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The rising energy demand, substantial transmission and distribution losses, and inconsistent power 
quality in remote regions highlight the urgent need for innovative solutions to ensure a stable 
electricity supply. Microgrids (MGs), integrated with distributed generation (DG), offer a promising 
approach to address these challenges by enabling localized power generation, improved grid flexibility, 
and enhanced reliability. This paper introduces the Improved Lyrebird Optimization Algorithm (ILOA) 
for optimal sectionalizing and scheduling of multi-microgrid systems, aiming to minimize generation 
costs and active power losses while ensuring system reliability. To enhance search efficiency, ILOA 
incorporates the Levy Flight technique for local search, which introduces adaptive step sizes with 
long-distance jumps, improving the exploration-exploitation balance. Unlike conventional local search 
strategies that rely on fixed step sizes, Levy Flight prevents premature convergence by allowing 
the algorithm to escape local optima and explore the solution space more effectively. Additionally, 
a chaotic sine map is integrated to enhance global search capability, ensuring better diversity and 
superior optimization performance compared to traditional algorithms. Simulation studies are 
conducted on a modified 33-bus distribution system segmented into three independent microgrids. 
The algorithm is evaluated under single-objective scenarios (cost and loss minimization) and a multi-
objective optimization framework combining both objectives. In single-objective optimization, ILOA 
achieves a generation cost of $19,254.64/hr with 0.7118 kW of power loss, demonstrating marginal 
improvements over the standard Lyrebird Optimization Algorithm and significant gains over Genetic 
Algorithm (GA) and Jaya Algorithm (JAYA). In multi-objective optimization, ILOA surpasses competing 
methods by achieving a generation cost of $89,792.18/hr and 10.26 kW of power loss. The optimization 
results indicate that, for the IEEE-33 bus system without considering EIR, the proposed ILOA algorithm 
achieves savings of approximately 0.0014%, 0.0041%, and 0.657% in operation costs compared to 
LOA, JAYA, and GA, respectively, when MG-1, MG-2, and MG-3 are operational. The analysis of real 
power loss reduction demonstrates that, in the IEEE-33 bus system without considering EIR, the 
proposed ILOA algorithm effectively minimizes power loss by approximately 0.692%, 1.696%, and 
1.962% in comparison to LOA, JAYA, and GA, respectively, under the operational conditions of MG-1, 
MG-2, and MG-3. Additionally, reliability constraints based on the Energy Index of Reliability (EIR) are 
effectively incorporated, further validating the robustness of the proposed approach. Considering EIR, 
the real power loss analysis for the IEEE-33 bus system highlights that the proposed ILOA algorithm 
achieves a reduction of approximately 1.319%, 2.069%, and 2.134% in comparison to LOA, JAYA, and 
GA, respectively, under the operational scenario where MG-1, MG-2, and MG-3 are active. The results 
confirm that ILOA is a highly efficient and reliable solution for distributed generation scheduling and 
multi-microgrid sectionalizing, showcasing its potential for real-world applications such as dynamic 
economic dispatch and demand response integration in smart grid systems.

Keywords  Lyrebird optimization algorithm, Distributed generators, Multi-microgrids, Optimal scheduling, 
Generation cost minimization, Active power loss, Multi-objective optimization, Energy index of reliability 
(EIR)

1Department of Electrical and Electronics Engg, Hindustan Institute of Technology and Science, Chennai, Tamil 
Nadu, India. 2Centre for Smart Grid Technologies, School of Electrical Engineering, Vellore Institute of Technology, 

OPEN

Scientific Reports |        (2025) 15:17345 1| https://doi.org/10.1038/s41598-025-02200-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-02200-x&domain=pdf&date_stamp=2025-5-18


Chennai, Tamil Nadu 600 127, India. 3Hourani Center for Applied Scientific Research,  Al-Ahliyya Amman University, 
Amman, Jordan. 4Director of Research, Perdana University, Kuala Lumpur, Malaysia. 5ENET Centre,  CEET, VSB-
Technical University of Ostrava, 708 00 Ostrava, Czech Republic. email: rarul@vit.ac.in; mohitbajaj.ee@geu.ac.in

The contemporary energy scenery is evolving, with a modification towards decentralized energy systems. 
Microgrids, small-scale power networks encompassing various distributed energy resources, play a pivotal role 
in this transformation1,2. However, managing these interconnected microgrids poses challenges due to their 
diverse energy sources, demand fluctuations, and the necessity for constant optimization3,4. The integration of 
distributed generation (DG) and microgrids into power systems has garnered significant attention for enhancing 
grid reliability, reducing emissions, and achieving energy independence. However, the complex interplay 
of sectionalizing multi-microgrids and optimally scheduling DG units necessitates advanced optimization 
techniques. Traditional methods often struggle to balance competing objectives such as cost minimization, 
emission reduction, and reliability improvement. Multi-microgrid systems represent a paradigm shift in the way 
we conceive, design, and operate power networks5. As an evolution of conventional microgrids, which are localized 
grids capable of operating self-reliantly or in combination with the utility, multi-microgrid systems expand this 
concept by interconnecting multiple microgrids into a more complex network6. Multi-microgrid systems are 
designed to improve the resilience and flexibility of power distribution7. By interconnecting several microgrids, 
these systems can achieve higher reliability, allowing for more dynamic and robust energy management8. 
Unlike standalone microgrids, multi-microgrid systems emphasize interconnectedness. These systems enable 
collaboration among individual microgrids, allowing for shared resources, energy trading, and mutual support 
during contingencies or peak demand periods9. Scaling up the concept of microgrids, multi-microgrid systems 
cater to larger geographical areas, diverse energy sources, and varied load demands10. Optimization algorithms 
play a crucial role in managing multiple objectives such as cost minimization, emission reduction, and system 
stability across interconnected microgrids11. Leveraging renewable energy sources is a cornerstone of multi-
microgrid systems. These systems facilitate the incorporation of various non-conventional energy resources, 
for instance wind, photovoltaic and hydro-electric, across multiple microgrids, enabling a more sustainable and 
greener energy matrix12. Effective communication and control systems are essential for the seamless operation 
and coordination of multi-microgrid systems13. Advanced control strategies, including hierarchical control 
architectures and decentralized control mechanisms, are implemented for efficient management14. Developing 
sophisticated optimization and scheduling algorithms is critical for achieving the best utilization of resources 
in multi-microgrid systems. These algorithms consider multiple objectives, uncertainties in renewable energy 
generation, load variations, and grid stability constraints15. Enhancing grid resilience and reliability is a 
significant challenge. Multi-microgrid systems need to address issues related to grid stability, fault management, 
and rapid response to disturbances to ensure uninterrupted power supply16. Establishment of suitable regulatory 
frameworks and market structures is necessary to facilitate energy trading, incentivize efficient energy 
management strategies, and encourage participation from diverse stakeholders in multi-microgrid systems17. 
The integration of optimization techniques within multi-microgrid systems is indispensable, serving as a 
linchpin for efficient, resilient, and sustainable energy management18. These techniques address the complexities 
inherent in managing multiple interconnected microgrids, ensuring optimal utilization of resources, and 
meeting various operational objectives. Multi-microgrid systems entail juggling multiple objectives, including 
cost minimization, emission reduction, reliability enhancement, and grid stability19. Optimization techniques 
provide the framework to balance these conflicting objectives effectively. Optimizing resource allocation, such as 
distributed generation sources, storage systems, and load management, is essential. These techniques enable the 
allocation of resources efficiently across interconnected microgrids to meet demand while minimizing costs20. 
The intermittent nature of renewable energy sources adds complexity. Optimization techniques accommodate 
uncertainties in renewable generation, ensuring optimal scheduling of renewables while maintaining system 
stability21. The long-term multi-objective optimization of renewable distributed generation (DG) power ratings 
and battery energy storage system (BESS) energy and power ratings in a grid-connected microgrid was carried 
out using the fuzzified Grey Wolf Optimizer22. A comprehensive approach was implemented to optimize the 
sizing of renewable DGs and BESS in grid-connected microgrids. The optimization framework incorporated 
multiple objectives, including minimizing total annual costs, emissions, and energy losses, while maximizing 
annualized benefits by deferring network upgrades. The day-ahead scheduling of microgrids was formulated 
as a multi-objective optimization problem, considering wind turbines, solar photovoltaics, and energy storage 
systems (EES)23. This was achieved using game theory and a deep learning neural network (DL-NN) forecasting 
model, which integrated the Wind-Corrected Moving Average (WCMA) technique to predict wind speed, solar 
radiation, and load demand with improved accuracy.

