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Driver drowsiness is a leading cause of road accidents, resulting in significant societal, economic, and 
emotional losses. This paper introduces a novel and robust deep learning-based framework for real-
time driver drowsiness detection, leveraging state-of-the-art transformer architectures and transfer 
learning models to achieve unprecedented accuracy and reliability. The proposed methodology 
addresses key challenges in drowsiness detection by integrating advanced data preprocessing 
techniques, including image normalization, augmentation, and region-of-interest selection using 
Haar Cascade classifiers. We employ the MRL Eye Dataset to classify eye states into “Open-Eyes” and 
“Close-Eyes,” evaluating a range of models, including Vision Transformer (ViT), Swin Transformer, and 
fine-tuned transfer learning models such as VGG19, DenseNet169, ResNet50V2, InceptionResNetV2, 
InceptionV3, and MobileNet. The ViT and Swin Transformer models achieved groundbreaking accuracy 
rates of 99.15% and 99.03%, respectively, outperforming all other models in precision, recall, and 
F1-score. To ensure the generalization and robustness of the proposed models, we also evaluate 
their performance on the NTHU-DDD and CEW datasets, which provide diverse real-world scenarios 
and challenging conditions. This represents a significant advancement over existing methods, 
demonstrating the effectiveness of transformer-based architectures in capturing complex spatial 
dependencies and extracting relevant features for drowsiness detection. The proposed system also 
incorporates a real-time drowsiness scoring mechanism, which triggers alarms when prolonged eye 
closure is detected, ensuring timely intervention to prevent accidents. A key novelty of this work lies 
in the integration of Class Activation Mapping (CAM) for enhanced model interpretability, allowing 
the system to focus on critical eye regions and improve decision-making transparency. The system 
was rigorously tested under varying lighting conditions and scenarios involving glasses, showcasing 
its robustness and adaptability for real-world deployment. By combining cutting-edge deep learning 
techniques with real-time processing capabilities, this research offers a contactless, reliable, and 
efficient solution for driver drowsiness detection, significantly contributing to improved road safety 
and accident prevention. The proposed framework sets a new benchmark in drowsiness detection, 
highlighting its potential for widespread adoption in advanced driver assistance systems.

In the modern era, based on our ways of living, constant tiredness is more common than it has ever been. Today, 
an individual sleeps 20 percent less than what was normal a hundred years ago1. This remains a primary cause for 
the decline of performance across various tasks in daily life. Subsequently, this leads to people being less focused 
when engaging in simple activities. This does not change when it comes to driving. A driver who is exhausted 
suffers a great deal when it comes to performance, and this decline is even more pronounced in the absence of 
proper sleep. A person who does not want to suffer the negative consequences of being excessively tired simply 
needs to get sufficient sleep. For a healthy human adult, the average number of hours of recommended sleep is 
around 7 hours, but currently, 1 in 3 adults suffer from deprivation of this amount of sleep2. This is caused by 
the nature of today’s lifestyle. Most of these consequences stem from being excessively drowsy, and hence road 
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accidents have seen an upward spike recently3. The aftermath of these accidents incurs a diverse range of societal, 
economic, and emotional losses.

From 2000 to 2016, the case fatality rate and human losses due to road accidents in China increased by 19.0% 
and 63.7%, respectively4. A 2002 survey in Ontario, Canada, showed that more than 58% of the 750 respondents 
confessed to driving while fatigued, with 14.5% of them dozing off at the wheel5. The economic costs linked to 
drowsy driving was estimated at $12.4 billion in a single year6. Recognition of these facts is the reason why it is 
recommended to put in place strategies that will guarantee traffic safety. Certain businesses such as Mercedes-
Benz, Tesla, and others provide a variety of driver assistance systems7,8. For instance, automatic brakes, cruise 
control, lane change warning, assisted steering, and many others. This has greatly assisted in preventing road 
accidents and saving innocent lives. Nevertheless, the potential of a driver feeling drowsy or fatigued without any 
standard means of assessment poses a threat to safety on the road. Fatigue, often characterized by diminished 
alertness and slower reaction times, plays a critical role in the onset of drowsy driving and has been linked to 
increased accident risk. The brain activity patterns offer valuable physiological indicators of fatigue, reinforcing 
the importance of accurate detection in preventing accidents9.

For the successful averting of road accidents, detection of drowsiness is a fundamental need. So we were 
looking to figure out how to come up with a program that could guess when the driver was going to feel drowsy 
and notify him beforehand to avert a serious incident on the road. In working toward this goal, we need to keep 
track of the driver’s face and search for clues that may suggest that he is dozing off. To solve this problem, we 
applied deep learning methods, which are explained in the following sections.

To effectively detect and prevent drowsy driving, different approaches have been devised targeting and 
measuring driver performance, behavior, and physiological state. These approaches can typically be classified into 
biological, image or video-based, vehicle-based, and hybrid measurements. Each type captures signs of fatigue 
physiologically and behaviorally, as well as through vehicle dynamics, using internal and external measures. 
Different associations of each measurement type is provided in Table 1 and their definitions, representative 
examples, advantages, and limitations summarized. This type of classification illustrates the broad multi-
dimensional driver drowsiness detection systems and methods currently available, just as much as it explains the 
ease with which systems can be developed or integrated within existing frameworks designed for future research 
and application.

Recent advances in driver drowsiness detection have shifted from heuristic-based methods (e.g., PERCLOS, 
eye aspect ratio) to deep learning models, particularly CNNs like VGG16 and ResNet, which achieve 92–97% 
accuracy on benchmark datasets10,11. However, these models struggle with long-range spatial dependencies 
in facial features (e.g., subtle eyelid movements during micro-sleeps) due to their localized receptive fields. 
Transformers, with their self-attention mechanisms, address this by capturing global context-a critical advantage 
for drowsiness detection where holistic facial cues (e.g., brow furrowing, slow blinks) are as informative as 
local eye states. Despite their success in NLP and image classification, transformer-based drowsiness detection 
remains underexplored, with only preliminary studies like12 reporting ViT adaptations for this task. Our work 
bridges this gap by rigorously evaluating ViT and Swin Transformer architectures against state-of-the-art CNNs, 
demonstrating that transformers outperform CNNs not only in accuracy (99.15% vs. 98.7% for VGG19) but 
also in robustness to lighting variations. Unlike prior CNN-based systems13–18, our framework integrates Class 
Activation Mapping (CAM) to visually justify predictions-a critical step for real-world deployment where false 
alarms risk user distrust. Transformers excel in drowsiness detection due to their ability to model relationships 
between distant facial regions (e.g., correlating yawning with prolonged eye closure) via self-attention. This 
contrasts with CNNs, which require deeper architectures to achieve similar context awareness, often at the cost 
of computational efficiency. Our Swin Transformer variant further optimizes this by hierarchically processing 
windows of attention, reducing latency for real-time use.

This paper aims to develop a robust eye states classification of Open-Eyes and Close-Eyes based on a deep 
learning framework using the MRL dataset and deploy the best-performing model for real feedback accurate 
eye states. The proposed methodology incorporates a set sequence of steps starting with data preparation which 
involves adjusting the image size, normalization, and augmentation. Several deep learning practices are used 
which include transformer-based models such as Vision Transformer (ViT) and Swin Transformer, and for 
transfer learning, models such as VGG19, Attention VGG19, DenseNet169, ResNet50V2, InceptionResNetV2, 
InceptionV3, and MobileNet. From a set of specific criteria such as accuracy, precision, recall and F1-score, 
the best-performing model is selected after training and evaluation. The determined model is then fitted into 

Measurement type Definition Examples Advantages Limitations

Biological 
measurements

Use physiological signals to assess 
driver’s internal state and fatigue levels

Brain Signal, Respiratory Signal, 
Heart Signal, Skin Signal, eye 
signal

High accuracy in detecting true 
drowsiness; real-time monitoring of body 
functions

Intrusive; requires wearable 
sensors; may cause discomfort or 
distraction

Image-/video-based 
measurements

Analyze driver’s facial features and 
head posture via camera input

Eye, Mouth, Head, Hybrid (Eye, 
Mouth, Head)

Non-intrusive; cost-effective; compatible 
with deep learning and computer vision 
methods

Sensitive to lighting, occlusion, 
and sunglasses; high 
computational cost

Vehicle-based 
measurements

Derive behavioral data from vehicle 
dynamics and driver interaction Steering Wheel, Lane Deviation Non-intrusive; utilizes existing vehicle 

systems; no need for driver contact
Indirect measurement; affected by 
road conditions and driving style

Hybrid measurements Combine two or more types to increase 
detection accuracy

Vehicle & Image, Biological & 
Image, Vehicle & Biological, 
Vehicle, Image & biological

Robust and reliable; complements 
strengths of individual methods

Complex system integration; 
increased cost and processing 
requirements

Table 1.  Overview of driver drowsiness detection measurement types.

 

Scientific Reports |        (2025) 15:17493 2| https://doi.org/10.1038/s41598-025-02111-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


a system that allows feeding real-time processed video frames that apply Haar Cascade classifiers to locate the 
face and the eyes of the driver, and subsequently, observe the position of the driver’s eyes in order to detect 
whether he or she is drowsy. An alarm is issued to the driver if a significant period of time is spent with the 
eyes closed. By leveraging state-of-the-art deep learning models and real-time processing techniques, this study 
provides a reliable and effective approach for driver drowsiness detection, contributing to improved road safety 
and accident prevention.

The key contributions of this work are as follows:

•	 Extensive model assessment: We performed model assessments utilizing various types of deep learning mod-
els which include transformer techniques and transfer learning algorithms for identifying Open-Eyes and 
Close-Eyes images from the MRL dataset.

•	 Optimized drowsiness detection pipeline: The drowsiness detection system has been enhanced whereby it 
now involves a sequence of activities such as data preparation, evaluation of the performance of the model, 
and visualization using Class Activation Mapping (CAM) for interpretability.

•	 Real-time implementation: A real-world setting where the optimal proposed model trained is used, the sys-
tem uses a face and eye tracker that has an active score keeper to monitor the environment and sound alarms 
when people are drowsy.

•	 Enhanced road safety: It’s a contactless technology that can be deployed in-car driver assisting tools so that 
fatigue or drowsy driving can be decreased and accidents reduced.

The rest of the paper is structured as follows: In “Literature review” section, present a critical appraisal of related 
works. In “Proposed methodology” section, we discuss the methodology proposed. “Experiments and results” 
section presents the experimental results. “Comparative study” section presents the comprehensive study. In 
“Discussion” section, the discussion is presented. “Conclusion and future directions” section: concludes this 
paper.

Literature review
Some researchers have worked on real-time eye state recognition systems that can be used in embedded 
devices with limited resources. In this respect, the authors in19 discuss the application of eye tracking data as an 
unobtrusive measure of driver behavior for detecting drowsiness. Tracking of eye movements was carried out 
for 53 participants in a driving simulation task, while channels of multichannel electroencephalogram (EEG) 
were obtained as baselines. Vigilance states are phase classified using a random forest (RF), and a binary classifier 
based on a nonlinear support vector machine (SVM). The extraction of features was done for various lengths of 
eye movement tracking epochs, and the assessment of each classifier was done for each epoch length. The RF 
classifier provided high accuracy irrespective of the epoch lengths ranging from 88.37% to 91.18%. The SVM 
classifier remained inferior with an accuracy of 77.12% to 82.62% at all epoch lengths.

