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Computable phenotypes to identify
respiratory viral infections in the All
of Us research program
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Electronic health records (EHRs) contain rich temporal data about respiratory viral infections, but
methods to identify these infections from EHR data vary widely and lack robust validation. We
developed computable phenotypes by integrating virus-specific International Classification of Diseases
(ICD) billing codes, prescriptions, and laboratory results within 90-day episodes. Analysis of 265,222
participants with EHR data from the All of Us Research Program yielded national cohorts of varied size:
large cohorts for SARS-CoV-2 (n=28,729) and influenza (n=19,784); medium cohorts for rhinovirus,
human coronavirus, and respiratory syncytial virus (n=1,161-1,620); and smaller cohorts for the other
viruses (n=238-486). Using laboratory results as a reference standard, phenotypes using virus-specific
ICD codes and medications had variable sensitivity (8-67%) but high positive predictive value (PPV,
90-97%) for most viruses, while influenza virus and SARS-CoV-2 phenotypes had lower PPV (69-70%)
that improved with the inclusion of additional ICD codes. Identified infections exhibited expected
seasonal patterns matching CDC data. This integrated approach identified infections more effectively
than individual components alone and demonstrated utility for severe infections in hospital settings.
This method enables large-scale studies of host genetics, health disparities, and clinical outcomes
across episodic diseases, with flexibility to optimize sensitivity or PPV depending on the specific
research question.

Keywords Electronic health records, Computable phenotype, Respiratory tract infections, Influenza virus,
Reproducibility of results, Precision medicine

Respiratory infections are among the most common human diseases, with over 25 known viruses capable
of causing respiratory tract disease!. While research has traditionally focused on influenza virus, respiratory
syncytial virus (RSV), and recently SARS-CoV-2, multiplex diagnostic testing has revealed that rhinovirus (RV),
human metapneumovirus (hMPV), parainfluenza viruses (PIV), and common human coronaviruses (hCoVs)
can lead to comparable clinical presentations, detection frequencies, and healthcare utilization in hospitalized
patients?°. Despite their clinical impact and burden, these less frequently identified respiratory pathogens
remain understudied.

Population-level studies of respiratory infections face significant methodological challenges. Research
typically relies on administrative claims data, laboratory surveillance, or curated clinical cohorts™”. While
laboratory results and some pathogen-specific International Classification of Diseases (ICD) codes are highly
specific, they have poor sensitivity due to infrequent testing and identification. In pediatric patients, for instance,
fewer than 10% who present with influenza-like illness or upper respiratory infection receive laboratory testing
during standard care, and more than half receive only nonspecific syndromic ICD diagnoses®®. Testing rates
also vary by age, season, illness severity, length of stay, and rurality, creating biases in who receives diagnostic
confirmation®. Even for common viruses like influenza virus and RSV, adding non-specific ICD codes only
modestly improves sensitivity and dramatically reduces positive predictive value!®!!. Further complicating these
efforts, ICD code sets used in respiratory infection research are rarely shared and even less frequently validated
using laboratory results or other samples'>'.

Electronic health record (EHR)-based phenotyping algorithms that can integrate multiple data types offer
a promising approach to reliably construct disease cohorts for observational research. While combining billing
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codes, clinical notes, and medications using EHRs improves performance for many diseases, this approach has
rarely been applied for respiratory viruses>!*-17. Developing and validating such algorithms for respiratory
viruses would enable studies of clinical, environmental, and genetic risk factors across many respiratory viruses
within existing biobanks.

This study aimed to create and assess computable phenotypes for identifying viral respiratory infections in
EHR data using the National Institutes of Health’s All of Us Research Program (All of Us). All of Us collects a
variety of participant data including surveys, physical measurements, biospecimens, and EHRs. We constructed
computable phenotypes by integrating virus-specific ICD codes, antiviral medications, and laboratory results.
To assess phenotype performance, we calculated specificity, positive predictive value (PPV) and sensitivity for
combinations of phenotype components (ICD codes with different count thresholds and medications) using
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«Fig. 1. Computational phenotype for respiratory virus episodes using electronic health records (EHRs) with
episode composition. (a) Episodes were defined by (1) virus-specific ICD-9-CM or ICD-10-CM codes, (2)
antiviral medications (for influenza and SARS-CoV-2), and/or (3) positive laboratory results including nucleic
acid amplification tests (NAAT), antigen tests, or cultures. The first qualifying event is designated as time
zero (t,), and all related, subsequent events within 90 days were grouped into the same episode. Negative or
indeterminate tests were also included, with a five-day lookback window to incorporate false negative results.
Phenotypes were computed for influenza virus, human metapneumovirus (hMPV), respiratory syncytial virus
(RSV), parainfluenza, rhinovirus (RV), SARS-CoV-2, common human coronavirus (hCoV), and adenovirus
(ADV). Heatmap (b) showing the breakdown of episode types (columns) for each virus (row). Colors indicate
the percentage of total episodes for each virus (e.g., 74.9% of RV episodes (1,210/1,620) contained only positive
laboratory results. Percentages and corresponding colors for counts below 20, were censored per the All of Us
participant privacy policy. N/A: not applicable, as these viruses do not have regularly used treatments.

laboratory testing as a reference standard. We evaluated the reliability of our approach by comparing the
frequency and distribution of laboratory results against CDC surveillance data.

