytQt [Et (k) − Byt∆ U (k)] + 2QuV (k) � (23)

Let ∂ J/∂ V = 0, we have

	 V (k) =
(
BT

y QmBy + BT
ytQtByt + Qu

)−1 [
BT

y QmEm + BT
ytQtEt (k)

]
� (24)

In each cycle, only the first set of commands in V (k) is taken as the output for the current cycle. Therefore, the 
final reference command for this cycle is

	 ur (k) = um (k − 1) + ∆ um (k) + v (k) � (25)

where

	 v (k) = [ I5× 5 05× 5(N−1) ]5× 5N V (k)

Contour error online feedback control
After obtaining the pre-compensation command, this paper further designs an online contour error 
feedback controller to achieve more precise control of contour error. In the real-time controller, the foot 
point can be located using the contour error calculation method described earlier. Once the tool position 
and orientation at the foot point, P f and Of, are obtained, the corresponding positions of each axis can be 
determined through inverse kinematics using Eq. (4). The difference between these positions and the current 
axis coordinates yields the components of the contour error projected onto each servo axis, denoted as 
ϵ m = [ ϵ x ϵ y ϵ z ϵ a ϵ c ]T.

This component is utilized as the compensation amount ∆ ue. To prevent system oscillation, a gain coefficient 
Kce is introduced, and a limiter is applied to ensure system stability. The final reference control increment is:

	
∆ urq (k) =

{
−∆ umaxq, Kce∆ ueq (k) < −∆ umaxq

Kce∆ ueq (k) , −∆ umaxq ≤ Kce∆ ueq (k) ≤ ∆ umaxq

∆ umaxq, Kce∆ ueq (k) > −∆ umaxq

, q = X, Y, Z, A, C � (26)

The principle of online feedback control is shown in Fig. 9:

Experiment
To validate the method proposed in this paper, an experimental system was constructed, as illustrated in Fig. 10. 
The system includes a five-axis motion platform, a real-time controller, and a digital twin. The control system 
of this platform is developed by TwinCAT 3 and runs on a Windows 7 industrial computer with an Intel® Core™ 
i7-6700 CPU @ 3.40 GHz. And the control cycle sets to 2ms.The digital twin platform runs on a workstation with 
Windows 11, powered by an Intel® Core™ i9-12900 CPU @ 2.40 GHz.

The model parameters of the five-axis motion control platform are shown in Table 1:
This paper adopts an S-shaped curve as the input curve as depicted in Fig. 11. And the curve information is 

shown in Appendix A, Table A1.The interpolator and the velocity, acceleration, and jerk constraints for each axis 
are configured according to the settings described in reference43. The feedrate is set to 50 mm/s. The interpolation 
results are illustrated in Figs. 12 and 13.

As indicated in reference44, the MPCC prediction control cycle should exceed the system time constant to 
achieve optimal control performance. Therefore, in the offline MPCC stage, the prediction step length is set to 
N = 10, Qm = 5I50× 50, Qt = 5I60× 60, Qu = I60× 60. For online control ∆ umaxq  is set to 0.02 mm (or 
rad). The linear encoder resolution of X, Y and Z are both 0.1 μm while the rotator encoder resolution of A and 
C are 220 pulses/rev and 217 pulses/rev. The sampling period is 0.002 s.

To verify the effectiveness of the control methods and the impact of the online feedback control gain Kce on 
the control results, the following groups of experiments are compared: (1) no compensation is performed (case 
1); (2) only MPCC (case 2); (3) MPCC and online feedback control with Kce = 0.1(case 3) ; (4) MPCC and 
online feedback control with Kce = 0.2( case 4); (5) MPCC and online feedback control with Kce = 0.25( case 
5); (6) MPCC and online feedback control with Kce = 0.3( case 6). The final tool positions and orientations of 
those cases are shown in Fig. 14.

The tool tracking error is presented in Table 2; Fig. 15. Here, the TTP tracking error and TORI tracking error 
are defined according to Eq. (8), with the foot point replaced by the command of the current cycle.

It can be observed that after pre-compensation, the tool tracking error of case 2 is significantly reduced than 
case 1, which achieves the goal of pre-compensation. However, since online feedback control does not account 
for tool tracking errors, no further improvement in tool tracking error is observed in case 3 – case 6. In terms of 
average TORI tracking error, case 3 – case 6 have a slight increment compared to case 2. This situation is caused 
by the different objectives of contour error control and tracking error control. If the dynamic performance of 
a certain axis is poor, tracking error control will not adjust the response of other axes. However, contour error 
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control will adjust the response of other axes to minimize the contour error, such as reducing the speed of other 
axes, which may result in a larger tracking error. Considering that tool contour error is a more effective indicator 
of machining quality, the slight increase in the average tool orientation tracking error is considered acceptable.

The contour error is illustrated in Fig.  16; Table  3. Compared to case 1, pre-compensation significantly 
reduces TTP contour error and TORI contour error. Specifically, the maximum TTP error is reduced by 72.71%, 
and its average value is reduced by 80.00%. Similarly, the maximum TORI error is reduced by 74.95%, and its 
average value is reduced by 83.43%.