DriCare is a system introduced by authors in20 which utilizes video images to detect the fatigue of drivers 
without the necessity to connect any devices to them. It uses yawning, blinking and the duration of eye closure 
as cues. The authors present a new tactic targeting the problems that previous algorithms exhibited, face tracking 
for increasing the tracking precision. Moreover, he introduces a new approach for detecting facial regions 
corresponding to 68 major facial characteristics. These regions are then utilized to evaluate the state of the driver. 
DriCare is able to warn a driver with a system message if there are features detected in the mouth or eyes that 
could indicate fatigue. DriCare gets a value of 92% directly according to published experimental results.

The authors in21 detailed the creation of an inexpensive portable apparatus that would evaluate the drowsiness 
level of a driver. This device is composed of an IR illuminator and a camera that sends the image to a Raspberry 
Pi 3 Model B. This configuration allows for a system that is less sensitive to changes in environmental light and 
vision blockage. The processing model takes upper face and oral movements into account (PERCLOS, ECD, and 
AOT) and establishes three levels of drowsiness based on fuzzy problems (Low-Normal State, Medium-Drowsy 
State, and High-Severe Drowsiness State). Two different methods of face feature recognition were tested: a facial 
cascade classifier with haar like filter features and a linear support vector machine SVM with HOG features.

A new suggestion regarding advanced facial thermal imaging technology able to analyze drivers’ respiration 
without any physical interaction is discussed in this paper22. During a car simulator experiment with thirty 
participants, respiration signals were gathered when participants were encouraged to gradually get sleepier. 
Time ratios regarding emblems of inspiration to expiration and mean values along with rate standard deviations 
in respiration cycled were averaged from the signals. We applied the Svm and KNN classifiers for detecting 
when an individual was drowsy or asleep. The proposed method was utilized alongside the Observer Rating 
of Drowsiness approach to grade the sleepiness levels of individuals. The k-fold and confusion matrix cross 
validation approaches were evaluated to understand better the classifiers and predictions regarding napping. 
These techniques gave an accuracy of up to 90% in detecting drowsiness, 92% in capturing the soundness, 85% 
in identifying the more specific explains, and 91% in well calculated measurement fulfilling the requirements of 
this study.

In23 authors provide a novel approach to the issue of driver drowsiness while behind the steering wheel using 
a system that is able to accurately identify drowsiness. In this system, Convolutional Neural Networks (CNN) 
are utilized in real time to ensure a higher degree accuracy while detecting the tendency of a driver to fall asleep. 
To classify the status of the eye, three networks were proposed, one of which is a Fully Designed Neural Network 
(FD-NN), and the other two are TL-VGG, which is solely Transfer Learning with VGG16 and VGG19 and has 
additional layers fused with them.

The authors in24 put forward the proposal of creating a system of real-time monitoring such as a webcam 
that detects drowsiness without pores physically interfacing the eyes such as an electrooculogram while ML and 
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computer vision, which are more cost-effective, were employed. Automated alertness monitoring is essential for 
reducing the chances of human error, and the methodology being proposed employs drowsiness rules based 
on blink patterns sourced from neuroscience literature, this approach in neuro-physics, The Model exhibited 
tolerable behavior by not issuing alarms when participants were awake, and significantly flared up by issuing an 
average of 16.1 alarms for drowsy subjects, thus achieving an impressive accuracy of 94.44%.

The authors have developed a set of learning techniques that help in recognizing that a particular driver is 
drowsy and which are discussed in10. The deep learning models integrated into the system include but are not 
limited to: VGG-FaceNet, FlowImageNet, ResNet and AlexNet, where their primary function is analyzing video 
feed of the driver in order to ascertain if he is exhibiting the necessary signs. The entire system relies on a range of 
nodal features, head movements, gestures, behavior and facial expressions. For instance, AlexNet was integrated 
specifically for focusing fitting on sight ranges like indoor as well as outdoor. VGG-FaceNet transmits gender 
or ethnicity-related features while FlowImageNet interprets behavioral patterns and headturns, and ResNet 
discriminates hand motions. The enhanced hand motions recognition is a crucial aspect of the total system 
performance. These structures divide the recognized features into four groups: active normal state, yawning 
with blinking of eyes, clenching counterpart teeth, and nodding. With a real-time accuracy of 85%, the system is 
effective in detecting drowsiness in real time.

The authors in25 suggest a vision-based solution that applies an ensemble of two lightweight CNNs, each of 
them being responsible for a video stream and trained with eye patches. To mitigate the problem of overfitting 
when fine-tuning,” the aforementioned approach employs transfer learning. The system combines both; CNNs 
and fine-tune them in tandem to enhance the accuracy. The results of the experiments suggest that the proposed 
system, which the authors refer to as DCNNE, has a higher recognition success rate. For example, its accuracy 
on the ZJU dataset was 97.99%, which was more than the previous high of 97.20%. The model also performed 
well on the CEW, MRL and other databases. Moreover, the fine-tuned CNNs were implemented on two separate 
embedded devices assuring real-world application within time requirements.

According to26, a vehicle that protects itself from sleep-driving has been developed by the authors of the paper. 
The primary aim of their initiative is to protect individuals on the road from sleep-related accidents. Capturing 
these snapshots of driver’s face took no more than sixty seconds. Combined communication, behavior and 
recurrent networks were the first step towards reducing false rates. An additional fuzzy logic-derived approach 
allowed for manipulating visual data into up-to-date particulars about the driver.

The authors in27 develop an approach to image processing based detection of drowsiness recognition and 
traffic signs using the convolutional neural network, CNN. Accurate and efficient detection of road signs is 
essential in improving safety in road driving. Traffic signs contain essential data about traffic regulations, the 
state of the road, and intended travel for passengers, motorists, and pedestrians alike. To ignore or to circumvent 
traffic signs for any basis constitutes a high hazard for all road users and this project is a means to assist motorists 
to drive more responsibly.

The approach adopted in13 which involves a blend of deep learning techniques and CNN accompanied 
LSTM networks is novel as it predicts a driver’s drowsiness. CNN specializes in feature representation, and 
LSTM specializes in feature sequence construction which together, amplify the forecasting performance of the 
model. The model was given the NTHUDDD driver drowsiness dataset for testing and its performance was then 
registered against a range of old and modern systems. The evidence showed that the suggested model gave better 
performance with training accuracy reaching up to 98.30% and validation accuracy reaching to 97.31%.

In11, the authors proposed a model to estimate level of fatigue with eye movement analysis by a convolutional 
neural network. They also applied the CNN and VGG16 models for detecting and classifying the facial sleepiness 
poses into four states: open, closed, yawning and not yawning. Evaluation was carried out on a dataset of 2900 
images of eye conditions due to boxer driver drowsiness, with gender, age, and brightness range included. For 
the scores displaying results, the levels of accuracy were also elevated with further assessments, the CNN model 
in this case received a 97 rating for the accuracy section 99 precision, recall and F-Score values, and 99 for the 
other sets. Notably, the VGG16 model achieved the converse 74% accuracy.

In28, the authors outlined a concept of the eye state classification based on convolutional neural networks, 
or CNN master adaptive mapping, and presented to it three simple CNN models, VGG16, VGG19 and new 
4D models, for testing and sources. The MRL Eye dataset was utilized to train the 4D model, which was built 
specifically for eye condition assessment of sleepiness in the more advanced, quite darkened room. The 4D 
model also surpassed the pivot VGG16 and VGG19 models, having higher impressive state-predicting accuracy 
than the VGG16 and VGG19 models. This analysis presents an all-encompassing system of a driving model 
which predicts the state of the driver’s eyes in order to check if the person is feeling drowsy and sends alerts to 
improve safety on the roads.

In29, the authors suggested a non-invasive device for real-time monitoring of driver drowsiness that employs 
visual data obtained from car dashboard videos. The system uses facial landmarks and face mesh detectors to 
locate mouth aspect ratio, eye aspect ratio, and head pose, among other key regions. These features are used in 
three classifiers: random forest, sequential neural network, and linear support vector machine. The evaluation on 
the datasets from National Tsing Hua University showed that the system is capable of detecting drowsy drivers 
and sending appropriate alerts in time, with an accuracy of nearly 99%.

30, the authors have integrated deep learning technology in identifying driver fatigue with the aim of averting 
accidents. In their study they have detailed in their model training and testing Seven types of transfer learning 
based deep learning techniques which include VGG19, ResNet50V2, MobileNetV2, Xception, InceptionV3, 
DenseNet169, InceptionResNetV2 deep networks. Such models were analyzed and compared using the NTHU-
DDD2 data set. Depicted as the most successful model reinforcing the deep learning models, VGG19 was noted 
to be very efficient. With the accuracy of 96.51%, precision 98.14%, recall of 95.36%, and a F1 score of 96.73%.
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Authors in31 Study of a non-invasive drowsiness detection system operating in real time, which employs the 
use of convolutional neural networks, was thorough, detailed and demanding. Employing the technology One 
C and state-of-the-art video monitoring devices in the car cabin, the system analyses facial images emphasizing 
ascertaining whether the individual yawns and whether their eyes blink. A large training data set was used in 
the development of the system which encompassed images captured in an environment with different lighting 
conditions as well as taken from various angles of the face. Additionally, it makes use of Haar cascade classifiers 
for face region detection and more efficient methods of image analysis for determination of fatigue. The results of 
the experiment proved that the performance in the test reached 96.54% which evidenced how efficient behavioral 
indicators like yawns and eye state could improve image analysis process performance.

The authors in18 performed a detailed study on various drowsiness detection techniques with special emphasis 
on convolutional neural networks (CNN) along with transfer learning. In addition to their theoretical research, 
they also developed a relatively easy-to-use mobile application that utilizes these technologies. Many datasets 
were utilized to properly evaluate the developed model, establishing its efficacy. The drowsiness detection system 
as proposed was accurately between 90% - 99.86% for both multi and two-class detection systems.

The authors in32 proposed a powerful data-driven framework to capture drunk drivers’ behavior using 
t-distributed stochastic neighbor embedding (t-SNE) in conjunction with the Isolation Forest (iF) algorithm, 
where the authors autonomously confirmed the driver’s drunkenness level. As a feature extracting algorithm, 
the t-SNE model was chosen due to its property of maintaining local and global structures of feature space 
while performing dimensionality reduction on a nonlinear dataset. After feature extraction, the iF method 
unsupervised and tree-based anomaly detection model was applied, which has previously been trained to 
recognize only normal driving data, validating its use in practical scenarios. This study made use of publicly 
accessible sensor data from gas and temperature sensors and a digital camera, claiming an AUC of almost 95% and 
therefore high detection accuracy. The suggested approach also surpassed other techniques and combinations of 
dimensionality reduction and anomaly detection that included PCA, IPCA, ICA, kPCA, MDS with iForest, EE, 
and LOF, proving its strength and reliability in detecting alcohol-impaired driving behavior.