Results

We analyzed EHR data from 265,222 All of Us participants between 1981 and 2022, developing computable
phenotypes for eight respiratory viruses: rhinovirus (RV), human metapneumovirus (hMPV), respiratory
syncytial virus (RSV), adenovirus (ADV), SARS-CoV-2, parainfluenza (PIV), common human coronavirus
(hCoV), and influenza virus. Patient encounters were identified in the EHR if they had a virus-specific ICD code
(e.g., ICD-9-CM 487 “influenza” or ICD-9-CM 487.0 “Influenza with pneumonia”), a positive laboratory test, or
an antiviral prescription (for influenza and SARS-CoV-2 only). All virus-specific ICD codes, laboratory results,
and medications used for phenotyping are provided in Tables S1-3. All subsequent related events within 90 days
were grouped into the same illness episode (Fig. 1a)°.

Cohort characteristics

We identified respiratory virus episodes that varied substantially in size and composition (Fig. 1b). The largest
cohorts were SARS-CoV-2 (n=28,729 distinct episodes) and influenza virus (n=19,784); followed by RV
(n=1,620), hCoV (n=1,437), RSV (n=1,161); and the smaller cohorts, hMPV (n=486), PIV (n=400), and
ADV (n=238). EHR data availability varied by virus, with the earliest records dating back to 1981 (influenza
virus), followed by 1987 (ADV), 1997 (RSV), 2002 (PIV, hMPV), 2003 (RV), 2012 (hCoV), and 2020 (SARS-
CoV-2).

Across all cohorts, participants were predominantly female (61-68%) with median ages mostly between
50 and 58 (Table S4). Participants who self-reported as White were the plurality for every virus (32.9-60.1%),
compared to participants self-reporting as Black (16.5-28.5%) or Hispanic/Latino (17-32.1%). All other options
(Asian, multiple selected, Middle Eastern or North African, and Native Hawaiian or Other Pacific Islander) were
rare (0-2.2%). SARS-CoV-2 and influenza virus participant demographics most closely mirrored the overall All
of Us cohort with ICD, laboratory, or medication data (Table S4). Compared to all other groups, SARS-CoV-2
and influenza virus cohorts had a higher proportion of participants who self-reported as White (50.4-60.1%),
and they more frequently reported a higher income, education, and employer-provided insurance. Demographic
data were only notably missing for insurance type (46,487/265,222=17.5% for all participants with EHR data).
For each virus, participants identified as a viral case by the phenotype algorithm (‘infected’ in Table S4) received
more tests per person compared to participants ever tested for that virus (‘tested’ in Table S4).

Analysis of episode composition revealed differences between viruses. Some viruses primarily consisted of
laboratory results alone (predominantly for RV [74.7%], PIV [65.0%], SARS-CoV-2 [31.3%], hMPV [32.9%])
or single ICD codes (predominantly for ADV [45.8%], hCoV [43.1%], RSV [35.4%], influenza [34.8%]; Fig. 1b).
Antiviral use varied: SARS-CoV-2 episodes rarely included antiviral prescriptions (4.57%), while medication-only
episodes were frequently observed for influenza virus (22.9%), even after excluding prophylactic prescriptions.

Phenotype performance for detecting true positives

To understand how ICD code counts affected phenotype performance, we calculated sensitivity, specificity, and
positive predictive value (PPV) for each virus using nucleic acid amplification and virus culture test results
as a reference standard (Fig. 2). We compared phenotypes requiring at least 1, 2, 3, or 4 instances of relevant
ICD code per episode. The sensitivity of using at least one virus-specific ICD code varied between viruses and
decreased with the inclusion of additional codes. The sensitivity of just one ICD code was highest for influenza
virus (66.8%), compared to moderate sensitivity for RSV (55.2%), SARS-CoV-2 (44.8%), ADV (42.4%), hAMPV
(40.2%), and hCoV (33.4%). RV (9.2%) and PIV (8.3%) were rarely identified by ICD codes alone regardless of
how many appeared in an encounter.

Specificity and PPV demonstrated similar patterns, with exaggerated variation in PPV initially demonstrating
three groupings. First, for influenza virus and SARS-CoV-2, the PPV for one or more ICD codes was lower
(69.7% and 68.8%, respectively), but it increased as the minimum N ICD count increased (78.1% and 76.7%
for at least 2 ICD codes, respectively; Fig. 2). Second, for other respiratory viruses except hCoV, the PPV was
high (89.7-97.3%) regardless of ICD code count. Third, hCoV initially demonstrated a high PPV (79.5%) that
decreased as ICD count increased (71.8% for at least 2 ICD codes; Figure Sla).