Recent advancements in microgrid optimization have significantly emphasized cost-efficiency, emission 
reduction, and system reliability. Paul et al.24 developed a quantum particle swarm optimization framework 
for optimizing sustainable energy management in grid-connected microgrids. Their approach simultaneously 
minimized cost and emissions, integrating renewable sources into a multi-objective optimization setup that 
addressed environmental and economic performance trade-offs. This study emphasized the role of intelligent 
algorithms in handling the conflicting objectives of operational cost and carbon footprint in energy systems. 
Phommixay et al.25 presented a comprehensive review of cost optimization techniques for microgrids using 
particle swarm optimization (PSO). They highlighted the evolution of PSO variants and their application in 
economic dispatch, load scheduling, and system cost reduction. The study underscored the need for more 
adaptable and hybrid strategies to manage system uncertainties, particularly in renewable-integrated microgrids. 
Singh et al.26 introduced a greedy rat swarm optimization algorithm coupled with price-elastic demand response 
to enhance economic and environmental efficiency in microgrid operation. Their approach incorporated real-
time pricing signals, enabling responsive load management and improved system-level optimization through 
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behavioral modeling of demand-side participants. Nguyen and Crow27 proposed a stochastic optimization 
strategy for microgrids with renewable resources, incorporating battery degradation cost into the scheduling 
problem. Their model addressed the operational uncertainties of wind and solar power while also accounting 
for lifecycle cost implications of energy storage systems, providing a more holistic economic framework for 
microgrid planning. In a related study, Singh et al.28 developed a hybrid demand-side policy for microgrid 
scheduling that balanced economic and emission objectives. By integrating demand-side management with 
generation scheduling, their model achieved enhanced flexibility in dispatch decisions, especially under variable 
generation and load conditions. Selvaraj et al.29 applied the crow search algorithm for real-time power scheduling 
in distribution systems to improve microgrid performance. Their metaheuristic strategy focused on dynamic 
adaptability and convergence speed, demonstrating promising results for real-time operation under changing 
demand profiles and resource availability. Garcia-Torres et al.30 examined stochastic optimization of microgrids 
incorporating hybrid energy storage systems and energy forecast uncertainties. Their study emphasized the 
significance of accounting for forecast deviations in both demand and renewable generation, which affect 
the optimal dispatch of storage units for grid flexibility services. Nadimuthu et al.31 explored the feasibility 
of renewable energy-based microgrids with vehicle-to-grid (V2G) technology in smart village applications. 
Their case study from India highlighted how V2G integration can support energy balancing and storage in 
isolated and rural microgrid setups, demonstrating social and technical viability. Singh et al.32 proposed a 
machine learning-based framework for energy management and forecasting in grid-connected microgrids. By 
leveraging predictive models, their approach improved the scheduling accuracy of distributed energy sources, 
enabling proactive optimization under uncertain operating conditions. Ott et al.33 developed a mixed-integer 
linear programming (MILP) model for restoration planning in multi-microgrid distribution networks. Their 
framework supported system reconfiguration and restoration following faults, focusing on operational resilience 
and supply continuity in complex distributed environments. Karthik et al.34 introduced a chaotic self-adaptive 
sine cosine algorithm for solving microgrid optimal scheduling problems. The chaotic adaptation enhanced 
the algorithm’s ability to escape local optima and maintain search diversity, making it suitable for multi-
objective scenarios involving generation cost and power quality metrics. Abdalla et al.35 examined optimized 
economic operation of microgrids that integrate combined cooling, heating, and power (CCHP) systems along 
with hybrid energy storage. Their model facilitated comprehensive energy flow management and improved 
economic efficiency in multiservice microgrid applications. Artis et al.36 proposed a seismic-resilient planning 
framework for distribution networks with renewable-based multi-microgrids. Their multi-level strategy 
incorporated structural and operational planning to enhance grid survivability under seismic disturbances, 
addressing the critical aspect of infrastructure resilience. Rajagopalan et al.37 developed a multi-objective 
energy management model for microgrids integrated with electric vehicles, using an iterative map-based crystal 
structure optimization algorithm. Their approach addressed the operational complexity introduced by mobile 
storage and dynamic charging demands, while optimizing for cost, emissions, and load balancing. Arefifar et 
al.38 investigated the controllability of voltage and current in multi-microgrid smart distribution systems. Their 
analysis provided insights into hierarchical control strategies and dynamic coordination among interconnected 
microgrids, enabling improved system stability and regulation. Malik et al.39 presented an intelligent multi-stage 
optimization approach for community-based microgrids under the multi-microgrid paradigm. Their method 
layered multiple decision levels—generation, storage, and load scheduling—achieving fine-grained control 
over distributed assets in community-scale applications. He et al.40 proposed an improved genetic algorithm 
for economic scheduling in multi-microgrid systems. The enhancements in population diversity and crossover 
strategy led to better convergence and more robust solutions for cost optimization across interconnected grids.

Table 1 presents a comprehensive review of the literature on Multi-Objective Optimal Scheduling of Multi-
Microgrids. The review highlights that real power loss is often overlooked as an objective function, despite its 
impact on system efficiency. This underscores the need for a more comprehensive optimization framework that 
integrates real power loss for improved practical applicability. The Improved Lyrebird Optimization Algorithm 
(ILOA) addresses this gap by analyzing seven case studies, demonstrating its ability to enhance system 
performance. These findings reinforce the importance of considering real power loss and diverse operational 
conditions to improve the reliability and efficiency of multi-microgrid systems.

The growing adoption of multi-microgrid systems in modern power grids, driven by the demand for 
resilience, sustainability, and flexibility, has introduced new challenges in distributed generation (DG) 
scheduling. Interconnected microgrids must balance conflicting objectives, such as minimizing generation 
costs, reducing power losses, and maintaining system stability under dynamic load conditions. Traditional 
optimization methods, including Genetic Algorithm (GA) and Jaya Algorithm (JAYA), often struggle with slow 
convergence, suboptimal solution quality, and limited scalability in large, complex systems. A major limitation is 
their tendency for premature convergence, restricting their ability to fully explore the solution space.

Additionally, the increasing integration of renewable energy sources introduces variability and uncertainty, 
complicating stable and cost-effective energy management. Given these challenges, advanced optimization 
techniques are essential to effectively balance exploration and exploitation, address renewable energy 
uncertainties, and optimize multi-objective functions in large-scale interconnected microgrid systems.