The authors in33 also integrated Independent Component Analysis (ICA), Kantorovitch Distance (KD), 
and the double Exponentially Weighted Moving Average (DEWMA) to propose a semi-supervised anomaly 
detection technique to classify and detect drunk driving behavior. In this approach modeling framework, ICA 
served the purpose of feature extraction for non-Gaussian multivariate data, while KD calculated the distance 
between normal and abnormal event intervals. DEWMA worked on the KD statistic to ensure sensitive change 
detection without a priori assumptions about the data distribution. To improve sensitivity, a nonparametric 
threshold was applied. This approach is particularly advantageous in real-world contexts, as labeled instances of 
drunk driving are hard to come by, since the method functions without labeled data. The study also XGBoost 
and used SHAP values to explain and defend feature importance in the detection process and interpretation. 
Evaluation done on a public dataset obtained from gas and temperature sensors and a digital camera showcased 
the model’s robustness, where it achieved an F1-score of 98%, significantly surpassing the performance of PCA 
and ICA based methods.

The prior research presented here has made remarkable advances in the drowsiness detection field by 
implementing real-time classification of the eye state. While most studies, such as those focused on CNN-based 
architectures or ensembles like the Dual CNN Ensemble (DCNNE), tend to accomplish a fair degree of accuracy, 
they struggle with generalizability and high computational costs. Moreover, SVM and KNN certainly have their 
merits; however, when stacked against deep learning models, they lack accuracy. Many models do not perform 
well across diverse datasets, or they are over-reliant on specific conditions, such as controlled lighting, for the 
environment in which they were trained.

The studies cited above serve as the baseline from which I propose my work leveraging the Vision Transformer 
(ViT) and Swin Transformer due to the self-attention-based feature extraction that aids those models in 
surpassing performance expectations. Those models have the ability to attend to precise features, unlike CNNs 
which tend to overlook important details in complicated real world scenarios. Moreover, the results that these 
transformer models offered, in my case high accuracy, especially using the ViT and Swin Transformer, shift 
the criticisms that were placed on the previous approaches based on CNN structures in terms of accuracy, 
robustness, and adaptability to varying conditions.

As shown in Table 2, previous studies have made substantial progress in driver drowsiness detection using 
CNN-based models and multimodal techniques. These approaches often demonstrate high accuracy when 
evaluated on constrained datasets; however, they tend to struggle with generalization in real-world conditions 
that involve variations in lighting, occlusion, head pose, and diverse facial features. In contrast, transformer-
based models - although more computationally intensive - have recently shown promise in capturing long-range 
spatial dependencies and improving robustness. Despite their potential, few studies have applied transformer 
architectures specifically to driver drowsiness detection or incorporated interpretability mechanisms such as 
Class Activation Mapping (CAM) to enhance decision transparency. Table 2 provides a comparative summary 
of these related studies, outlining their datasets, techniques, accuracy, strengths, and weaknesses.

Proposed methodology
This paper introduces a comprehensive and systematic methodology for real-time driver drowsiness detection, 
leveraging state-of-the-art deep learning techniques to classify eye states into “Open-Eyes” and “Close-Eyes.” The 
proposed framework is designed to address the limitations of existing approaches by integrating advanced data 
preprocessing, transformer-based architectures, and transfer learning models. The methodology begins with 
data preparation, including image resizing, normalization, and augmentation, to enhance the generalization 
capabilities of the models. The MRL, NTHU-DDD, CEW datasets are utilized, with an 80-20 split for training 
and testing, ensuring a robust evaluation of the models. A diverse set of deep learning architectures, including 
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Vision Transformer (ViT), Swin Transformer, and fine-tuned transfer learning models such as VGG19, 
DenseNet169, ResNet50V2, InceptionResNetV2, InceptionV3, and MobileNet, are trained and evaluated based 
on key performance metrics such as accuracy, precision, recall, and F1-score. The best-performing model is 
then deployed in a real-time system that utilizes Haar Cascade classifiers for face and eye detection, coupled 
with a drowsiness scoring mechanism to trigger alarms when prolonged eye closure is detected. This end-to-
end approach not only ensures high accuracy but also provides a practical and scalable solution for improving 

Ref Year Dataset Classification model Accuracy Strengths and Weaknesses

19 2019 Self-prepared 
dataset

RF and non-linear 
SVM

RF: 88.37% to 
91.18%

Strengths: Good performance with varying epoch lengths. Weaknesses: SVM accuracy is 
consistently lower

20 2019 CelebA, YawDD
Multiple CNN-
kernelized correlation 
filters method

92% Strengths: High accuracy in a variety of conditions, robust to environmental variations. 
Weaknesses: Limited to CNN models, lacks broader evaluation across other architectures

21 2020 300-W dataset Mamdani fuzzy 
inference system 95.5% Strengths: Incorporates fuzzy logic for drowsiness detection, useful for real-time applications. 

Weaknesses: May struggle with fine-tuning or handling complex image data without enhancement

22 2020 Self-prepared 
thermal SVM and KNN SVM: 90%

Strengths: Non-invasive method, useful for thermal monitoring in different lighting conditions. 
Weaknesses: Thermal imaging may require high-end equipment, and KNN struggles in complex 
environments.

image dataset KNN:83%

23 2020 Self-prepared ZJU 
dataset

FD-NN, TL-VGG16, 
and TL-VGG19

FD-NN: 
98.15%, 
TL-VGG16: 
95.45%, TL-
VGG19: 95%

Strengths: Impressive performance for fatigue detection, able to capture fine-grain eye movement 
features. Weaknesses: Limited dataset, reliance on predefined classifiers

24 2020
Self-prepared 
dataset (DROZY 
database)

Multilayer perceptron, 
RF, and SVM SVM: 94.9% Strengths: Good feature extraction using basic neural networks for fatigue detection. Weaknesses: 

Lack of deep learning-based approaches, might miss subtle facial cues.

10 2021 NTHU-DDD 
video dataset

Deep-CNN-based 
ensemble 85% Strengths: Ensemble learning improves detection, high accuracy in diverse environments. 

Weaknesses: Lower overall performance compared to transformer-based models

25 2022 CEW, ZJU, MRL Dual CNN Ensemble 
(DCNNE)

CEW: 97.56%, 
ZJU: 97.99%, 
MRL: 98.98%

Strengths: High performance across multiple datasets with ensemble methods. Weaknesses: May 
not generalize well to datasets outside of the tested range

26 2022 UTA-RLDD 
dataset RNN and CNN 60% Strengths: Low computational cost, suitable for mobile applications. Weaknesses: Low accuracy, 

particularly for complex real-time applications

27 2022
Self-prepared 
dataset for traffic 
signs

CNN 98.53% Strengths: Strong accuracy in traffic-related scenarios, applicable to many monitoring systems. 
Weaknesses: Lacks focus on drowsiness detection, limited to specific contexts

13 2022 NTHU-DDD CNN + LSTM 97.3% Strengths: Efficient for sequential data analysis, effective in dynamic environments. Weaknesses: 
Struggles with long-duration analysis or sustained predictions in real-time

32 2022

Public dataset 
using gas sensor, 
temperature 
sensor, and digital 
camera

t-SNE for feature 
extraction + Isolation 
Forest (iF) for anomaly 
detection

95%
Strengths: Effective detection using only normal (non-drunk) data, Handles nonlinear, high-
dimensional data well, Unsupervised approach suitable for real-time detection. Weaknesses: 
t-SNE is computationally intensive and not ideal for real-time processing, Model performance 
may vary with different sensor quality or configurations

11 2023 Drowsiness dataset CNN and VGG16 CNN: 97%, 
VGG16: 94%

Strengths: High performance in detecting drowsiness from real-time data. Weaknesses: Limited to 
VGG16 architecture, potential underperformance in new data types

28 2023 MRL VGG16, VGG19, 
and 4D

VGG16: 
95.93%, 
VGG19: 
95.03%, 4D: 
97.53%

Strengths: Strong results across multiple configurations, robust for real-time driver drowsiness 
detection. Weaknesses: Dependence on specific VGG-based models may limit flexibility in 
dynamic environments

29 2023 NTHUDDD 
dataset

RF, SVM, and 
sequential NN

RF: 99%, SVM: 
80%, 4D: 96%

Strengths: RF offers excellent performance, especially for simple fatigue detection scenarios. 
Weaknesses: SVM underperformed significantly, less robust across diverse environmental 
conditions

33 2024

Public dataset 
using gas sensor, 
temperature 
sensor, and digital 
camera

ICA for feature 
extraction + 
Kantorovitch Distance 
(KD) + DEWMA for 
anomaly detection; 
XGBoost for SHAP 
analysis

F1-score = 98%

Strengths: Does not require labeled data (semi-supervised) High sensitivity using DEWMA with 
nonparametric threshold, SHAP adds explainability to the model, Effective on non-Gaussian 
multivariate data. Weaknesses: Complexity due to integration of multiple techniques, DEWMA 
and KD may require careful tuning for different datasets, Potentially computationally intensive for 
real-time systems

30 2024 NTHU-DDD VGG19 96.51% Strengths: Efficient in various lighting and environmental conditions. Weaknesses: Performance 
variation across datasets, still limited by fixed network architectures

31 2024 YawDD, MRL VGG16 and CNN
VGG16: 
95.85%, CNN: 
96.54%

Strengths: High performance in real-time detection with various feature extraction methods. 
Weaknesses: Not ideal for low-complexity devices, might need more robust processing power

18 2024 MRL CNN, InceptionV3, 
and MobileNetV2

CNN: 96%, 
MobileNetV2: 
97%, 
InceptionV3: 
98%

Strengths: Excellent performance with quick response times, particularly in driver monitoring. 
Weaknesses: InceptionV3 and MobileNetV2 still face computational trade-offs

Table 2.  The summary of the analyzed related works.
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road safety.The summary diagram of how the driver drowsiness detection model works is shown in Fig. 1 which 
outlines the sequence of steps followed in this research.

For the purpose of evaluating drowsiness, videos are processed by detecting the frames in real time and 
then classifying them in real time, starting from driver’s face to both the left and right eye using Haar Cascade 
classifiers. The captured eye regions of the driver are preprocessed to conform to the set standards of the model 
including scaling as well as normalization, once this step has been completed, the model with optimally set 
parameters derived from the previous workflow is deployed to identify whether the eyes were open or closed. 
Every drowsiness score starts from zero, a score increases by 1 unit in case closed eyes are detected. The score for 
drowsiness will be triggered in the case that the score has remained constant for 15 frames, meaning the driver 
will alert once a frame reaches a certain threshold. If the predictions generated indicate the eyes of the driver are 
open, then the score is decreased by one. The real-time detection process is visually represented in Fig. 2.

Dataset description
With emerging technologies, selecting appropriate datasets in the field of driver drowsiness detection is crucial, 
as they are deemed fit for robust model calibration as well as generalizability. Every dataset comes with its own 
set of challenges affecting the system’s detection accuracy and performance. These hurdles include variations in 
lighting, facial occlusions from glasses or other objects, head movements, and subtle but impactful slow blinking 
and yawning, as well as other sleepy behaviors. Understanding these dataset-specific issues is essential for model 
development, preprocessing strategies, and evaluation. The key challenges associated with the NTHU-DDD, 
CEW, and MRL datasets used in this study are summarized in Table 3.

Fig. 1.  The workflow architecture.
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For the experiment, the MRL Eye Dataset28 is used. This dataset has been popular for other research as well 
notably for drowsy driver detection tasks that focus on eye-state recognition. The MRL dataset contains 84,898 
samples in total, all of which can be classified into two main categories, these being Open-Eyes and Close-Eyes. 
In the aforementioned categories there are 42,952 images for Open-Eyes and 41,946 images for Close-Eyes; 
Hence, the two categories are distributed almost equally. The images included in this dataset span different 
resolutions, light conditions, and even different orientation of the eye: so it is a very hard dataset for construction 
of effective classification models. All these factors suit our research - the dataset’s size allows for deep learning 
models that are able to detect drowsiness in real-life cases.