The unusual pattern for hCoV occurred during the COVID-19 pandemic, when the nonspecific hCoV ICD
code counts spiked above historical maxima despite an absence of positive tests (Figure S1b). After excluding

Scientific Reports |

(2025) 15:18680 | https://doi.org/10.1038/s41598-025-02183-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

a Specificity by ICD Count Threshold* b Sensitivity by ICD Count Threshold

1.00 —= — _— 1.0

0-981 . 0.8-

0.96
2 20.61
g >
S 0.94+ 2
(] [=4
& &$ 0.4

0.92 4

0.90 - 0.2

0.0 T T T T T T 0.0

0 1+ 2+ 3+ 4+
ICD Count ICD Count
c Positive Predictive Value (PPV) by ICD Count Threshold
1.0 =
—e— RV
o— hMPV
RSV
ADV

—e— SARS-CoV-2
—e-: SARS-CoV-2 w/ Rx

E PIV

5 —e— hCoV™

o —e— Flu
Flu w/ Rx
0.2
00 T T T T T
0 1+ 2+ 3+ 4+
ICD Count

Fig. 2. Phenotype performance across different episode definitions. Specificity (a), sensitivity (b), and positive
predictive value (PPV; ¢) were calculated using nucleic acid amplification and virus culture laboratory results as
the reference standard. For each virus, colored lines show performance across episodes containing increasing
numbers of ICD codes. For influenza virus (orange line) and SARS-CoV-2 (dark blue line), additional dashed
lines show performance when episodes were restricted to episodes containing both ICD codes and antiviral
prescriptions (Rx). *Y-axis for specificity (a) is broken to depict differences near 1.0. **Human coronavirus
(hCoV) episodes excluded ICD codes after February 1, 2020, due to loss of specificity during the COVID-19
pandemic (Figure Sla). PIV: parainfluenza; hMPV: human metapneumovirus; RV: rhinovirus; ADV:
adenovirus; RSV: respiratory syncytial virus; hCoV: human coronavirus; Flu: influenza virus.

hCoV ICD codes recorded after February 1, 2020, the PPV pattern for hCoV aligned with non-influenza, non-
SARS-CoV-2 viruses (Fig. 2, Figure Sla).

Adding medication use to the phenotype had varying effects on performance. As with the medication-
exclusive phenotypes, specificity and PPV increased with each additional ICD code for the medication-inclusive
influenza and SARS-CoV-2 cohorts. While only a small proportion (1,345/28,741=4.67%) of SARS-CoV-2
episodes included a prescription for remdesivir, molnupiravir, or nirmatrelvir, the addition of medication to
the phenotype did increase PPV for this subset of 1,345 participants (Fig. 2). For influenza virus, medication
use alone was poorly predictive (PPV =46.8%), but combining medications with 1 ICD code improved PPV
compared to 1 or more codes alone (87.1% vs. 69.7%, respectively; Fig. 2).

We further evaluated combinations of ICD codes and antiviral requirements for both influenza virus and
SARS-CoV-2 and demonstrated an expected trade-off in performance (Table 1). The broadest criteria - requiring
only one ICD code or a medication - maximized sensitivity (76.0% influenza virus, 45.1% for SARS-CoV-2),
but this caused the highest number of false positives and the lowest PPVs (65.8% and 68.8%, respectively).
For influenza virus, by requiring at least two ICD codes or a medication accompanied by an ICD code, the
lower sensitivity (47.7%) was accompanied by a marked reduction in false positives (778 to 238) and increase in
PPV (65.8-79.8%). Similar trends were observed for SARS-CoV-2. Despite trade-offs, the ¢ coefficient, which
quantifies the correlation between lab results and phenotypes, was highest for the most inclusive phenotypes for
both viruses.