To enhance the local search efficiency of the Improved Lyrebird Optimization Algorithm (ILOA), the 
Levy Flight technique was incorporated due to its ability to balance exploration and exploitation effectively. 
Conventional local search strategies, such as Gaussian-based random walks, often struggle with premature 
convergence and getting trapped in local optima, limiting their effectiveness in complex optimization problems. 
In contrast, Levy Flight introduces adaptive step sizes with occasional long-distance jumps, allowing the 
algorithm to explore the solution space more efficiently while maintaining precise searches in promising regions. 
This characteristic helps ILOA navigate multi-modal search spaces, leading to faster convergence, improved 
solution accuracy, and enhanced robustness. By leveraging Levy Flight, ILOA achieves a well-optimized trade-off 
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References Year Problem

Selected 
energy 
sources

Energy 
storage 
system Single/multi-microgrid Suggested approach Limitations/challenges

41 2022 Multi-objective 
optimal scheduling

WT, PV, 
MT, FC Battery Single MG Binary Orientation Search 

Algorithm (BOSA), PSO
High uncertainty in renewable energy outputs 
and computational burden from stochastic 
modeling. Power loss not considered

42 2020 Multi-objective 
optimal scheduling WT, PV Battery Multi MG Chance-constrained 

programming
Scenario reduction required for computational 
feasibility. Power loss not included

43 2017 Multi-objective 
energy management

WT, PV, 
MT, FC Battery Single MG EDNSGA-II

Reinforcement learning models add 
computational complexity. Power loss 
excluded

44 2022
Operation control 
of a multi-microgrid 
system

WT, PV Battery Multi MG
Preference-based multi-
objective reinforcement 
learning (PMORL)

Limited generalizability as the proposed 
MORL method is tested only in specific 
scenarios. Power loss not addressed

45 2018 Multi-objective 
energy management WT, PV, FC Battery Single MG MOPSO

Optimization of AC/DC microgrid power 
management, but cost and power loss not 
considered

46 2024
Optimal dispatch of 
microgrids under 
uncertainties

WT, PV - Single MG
Triplet-Critics 
Comprehensive Experience 
Replay Soft Actor-Critic 
(TCSAC)

Challenges in handling uncertainties in 
renewable generation, multi-objective 
optimization, and reinforcement learning-
based dispatch

47 2022 Optimal scheduling WT, PV, 
MT Battery Single MG

Automated Reinforcement 
Learning-based Multi-
period Forecasting

Excludes real power loss consideration in 
uncertainty modeling for load forecasting and 
energy generation

48 2020 Multi-objective 
optimal scheduling WT,PV Battery Single MG Goal Programming Neglects operating costs and power loss, 

impacting real-world feasibility

49 2016 Optimal Scheduling WT, PV Battery Single MG Not Specified Strategic load and generation management 
focus but lacks cost and power loss analysis

50 2021 Optimal scheduling WT, PV, 
MT, FC Battery Multi MG Hybrid lexicography-

compromise programming
Fair cost allocation mechanisms need 
improvement despite achieving cost reduction. 
Power loss not considered

51 2023 Optimal scheduling WT, PV, 
MT, FC Battery Single MG Slime Mould Algorithm 

(SMA)
Scalability concerns as the method is tested 
on a single microgrid setup with limited DG 
configurations

52 2021
Optimal operational 
energy management 
and planning

WT, PV, 
MT, FC Battery Single MG

Improved Multi-Objective 
Differential Evolutionary 
(IMODE) Optimization 
Algorithm

Assumes a power factor of one, neglecting 
reactive power and potential real-world 
impact. Power loss excluded

53 2022 Energy management WT, PV Battery Multi MG GAMS and CPLEX Solver
Accuracy concerns due to unaccounted power 
losses; lacks cost-sharing strategies for multi-
microgrid operation

54 2024 Multi-objective 
optimal scheduling

WT, 
PV, Gas 
Turbine, 
Diesel 
Generator

Battery Single MG Improved PSO
Geographical and network limitations restrict 
scalability; substantial grid support required. 
Power loss not included

55 2024
Optimization of 
multi-energy cloud 
energy storage

PV,WT, EC, Hydrogen 
energy Multi MG Multi-agent dual-layer 

optimization model
Short-term energy storage focus, with 
minimal exploration of long-term storage 
solutions. Power loss not addressed

56 2023 Day-ahead 
scheduling

WT, PV, 
CHP and 
GB

Hydrogen 
and 
Battery

Multi MG MILP and ε-constraint 
approach

Uncertainty modeling challenges persist 
despite stochastic approaches. Power loss not 
an objective

57 2024
Operation 
optimization and 
cost allocation for 
microgrid

WT and PV

Shared 
hybrid 
energy 
storage 
system 
(SHESS)

Multi MG

Multi-objective optimization 
model using Confidence 
Gap Decision Theory 
(CGDT) and improved 
Shapley method

High computational complexity from 
multi-objective optimization and confidence 
interval-based uncertainty modeling. Power 
loss excluded

58 2024
Optimization 
scheduling for 
multi-microgrids

WT, PV, 
MT, Diesel 
Generator, 
FC

Hybrid 
Energy 
Storage 
System

Multi MG SOCP and MILP Requires integration of multiple advanced 
mathematical techniques for optimization

59 2024 Optimal scheduling WT, PV, GT

Electric 
energy 
storage 
(EES) and 
thermal 
energy 
storage
(TES)

Multi MG
Direction Multiplier Method 
(ADMM) and Column & 
Constraints Generation 
(C&CG)

Computationally intensive distributed 
optimization and income allocation method. 
Power loss not included

60 2024
Stochastic multi-
objective sizing 
optimization

WT, PV Battery Single MG
Self-Adaptive Multi-
Objective Genetic 
Algorithm (SAMOGA)

Pareto frontier analysis demands high 
computational power. Power loss not included

Continued
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between global and local search, resulting in higher-quality solutions in both single-objective and multi-objective 
optimization problems. The effectiveness of this approach is demonstrated through comparative analysis, where 
ILOA consistently outperforms traditional optimization techniques in multi-microgrid scheduling tasks.

The key contributions of this paper are as follows:

•	 Integrated Levy Flight into the Lyrebird Optimization Algorithm (LOA), significantly improving local search 
efficiency and accelerating convergence to optimal solutions in multi-microgrid systems.

•	 Introduced a chaotic sine map to enhance global exploration, ensuring better diversity in the search space and 
reducing the likelihood of premature convergence.

•	 Proposed and applied the Improved Lyrebird Optimization Algorithm (ILOA) to a multi-microgrid test sys-
tem, addressing both single-objective (generation cost minimization) and multi-objective (generation cost 
and power loss reduction) optimization problems, with a focus on real-world microgrid applications.

•	 Conducted a thorough comparison of ILOA with traditional algorithms like LOA, Genetic Algorithm (GA), 
and Jaya Algorithm (JAYA), demonstrating its superior performance in convergence speed, solution quality, 
and computational efficiency in large-scale systems.

•	 Validated the robustness of ILOA through extensive simulations, showing its ability to effectively balance 
multiple conflicting objectives, handle renewable energy uncertainties, and maintain system stability in dy-
namic microgrid environments.

•	 Highlighted ILOA’s potential for real-world applications in smart grid systems, particularly in dynamic eco-
nomic dispatch and demand response integration, positioning the algorithm as a practical solution for future 
energy management challenges.

The manuscript is organized as follows:"Introduction"section introduces the problem of optimizing distributed 
generation in multi-microgrid systems, providing the motivation and background for the study."Sectionalization 
of microgrid distribution system"section presents the sectionalization of microgrid distribution systems, 
explaining how the system operates under normal and fault conditions, and the process of creating self-sufficient 
microgrids."Mathematical formulation of multi-objective optimal scheduling of distributed generators"section 
outlines the mathematical formulation of the multi-objective optimal scheduling problem, presenting the 
objective functions for cost minimization and power loss reduction, as well as the constraints involved."Improved 
lyrebird optimization algorithm"section details the proposed Improved Lyrebird Optimization Algorithm 
(ILOA), explaining its structure, including the integration of Levy Flight for local search enhancement and 

References Year Problem

Selected 
energy 
sources

Energy 
storage 
system Single/multi-microgrid Suggested approach Limitations/challenges

61 2024

Real-time 
collaborative 
optimal energy 
scheduling and 
dispatching

WT, PV, 
MT Battery Multi MG Improved cheetah optimizer 

(ICO) algorithm
Lacks real power loss consideration despite 
optimizing energy scheduling

62 2024 Economic dispatch Distributed 
generators

Not 
explicitly 
specified

Multi MG
Two-layer coordinated 
optimization model using 
a distributed consensus 
algorithm

Real-time complexity concerns due to 
computational overhead. Power loss not 
addressed

63 2024 Optimal scheduling WT, PV, GT

Electrical 
and 
Thermal 
Energy 
Storage

Multi MG
Chaotic Gaussian Quantum 
Crayfish Optimization 
Algorithm

Requires significant computational resources 
for CGQCOA implementation and real-time 
data handling. Power loss not included