NTHU-DDD dataset is a comprehensive and diverse collection of driver videos recorded in real vehicles 
under daytime and nighttime environments. It has annotated behaviors such as yawning, slow blinking, and 
nodding, along with sleepy states’ combination, recorded at various facial angles and head movements. This 
dataset helped us significantly in our work by enabling us to test a complete range of sleepy behavior and account 
for performance in operating conditions that are representative of real-world scenarios. Within the dataset as 
a whole, there are 66521 640 × 480-resolution grayscale images of each of the two classes, i.e., drowsy and 
not-drowsy. There are 36030 sleepy images in the dataset altogether and 30491 images altogether which are not 
sleepy.

Closed Eyes in the Wild (CEW) dataset contains a collection of facial images with closed and open eyes 
that were collected in unconstrained scenarios. It presents huge variation in facial orientation, expression, 

Dataset Key challenges

MRL

Poor lighting conditions in night mode

Presence of eyeglasses

Close-up eye images only (no full face)

Grayscale images only

NTHU-DDD

Varying facial angles and head pose

Different lighting conditions (day/night)

Slow blink with nodding

Yawning

Sleepy combinations

Eye occlusion due to glasses

CEW

Varying head orientation

Wide diversity in facial expressions

Presence of eyeglasses and sunglasses

Occlusions and real-world variability (e.g., hair, hand)

Table 3.  Key challenges in drowsiness detection datasets.

 

Fig. 2.  Real-time detection architecture.
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and occlusions such as glasses and hair. CEW was employed in our research as a cross-validation reference to 
measure model generalization to in-the-wild data, simulating real-world deployment scenarios where changing 
visual features should be correctly understood. The CEW dataset comprises 27200 images of closed and open 
eyes. In contrast to the MRL dataset, the CEW dataset comprises full-face images, posing additional challenges 
in the guise of occlusions, different lighting, head pose variation, and motion blur. These conditions make the 
dataset very representative of real-world driving situations, where environmental conditions are changing and 
unpredictable.

Interpreting Figs. 3 and 4 represent the data distribution, and sample images of the obtained images from the 
dataset. The dataset has a total of two purposes hence two classifications; one for training, and one for testing. In 
simpler terms, out of the total dataset 80% was allocated for training and 20% reserved for testing.

Data preprocessing
This part introduces the need of data preprocessing. This is one of the core processes in both machine learning 
and deep learning as it minimizes the chances of over fitting and generalizes the model. Any kind of working on 
the input data to make it ready for further action is termed as “data preprocessing.”. The concept of preprocessing 
in data makes a lot of applications such as machine learning, deep learning, data mining, and computer vision 
more friendly and effective. For the purpose of this experiment, we carry out data normalization and scaling. 
It is necessary to ensure that all images are of the same size in order to allow for the same dimensional input 
throughout the model. In our experimental of the proposed model, all the images were scaled to dimensions of 
224 × 224. The model learning process is improved by reducing the influence of external pixel values. To attain 
that, each pixel is normalized into the range of [0,1] by dividing each pixel value by 255.

In an effort to prevent overfitting and make the model more generalizable, data augmentation methods are 
utilized on the MRL dataset throughout the preprocessing phase. Many transformations are done on the training 
images to keep their main characteristic intact while being changed. The ShiftScaleRotate tools in this case moves 
random images off center and out of proportion, the model then grows stronger to these changes in the position 
of the eye. HorizontalFlip is often paired with images to give a reflection to the rest of them to strengthen and 
prepare the model for different angles. Images RandomBrightnessContrast changes the brightness and contrast 
of images allowing the model to work under different lighting scenarios. Some more tools are rotation_range, 
width_shift_range, height_shift_range that slightly rotate and move images vertically and horizontally in 
order to simulate real life movement of the head and the position of the eyes. As a result of editing with these 
augmentation tools the model became stronger at identifying Open-Eyes and Close-Eyes states giving better 
real-time drowsiness detection.

Region of interest selection
This study uses Haar cascade classifiers to detect, locate and extract the face and eye regions for drowsiness 
detection preprocessing. Haar cascade is a technique based on machine learning, where essential features are 
gained from a portrait, or integral image, and categorized utilizing AdaBoost34. The algorithm scans an image 
over different intervals, and identifies elements depending on pre-instructed features. The classifier scans parts of 
an image over different intervals, employing predefined features. In this case, face or eyes, it seeks special features 
such as the bridge of the nose is lighter than the eyes, the eyes are darker than the cheeks and the forehead is 
lighter than the eyes. Because of the classification algorithm, face is extracted and from the extracted face box, 
eye regions are extracted. This step is performed to reduce probabilistic and computational cost of false positives.

The shape of a human eye can be described by a set of points. The relative position of these points defines how 
open or closed the eye is. So as to measure how open an eye is, it’s essential to know which 2D landmarks to use 
around the eyes35. There are some important points p1 to p6 are the 2D facial landmarks of the eye as shown in 
Fig. 5. The eye’s state, open or close, is detected by calculating the Eye Aspect Ratio (EAR) as shown in Eq. (1). 
The vertical distances between the eye landmarks are summed up and placed in the numerator, whereas those 
placed horizontally are in the denominator. A lower EAR value refers to a closed eye, while a higher value refers 
to an open eye. An EAR score less than 0.25 would define the eye as closed whereas an EAR that scores above 
will define the eye as open.

Fig. 3.  Dataset distribution across MRL, NTHU-DDD, and CEW.
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EAR = ∥P2 − P6∥ + ∥P3 − P5∥

2 × ∥P1 − P4∥ � (1)

After detecting the face, the Haar cascade classifier is trained to detect the eye region, after which a deep learning 
classifier is used to classify the extracted eye images. The model predicts the unlocked or locked status of the eye, 
which adds to the overall drowsiness score. If the score from both eyes is under a certain value for a set time, then 
an alarm is sounded. This combination of Haar cascade classifier for Region of Interest (ROI) selection and deep 
learning for classification proved to be effective and accurate for real-time drowsiness detection.

Fig. 4.  Sample images.
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Ethical statement
The human face visible in Fig. 27 is that of one of the authors. The author has provided informed consent for the 
use of their image in this manuscript. All methods and procedures involving human subjects were carried out 
in accordance with relevant guidelines and regulations. No institutional or licensing committee approval was 
required for the use of the author’s image, as it was voluntarily provided for research purposes.

Transformer architectures
The advancement of transformers in deep learning particularly natural language processing and image processing 
models cannot be ignored. They were first introduced in the research paper ‘Attention Is All You Need’36 and 
in this paper, the architecture has replaced the fully connected recurrent and convolution structures by self 
attention which allows models to be able to tackle full sequences or full images effortlessly.

With those properties, transformers are suitable in image processing tasks considering the fact that they can 
be used to model complex dependencies between far apart elements in space. Not like CNNs that are built upon 
local areas, vision transformers in a similar fashion to traditional ones, self attention is spread all over the parts of 
the images which make them outperform other network models on numerous tasks such as image identification 
and locating objects within an image.

Meanwhile, the Swin Transformer Adds ons to ViT by proposing a window shifting approach alongside 
a multi level bidirectional design to enable quick processing and enhance the efficacy of working with large 
images. Vision transformer’s issues are addressed in the Swin Transformer by using a sliding window approach 
and also resulted in maintaining a productive result in vision activities while also lessening computation cost.

ViT transformer
ViT is among the first transformer-based models used to perform image classification tasks37. While CNNs rely 
on convolutional layers to hierarchically analyze the features of images, ViTs process images by dividing them 
into fixed-size patches which get linearly embedded and treated as a sequence through the use of a Transformer 
encoder38.

ViT has a number of primary elements: The Classification Head is the last part to process the feature mapping 
to enable an image determined to be Open-Eyes or Close-Eyes when combined into a fully connected layer. The 
Transformer decoder, which comprises a number of self-attention layers and feed forward networks that function 
alongside the patch embeddings. ViT also has a classification kernel, or Layer Merge. Embedded images have 
positional information pasted on them, typically 16x16 patches. The self and cross attention modules together 
ensure that the spatial data learned is used. ViT has proven useful on large scale datasets especially for image 
classification tasks12. In this case, ViT is slightly altered and instead of determining whether a driver is awake or 
not, it determines whether a drivers eyes are open or closed or in other words whether a driver is.

The MRL dataset fine-tuning starts with resizing images adjusted to 224×224 pixels. Also, horizontal flipping 
is used at random to promote better training. The first step of training starts with a weight trained model google/
vit-base-patch16-224 which is adjusted for a two state eye model and an AdamW optimizer is applied with a rate 
of 5e-5 with a CrossEntropyLoss applied. The model is equipped with an early stopping validator with a patience 
of five. For the computing conditions, the model doesn’t start depending on a bias since, the masks aren’t utilized, 
achieving balanced multi orientated images, however the model utilizes a default value of 32 across the line up 
of 30 and splitting testing and training. Performance was judged by metrics of loss and accuracy during the two 
sets of training and testing that were held in a single session. The process is stopped as soon as one of the early 
stopping parameters is reached to ensure that the model doesn’t overfit and handles testing well.

The proposed Vision Transformer (ViT) model that has been submitted for drowsiness detection works 
by splitting input images into smaller patches followed by a linear projection accompanied by the addition of 
positional embeddings. These linear projections ensure that spatial information is preserved. The patches that 
have been transformed are then run through a number of transformer encoder layers. Here, global dependencies 
are captured by mechanisms of multi-head self-attention along with normalisation layers which improve the 
model’s robustness. The model also includes a Head, MLP, and Multi-Layer Perceptron for classification into 
Open-Eyes and close-Eyes states. More so, Class Activation Mapping (CAM) is implemented for enhanced 
visibility/easier understanding of the decision made by focus modeling and at the same time identifying clearly 
the areas that were of interest in the decision. The block diagram of this structure is presented in Fig. 6. It visually 
depicts the different stages in the process of extracting and classifying features.

Fig. 5.  Eye extraction.
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Swin transformer
The Swin Transformer architecture involves multiple components. To begin with, the image is sliced into 
square blocks with no overlaps and then a Patch Embedding Layer is used to map the image blocks into higher 
dimensional vectors. The structure of the Swin Transformer is hierarchical in nature and it enables local and 
global dependencies to be captured via the use of shifting windows of self-attention39. The self-attention blocks 
are restricted within each window and once again the windows are moved throughout the layers of the self 
attention model so that the model can learn cross-window interactions. In addition, patch merging layers are 
employed in order to down sample the feature map thereby permitting the model to learn deeper scales features. 
At last, a classifier head is utilized to make the final decision and classifies the grayscale image as Open-Eyes 
or Close-Eyes. The Swin Transformer does well in image classification problems dealing with high-resolution 
images40 and is tuned in this work to drowsiness detection of a person’s eyes whether open or closed.