Geographic analysis identified broad nationwide coverage of infections, particularly for SARS-CoV-2 and
influenza virus (Fig. 3). While episodes generally matched the distribution of All of Us participants with EHR
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Counts (N) Phenotype Performance
Phenotype TP |FP |FN TN Sen. |Spec. | PPV | NPV | ¢
1+ICDs or medication 1496 | 778 | 472 32,018 | 0.760 | 0.976 | 0.658 | 0.985 | 0.688
1+ICDs 1315 | 572 | 653 32,224 | 0.668 | 0.983 | 0.697 |0.980 | 0.664
2+1CDs or medication 1120 | 444 | 848 32,352 | 0.569 | 0.986 | 0.716 | 0.974 | 0.619
Infl viras 2+ICDs or (1 ICD + medication) 939 | 238 |1029 32,558 | 0.477 | 0.993 | 0.798 | 0.969 | 0.600
3 +ICDs or medication 941 | 339 |1027 32,457 | 0.478 | 0.990 | 0.735 | 0.969 | 0.574
3+ICDs or (1-2 ICDs + medication) | 760 | 133 | 1208 32,663 | 0.386 | 0.996 | 0.851 | 0.964 | 0.558
2+ICDs 691 194 | 1277 32,602 | 0.351 | 0.994 | 0.781 | 0.962 | 0.506
3+ICDs 360 | 68 1608 32,728 | 0.183 | 0.998 | 0.841 | 0.953 | 0.379
1+ICDs or medication 7298 | 3302 | 8894 177,219 | 0.451 | 0.982 | 0.688 | 0.952 | 0.526
1+ICDs 7258 | 3298 | 8934 177,223 | 0.448 | 0.982 | 0.688 | 0.952 | 0.524
2 +ICDs or medication 4483 | 1324 | 11,709 | 179,197 | 0.277 | 0.993 | 0.772 | 0.939 | 0.438
SARS-CoV-2 2+ICDs or (1 ICD + medication) 4443 | 1320 | 11,749 | 179,201 | 0.274 | 0.993 | 0.771 | 0.938 | 0.435
3 +1CDs or medication 2598 | 546 | 13,594 | 179,975 | 0.160 | 0.997 | 0.826 | 0.930 | 0.345
3+ICDs or (1-2 ICDs + medication) | 2558 | 542 | 13,634 | 179,979 | 0.158 | 0.997 | 0.825 | 0.930 | 0.342
2+ICDs 4309 | 1310 | 11,883 | 179,211 | 0.266 | 0.993 | 0.767 | 0.938 | 0.427
3+ICDs 2260 | 523 | 13,932 | 179,998 | 0.140 | 0.997 | 0.812 | 0.928 | 0.318

Table 1. Phenotype performance TP: true positive; FP: false positive; FN: false negative; TN: true negative;
Sen: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive value; ¢: phi
coefficient (mean square contingency coeflicient).

data (Fig. 3b) and participants tested for each virus (Figure S2c), incorporating ICD codes and medications
resulted in higher infection rates in the Southeast and Texas despite lower testing coverage in these regions.
Temporal analysis showed that infection episodes composed of 1-3 ICD codes exhibited seasonality patterns
consistent with laboratory test-positive episodes for all commonly detected viruses (Fig. 4). During the early
COVID-19 pandemic (winter 2020 to spring 2021), only SARS-CoV-2 and RV were consistently identified.

Patterns in phenotype composition by level of care

Encounter level of care varied by virus and episode composition. For RV, hMPV, PIV, hCoV, and SARS-CoV-2,
episodes defined by at least one test without ICD codes were the most frequent. For RSV, ADV, and influenza
virus, ICD-only episodes predominated (Fig. 5). Influenza virus episodes with antiviral prescriptions were
similar in the distribution of visit types compared to those without antiviral prescriptions, while SARS-CoV-2
episodes rarely included prescriptions during our study period.

By percentage, influenza virus and SARS-CoV-2 episodes included a mix of outpatient, ER, and inpatient
encounters, while rates of ER visits and hospitalizations were higher for the other viruses. Episodes with positive
tests had higher hospitalization rates compared to test-negative episodes, and hospitalization rates increased
with the number of ICD codes per episode. The cohorts included very few post-acute care encounters and almost
no urgent care encounters.

Laboratory result comparison
Using national epidemiological data from NREVSS, COVID Data Tracker, and GISRS, we compared All of Us
laboratory results by geographic coverage, virus type proportion, and temporal trends.

We found broad national coverage of All of Us participants with relevant EHR data (265,222 participants),
with enriched sampling near population centers in the Northeast corridor; Western Pennsylvania; Great Lakes
Region; Southeast; Arizona; California; and the metropolitan areas of Austin/Dallas, Kansas City, Denver, and
Seattle (Figure S2a, Table S7). Only 3.7% of zip3 codes had no All of Us participants with ICD, laboratory, or
medication data.

Testing patterns in the All of Us data overlapped with CDC clinical laboratories reporting to NREVSS (Figure
S2b) and mirrored participant distribution (Figure S2a) with a notable decrease in testing for all respiratory
viruses in the Southeast relative to participant density (Figure S2¢). Testing frequency varied substantially by
virus; participants were more frequently tested for influenza virus and SARS-CoV-2 compared to all other
viruses.

Virus type distributions in All of Us were similar to national surveillance data from NREVSS and GISRS!#-20.
For PIV (2011-2019), HPIV-3 was most commonly detected and all other types were less frequent (Figure S3a).
For hCoV (2014-2021), OC43 was most common and 229E was least common, while the order of NL63 and
HKU1 differed (Figure S3b). Influenza virus type proportions (2010-2020) were nearly identical, with influenza
virus A more common than influenza virus B (Figure S3c). Cross-dataset influenza subtype comparisons were
not available, but in All of Us, H3N2 and HIN1 pdm09 were markedly more common than HINI and H5N1,
as expected.