64 2024
Economic 
optimization 
scheduling

WT, PV, 
Diesel 
Engine

Battery Multi MG
Constraint Multi-Objective 
Evolutionary Algorithm
based on Decomposition 
(CMOEAD), NSGA-II

Economic efficiency-focused optimization. 
Power loss excluded

65 2024 Robust collaborative 
scheduling WT, PV

Electrical 
and 
Thermal 
Energy 
Storage

Multi MG
Column and Constraint 
Generation (C&CG) 
method

Effectiveness of the CRRD model in 
heterogeneous microgrid ownership 
structures remains unexamined

66 2024
Operation 
scheduling of 
distribution 
network

WT, PV Battery Multi MG Improved Beluga Whale 
Optimization (IBWO)

Scalability concerns as IBWO’s computational 
efficiency remains untested on larger networks

67 2024
Optimization of 
energy management 
(EM) in a microgrid 
(MG)

WT, PV, 
MT, FC Battery Single MG Slime Mould Algorithm 

(SMA)
Power loss not included in the microgrid 
optimization model

68 2024

Optimization 
of microgrid 
scheduling for cost 
and environmental 
efficiency

WT, PV, 
GT, Diesel 
Engine

Battery Single MG
Improved Goose Algorithm 
(IGO) with Latin Hypercube 
Sampling and K-means 
clustering

Uncertainty in renewable generation and 
sustainability concerns. Power loss not 
considered

Table 1.  Literature review on multi-objective optimal scheduling of multi-microgrids.
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chaotic sine map for better global exploration."Simulation results and discussion"section presents the simulation 
results and discussions, comparing the performance of ILOA with traditional algorithms such as LOA, GA, and 
JAYA, and highlighting its superior performance in both convergence speed and solution quality."Conclusion 
and directions for future research" section concludes the paper, summarizing the key findings, and suggestsfuture 
directions for research and the real-world application of ILOA in smart grid systems.

Sectionalization of microgrid distribution system
The sectionalization process of a multi-microgrid system ensures a continuous power supply under both normal 
and faulty conditions through a self-healing mechanism that autonomously isolates faults while maintaining 
stable operation in unaffected areas. The primary goal of this approach is to maximize power delivery to 
consumers by dynamically reconfiguring the network in response to system conditions. During normal 
operation, control variables such as micro-source allocations across the distribution network are optimized to 
achieve specific objectives, including minimization of operating costs, reduction of system losses, and voltage 
deviation control. These objectives can be addressed individually or in combination to enhance overall system 
performance. The system maintains a radial topology, ensuring stability and effective protection coordination.

When a fault occurs in any microgrid section, the Microgrid Central Controller (MGCC) detects and isolates 
the affected region using real-time monitoring data. The faulted section is then disconnected from the rest of 
the system by opening the tie-line static switches, ensuring that power flow is maintained in the non-affected 
microgrids. If a fault occurs in a single microgrid (e.g., MG-1), it is isolated from MG-2 and MG-3, allowing 
the unaffected microgrids to continue operating independently. In the case of a multi-area fault, all impacted 
areas are disconnected, ensuring that only the healthy microgrids remain operational. Upon sectionalization, 
each microgrid operates independently in islanded mode, supplying its local loads using available distributed 
generation (DG) resources. The MGCC plays a crucial role in ensuring that each microgrid maintains self-
sufficiency in supply and demand while optimizing energy distribution.

Following sectionalization, the distributed generation units are dynamically rescheduled to optimize 
power supply within the operational microgrids. The optimization process continues to consider the original 
objective functions, ensuring reliable and cost-effective energy distribution, efficient power balancing, and 
system resilience under fault conditions. Once the fault is cleared, the system gradually transitions back to its 
normal state by reclosing the tie-line switches, with the MGCC ensuring the smooth reintegration of previously 
disconnected microgrids, preventing power surges or instability. This sectionalization strategy enhances grid 
resilience by minimizing service disruptions, reducing downtime, and ensuring a reliable power supply to the 
maximum number of consumers. This approach follows established methodologies from prior studies (such as 
[Ref.52]) while incorporating modifications tailored to our test system.

Mathematical formulation of multi-objective optimal scheduling of distributed 
generators
The problem formulation of multi-objective optimal scheduling of Distributed Generators (DGs) in a Distribution 
System entails a nuanced approach aimed at balancing various competing objectives. At its core, this challenge 
revolves around achieving efficient energy generation and distribution while minimizing operational costs and 
real power loss. At its core, this challenge revolves around achieving efficient energy generation and distribution 
while minimizing operational costs and active power loss69. In this complex scenario, the distribution system 
is divided into multi-microgrids, each representing a distinct section with its own set of DGs and loads. The 
primary objectives to be optimized are the operational costs associated with running the DGs and the reduction 
of real power loss within each microgrid. To address these objectives, a multi-objective optimization framework 
is employed. This involves formulating mathematical models that simultaneously optimize the operation of DGs 
to minimize costs and mitigate real power losses. The formulation process typically involves defining objective 
functions that quantify the operational costs and real power loss within each microgrid. Constraints are then 
imposed to ensure the feasibility of solutions, considering factors such as power balance, voltage limits, and DG 
capacity constraints.

Mitigation of operation cost
The operation costs objective function aims to minimize the expenses associated with running the DGs within 
the distribution system. This encompasses various factors for instance generation costs, maintenance costs, and 
operational overheads incurred in managing the generation units. By optimizing the scheduling of DGs, the 
research seeks to devise strategies that effectively reduce these operation costs, thereby enhancing the economic 
efficiency of the system. Here, the generation costs for all units are modelled as second-order quadratic equations, 
where the cost is a function of the active power generated by each unit. The objective function for minimizing 
these costs is formulated as the summation of the quadratic cost models for each generating unit, articulated as41:

	
F (Pg) =

k∑
j=1

(xj + yjPgj + zjP 2
gj)� (1)

Here xj , yj ​, and zj  represent the operational cost coefficients of the jth generating unit. The variable k denotes 
the total number of committed online generators.
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Mitigation of real power loss
Minimizing real power loss, the energy dissipated during electricity flow, is vital for enhancing system efficiency 
and reliability. The objective function for real power loss focuses on reducing losses through strategic DG 
scheduling, voltage profile optimization, and network congestion mitigation41,70.

	
F (Ploss) =

NL∑
n=1

gn

[
V 2

j + V 2
k − 2VjVk cos (δj − δk)

]
� (2)

Here, gn represents the conductance of the nth transmission line connecting bus j to bus k. Additionally, NL 
signifies the total number of transmission lines.

Constraints ensuring power balance
Power balance constraints enforce the fundamental principle that total power generation must equal total power 
consumption within each microgrid. These constraints ensure that the energy produced by DGs matches the 
energy demand from consumers, maintaining system stability and reliability. Neglecting to meet power balance 
constraints can result in voltage fluctuations, deviations in frequency, and general instability across the grid. 
Given that the network operates as a radial system, featuring numerous buses and loads within every feeder, it is 
essential to account for losses in transmission within the system41.

	

m∑
i=1

NG∑
j=1

PGi,j =
m∑

i=1

Pi,demand +
m∑

i=1

Pi,loss� (3)

	

m∑
i=1

NG∑
j=1

QGi,j =
m∑

i=1

Qi,demand +
m∑

i=1

Qi,loss� (4)

Here PGi,j  and QGi,j  represent the active and reactive power generated by the jth generating unit at bus i 
respectively. The variables Pi,demand and Qi,demand represent the active and reactive power demands at bus 
i respectively. Similarly Pi,loss and Qi,loss denote the active and reactive power losses in the system at bus i. 
The term NG refers to the total number of generating units, while m represents the total number of buses in the 
system. These equations ensure that the total generated power meets the system’s load demand while accounting 
for power losses.