We take an image with the label of Open-Eyes or Close-Eyes and send it through our model trained 
specifically from the Hugging Face SwinForImageClassification swin-tiny-patch4-window7-224 instance. To 
achieve a binary classification, the model undergoes further adjustments. The image encoder is swapped with a 
custom one that has a dropout layer and a linear projection layer which are used to tackle overfitting. Razoring 
images with random flips and alterations to contrast and brightness up prepares the dataset for the model 
enlargement allowing the model to deal with a larger variety of classes. The AdamW optimizer is combined with 
a learning rate and a cross-entropy loss function to train the model, streamlining the fine-tuning procedure. 
Other than that, early stopping is used while monitoring the validation loss to ensure the model trains efficiently 
without overfitting. Moving weight averages (SWA) are applied to boost generalization and improve overall 
performance. After the model is fine-tuned to our needs, we conduct further evaluations using accuracy, loss 
metrics and drowsiness detection optimizations allowing the model to distinguish between Open-Eyes and 
Close-Eyes efficiently.

To ensure maximum effectiveness, a set of hyperparameters are established in the Swin Transformer model 
during the fine tuning process. The model is set to a batch size of 32, this helps in effective image data processing 
during the training and evaluation phases. Different learning rates are applied to the backbone and classifier 
parts of the model: 1e-5 is defined in the former and 1e-3 is defined in the latter. As a result in the issued setting, 
the parameters learn the last classification layers faster than 1e-5. The training is set to span across 30 epochs 
and has an early stopping mechanism which halts the training process after 5 epochs without an improvement in 
validation loss. This is done to mitigate the risk of overfitting. A weight decay of 1e-4 is set in the loss function to 
facilitate the parameters optimization process using AdamW optimizer. Label Smoothing Cross Entropy is the 
loss function applied with a smoothing factor of 0.1, this reduces both overfitting and increases generalization. 
The block diagram of the Swin transformer is presented in Fig. 7. It visually depicts the different stages in the 
process of extracting and classifying features.

CNN models architectures (fine-tuning transfer learning models)
VGG19
The visual geometry group at Oxford University introduced the VGG architecture that is extended into what is 
now known as VGG1941. It was developed in the year 2014 and consists of Nineteen layers, out of these layers—
out of which 16 are convolutional and 3 are fully connected, along with that it contains strategically placed 

Fig. 6.  The ViT transformer architecture.
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max-pooling layers which serve to reduce the spatial dimension while retaining important features. Just like 
the VGG16 model, the VGG19 model also uses 2 × 2 max-pooling kernels and 3 × 3 convolutional filters, they 
enhance the efficiency of the entire design of the system. With the addition of the layers, VGG19 has enhanced 
capacity to perform deep feature extraction, hence allowing it to perform complex image classification with high 
accuracy.

Since the VGG19 is hierarchical in nature, it is able to recognize intricate patterns with ease42. The very basic 
and simple features such as edges and textures are concentrated in the shallow layers however more higher level 
features, like facial movements or jaw movements, are contained within the deeper sides of the layer. The fine 
granularity that this allows is useful in scenarios where driver drowsiness detection is needed and xeyelid closure 
and prolonged blinking are informative. Althought the architecture cost for the VGG19 is higher than that of the 
VGG16, the accuracy and robustness in the detection of fatigued drivers is better in VGG19.

The VGG19 model has a keen aptitude when it comes to telling distinguishing features of a face that’s 
associated with drowsiness, especially when it is used with well trained domain centered datasets like MRL. 
Sitting down for this further improves its performance at being able to tell the difference between open and 
closed eyes which works well with letting it being used in systems that are aimed for monitoring the state of a 
driver in real time. With fatigue based patterns being effectively determined along with the high-level accuracy 
that the model provides, it makes it great for use in various situations while a person is behind the wheel.

VGG19 + attention
In this subsection, we describe the process of fine-tuning a pre-trained VGG19 model with an attention 
mechanism to classify the open-eye and close-eye states within the MRL dataset. The aim is to make use of the 
feature extraction of VGG19 but at the same time, disentangle with attention block over relevant image features.

The model of the fine-tuned VGG19 is composed of the already trained VGG19 model but without the fully 
connected layers on top, preloaded with weights obtained from ImageNet. We then freeze the first 15 layers to 
keep the pre-trained feature extraction and allow the rest of the deeper layers to be trained on the dataset. A 
multi-layer perceptron attention mechanism is used to enhance the feature maps by first applying global average 
pooling, dense layers and a sigmoid activation function to the input feature maps. Global Average Pooling 
eliminates unnecessary spatial information but retains the major residual components. Fully connected layers of 
512, and 256 neurons were then added with ReLU activation and with dropout for regularization. The last layer 
is a softmax classifier that predicts two output classes: Open-Eyes and Close-Eyes.

Now, let’s analyze the channel attention mechanism that is able to weight feature maps given by VGG19. It 
first applies Global Average Pooling which converts the feature maps to a single channel. Then, the vector is 
processed with fully connected layers that are aimed at preserving some essential spatial relationships. A sigmoid 
function is the last step, it generates attention weights that are then multiplied with feature maps over individual 
elements so that important areas can be highlighted43.

To enhance the performance of the model while testing, data augmentation is applied to the training images, 
which include a degree of random rotations, width and height shifts, as well as, horizontal flipping. Both the 
training and test data is obtained from folders and scaled to 224 × 224. Since this is a multi-class classification 
problem, the categorical class mode is used.

Fig. 7.  The swin transformer architecture.
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In order to increase performance, a few measures have been taken. The training is stopped after a 
predetermined number of epochs without improvement of the validation loss. This is done to avoid overfitting. 
In addition, there is a model checkpoint that saves the model with the best validation accuracy in order to restore 
the appropriate weights later. If the validation loss does not improve, the learning rate is lowered then, which 
helps in achieving convergence.

After the model has been trained, it goes through an evaluation stage where it is provided with a test dataset. 
In this stage, a few key metrics, such as the accuracy of the model and the loss are noted and recorded. The 
particular model that has the lowest loss is saved and used for classifying eye states of the drivers in real time to 
assess their drowsiness in future applications.

DenseNet169
DenseNet169 is a deep convolutional network that is about 169 layers deep and was developed to eliminate the 
vanishing gradient problem44. The goal was to greatly increase the effectiveness of learning new features while 
decreasing usage of parameters. It is efficient when it comes to leveraging previous knowledge, and while doing 
so, facilitates the propagation of gradients. Each layer was designed to pull information from all layers at once 
after itself, in doing so, it was able to enhance the redundancy of parameters.

DenseNet169 perceives intricate multi-level features that are essential for recognizing driver drowsiness, 
specifically for drivers who have some signs of closed eyes and slow blinking, as they are slight eye movement 
indicators, this proves useful to wide driver fatigue detection45.

Constantly adjusting the DenseNet169 on the MRL dataset increases the effectiveness with which the model 
can tell supporting it with the capability of classifying the model accurately. Dense connectivity architecture 
broadly assists with the capability of generalization ensuring vast and immense performance of the model in real 
life driver monitoring situations.

ResNet50V2
ResNet50V2 is a Microsoft Research based deep convolution neural network with residual learning which is 
an updated version of ResNet5046. This network consist of fifty layers which include identity and convolutional 
residual blocks which enhance the propagation of gradients leading to resolving the problem of vanishing 
gradients. Because of this architecture, networks can be deeper while maintaining stability during training, 
making it efficient in tasks that require complex image classification.

Driver drowsiness detection gets a huge boost from ResNet50V2’s deep hierarchical feature extraction 
capabilities47. The initial layers focus on basic image properties while the high level ones zoom eye closing and 
minute facial expressions. And as the model relies on residual connections, that ensures there will be greater 
efficiency with avoiding overfitting during fine tuning the model to the MRL data set.

The alter as described above allows ResNet50V2 to perform better with MRL dataset as it can now effectively 
discriminate Open vs Closed eyes and thus classify drowsiness states. The model does not suffer from any 
generalization issues suggesting it’s viable for real world deployment where the use case is driver supervision in 
real time, ensuring the detection is accurate regardless of the light or surrounding.

InceptionResNetV2
InceptionResNetV2 combines Inception and ResNet into a single framework as it adds inception modules with 
residual connections to boost accuracy and loss to gain efficiency48. Because of this hybrid design, there is less 
need to worry about the complications that arise when training a model when the networks are very deep since 
there is a high degree of accuracy achieved.

Because of its features, the model is appropriate for driver drowsiness detection. Its inception blocks are 
residual, and they can identify complex and abstract facial features which are relevant such as the closure of one’s 
eyes and other signs of fatigue30.

By applying InceptionResNetV2 on a particular dataset called MRL, we can improve the model’s ability to 
effectively distinguish between closed and opened eyes. A real time system that monitors a driver to determine 
if they are drowsy can be possible while ensuring safety on the roads against accidents that are caused by fatigue, 
owing to InceptionResNetV2, which is able to extract relevant features and learn efficiently.

InceptionV3
InceptionV3 is another great product that Google developed. It is an AI algorithm that makes use of deep 
learning and specializes in Amalgamation neural networking processes for efficient computational resource and 
cost reduction of an enhanced deep learning model. Two other of its components are classifier aids and de-
factored filtering49.

Inception V3 also allows monitoring of drowsy drivers as it is able to capture fine and coarse details which will 
construct proper facial features. When coupled with inception modules, it becomes easier to precisely identify 
eye closure and other signs relating to fatigue which improves the necessary cue in the monitoring process to 
control the drowsiness of the driver.

To a large extent, the reliability of the driver is enhanced such that InceptionV3 has been fine-tuned on the 
MRL dataset greatly improving its monitoring tools and detecting drowsiness for drivers regardless of their 
status. Being safe, the software continues to prove extremely efficient in real-time applications.

MobileNet
MobileNetV2 is a light-weight Convolutional Neural Network specifically targeted for mobile and embedded 
systems. It was developed by Google and employs the two techniques of depthwise separable convolutions and 
the inverted residual blocks50. These techniques decrease the complexity of computations without losing a lot of 
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accuracy. Owing to its efficient architecture, MobileNetV2 is well-suited for use in environments with limited 
resources and which require real-time inferences.

The capability of MobileNetV2 to hierarchically extract features, makes this architecture appropriate for 
detection of driver drowsiness. This model is competent in determining facial indicators like eye closure and 
extended blinking of the eyes; which is not computationally intensive at all. This efficacy particularly helps in 
embedded applications using real-time analytics, where every millisecond counts.

MobileNetV2’s eye classification is fine-tuned on the MRL dataset which allows for the quick determination 
of either open or closed eyes and thus drowsiness is detected with low latency. Furthermore, this architecture is 
easily implemented on in-vehicle driver monitoring systems and thus ensures that timely warnings about fatigue 
related issues are issued. The problem with this model is that it gives low accuracy.

Experiments and results
Experimental setup
The ViT transformer model and eight different models (Swin Transformer, VGG19 with Attention, VGG19, 
DenseNet169, ResNet50V2, InceptionResNetV2, InceptionV3, and MobileNet), all of those are implemented 
in Python using the Kaggle platform. The execution of the code happened against the following system 
configuration, as represented in Table 4

Training phase
The images belonging to the MRL dataset are subdivided into two sets for the purposes of the training phase. 
The categorization of the dataset into two sets is found to be 80% training and 20% testing. Hence, the total 
number of images is 84,898, with 67,917 images used for training and 16,981 images used for testing. Similarly, 
the NTHU-DDD dataset is also divided using an 80%-20% train-test split, comprising a total of 66,521 images, 
of which 53,216 images are allocated for training and 13,305 images for testing. In addition, the CEW dataset 
follows the same train-test ratio, with a total of 27,200 images, including 21,760 training images and 5,440 testing 
images. This distribution is summarized in Table 5.