Test positivity patterns from 2017 to 2022 matched CDC rates for most viruses (mean absolute error 5.89%
positive tests per week for RV and 1.18-2.82 for all other viruses; Fig. 6). SARS-CoV-2, influenza virus, and RV
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Fig. 3. Geographic distribution of respiratory virus episodes. Heat maps show All of Us participants with
relevant EHR data (a) and episode rates per 1,000 All of Us participants with EHR data by three-digit zip code
prefix (b). Colors represent quintiles defined by SARS-CoV-2 rates, the largest cohort. Regions with five or
fewer All of Us participants are marked as “No Data” in (b). *Human coronavirus episodes were filtered as
described in methods. RSV: respiratory syncytial virus.

had the highest percent positivity, and test positivity for most viruses followed expected seasonal patterns: PIV
and RV test positivity showed two seasonal peaks per year (spring-dominant for PIV, fall-dominant for RV),
while RSV, influenza virus, and hMPV had single overlapping winter peaks. SARS-CoV-2 test positivity rates
matched expected variant waves (e.g., Alpha, Delta, and Omicron BA.1). Notable differences in the All of Us
data include more week-to-week variability in virus positivity, undercounted positivity by ~10% during peak
respiratory season for influenza virus and RSV, and less ADV positivity, relative to CDC data.

Discussion

This study demonstrates significant variability in virus phenotyping performance across pathogens and algorithm
parameters in large US EHR datasets, providing important insights for EHR-based respiratory virus research.
By combining laboratory results, ICD codes, and medications, we improved case detection compared to any
component alone — an approach particularly valuable in regions with less frequent laboratory testing such as
the Southeast. The size differences between our cohorts (20,000-30,000 episodes for influenza virus and SARS-
CoV-2 compared to 200-1,600 for the other viruses we considered) likely represent increased clinical suspicion
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Fig. 4. Temporal patterns of respiratory virus episodes by composition. Three-week moving averages shown
for (a) parainfluenza, (b) human metapneumovirus, (c) rhinovirus, (d) adenovirus, (e) respiratory syncytial
virus (RSV), (f) human coronavirus, (g) influenza virus, and (h) SARS-CoV-2. For each virus, lines show total
episodes (gray) and episodes by composition: one or more positive tests (blue), single ICD code (light orange),
two ICD codes (light green), and three or more ICD codes (red-orange). For influenza and SARS-CoV-2,
additional lines show episodes with antiviral prescriptions alone (dark green) or with concurrent ICD codes
(pink). Gray shading indicates testing volume. The left y-axis corresponds to episode counts and the right
y-axis shows total tests performed. *Episodes for hCoV are shown after applying temporal filtering (unfiltered
plot compared in Figure S1).

and testing for common pathogens rather than true differences in disease burden®. The epidemiological patterns
we identified matched national surveillance data, supporting the utility of this approach. These computable
phenotypes offer a robust framework to conduct epidemiological, genomic, and clinical research on respiratory
viruses using real-world healthcare data.

Phenotype performance varied substantially between viruses, across episode composition, and over time.
While all phenotypes maintained high specificity, virus-specific ICD code sensitivity varied widely: higher
for influenza (66.8% vs. 38-95% in published studies) and RSV (55.2% vs. 24%); moderate for SARS-CoV-2,
ADV, hMPV, and hCoV (33-44%); and very low for PIV (8.3% vs. 14%) and RV (9.2% vs. 0%)310:11:21:22 T ower
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Fig. 5. Level of care patterns by virus and episode composition. For each virus, (a) counts and (b) percentages
of maximum level of care recorded between seven days before and 14 days after episode start. Results are
stratified by episode characteristics: episodes with positive tests (upper panels) versus those without (lower
panels), and by number of ICD codes (columns). Color intensity corresponds to level of care: inpatient (IP,
darkest), emergency room (ER), urgent care (UC), outpatient (OP), and unknown (lightest). For influenza
virus (Flu) and SARS-CoV-2, additional columns show episodes containing antiviral prescriptions. PIV:
parainfluenza; hAMPV: human metapneumovirus; RV: rhinovirus; ADV: adenovirus; RSV: respiratory syncytial
virus; hCoV: human coronavirus; Rx: antiviral prescription.
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Fig. 6. Temporal validation of test positivity using CDC surveillance data. Three-week moving average of test
positivity and test volume comparing All of Us (gray) to CDC surveillance data (blue) for eight respiratory
viruses: (a) parainfluenza, (b) human metapneumovirus, (c) rhinovirus, (d) adenovirus, (e) respiratory
syncytial virus (RSV), (f) common human coronavirus (hCoV), (g) influenza virus, and (h) SARS-CoV-2.