Constraints on generation capacity
Generation capacity constraints limit the maximum amount of power that each DG unit can produce within a 
given time period. These constraints are essential for preventing overloading of generation units and ensuring 
that their operation remains within safe operating limits. By adhering to generation capacity constraints, the 
optimization algorithm can prevent the generation units from operating beyond their rated capacities, thereby 
safeguarding equipment integrity and reliability. The constraints to ensure power balance are indeed necessary, 
as they ensure that the total generation from distributed generation (DG) units and other sources matches the 
total load demand and losses in the network. This is critical for maintaining stable operation and avoiding issues 
like overloading, under-voltage, or unbalanced power flows. Without these constraints, the optimization results 
may be infeasible or lead to unstable network operation.

The active power generation output of every generating unit should be controlled within specified minimum 
and maximum boundaries41.

	 Pgimin ≤ Pgi ≤ Pgimax� (5)

Pgi signifies the active power output of ith generating unit while the maximum and minimum active power 
output are characterized as Pgimax, Pgimin for the ith generating unit71.

	 Qgimin ≤ Qgi ≤ Qgimax� (6)

Here Pgimin and Pgimax represent the minimum and maximum active power operational bounds of unit ′j′ 
within MG ′i', respectively. Similarly Qgimin and Qgimax denote the minimum and maximum reactive power 
operational bounds of unit ′j′ within MG ′i′.

Constraints on bus voltages
Bus voltage constraints dictate the permissible voltage levels at various nodes or buses within the distribution 
network. Maintaining voltage within acceptable limits is crucial for ensuring the proper functioning of electrical 
equipment and appliances connected to the grid. Violation of bus voltage constraints can result in equipment 
damage, inefficient operation, and voltage instability. By enforcing bus voltage constraints, the optimization 
algorithm ensures that the voltage profile across the distribution system remains within specified limits, thus 
safeguarding the reliability and quality of power supply to consumers72.

	 Vgimin ≤ Vgi ≤ Vgimax� (7)
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The above constraint ensures that the voltage magnitude Vgi at the generating unit remains within the specified 
lower Vgimin and upper Vgimax limits. This maintains system stability and prevents voltage fluctuations that 
could impact the reliability and efficiency of power distribution.

Energy index of reliability (EIR)
The Energy Index of Reliability (EIR), represented by (ξ), is used as a constraint to assess the reliability of the 
power supply, indicating the number of customers impacted by supply disruptions. This index measures the 
dependability of load power delivery within the system by the collective operation of generators. A higher 
EIR value implies a lower likelihood of customers experiencing interruptions. The EIR is influenced by the 
Forced Outage Rate (FOR) of the jth generator (Λ) and its output power (Pj). The Forced Outage Rate reflects 
the probability of a generator failing to meet the required load demand. The mathematical formulation for 
calculating EIR is provided in Eq. (3.8) as referenced in19,73.

	
EIR (ξ) = 1 −

(∑NG

j=1 ΛjPj∑NG

j=1 Pj)

)
� (8)

Here Λj  and Pj  represents the forced outage rate and generated output power of jth generating unit 
correspondingly.

Formulation of multi‑objective optimal scheduling problem
The devising of the multi-objective optimal scheduling problem is presented as follows:

In this context, F (Pg) represents the objective function aimed at minimizing generation costs, while 
F (P loss) targets the reduction of active power loss, as described in Eq. (2). Various methods exist for tackling 
multi-objective optimization problems, including the weighted sum methodology74, evolutionary algorithms75, 
and the ε-constraint method76. This paper employs the weighted sum approach to address the multi-objective 
optimal scheduling problem. In this approach, different weights are assigned to the conflicting objectives to 
generate multiple sets of Pareto optimal solutions. The optimal compromise solution is then selected from 
these sets based on the weights. By introducing a price penalty factor through h, the multi-objective problem is 
transformed into a single-objective optimization problem, as depicted in Eq. (8). The process for calculating the 
value of h is detailed in77.

In this methodology, the weighting factor w1 and w2 indicates the relative importance of each objective 
function. When w1 is set to 1 and w2 is set to 0, the focus is on minimizing generation costs. When w1 is set to 
0 and w2 is set to 1 the emphasis shifts to minimizing active power loss. For multi-objective optimal scheduling, 
w1 and w2 are gradually varied from 1 to 0, generating a compromise solution at every step.

The multi-objective function minimization using the weighted sum method is defined as follows78:

	 F (T ) = w1 ∗ F (Pg) + h ∗ w2 ∗ F (Ploss)� (9)

where w1 + w2 = 1
A value for w1 and w2 at 0.5 signifies an equal balance between the generation cost and active power loss 

functions.

Determination of the optimal compromise solution with fuzzy logic
Prior to making a decision, it is essential to determine the most balanced solution from the set of optimal 
alternatives. The best compromise solution (BCS) is identified using the fuzzy membership methodology 
where a decrease in w1 leads to an increase in generation costs and lessening in active power loss. The fuzzy 
membership approach is employed to identify this ideal compromise78. In the jth fitness function, the value fj  
for individual k is represented by a membership function µk

j  which incorporates the inherent uncertainty in the 
decision maker’s judgment, as detailed below78:

	

µk
j =




1fj ≤ fmin
j

fmax
j −fj

fmax
j

−fmin
j

fmin
j < fj < fmax

j

0fj ≥ fmax
j

� (10)

Here, fmax
j  represents the highest value of the jth fitness function, while fmin

j  denotes its lowest value among 
the non-dominated solutions. The standardized membership function µk  is then computed for every non-
dominated solution k as follows78:

	
µk =

∑N

j=1 µk
j∑r

k=1

∑N

j=1 µk
j

� (11)

In this context, r symbolizes the overall number of non-dominated solutions. The optimum compromise 
solution is determined by selecting the one with the maximum value of µk.

To determine the best compromise solution (BCS) from the complete set of Pareto optimal solutions, the 
min–max criterion79 is applied as follows:
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	 max (minj (fr))� (12)

This implies that the solution with the highest value of minj (fr) is considered the best compromise solution. In 
this study, for objective functions (1) and (2), the normalized fitness values are represented as follows80:

	
Pg = f1 =

Pg − P max
g

P min
g − P max

g
� (13)

	
Ploss,pu = f2 = Ploss − P max

loss

P min
loss − P max

loss

� (14)

Improved lyrebird optimization algorithm
The Lyrebird Optimization Algorithm (LOA) is a population-based metaheuristic technique inspired by the 
adaptive behaviors of lyrebirds in nature81. When faced with threats, lyrebirds either flee rapidly or remain 
motionless in a concealed location, demonstrating an effective exploration–exploitation balance. In LOA, each 
individual represents a lyrebird, forming a population that iteratively searches for optimal solutions.

To enhance LOA’s performance, the Improved Lyrebird Optimization Algorithm (ILOA) integrates Levy 
Flight and a chaotic sine map. Levy Flight enhances exploitation, enabling a more efficient local search and 
faster convergence, while the chaotic sine map improves exploration, increasing search diversity and reducing 
premature convergence. Each lyrebird, acting as an agent, determines decision parameters based on its location 
in the search space. The population is represented as a matrix, where each vector corresponds to a decision 
variable, with initial positions set randomly as defined by Eq. (16).

	

X =




X1
...
Xj

...
Xn




N×m

=




x1,1
...
xi,1
...
xN,1

. . .

. . .
. . .
. .

.

. . .

x1,j

...
xi,j

...
xN,j

. . .
. .

.

. . .

. . .

. . .

x1,m

...
xi,m

...
xN,m




N×m

� (15)

	 xi,d = lbd + r · (ubd − lbd)� (16)

In this context, X  represents the ILOA population matrix, where XI  denotes the ith ILOA member (candidate 
solution). Each XI  represents the dth dimension of the search space where N  is the number of lyrebirds, m is 
the total number of decision variables, r is a random number within the interval [0,1] and lbd and ubd denote 
the lower and upper bounds of the dth decision parameter correspondingly.