Performance evaluation methods
The model performance was evaluated based on some common metrics like confusion matrix, accuracy, recall, 
precision, and F1 score.

Confusion matrix
The confusion matrix comprises a table of correct and wrong predictions made by the model. It is derived 
from four parameters: True Positive, True Negative, False Positive, and False Negative. The definitions of these 
parameters are as follows:

•	 (TP): correct prediction of class1 when the actual label is class1.
•	 (TN): correct prediction of class2 when the actual label is class2.
•	 (FP): prediction class1 when the actual label is class2.
•	 (FN): prediction class2 when the actual label is class1.

These four values from confusion matrix are utilized to calculate accuracy, precision, recall, and F1-score. These 
metrics provide a comprehensive evaluation of the model’s performance in classifying “Open-Eyes” and “Close-
Eyes”.

Categories MRL dataset NTHU-DDD dataset CEW dataset

Total 84,898 66,521 27,200

Train 67,917 53,216 21,760

Test 16,981 13,305 5440

Table 5.  Number of images in each dataset.

 

Configuration

IDE Kaggle

Programming Language Python

Libraries Tensorflow, Keras, Torch, Pandas, Matplotlib, scikit-learn

GPU NVIDIA Tesla P100 with 16 GB VRAM

CPU Intel Xeon CPU (2.3 GHz, 46 MB cache)

RAM 16 GB of system memory

Table 4.  System configuration details.
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Accuracy
It’s the number of instances that the classifier had predicted correctly divided by the total number of instances. 
Accuracy is nothing but the overall correct representation of the model. It is calculated using:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (2)

Precision
Precision is the ratio of correctly predicted positive instances to the predicted positive instances. This is very 
useful when the cost of false positives is critical. Precision is calculated as follows:

	
Precision = T P

T P + F P
� (3)

Recall
Recall, also known as a sensitivity or truth positive rate, measures the ratio of actual positives that a model is 
able to capture through its prediction. Recall would be a scenario where we want to minimize false negatives. It 
is calculated using:

	
Recall = T P

T P + F N
� (4)

F1Score
This means that the F1 score takes into account both precision and recall, and is defined as the harmonic mean 
of precision and recall, thereby generating a single metric that captures the degree of trade-off between these 
two: Its definition is:

	
F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
� (5)

Hyperparameters
The selection of hyperparameters in this study was based on a combination of empirical testing and values 
commonly recommended in prior research. Initial values for learning rate, batch size, and number of epochs 
were adopted from similar deep learning applications in driver monitoring and visual classification tasks 
(e.g.,51,52). These values were then fine-tuned using manual experimentation on a validation split of the training 
data. For each model, early stopping was applied with a patience of 5 to prevent overfitting. While we did not 
employ exhaustive grid or random search due to computational constraints, iterative testing allowed us to 
achieve reliable convergence and performance across datasets.

Hyperparameter tuning is essential when it comes to deep architectural structures to achieve the optimum 
performance. Several of the hyperparameters used included batch size, learning rate, epochs, optimizer chosen, 
loss function used, early stopping on patience, and all of these were used during the training to improve the 
classification accuracy on the MRL data set.

•	 Batch size: The batch size is the number of training samples to work through before the internal model param-
eters are updated. A bigger batch size produces slower stable gradient updates but necessitates more memory; 
a smaller batch size results in more gradient updates and, whilst the training is noisier, convergence is quicker. 
After experimentation, a size of 32 batches was found to be ideal as it is a more cost-effective than advocating 
for model performance.

•	 Learning rate: The learning rate determines the size of each update step for weights in gradient descent. A 
model could take too long to converge if the learning rate is set too low, while a model could overshoot the 
optimal setting with a higher learning rate. For the purposes of this research, a learning rate of 0.0001 was 
used since this enabled reliable yet quick convergence during training.

•	 Number of epochs: The number of epochs limits the number of times the complete model will work with 
the training data. An increased number of epochs can cause the model to undergo overfitting, while a re-
duced number of epochs can induce underfitting. In conjunction with early stopping, 30 epochs were used 
at maximum in order to allow the model to end training early, should there be no observable performance 
improvement.

•	 Optimizer: The optimizer chosen does affect the rate of convergence as well as the extent to which conver-
gence is achieved. For this paper, We have used the Adam Optimizer able to use the advantages of learning 
rates that self-adapt.

•	 Loss function: A binary cross-entropy loss function was utilized in training the model since this is suitable 
for binary class problems. Such functionality calculates the difference between the predicted values and the 
values represented by the given labels thereby helping the model decrease training error.

•	 Early stopping with patience: The method of early stopping was used with patience of 5 epochs, with an aim to 
reduce overfitting and increase performance on unseen datasets. It indicates when there is no enhancement in 
the validation loss for a span of 5 epochs, the training cycle needs to be terminated. The use of early stopping 
slightly resolved expending computational resources by not allowing training beyond its optimal point and 
was efficient in aiding in conflict of overfitting by securing an optimal stopping point.
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Table 6 depicts the values for some hyperparameters in the experiment. Adjustment of these hyperparameters 
led to improved generalization on unseen data with no compromise on computational costs. The values chosen 
ensured that there was no fitting of the model on the data and there was likewise no overfitting to create a robust 
classification model that could successfully detect open and closed eyes in the MRL dataset classification model.

Table 7 presents the size and estimation of total parameters, trainable parameters, and others for each of the 
nine models. The complexity of each model can be seen in the table.

Accuracy evalution
This research compares several sophisticated deep learning approaches, including Tensorflow models 
such as ViT Transformer, Swin Transformer, VGG19 with Attention, VGG19, DenseNet169, ResNet50V2, 
InceptionResNetV2, InceptionV3, and MobileNet against multiple images containing “Close-eyes” as well as 
“Open-eyes.” All of the models were subjected to early stopping with a patience value of 5 for a maximum of 
30 epochs kept for training. The models’ performance was evaluated in terms of accuracy, precision, recall, 
and F1-score. The results for the MRL dataset are listed in Table 8, the NTHU-DDD dataset in Table 9, and the 
CEW dataset in Table 10. The MRL dataset served as the primary dataset for training and evaluating all models, 
while the NTHU-DDD and CEW datasets were employed to validate the generalizability and robustness of the 
proposed models under more diverse, real-world conditions. Notably, the Transformer-based models-specifically 
ViT and Swin-consistently outperformed all other models across the datasets, demonstrating superior accuracy 
compared to both traditional machine learning and transfer learning-based CNN architectures. To ensure the 
robustness and statistical reliability of the results, each experiment was conducted over five independent runs, 

Model Precision (in %) Recall (in %) F1 score (in %) Accuracy (in %)

ViT Transformer 99 99 99 99.15 (±0.12)

Swin Transformer 99 99 99 99.03 (±0.13)

VGG19 + Attention 99 99 99 98.85 (±0.11)

VGG19 98.5 98.5 99 98.7 (±0.15)

DenseNet169 98.5 98.5 99 98.65 (±0.14)

ResNet50V2 98.5 98.5 99 98.5 (±0.12)

InceptionResNetV2 98.5 98.5 98.5 98.5 (±0.13)

InceptionV3 98.5 98.5 98.5 98.5 (±0.14)

MobileNet 98 98 98 97.99 (±0.11)

Random Forest 98 98 98 97.93 (±0.11)

Table 8.  Performance evaluation and comparison of various models on the MRL dataset.

 

Sr. no. Model name Image size Trainable parameters before fine-tuning Trainable parameters after fine-tuning Model size (MB)

1 ViT transformer 224 * 224 85,800,194 85,800,194 327.30

2 Swin transformer 224 * 224 27,914,108 27,914,108 106.48

3 VGG + attention 224 * 224 12,226,850 12,226,850 78.02

4 VGG19 224 * 224 2,099,201 143,668,241 548.05

5 DenseNet169 224 * 224 1,705,985 14,190,465 54.74

6 ResNet50V2 224 * 224 2,099,201 25,618,561 97.90

7 InceptionResNetV2 224 * 224 1,574,913 55,851,105 213.29

8 InceptionV3 224 * 224 2,099,201 23,867,553 91.18

9 MobileNet 224 * 224 1025 3,208,001 12.32

Table 7.  Total parameters comparison of the models.

 

Fine-tuning Transfer learning models ViT transformer Swin transformer

Batch size 32 32 32

Learning rate 1e-4 5e-5 Backbone: 1e-5 classifier: 1e-3

Epoch 30 30 30

Early stopping Patience = 5 Patience = 5 Patience = 5

Optimizer Adam AdamW AdamW (decay:1e-4)

Loss Binary CrossEntropy CrossEntropyLoss Label smoothing cross entropy (0.1)

Table 6.  Hyperparameter settings.
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with accuracy reported as a mean ± standard deviation. It was observed that classical machine learning models 
performed significantly weaker, especially when applied to complex and varied real-world image conditions. 
These findings further validate the advantage of Transformer architectures in capturing intricate spatial 
dependencies and enhancing model generalization in real-time driver drowsiness detection tasks.

ViT transformer
The ViT Transformer performed remarkably well, earning the highest scores in every metric of the analysis. It 
achieved an accuracy rate of 99.15% and also impressive precision and recall of 99%. Moreover, the F1 score of 
the model is 99% which is a strong indication of its good balance between recall and precision. The accuracy plot 
in Fig. 8a illustrates a well-defined accuracy curve that indicates good learning stability, while Fig. 8b shows a 
low loss convergence trend demonstrating strong training dynamics. Furthermore, the confusion matrix which 
is presented in Fig. 9 contains a few misclassification errors which support the high accuracy and reliability of 
the model.

Swin transformer
The Swin Transformer model performed impressively closely to the ViT model amassing an impressive accuracy 
of 99.03%. It managed to maintain good performance across the board with all three metrics scoring 99% each 
for precision, recall and F1 score. The model performance improved steadily as shown in Fig. 10a . The loss curve 
in Fig. 10b also provides evidence of optimization of the model. Examining Fig. 11, the confusion matrix also 
illustrates the discriminative capacity of the model showing only a handful of misclassification.

VGG19 + attention
VGG19 with the Attention mechanism achieved slightly lower results than the ViT Transformer and Swin 
Transformer with an accuracy of 98.85%. The model had 99% precision and recall resulting in the F1 score of 
99%. The accuracy progress presented in Fig. 12a shows good learning stability, which was also complemented 
by the loss curve in Fig. 12b pointing to strong convergence. The confusion matrix in Fig. 13 further illustrates 
the strong performance of the model in the classification of different categories.

VGG19
The measurements gathered indicated that VGG19 model produced an accuracy of 98.7%, recall of 98.5%, F1 
score of 98.5% and a precision of 98.5%. As it can be seen in Fig. 14a , the accuracy curve indicates that graph 
learning remained smooth for multiple epochs. From Fig. 14b we see a loss curve where the model appeared to 
converge, though more gradually as compared to the other models. Lastly, the confusion matrix is represented 
in Fig. 15.