In each case, percent positivity (lines) corresponds to the left y-axis and total tests performed (shaded areas)
corresponds to the right y-axis. CDC data were obtained from NREVSS for panels A-F (ending 2021), FluView
for influenza virus, and COVID Data Tracker for SARS-CoV-2. AoU: All of Us.

sensitivity rates for less common viruses likely reflect reduced clinical suspicion and greater reliance on nonspecific
syndromic coding. Importantly, non-influenza, non-SARS-CoV-2 virus-specific ICD codes showed high PPV
regardless of count (89.7-97.3%), whereas single ICD codes for SARS-CoV-2 and influenza demonstrated lower
PPV (68.8-69.7%)%!%11:22 In medication-inclusive cases, ICD codes had a higher PPV for both influenza virus
and SARS-CoV-2 episodes. For SARS-CoV-2 specifically, antivirals alone were highly predictive of test results,
although receipt of remdesivir, molnupiravir or nirmatrelvir was rare (4.57% of all episodes) during the study
period. These performance differences highlight the necessity of selecting algorithm parameters based on the
specific pathogen and research objective (i.e., a desire to maximize sensitivity for epidemiological surveillance
or positive predictive value for genetic association studies).
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The COVID-19 pandemic disrupted the seasonal transmission of most respiratory viruses, granting the
opportunity to assess ICD code performance in unexpected settings and demonstrating the importance of
evaluating code performance over time for seasonally variable diseases. hCoV ICD codes were used to identify
concern for COVID-19, with diminished but persistent effects throughout the study period. Apart from
rhinovirus, our phenotypes only rarely identified false positive episodes during the COVID-19 pandemic,
mostly attributable to influenza virus episodes composed of a single ICD code. We suspect that these episodes
reflect clinical concern for infection rather than true infection, and indeed, adjusting the influenza phenotype
from any ICD code or medication to 2+ICD codes or medications accompanied by an ICD code markedly
reduced false positives and increased PPV.

Level-of-care analyses revealed patterns suggesting systematic detection biases toward higher acuity settings.
Our phenotype identified a high frequency of infections at emergency and inpatient visits for RV, hMPV, RSV,
ADV, PIV, and hCoV, compared to more outpatient visits for SARS-CoV-2 and influenza virus. These findings
differ from established hospitalization rates: CDC estimates suggest that only 1-2% of medically-attended
influenza cases require hospitalization, while COVID-19 hospitalization rates ranged between 2% and 68% over
this study period, with temporal trends showing a decrease from ~50% in the early pandemic to 20% by July,
202223-%7, Moreover, prospective studies in adults have shown that hospitalization rates for other respiratory
viruses are either similar or lower compared to influenza - the opposite of our results*®. This discordance suggests
that the All of Us computable phenotype oversamples high levels of care, particularly for non-influenza, non-
SARS-CoV-2 viruses, likely due to at least three factors: the lack of cost-effective outpatient assays, an absence
of specific therapeutic interventions that would justify multiplex testing costs in lower-acuity care settings, and
the utility of identifying an etiology in the inpatient setting, where cessation of antibiotics or discharge are
considerations.

Several limitations affect the utility of these methods. While strong correlation with CDC data supports
the use of this method for comparative temporal studies, the low sensitivity we observed precludes absolute
prevalence estimates. Although real-time surveillance would be feasible with other datasets, the current All of Us
approach requires EHR data conversion to a common data model before periodic release.

Generalizability is also limited due to the representativeness of our sample. Despite broad national coverage,
All of Us highly sampled some states (AZ, MA, WI, AL, PA, IL, MI, NY, MS, CA), while approximately half the
US population was sampled at rates below 1 in 10,000. The program’s intentional oversampling of communities
underrepresented in biomedical research also results in demographics that differ from the overall US population.
Notably, this cohort showed a decrease in representation of persons of Asian, Middle Eastern or North African,
and Native Hawaiian or Other Pacific Islander heritage. Other known impediments to generalizability compared
to the US population include decreased representation of blind and deaf participants and challenges in linking
EHRs from All of Us participants that joined outside a participant healthcare provider organization (indicated by
a large gap between participants who agree to share EHR data and those with EHR data available)?®.

Finally, this work faces challenges common to EHR-based research. These include labeling bias, implicit
clinician biases which could be influenced by seasonality or patient demographics, and informed presence bias
where EHR inclusion typically reflects illness rather than routine care?**. The minimal representation of urgent
care and post-acute care in our data further underscore the disconnected nature of healthcare in the US, and
identifies a gap in infection detection in these cohorts.