Every ILOA member serves as a candidate solution to the problem, and for every member, the objective 
function of the problem can be computed. Consequently, for every population member, a corresponding value 
for the objective function is obtained. These objective function values, equal in number to the size of population, 
can be organized into a vector representation, as per Eq. (17), indicating the set of evaluated objective function 
values for the problem81.

	

F =




F1
...
Fi

...
FN




N×1

=




F (X1)
...
F (Xi)
...
F (XN )




N×1

� (17)

In this context, F  represents the vector of fitness function evaluations, with Fi denoting the evaluation of the 
objective function using the ith ILOA member. These evaluations serve as a measure of the quality of candidate 
solutions. The optimal solution corresponds to the best evaluated objective function value (associated with the 
best ILOA member), while the poorest solution corresponds to the worst evaluated objective function value 
(linked to the worst ILOA member). Additionally, since the lyrebirds’positions in the problem-solving space 
is adjusted in each iteration and the finest candidate solution must be revised depending on a comparison of 
objective function values.

Mathematical modeling approach for ILOA
In the proposed ILOA methodology, the adjustment of population member positions occurs iteratively, guided 
by the mathematical emulation of lyrebird behavior in response to perceived threats. This modeling incorporates 
two distinct phases: (i) escape and (ii) concealment, mirroring the decision-making process observed in lyrebirds 
facing danger.

Within the ILOA framework, the decision-making process of lyrebirds, whether to employ escape or 
concealment strategies when confronted with danger, is replicated using Eq. (18). Equation (18) in the ILOA 
framework represents the decision-making mechanism inspired by the behavior of lyrebirds when responding 
to danger. Specifically:

The decision to either escape or conceal is determined by a randomly generated number rp within the range 
[0, 1]. Consequently, the position update of each ILOA member is determined solely by either the escape or 
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concealment phase. If rp ≤ 0.5, the position update is governed by Stage-I, corresponding to the“escape”strategy. 
Otherwise, the position update follows Stage-II, corresponding to the“concealment”strategy. This mechanism 
mimics how lyrebirds dynamically choose their response based on situational cues. Within the optimization 
process, these two stages represent different position update strategies tailored to exploration (escape) and 
exploitation (concealment), ensuring a balanced search process for optimal solutions.

	
Xi =

{
Based on Stage − I, rp ≤ 0.5
Based on Stage − II, else, � (18)

Exploration stage
During this stage of ILOA, the adjustment of population member positions within the search space is depending 
on simulating the lyrebird’s evasive maneuvers from a perilous location to safer zones. The transition of the 
lyrebird to these secure regions results in substantial alterations to its position, facilitating the exploration of 
diverse regions within the problem-solving space. This underscores ILOA’s capacity for global exploration.

In the design of ILOA, each member identifies safer areas by considering the loci of other population 
associates with superior fitness function values. Consequently, Eq. (19) can be utilized to determine the set of 
safe zones for each ILOA member81.

	 SAi = {Xk : Fk < Fi and k ̸= i, where i = {1, 2, . . . , N} and k ∈ {1, 2, . . . , N}� (19)

In this context, SAi denotes the set of secure zones for the ith lyrebird, while Xk  represents the kth row of the X  
matrix, where X  has a better fitness function value (i.e., Fk) compared to the ith ILOA associate (i.e., Fk  < Fi).

Within the ILOA framework, it is presumed that the lyrebird arbitrarily selects one of these safe zones for 
evasion. Following the modeling of lyrebird transposition in this stage, an updated location is computed for each 
ILOA member by applying Eq. (20). Subsequently, if this new location leads to an enhancement in the fitness 
function value, it supplants the earlier location of the equivalent associate as per Eq. (15).

	 xP 1
i,j = xi,j + ri,j . (SSAi,j − Ii,j .xi,j)� (20)

	
Xi =

{
XP 1

i , F P 1
i ≤ Fi,

Xi, else,
� (21)

In this context, SSAi represents the chosen secure zone for the ith lyrebird, where SSAi, denotes its jth 
dimension. XP 1

i  represents the newly calculated position for the ith lyrebird depending on the escape strategy 
of the suggested ILOA, with XP 1

i  representing its jth dimension. FiP1 corresponds to its objective function 
value and Ii,j  are randomly selected as either 1 or 281.

The indiscriminate number in Eq. (20) can be computed utilizing a sine map, with the preliminary values 
of Ct and a set to 0.36 and 2.8, respectively82,83. The sine map introduces a chaotic behavior in the sequence 
generation, enhancing the algorithm’s exploration capability and preventing premature convergence. By iterating 
through Eq. (22), the sequence of Ct maintains a non-linear and dynamic progression, improving the diversity 
of solutions in the optimization process.

	
Ct+1 = a

4 sin (πCt) , 0 < a < 4� (22)

where t is the existing iteration number.

Exploitation stage
In the course of this phase of ILOA, the population member’s position within the exploration space is adjusted 
according to the lyrebird’s hiding strategy, aiming to seek refuge in nearby secure areas. This strategy involves 
meticulously surveying the surrounding environment and taking incremental steps to find an optimal hiding 
spot, resulting in minor adjustments to the lyrebird’s position. This characteristic highlights ILOA’s proficiency 
in local exploitation.

In the design of ILOA, the movement of each member towards a nearby suitable hiding area is modeled, and 
an updated position is computed for every associate using Eq. (23). If this new position enhances the fitness 
function value, it swaps the preceding location of the respective associate as per Eq. (26).

In this phase, the Levy flight methodology is used to modify the position of the overall finest component84,85. 
Known for its exploratory capabilities, the Levy flight technique is also connected with restricted search86,87.

	
xP 2

i,j = xi,j + (1 − 2 · Levy (λ)) · ubj − lbj

t
� (23)

	
Levy (λ) = 0.01 r5σ

|r6|
1
β

� (24)

where σ is determined as:

	
σ =

[
Γ (1 + λ) sin

(
π

λ

2

)/(
Γ

(1 + λ

2

)
λ

[
2

(λ−1)
2

])]1/λ

� (25)
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where Γ (x) = (x − 1)!,, r5 represents the r6 random numbers in the range [0,1], and 1 < β ≤ 2,. In this 
research, a persistent value of (β = 1.5) is applied. Levy(λ) relates to the step length realized by the Levy 
distribution, which has infinite mean and variance for 1 < λ < 3. λ is the distribution factor, and Γ(.) signifies the 
gamma distribution function.

	
Xi =

{
XP 2

i , F P 2
i ≤ Fi,

Xi, else
� (26)

In this context, XP 2
i  represents the newly calculated position for the ith lyrebird depending on the hiding 

approach of the suggested ILOA, where XP 2
i  denotes its jth dimension. F P 2

i  corresponds to its objective 
function value. Additionally, t denotes the iteration counter.

Iterative process for implementing the ILOA algorithm
After revising the positions of all lyrebirds, the principal iteration of ILOA concludes. Subsequently, the algorithm 
progresses to the next iteration, where the ILOA population update process, guided by Eqs. (11)–(19), persists 
until the final iteration. The finest candidate solution is revised and stored during each iteration. Upon the full 
execution of ILOA, the finest candidate solution accumulated throughout the algorithm’s iterations is outputted 
as the problem solution.

The procedural workflow for implementing the ILOA algorithm is outlined below:

	 i.	 Input problem information: Gather details such as the fitness function, constraints, and decision parame-
ters.

	 ii.	 Set population and iteration parameters: Determine the number of population associates (lyrebirds) and 
the total iterations necessary for solving the problem.

	 iii.	 Initial population generation: Randomly generate the initial population of lyrebirds and evaluate each 
lyrebird using the objective function.

	 iv.	 Start iterative process: Begin with the first iteration.
	 v.	 Update lyrebird positions: Update the locus of the main lyrebird in the problem-solving space. This update 

considers two strategies, chosen randomly with equal probability depending on Eq. (4):
	 vi.	 If the escape approach is chosen, update the position using Eqs. (5)–(7).
	vii.	 If the hide strategy is chosen, update the position using Eqs. (8) and (9).
	viii.	 Update positions for all lyrebirds: Repeat the position update process for all lyrebirds in the population, 

similar to the first lyrebird.
	 ix.	 Complete iteration: Once all lyrebirds’positions are updated, complete the current iteration. Save the best 

candidate solution based on the objective function evaluations during this iteration.
	 x.	 Proceed to the next iteration: Repeat the lyrebird position update process iteratively until the final iteration 

is reached.
	 xi.	 Finalize algorithm execution: After completing all iterations, identify and output the finest solution at-

tained through the algorithm’s execution as the elucidation to the specified problem.