Model Precision (in %) Recall (in %) F1 score (in %) Accuracy (in %)

Swin Transformer 100 100 100 100 (±0.0)

ViT Transformer 97 95 96 97.25 (±0.12)

VGG19 + Attention 97 97 97 98.17 (±0.11)

VGG19 96 93 95 96.3 (±0.12)

DenseNet169 95 95 95 96.3 (±0.14)

InceptionResNetV2 89 94 91 93.6 (±0.12)

MobileNet 91 90 91 93.6 (±0.13)

InceptionV3 88 89 88 91.7 (±0.13)

ResNet50V2 85 86 86 89.9 (±0.12)

Table 10.  Performance evaluation and comparison of various models on the CEW dataset53.

 

Model Precision (in %) Recall (in %) F1 Score (in %) Accuracy (in %)

ViT Transformer 99 100 100 99.52 (±0.09)

Swin Transformer 99 99 99 98.76 (±0.11)

VGG19 + Attention 99.44 98.52 98.98 99.07 (±0.12)

VGG19 98 98 98 98.66 (±0.13)

DenseNet169 98.52 98.44 98.48 98.60 (±0.12)

ResNet50V2 97.41 99.48 98.43 98.55 (±0.13)

InceptionResNetV2 98.74 94.70 96.68 97.02 (±0.14)

InceptionV3 98.71 97.74 98.22 98.38 (±0.13)

MobileNet 90.20 89.52 89.86 91.15 (±0.12)

Table 9.  Performance evaluation and comparison of various models on the NTHU-DDD dataset.
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.

DenseNet169
DenseNet169 model, on the other hand, achieved an accuracy of 98.65% with other parameters-precision, recall, 
and F1 score of 98.5%. In Fig. 16a the accuracy curve maintains a proper equilibrium suggesting step learning 
while the loss curve as seen in Fig. 16b displays strong convergence with very low overfitting. Referring to 
Fig. 17, the confusion matrix depicts a modest misclassification rate compared to the best models but overall 
maintains a high degree of perceived reliability.

.

Fig. 9.  ViT transformer confusion matrix for MRL dataset.

 

Fig. 8.  ViT transformer accuracy and loss graphs on testing MRL dataset.
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ResNet50V2
The ResNet50V2 model performed exceptionally well, achieving an overall accuracy of 98.5% along with F1 
score of 99%, recall of 98.5% and precision of 98.5%. The accuracy curve as depicted by Fig. 18a managed to grow 
exponentially which leads to the model’s improvement across various epochs. Furthermore, Fig. 18b showcases 
that the ResNet50V2 had a low loss curve while being trained. Similarly, the figure addressed above features 
the confusion matrix which shows that the ResNet50V2 performed just well enough as the DenseNet169 by 
avoiding misclassification as shown in Fig. 19.

.

InceptionResNetV2
In revolutionizing models for analyzing images, the InceptionResNetV2 model managed to score equally well 
to the ResNet50V2 and DenseNet169 by showcasing 98.5% for all evaluation metrics. The accuracy curve as 
illustrated in Fig. 20a started at a significantly low point, however with the help of training the curve managed 

Fig. 11.  Swin transformer confusion matrix for MRL dataset.

 

Fig. 10.  Swin transformer accuracy and loss graphs on testing MRL dataset.
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to steadily progress upwards. The loss curve in Fig. 20b shows smooth convergence. Moreover, the confusion 
matrix in Fig. 21 reflects results that are similar to ResNet50V2 and DenseNet169 models which means it is also 
suitable for image classification.

.

InceptionV3
With accuracy, precision, recall and F1 score all being 98.5%, the InceptionV3 model achieved an accuracy of 
98.5%. Figure 22a indicates a constant training period according to the accuracy graph, whilst the loss graph in 
Fig. 22b reinforces that there was no excessive overfitting. As seen in the confusion matrix displayed in Fig. 23, 
the model achieved results nearly identical to InceptionResNetV2 model, despite having a comparatively greater 
misclassification rate than the best of the best.

.

Fig. 13.  VGG19 with attention confusion matrix for MRL dataset.

 

Fig. 12.  VGG19 with attention accuracy and loss graphs on testing MRL dataset.
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MobileNet
The MobileNet model was the least performing model out of the set of defined models, with 97.99% of pattern 
accuracy. However, it had a precision and recall of 98% with the F1 score also being equal to 98%. Figure 24a 
illustrates that the accuracy graph remains the same for each epoch which indicates consistency in performance, 
but the loss graph in Fig. 24b suggests that the convergence was effective but slower relative to the rest of the 
models. Emphasizing a higher error rate than the other models, the confusion matrix found in Fig. 25 suggests 
that mobile net was the least effective model within this context.

.

Model learning visualization
The visualization of model learning is achieved through the use of a class activation map (CAM). CAM works by 
localising the different features in an image that assist in the final classification of a certain output and therefore 

Fig. 15.  VGG19 confusion matrix for MRL dataset.

 

Fig. 14.  VGG19 accuracy and loss graphs on testing MRL dataset.
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is a significant tool for ensuring that a deep learning model is interpretable54. CAM makes images of lower 
quality that limit the model in certain features during predictions, this explains how to model predicts the states 
of open or close eyes and works well for drowsiness detection since it prevents the model from focusing on the 
surrounding areas of the eye and instead enabling them to focus on the eye itself.

In this research, CAM is utilized for classifying the Open-Eyes and Close-Eyes and visualizing their attention 
maps. The two examples in Fig. 26 demonstrate these results, in which (a) shows the original Open-Eye image 
together with its attention map, depicting eye-area activations, thus proving that the model can appropriately 
predict open eyes. Likewise, (b) shows the original Close-Eye image and its attention map with activations 
mostly found on the area of the closed eyelids showing that the model can accurately ascertain the state of the 
eye as closed With these visualizations, the model ensures reliability in practical settings such as real time driver 
drowsiness detection, as stated above, while still improving model interpretable by showing that the model in 
fact focuses on the most salient features necessary for the classification.

Fig. 17.  DenseNet169 confusion matrix for MRL dataset.

 

Fig. 16.  DenseNet169 accuracy and loss graphs on testing MRL dataset.
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Real-time deployment of drowsiness detection
The OpenCV Library was used for detecting facial landmarks for each video frame sent by a standard webcam 
during the actual model deployment. To detect the right and left eye, the system first detects the face and then 
detects the eyes using the Haar cascade classifier. Once the model was trained, the eye states were continuously 
checked to see which counted frames had eyes that were closed. For this scenario, a drowsiness score was 
computed, and an alarm was set off when this score was more than 15. The system has been used under varying 
conditions, such as normal lighting without glasses, with glasses, and in low-light conditions. Fig. 27 shows the 
results of detection, where (a) indicates the first group of images was captured without glasses, (b) shows the 
second group of images was captured during average illumination with glasses, and (c) displays the last group of 
images captured with low brightness. All images include multiple states: open eyes, closed right eye, closed left 
eye, and fully closed eyes, with an alert activation when drowsiness is detected. The proposed system functions in 

Fig. 19.  ResNet50V2 confusion matrix for MRL dataset.

 

Fig. 18.  ResNet50V2 accuracy and loss graphs on testing MRL dataset.
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real-time and does not require any advanced specialized hardware other than a standard webcam, which makes 
it easier to implement on desktop computers, mobile devices, and other platforms.

In addition to accuracy metrics, we performed a comprehensive evaluation of model complexity to assess 
the efficiency and practical applicability of the proposed framework. As shown in Table 11, we compared the 
number of trainable parameters and average inference time per image across all models. Transformer-based 
models such as ViT and Swin Transformer achieved the highest accuracy, significantly outperforming all 
other models in classification performance. However, these models are relatively heavier and require further 
optimization to improve inference time for real-time applications. On the other hand, transfer learning 
models such as MobileNet and VGG19 demonstrated excellent real-time performance due to their lightweight 
architecture and faster inference time but showed relatively lower accuracy compared to transformer models. 
This trade-off highlights a key insight: while transformers are optimal for accuracy-critical scenarios, transfer 
learning models remain a practical solution where real-time constraints are stringent. Furthermore, through 

Fig. 21.  InceptionResNetV2 confusion matrix for MRL dataset.

 

Fig. 20.  InceptionResNetV2 accuracy and loss graphs on testing MRL dataset.
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optimization techniques such as pruning or quantization, transformer models can be adapted for deployment 
on edge devices. These findings underscore the need for balancing accuracy and efficiency to ensure scalable and 
robust real-time driver drowsiness detection.

Comparative study
Eye state recognition has faced obstacles in previous studies. More seriously some constraints in resources 
appear to be difficult not only to improve but also to optimize accuracy with timing. Regarding the work 
presented in25 which employs a dual CNN ensemble else, there exist a few other approaches which highlight a 
significant increase in speed over previous architecture. Their system has achieved unprecedented accuracy of 
97.99% on the ZJU dataset which surpassed the previous achievement by 0.79% at 97.20%. Their method based 
on transfer learning and fine tuning circumvents the issue of overfitting when dealing with small data sets and 
unlike other models there is no emphasis in parameters or lower recognition rate. Unlike previous solutions such 

Fig. 23.  InceptionV3 confusion matrix for MRL dataset.

 

Fig. 22.  InceptionV3 accuracy and loss graphs on testing MRL dataset.
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as those raising the problem of gaining speed at the sacrifice of accuracy, or others optimizing for computational 
efficiency, this system has been able to work efficiently with embedded systems while maintaining high accuracy 
for multiple datasets concurrently.

In28, authors proposed the use of deep mastering adaptation mapping of convolutional neural networks’ 
practices. To this vision, have been included three CNN models, namely VGG16, VGG19, and new models 
of 4D. MRL Eye dataset was used to develop teaching sets for the 4D model, which was previously designed 
only for the assessment of driver drowsiness in more advanced quite dark conditions. The 4D model also had a 
better predictive performance than both the VGG16 and VGG19 models. This information describes a practical 
integrated system of a driving simulator comprising an intelligent system that estimates the driver visual state in 
order to detect drowsiness and provide an appropriate warning for road safety.

In this article31, the authors conducted an in-depth study with practical applications from their findings of a 
CNN based real-time, non-invasive drowsiness detection system that analyzes a driver by utilizing video footage 

Fig. 25.  MobileNet confusion matrix for MRL dataset.

 

Fig. 24.  MobileNet accuracy and loss graphs on testing MRL dataset.
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obtained from a camera that is installed within the vehicle to assess the driver’s fatigue. In the system, yawning, 
eye states and various facial expressions are classified in order to detect signs of fatigue. The model is based off 
of a dependable architecture that has been trained with a wide range of datasets containing images taken under 
different lighting conditions and angles. It also uses Haar cascade classifiers for facial detection alongside fatigue 
detection technology. Furthermore, the study observes a 96.54% testing accuracy, confirming that CNN models 
improve safety on roads by decreasing the amount of collisions caused by drowsy drivers’ inactivity.

Trying to improve over other drowsiness detection methods, the authors in18 embarked on a quest that 
involved drowsiness detection deployment through a mobile application which makes use of an amalgamation of 
transfer learning and CNN. As for their theoretical research, the effectiveness of their mobile app was thoroughly 
evaluated to establish its practicality which involved gathering numerous datasets. The mobile application 

Fig. 26.  Activation map for open-eyes and close-eyes for MRL dataset.
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operates under the hypothesis that the drowsiness detection system is expected to be between 96 and 98% with 
the MRL dataset.