Overall, this study presents computable phenotypes for identifying viral respiratory infections by combining
virus-specific ICD codes, laboratory testing, and antiviral use in multi-center EHR data. This method reliably
detected geographic and temporal patterns matching national surveillance, although severe infections are
oversampled, and many mild infections are likely missed (supporting a need for expanded surveillance of non-
influenza/non-SARS-CoV-2 pathogens in routine medical care)®!. These phenotypes enable future studies
of genetic susceptibility, environmental effects, and clinical outcomes research across both well-studied and
understudied respiratory viruses. Given that All of Us broadly represents EHRs across the US, these approaches
would likely be applicable to any US-based EHR-based dataset. Beyond respiratory viruses, this work serves as a
foundation for the creation and validation of other computable phenotypes for episodic infectious diseases using
EHR-based methods and emphasizes the importance of tailoring algorithm design and phenotype definition to
specific research objectives.

Methods

Data acquisition

All methods were carried out in accordance with All of Us program guidelines as well as local guidelines and
regulations. Experimental protocols were approved by NHGRI Center for Precision Health Research. We
analyzed data from the All of Us Research Program, which digitally enrolls participants aged 18 years and older
across the United States®’. All of Us is a large, diverse national cohort where participants contribute survey
data, standardized physical measurements, biospecimens, and EHR data including billing codes, prescriptions,
and laboratory results?®. Participants provide consent to share health information, which includes physical
measurements, surveys, genomic data, and EHRs. The informed consent and enrollment for all participants
has been described, and specific Institutional Review Board approval is not required for Controlled Tier use of
de-identified data, deemed nonhuman subjects research by the All of Us Institutional Review Board*>*. The
program prioritizes recruitment of populations historically underrepresented in biomedical research2. This
analysis used Controlled Tier data (C2022Q4R13) from the All of Us Researcher Workbench and was restricted
to the 265,222 participants who had ICD codes, medications, or laboratory results in their EHR data between
1/1/1981 (the earliest influenza data available) and 7/1/2022. Data linkage, follow-up completeness, quality
assessment, participant privacy, and community engagement are described in the All of Us Protocol. This study
meets all five of the CODE-EHR minimum framework standards for the use of structured health care data in
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clinical research, with one out of five standards meeting preferred criteria®. Participants’ demographic data were

derived from the All of Us Researcher Workspace’s “person” table and “The Basics” survey.

Phenotype development

We developed computable phenotypes for eight respiratory viruses: rhinovirus (RV), human metapneumovirus
(hMPV), respiratory syncytial virus (RSV), adenovirus (ADV), SARS-CoV-2, parainfluenza (PIV), common
human coronavirus (hCoV), and influenza virus. Patient encounters were identified in the EHR if they had at
least one of the following: a virus-specific billing code (ICD-9-CM or ICD-10-CM), an antiviral indicated for the
target pathogen, or a positive laboratory test. We identified virus-specific ICD codes and Logical Observation
Identifiers Names and Codes (LOINC) laboratory results by searching for the virus name and related terms (e.g.,
“adenovirus” and “adenoviral pneumonia”). We excluded codes and results for zoonotic infections, vaccine-
related events, and ICD codes for explicitly non-respiratory conditions (e.g., “ovine adenovirus”, “enteritis due
to adenovirus”). We also excluded codes and results for pathogens sharing components of the virus name (e.g.,
“Haemophilus influenzae”). Laboratory data included nucleic acid amplification, antigen, and culture results. For
influenza virus and SARS-CoV-2, we included antiviral medications (i.e., oseltamivir, zanamivir, and baloxavir
for influenza virus; remdesivir, molnupiravir, and nirmatrelvir/ritonavir for SARS-CoV-2) given for more than
one day. For oseltamivir and zanamivir, prescriptions were removed if the duration of treatment was greater than
6 days to exclude prophylaxis. Antivirals for other respiratory viruses were not included due to poor specificity
or their restricted use for severe or immunocompromised cases.

We computed phenotypes for each infection episode by grouping related clinical events (Fig. 1a). An episode
began with the first occurrence (t,) of any virus-specific component: a virus-specific ICD code, positive laboratory
result, or qualifying antiviral prescription. All subsequent components within 90 days of t; were considered
part of the same episode, while events beyond 90 days initiated new episodes®. To capture false negatives, we
included negative or indeterminate laboratory results from t -5 days through the episode’s end. The per-episode
occurrence of constituent components (ICD codes, positive laboratory results, and medications) were tallied
(Fig. 1b). Counts for all virus-specific ICD codes, laboratory results, and medications used for phenotyping are
provided (Tables S1-3). We de-duplicated row-level entries; categorized visit types into major categories (i.e.,
intensive care unit, inpatient, emergency room, urgent care, post-acute care, outpatient, and unknown); and
reclassified laboratory results as positive, negative, or indeterminate (Table S5).

Phenotype sensitivity analyses

Positive predictive value, specificity, and sensitivity calculations

Using nucleic acid amplification and virus culture test results from All of Us EHR data as a reference standard, we
calculated the performance (PPYV, sensitivity, and specificity) of ICD codes based on increasing counts of virus-
specific ICD codes within each episode (e.g., multiple occurrences 0f J10.1, or combinations like J10.1 +J11 +487).
For a given threshold N (n=0,n21,n22, n>3, n>4), we defined true positives as episodes with N virus-specific
ICD codes and a positive test, false positives as episodes with N ICD codes and only negative tests, and false
negatives as episodes with fewer than N ICD codes and a positive test.