Compared to the results of case 2, online control can further reduce the contour error. As Kce  increases, the 
contour error control effect improves. However, when Kce   is set to 0.3, the system oscillates. Therefore, in this 
experiment, Kce  = 0.25 (case 5) is more reasonable. The maximum TTP error of case 5 is reduced by 18.58% 
compared to case 2, and its average value is reduced by 19.48%. The maximum TORI error is reduced by 16.37%, 
and its average value is reduced by 19.47%. Using this combined method, compared to the uncompensated 
scenario, the maximum TTP error is reduced by 77.78%, its average value is reduced by 83.90%, the maximum 
TORI error is reduced by 79.05%, and its average value is reduced by 86.66%. These results demonstrate that the 
method proposed in this paper effectively reduces contour error. Meanwhile, the iterations required to calculate 
the contour error are reduced after MPCC, as shown in Table  4. It indicates that pre-compensation control 

Fig. 9.  Schematic diagram of the contour error online feedback control.
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Fig. 11.  S-shaped curve: (a) Tool tip position trajectory; (b) Tool orientation trajectory.

 

X Y Z A C

Kp (1/s, rad/ (s · m)) 30.9370 131.985 13,801 47.8374 36.9471

Kv (As/m, As/rad) 39.8174 59.8906 0.4083 0.0180 3.3242

Kiv (A/m, A/rad) 6910.4 2506.1 1.2443 0.2249 84.5827

Kt (N/A, N · m/A) 48.6 48.6 0.508 0.357 0.386

rg (m, 1) 1 1 0.01 1 1

Jm

(
kg, kg · m2

)
75.382 29.754 7.8262 × 10− 4 3.1742 × 10− 4 0.022757

Cm (N · s/m) 70.6892 11.2025 0.0053 3.0655 × 10− 4 0.2574

fc (N, N · m) 59.6729 22.6970 0.2372 1.2790 × 10− 4 0.0903

Table 1.  Parameters of the five-axis motion platform.

 

Fig. 10.  Experimental equipment.
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can provide a better basis for online control, effectively reducing the computational load of online control and 
enhancing the applicability of the control system.

Conclusion
Digital twin has garnered significant attention from both academia and industry. This paper proposes a combined 
contour error control method for five-axis machine tools based on digital twin. The digital twin established in 
this paper includes NURBS interpolator, machine kinematic model and servo dynamic model. When get tool 
path as input, the digital twin process interpolation and model predictive pre-compensation control, generating 
the pre-compensated command to reduce modeled error. The pre-compensated command with interpolated 
command and other required commands are sent to the real-time controller. An online feedback control is 
designed to reduce the unmodeled error. Using the S-shaped curve as an example, the method proposed in this 
paper reduces the maximum tool tip position contour error by 77.78% and its average value by 83.90%. Similarly, 
the maximum tool orientation contour error is reduced by 79.05%, and its average value is reduced by 86.66%. 
Additionally, real-time data (axis position, axis velocity, axis current, etc.) is also transmitted to the digital 
twin for analyzing machining performance and updating simulation model parameters. For situations where 
precision requirements are not met, the digital twin can adjust the feedrate during subsequent machining to 
achieve an overall closed-loop optimization. In this study, a smaller proportional gain was employed to prevent 
system oscillation, which somewhat limited the effectiveness of online control. Future research could explore 
more robust online control methods. Furthermore, future work could integrate tool path planning and speed 
planning into the digital twin closed-loop optimization framework to further enhance performance. Meanwhile, 
considering cutting force during the MPCC stage can enhance contour error control during actual machining 
and improve machining accuracy.

Fig. 12.  Digital twin interpolation positions: (a) X-axis; (b) Y-axis; (c) Z-axis; (d) A-axis; (e) C-axis.
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Fig. 13.  Digital twin interpolation velocities: (a) tool tip position feedrate; (b) X-axis velocity; (c) Y-axis 
velocity; (d) Z-axis velocity; (e) A-axis velocity; (f) C-axis velocity.
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Tool tip 
position 
tracking 
error(mm)

Tool 
orientation 
tracking 
error (mrad)

Max Mean Max Mean

Case 1 0.8258 0.4642 8.4 1.8703

Case 2 0.2337 0.1249 2.1 0.296

Case 3 0.2334 0.1247 2.109 0.2988

Case 4 0.2330 0.1248 2.089 0.2990

Case 5 0.2331 0.1248 2.082 0.2990

Case 6 0.2234 0.1248 2.073 0.2994

Table 2.  Tool tracking error under different cases.

 

Fig. 14.  Experiment results of tool tip position and tool orientation: (a) tool tip position; (b) partial 
enlargement of tool tip position; (c) tool orientation; (d) partial enlargement of tool orientation.
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Fig. 15.  Tool tracking error under different cases: (a) Tool tip position tracking error; (b) partial enlargement 
of tool tip position tracking error; (c) Tool orientation tracking error; (d) partial enlargement of tool 
orientation tracking error.
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Fig. 16.  Tool contour error under different cases: (a) tool tip position contour error; (b–d) partial enlargement 
of tool tip position contour error; (e) tool orientation contour error; (f–h) partial enlargement of tool 
orientation contour error.
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Data availability
The datasets used or analyzed during the current study are available from the corresponding author on reason-
able request.
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