The transformer-based model proposed in this paper surpasses all existing methods in the Open-Eyes 
Vs Close-Eyes classification problem. As opposed to the CNN-based algorithms, the Use of the transformer 
structures improves the process of feature extraction by paying attention to only relevant features and not 
unnecessary ones. Testing results with dataset MRL validate our proposed model as noted from the remarkable 
99.15% testing accuracy attained using a ViT transformer or 99.03% when using Swin Transformer and all 
99 percent of precision, recall and F1 score in respect to most other models tested. The proposed model 
outperformed all other seven models tested with all the fine-tuned hyperparameters in accuracy as well as 
robustness. While a number of these models including VGG19, ResNet50V2, MobileNetV2, and Inception 
V3, DenseNet169, InceptionResNetV2 yielded high scores for accuracy none were able to exceed the efficiency 
provided by a Transformer based model. This increase in performance reiterates through evidence the strengths 
associated with self attention mechanisms targeting the distinct eye states feature proving the superiority of the 
Transformer architecture especially in real time scenarios involving drowsiness detection. The comparison of the 
results with the previous related works results is displayed in Table 12.

Discussion
The current study demonstrates the strong potential of transformer-based models, particularly ViT and Swin 
Transformer, in detecting driver drowsiness with high accuracy and generalizability. The ViT model achieved 
99.15% accuracy on the MRL dataset and retained robust performance on unconstrained datasets such as 
CEW and NTHU-DDD. These results show a marked improvement over traditional CNN-based models (e.g., 
ResNet50V2 and InceptionV3), particularly in handling occlusions, lighting variability, and facial expressions. 
The transformer models’ self-attention mechanisms were instrumental in capturing nuanced spatial features 

Model Accuracy (%) Parameters Average inference time (ms/frame) Average FPS

ViT transformer 99.15 85,800,194 1021.83 0.98

Swin transformer 99.03 27,914,108 472.8 2.12

InceptionV3 98.5 23,867,553 136.33 7.35

InceptionResNetV2 98.5 55,851,105 122.8 8.14

MobileNet 98 3,208,001 55 18.18

Table 11.  Model performance and complexity comparison.

 

Fig. 27.  Real-time detection.
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like partial eye closure and facial angle variability. While transformer architectures are computationally more 
demanding, their superior performance in safety-critical applications such as real-time drowsiness detection 
justifies the computational trade-off. The results suggest that the proposed system can be effectively implemented 
in real-time driver assistance platforms.

One notable limitation of this study is the reliance on the MRL Eye Dataset as the primary source for training 
the deep learning models. While the MRL dataset offers a balanced and well-structured set of close-up eye 
images, its constrained environment - including grayscale images, close-up framing, and limited variability 
in lighting and facial characteristics - may restrict the generalizability of the trained models to real-world 
conditions. Despite these limitations, MRL was chosen due to its large volume of well-labeled eye state images, 
which provide a reliable foundation for training and benchmarking classification models. To mitigate the risk of 
overfitting to this controlled dataset and to assess the robustness of our models, we extended our evaluation to 
include two additional datasets: NTHU-DDD, which provides annotated video sequences under diverse lighting, 
pose, and behavioral conditions; and CEW, which includes unconstrained facial images with variations in head 
orientation, facial expressions, and occlusions such as glasses. These supplementary evaluations helped test the 
adaptability of the proposed models beyond the conditions present in MRL and confirmed their competitive 
performance in more diverse, real-world scenarios. Nonetheless, future work will aim to further enhance 
generalizability through training on larger, real-world datasets and integrating techniques such as domain 
adaptation and field-deployable validation. We also plan to combine these datasets in real-time applications to 
further improve robustness and practical deployment.

While the ViT model achieved a high classification accuracy of 99.15% on the MRL dataset, and similarly 
high results were obtained on NTHU-DDD and CEW, these metrics do not guarantee equivalent performance 
in real-world driving environments. Real-world conditions introduce unpredictable variables such as poor 
or rapidly changing lighting, head movements, facial occlusions due to sunglasses or hair, and differences in 
driver facial features and skin tones. Although the CEW and NTHU-DDD datasets were included specifically to 
simulate some of these conditions - such as varied facial angles, occlusions, and lighting - it remains a limitation 
that the system has not yet been field-tested in uncontrolled environments. Future work will involve deploying 
the system in real vehicles under various real-world conditions to assess its robustness and make necessary 
model adjustments. Additionally, incorporating adaptive learning or domain adaptation techniques may further 
help mitigate performance drops caused by environmental variability.

Another limitation of the current study lies in the granularity of the labels within the MRL dataset. Since it 
only includes static images categorized into binary eye states - Open and Closed - the models trained on this 
dataset are inherently constrained in their ability to detect more subtle or gradual signs of drowsiness, such 
as heavy blinking, partial eye closure, or slow eyelid drooping. These nuances often precede full eye closure 
and are critical for early intervention. To partially address this issue, we incorporated the NTHU-DDD dataset 
in our evaluation, which includes annotated behavioral cues like slow blinking, yawning, and nodding across 
video frames. However, fully capturing these transitional or temporal features requires future work involving 
sequential modeling techniques (e.g., RNNs or LSTM-based approaches) and datasets with continuous 
drowsiness annotations. Expanding to such models would enable the system to respond more sensitively to early 
drowsiness indicators, improving real-world applicability and safety impact.

While transfer learning and pre-trained models such as ViT, Swin Transformer, and VGG19 enabled significant 
performance improvements in this study, these models come with inherent limitations. Since they are initially 
trained on large-scale general datasets (e.g., ImageNet), their learned features may not fully capture the specific 
nuances of driver drowsiness behavior, particularly under unique environmental or cultural contexts. Moreover, 
highly complex pre-trained models can sometimes overfit to training data when fine-tuned on smaller or less 
diverse datasets, potentially reducing adaptability in real-world deployment. To mitigate this, we employed 
data augmentation and cross-dataset validation using CEW and NTHU-DDD. However, future research could 
explore domain-specific model pretraining or self-supervised approaches tailored to driver monitoring systems, 
improving robustness and generalization across unseen environments.

Compared to prior models that rely primarily on CNN architectures, such as VGG19 or Inception-based 
networks, the proposed transformer-based models - particularly ViT and Swin Transformer - demonstrated 

Ref Year Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
25 2022 Dual CNN Ensemble (DCNNE) 98.98 – – –
28 2023 VGG16 95.93 93.15 93.87 –

VGG19 95.03 94.82 95.47 –

4D 97.53 97.35 97.06 –
31 2024 VGG16 95.85 – – - -

CNN 96.54 – – - -
18 2024 CNN 96 around 94:98 around 94:98 around 94:98

MobileNetV2 97 99.42 92.32 95.61

InceptionV3 98 Around 97:98 Around 97:98 Around 97:98

Proposed swin transformer 99.03 99 99 99

Proposed ViT transformer 99.15 99 99 99

Table 12.  Comparison of results of previous literature results on MRL dataset.
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significantly higher robustness across datasets with real-world variability (e.g., CEW and NTHU-DDD). The ViT 
model achieved 99.15% accuracy on the MRL dataset and retained strong performance on more unconstrained 
data from CEW (97.25%), where models like ResNet50V2 and InceptionV3 showed lower generalization. This 
suggests that the self-attention mechanism in transformers allows for better spatial feature representation, 
especially when dealing with subtle visual cues like partial eye closure or facial occlusion. While transformer 
models are generally more computationally intensive than traditional CNNs, their improved accuracy in 
complex conditions justifies the trade-off for real-time safety-critical applications. Moreover, unlike models 
tailored to a single dataset or environment, our approach generalized well across multiple benchmark datasets, 
highlighting its adaptability and robustness in diverse scenarios. Future comparative studies will aim to evaluate 
these models in field conditions and compare not only accuracy but also latency and resource efficiency for 
embedded deployment.

To address concerns about generalizability and real-world applicability, we expanded our evaluation 
to include two challenging and diverse datasets: NTHU-DDD and CEW. These datasets present complex 
driving-related conditions such as varied head poses, facial expressions, occlusions (e.g., sunglasses), and 
lighting conditions, making them suitable for assessing the robustness of our proposed framework. The high 
performance of our model on these datasets supports its adaptability to more realistic settings. Nonetheless, we 
recognize that deeper behavioral analysis - such as incorporating multimodal inputs like head pose estimation, 
facial emotion recognition, or yawning detection - would strengthen the system’s ability to model driver fatigue 
more comprehensively. In future work, we plan to expand the model to integrate these cues, enabling a richer 
representation of driver state and supporting more accurate, context-aware interventions for road safety.

While transformer-based models demonstrated superior accuracy, they were more computationally 
intensive compared to transfer learning models. In contrast, transfer learning models offered faster inference 
but slightly lower accuracy. This trade-off highlights the importance of selecting the appropriate model based 
on the deployment environment-prioritizing accuracy for high-performance systems and speed for real-time, 
resource-constrained applications.

Conclusion and future directions
This work presents a highly effective deep learning-based framework for real-time driver drowsiness detection, 
achieving superior results through the application of state-of-the-art transformer architectures and transfer 
learning models. The proposed system, which classifies eye states into “Open-Eyes” and “Close-Eyes” using 
the MRL Eye Dataset, demonstrated exceptional performance, with the Vision Transformer (ViT) and Swin 
Transformer models achieving remarkable accuracies of 99.15% and 99.03%, respectively. These results 
significantly outperform existing methods, highlighting the superiority of transformer-based models in capturing 
complex spatial dependencies and extracting relevant features for drowsiness detection. The integration of 
Haar Cascade classifiers for real-time face and eye detection, coupled with a drowsiness scoring mechanism, 
ensures timely and accurate alerts, enhancing road safety by mitigating the risks associated with fatigue-
related accidents. The proposed framework was rigorously tested under various lighting conditions, including 
normal, low-light, and scenarios involving glasses, demonstrating its robustness and adaptability for real-world 
deployment. The use of Class Activation Mapping (CAM) further enhanced model interpretability, ensuring 
that the system focuses on critical eye regions for accurate classification. Compared to existing methods, the 
proposed framework offers a significant improvement in accuracy, precision, recall, and F1-score, making it 
a reliable and efficient solution for real-time drowsiness detection. Future work will focus on optimizing the 
system for deployment on resource-constrained embedded devices, exploring multi-modal approaches that 
integrate additional physiological signals, and extending the dataset to include more diverse driving scenarios. 
By addressing these challenges, the proposed framework has the potential to significantly contribute to the 
development of advanced driver assistance systems, ultimately reducing the incidence of drowsiness-related 
accidents and improving overall road safety. While our real-time tests included glasses and low-light scenarios 
through 3 different datasets, broader dataset diversity is needed for universal deployment. Future work will 
integrate multi-modal inputs (e.g., infrared cameras for low-light) and federated learning to adapt to unseen 
environments. The superior results achieved in this work underscore the effectiveness of the proposed approach 
and its potential for real-world application. Current drowsiness detection systems, including ours, primarily 
react to observable symptoms (e.g., eye closure). However, proactive prevention requires identifying pre-fatigue 
cues (e.g., increased blink duration, gaze instability) before severe drowsiness occurs. While our transformer 
models achieve 99.15% accuracy in classifying eye states, future iterations must integrate temporal dynamics and 
multi-modal signals (e.g., steering patterns, head nods) to predict drowsiness onset.

Data availability
The paper has a datasets available in the Kaggle repository MRL Dataset: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​i​m​a​​
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