This concludes the implementation of the ILOA algorithm, providing the optimal solution based on the specified 
problem parameters and constraints.

Figure 1 illustrates a systematic flowchart representing the optimization process for power system operation, 
focusing on balancing generation costs, minimizing losses, and ensuring voltage stability. It integrates load flow 
analysis, candidate evaluation, and iterative updates to refine solutions based on fitness metrics. The flowchart 
effectively visualizes the decision-making process, highlighting convergence checks and scenario-specific 
objective weighting to achieve an optimal configuration. This structured approach ensures efficient handling of 
computational tasks and adaptable implementation across various case studies.

Evaluation of the proposed ILOA algorithm
To assess the effectiveness of the proposed ILOA algorithm, it is implemented in MATLAB R2023 A and tested 
on five standard benchmark functions. Its performance is compared against LOA, SCA, FSAPSO, KH, GA, DE, 
PSO, CLPSO, ICLPSO, FBCLPSO and FBICLPSO algorithms. The results demonstrate that ILOA outperforms 
all competing methods in terms of the best solution, mean solution, and standard deviation across all benchmark 
functions, as presented in Table 2.

Simulation results and discussion
The test system utilized in this research is the standard IEEE 33-bus distribution network, with input data 
obtained from Ref41. It is separated into three independent microgrids, while preserving the radial configuration 
of the system. During the creation of these microgrids, specific modifications were made to the existing 33-bus 
system, as detailed below. The allocation of active and reactive power loads for each area is also based on the 
data from Ref41.

Altered 33-bus distribution test system and microgrid realization
The 33-bus distribution system is partitioned into three microgrids, designated as MG-1, MG-2, and MG-355. 
The specifics of line status, including reactance and resistance, are obtained from Ref41. for both scenarios: 
mitigation of generation cost and mitigation of active power loss.

To examine the suggested ILOA algorithm, the subsequent conventions are made:
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Fig. 1.  Flowchart illustrating the optimal scheduling of microgrids using the Improved lyrebird optimization 
algorithm across diverse scenarios and case studies.
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•	 The distributed generators (DGs) used in this study are dispatchable, and their locations remain fixed.
•	 Isolation and tie-line connections can be established using a static switch.

The population size is fixed as 80, and the maximum no. of iterations is 200. Depending on these optimization 
attributes, two case studies are implemented to achieve optimal operation of the microgrid, namely cost 
minimization and real power loss minimization. The subsequent case studies are also examined:

Multiple areas fault:
Case-1: MG-1 is currently operational.
Case-2: MG-2 is currently operational.
Case-3: MG-3 is currently operational.
Single area fault:
Case-4: MG-1 & MG-2 are currently operational.
Case-5: MG-2 & MG-3 are currently operational.
Case-6: MG-1 & MG-3 are currently operational.
Not any fault:
Case-7: MG-1, MG-2 & MG-3 are currently operational.
Table 3 provides the percentage contributions of real power (P) and reactive power (Q) loads from different 

microgrids (MG1, MG2, MG3) and their combinations. MG1 has the smallest contribution, while MG3 
contributes the largest share. The table also shows combined contributions from multiple microgrids, such as 
MG1 & MG2, MG2 & MG3, and MG1 & MG3. When all three microgrids operate together, they account for 
100% of both real and reactive power. This information is essential for understanding how loads are distributed 
across the system. Table 4 outlines the line parameters (resistance R and reactance X in per-unit) for specific bus 
connections under various microgrid configurations. It also indicates whether certain lines are opened or closed 

Active microgrids Line no From bus To bus R in P.U X in P.U

MG-1
2 2 3 Line open Line open

34 2 23 Line open Line open

MG-2

2 2 3 Line open Line open

22 3 23 Line open Line open

25 6 26 Line open Line open

MG-3

33 25 29 0.001264 0.000644

22 3 23 Line open Line open

25 6 26 Line open Line open

34 2 23 Line open Line open

MG-1 & MG-2

22 3 23 Line open Line open

25 6 26 Line open Line open

34 2 23 Line open Line open

MG-2 & MG-3
2 2 3 Line open Line open

34 2 23 Line open Line open

MG-1 & MG-3

33 25 29 0.001264 0.000644

34 2 23 0.002809 0.00192

2 2 3 Line open Line open

22 3 23 Line open Line open

25 6 26 Line open Line open

MG-1, MG-2 & MG-3
33 25 29 Line open Line open

34 2 23 Line open Line open

Table 4.  Line parameters of closed/opened lines for 33-bus system for various cases41.

 

Microgrids
Area wise real power (P)
%

Area wise reactive power (Q)
%

MG1 12.38 9.57

MG2 37.82 29.57

MG3 49.8 60.87

MG1 & MG2 50.2 39.13

MG2 & MG3 87.62 90.43

MG1 & MG3 62.18 70.43

MG1, MG2 & MG3 100 100

Table 3.  Area-wise distribution of real and reactive power load percentages41.
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for different scenarios, such as MG1, MG2, MG3, and their combinations. For example, Line 22 (from bus 3 to 
23) remains open in many configurations. This data is crucial for analyzing the flexibility and reliability of the 
system under different microgrid operations. Table 5 presents the placement of distributed generators (DGs) in 
the 33-bus system for each microgrid. Microgrid-1 has DGs on buses 1, 2, and 20; Microgrid-2 has DGs on buses 
3, 7, and 18; and Microgrid-3 has DGs on buses 23, 26, and 30. The strategic placement of DGs ensures optimal 
power generation and efficient energy distribution across the system. Table 6 provides the cost coefficients and 
operational constraints for each generator in the system. These coefficients are used to determine the generation 
costs. Additionally, the table specifies the minimum and maximum generation limits for each generator. The 
data for the 33-bus distribution system41 is provided in Table 7. Table 7 provides detailed information on line 
impedances and connected loads for the 33-bus system. It includes the resistance (R) and reactance (X) of each 
line in per-unit and the real (P) and reactive (Q) power loads connected to the buses. This data is fundamental 
for power flow analysis and optimizing system performance.

Single and multi-objective optimization of generation cost and real power loss without EIR
Scenario-I (mitigation of generation cost)
In this scenario, the fitness function was focused exclusively on cost reduction. The operating cost coefficients 
for each distributed generator (DG) in the 33-bus distribution system were obtained from Ref41. For the 

Line no From bus To bus

Line Impedances 
in p.u

Loads connected to 
buses

Line no From bus To bus

Line impedances 
in p.u

Loads connected to 
buses

R(p.u) X(p.u) P (kW) Q(kVAR) R(p.u) X(p.u) P (kW) Q(kVAR)
1 1 2 0.000574 0.000293 100 60 17 17 18 0.004558 0.003574 90 40

2 2 3 0.00307 0.001564 90 40 18 2 19 0.001021 0.000974 90 40

3 3 4 0.002279 0.001161 120 80 19 19 20 0.009366 0.00844 90 40

4 4 5 0.002373 0.001209 60 30 20 20 21 0.00255 0.002979 90 40

5 5 6 0.0051 0.004402 60 20 21 21 22 0.004414 0.005836 90 40

6 6 7 0.001166 0.003853 200 100 22 3 23 0.002809 0.00192 90 50

7 7 8 0.00443 0.001464 200 100 23 23 24 0.005592 0.004415 420 200

8 8 9 0.006413 0.004608 60 20 24 24 25 0.005579 0.004366 420 200

9 9 10 0.006501 0.004608 60 20 25 6 26 0.001264 0.000644 60 25

10 10 11 0.001224 0.000405 45 30 26 26 27 0.00177 0.000901 60 25

11 11 12 0.002331 0.000771 60 35 27 27 28 0.006594 0.005814 60 20

12 12 13 0.009141 0.007192 60 35 28 28 29 0.005007 0.004362 120 70

13 13 14 0.003372 0.004439 120 80 29 29 30 0.00316 0.00161 200 600

14 14 15 0.00368 0.003275 60 10 30 30 31 0.006067 0.005996 150 70

15 15 16 0.004647 0.003394 60 20 31 31 32 0.001933 0.002253 210 100

16 16 17 0.008026 0.010716 60 20 32 32 33 0.002123 0.003301 60 40

Table 7.  Data for the 33-bus system41.