For influenza virus and SARS-CoV-2, we additionally tested the performance of incorporating antiviral
prescriptions with ICD codes. We first assessed specificity, sensitivity, and PPV in cases requiring both the
specified ICD count and a prescription to be considered positive, or fewer than NICD codes and no prescription to
be considered negative. Then, we evaluated performance metrics (sensitivity, specificity, PPV, negative predictive
value (NPV), and phi coeflicient) across different combinations of ICD code thresholds and medication criteria
for these two viruses.

Temporal and geographic analysis of Phenotype-Positive episodes

For any episode that met positivity criteria, we analyzed temporal patterns by calculating three-week moving
averages of episode and constituent component counts from July 2017 (MMWR week 201726) through June
2022 (MMWR week 202225). Because hCoV PPV was lower than expected for non-influenza, non-SARS-
CoV-2 viruses, and as hCoV ICD counts were disrupted during the COVID-19 pandemic, hCoV ICD codes
after February 1, 2020 were excluded from the analysis (Figure S1). We assessed the geographic distribution of
episode rates by three-digit ZIP code prefixes (zip3).

Level of care sensitivity analysis

Because of differences in testing and care by facility type and acuity, for each episode we identified the highest
acuity encounter (from lowest to highest: outpatient, post-acute care, urgent care, emergency department, or
inpatient) within a window spanning t, - 7 days through t,+ 14 days. We chose this window after analyzing
the distributions of visit timing for phenotype-related visits (those associated with virus-specific ICD codes,
antivirals, or laboratory results) and all visits (Figure S4). Use of all visits within the selected window, rather than
only phenotype-related visits, reduced the overall percentage of missing encounter data from 25.9 to 15.4%;
across viruses and ICD counts, median missing encounter data decreased from 17.6% (IQR 7.6-28.3%) to
11.3% (IQR 2.2-17.8%; Table S6). Rarely (0.09-0.43%), phenotype-related maximum encounter acuity exceeded
encounters within this time window (e.g., hospitalization occurring>7 days prior to initial viral diagnosis,
Figure S5). For PIV, hMPV, and RSV, manual review of these visits revealed that the associated encounter start
date preceded the window period by a few days, and the phenotype component level of care was retained. We
analyzed level-of-care patterns across viruses, stratifying by ICD codes and test positivity.
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Comparison with National surveillance data

To confirm the representativeness of our laboratory result data in All of Us, we compared the seasonal percent
positivity and test volume of All of Us EHR laboratory results to data from three CDC/WHO sources: National
Respiratory and Enteric Virus Surveillance System (NREVSS), COVID-19 Data Tracker, and the Global Influenza
Surveillance and Response System (GISRS).

First, we assessed geographic coverage by comparing All of Us participant locations and testing rates to
deduplicated NREVSS clinical laboratory results from 2017 to 20213, All of Us EHR participant counts were
visualized by aggregating data across three-digit ZIP code prefixes (zip3). Zip3 information was missing for
2/265,222 (0.00%). All of Us EHR participants (per 1,000 zip3 2020 Census population) and All of Us participants
tested (per 1,000 All of Us participants with EHR data) were similarly aggregated by zip3 code. Zip3 regions with
five or fewer All of Us participants were removed and classified as “No Data” We obtained zip3 boundaries from
US Census Bureau zip code tabulation areas, 2017 cartographic state boundaries from the Vega us-10 m.json
dataset, and 2020 zip code tabulation area populations from the US Census Bureau.

Next, we assessed virus distribution by comparing proportions detected (% = N type / N total with known
type) in All of Us to surveillance data from NREVSS and the GISRS'3-%0. These comparisons were limited to
hCoV, influenza virus, and PIV; as these were the only viruses for which syndromic multiplex panels routinely
report type-specific results.

To evaluate temporal patterns, we compared weekly test positivity data between All of Us and CDC
surveillance from the first week of July, 2016 to the last week of June, 2022. For each virus, we calculated the
percentage of positive tests for each MMWR reporting week. We plotted three-week moving averages for both
percent positivity and total tests performed for All of Us and CDC data. We obtained CDC comparison data from
NREVSS for non-SARS-CoV-2 viruses, additional influenza virus data from FluView, and SARS-CoV-2 data
from the COVID Data Tracker®¢-%,

Data availability

The Community Workspace “Respiratory Virus Computable Phenotype” is available for all approved All of Us
Controlled Tier users and includes all code used in this work (https://workbench.researchallofus.org/workspace
s/aou-rw-ae307fda/respiratoryviralinfectionsinallofus/analysis).
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