 

Bus no Generator x($/kW2) y($/kW) z($)
Pgmin

(kW)
Pgmax

(kW)
1 G1 0.0696 26.244 31.67 0 600

2 G2 0.0288 37.697 17.95 0 200

20 G3 0.0468 40.122 22.02 0 100

3 G4 0.0468 40.122 22.02 0 2000

7 G5 0.0268 30.122 22.02 0 800

18 G6 0.0288 37.697 21.95 0 600

23 G7 0.0681 12.441 32.01 0 500

30 G8 0.0288 37.697 21.95 0 5000

26 G9 0.0288 30.697 21.95 0 800

Table 6.  Cost coefficients for generators in the 33-bus system41.

 

S. No Bus system Microgrid-1 Microgrid-2 Microgrid-3

1 33- Bus System 1,2,20 3,7,18 23, 26,30

Table 5.  Placement of distributed generators (DGs) in a 33-bus system41.
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minimization of generation cost, when the weighting factor w is fixed as 1, the minimum generation cost 
attained is 19,254.64 $/hr, with a corresponding real power loss of 0.7118 kW for Case-1. Similarly, the optimal 
generation cost and corresponding real power loss were determined for Case-2 through Case-7. Table 8 displays 
the optimal power generated by various distributed generators (DGs) for minimizing generation cost using 
the ILOA. Different generator units are activated based on system requirements, with some cases excluding 
certain generators to optimize cost and minimize losses. Case_1 has the lowest power losses and the lowest 
cost, indicating a minimal load scenario. Case_5 experiences the highest losses and the highest operational cost, 
suggesting a high-demand scenario. Cases with higher power demand (e.g., Case_7) show increased generation 
costs and losses, requiring multiple generators to meet load demand efficiently. Table 9 reveals that the ILOA 
algorithm yields better generation cost results, with values of 19,254.64 $/hr, 70,900.83 $/hr, 97,915.95 $/hr, 
89,443.86 $/hr, 168,662.74 $/hr, 115,061.66 $/hr and 187,645.94 $/hr for cases 1 through 7, respectively. In 
comparison, the generation costs obtained using the LOA are 19,255.52 $/hr, 70,901.79 $/hr, 97,917.64 $/hr, 
89,445.27 $/hr, 168,664.36 $/hr, 115,063.75 $/hr, and 187,647.63 $/hr for the same cases. In every case study, 
ILOA achieves the lowest operating cost compared to LOA, JAYA, and GA, making it a cost-effective choice 
for power system operators, particularly under high-load conditions. The results indicate that ILOA becomes 
increasingly efficient in reducing operational costs as system size grows. Figure 2 illustrates the convergence 
behavior of ILOA and LOA for Case-7, showing their progression toward the optimal solution. ILOA converges 
significantly faster, reaching the optimal value within 26 iterations, whereas LOA requires more iterations and 
exhibits fluctuations, reflecting instability in its optimization path. These oscillations indicate a less efficient 
trajectory, making LOA slower and less reliable in achieving convergence. In contrast, ILOA maintains a smooth 
and consistent search path, demonstrating superior exploration and exploitation capabilities that enable it to 
locate the global optimum more effectively. Figure 3 further highlights ILOA’s advantages, confirming its faster, 
steadier, and more reliable convergence, making it a more robust optimization approach than standard LOA.

Scenario-II (mitigation of active power loss)
In this state, the objective function considered is solely the mitigation of active power loss. It is presumed that 
the accessible DGs are dispatchable with stable locations. To minimize active power loss, when the weighting 
factor w is fixed as 0, the lowest active power loss achieved is 0.5846 kW, with a corresponding generation cost 
of 19,256.84 $/hr for Case-1. Likewise, the optimal real power loss and corresponding generation cost were 
calculated for Cases 2 through 7. The losses for different case studies, as designated above, are presented in 
Table 10 for the ILOA algorithm applied to the 33-bus distribution system. Power generation is dynamically 
adjusted based on system demand, ensuring optimal loss reduction. Case_1 shows the best performance with the 
lowest active power loss of 0.5846 kW. This suggests that the ILOA algorithm is effective in reducing losses and 
achieving cost-efficient operations. Case_2 and Case_3 demonstrate higher losses, at 8.5169 kW and 32.6285 
kW, respectively, but still outperform the other algorithms in terms of minimizing power loss. Case_4, Case_5, 

Optimization approach Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 19,254.64 70,900.83 97,915.95 89,443.86 1,68,662.74 1,15,061.66 1,87,645.04

LOA 19,255.52 70,901.79 97,917.64 89,445.27 1,68,664.36 1,15,063.75 1,87,647.63

JAYA41 19,256.43 70,902.88 97,919.59 89,446.93 1,68,665.57 1,15,067.73 1,87,652.72

GA41 19,256.44 70,902.99 97,919.86 89,480.97 1,68,996.73 1, 15,367.94 1,88,885.73

Table 9.  Assessment of optimization results for the mitigation of generation cost for various case studies. Bold 
represent the Significant Value.

 

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

PG1 165.2085 – – 267.3759 – 325.7942 318.9853

PG2 197.5207 – – 193.0362 – 198.8326 197.7649

PG3 97.9826 – – 98.87462 – 99.9988 99.1754

PG4 – 274.1286 – 260.5027 339.7109 – 301.8093

PG5 – 660.9784 – 619.5326 747.2081 – 715.0782

PG6 – 479.4947 – 437.4269 539.0284 – 488.5013

PG7 – – 462.0945 – 437.2187 441.8608 437.8096

PG8 – – 641.2894 – 543.8913 580.4096 562.3857

PG9 – – 779.4851 – 702.1872 698.0731 665.7028

PLoss(kW) 0.7118 9.6017 33.0889 11.74892 54.2446 34.9691 72.2125

QLoss(kVAr) 0.661943 7.682567 26.02592 8.3609 40.9826 25.8093 49.5107

Cost($/hr) 19,254.64 70,900.83 97,915.95 89,443.86 1,68,662.74 1,15,061.66 1,87,645.04

Table 8.  optimum values for different case studies in mitigating generation cost for a 33-bus system using the 
ILOA algorithm.
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Case_6, and Case_7 all show varying degrees of active power loss with ILOA achieving relatively better results 
compared to the other methods in most cases.

Table 10 provides the scheduled output power for each distributed generator (DG), along with the system’s 
active and reactive power losses and the overall generation cost. From Table 11, it is observed that the ILOA 
approach achieves minimum losses of 0.5846 kW, 8.5169 kW, 32.6285 kW, 10.25763 kW, 52.41465 kW, 32.6145 
kW, and 70.4914 kW for cases I through VII, respectively. In contrast, the LOA results are 0.6219 kW, 9.0291 
kW, 33.1028 kW, 11.3049 kW, 53.0127 kW, 33.1453 kW, and 70.9827 kW for the same cases. The convergence 
characteristics depicted in Fig. 3 vividly illustrate the superior performance of the Improved Lion Optimization 
Algorithm (ILOA) in reducing power losses when compared to the conventional Lion Optimization Algorithm 
(LOA). Moreover Fig. 3 highlights that the ILOA achieves a more significant reduction in active power loss, 
underscoring its enhanced optimization capabilities. Furthermore, the convergence curve of the proposed 

Fig. 3.  Convergence characteristics for the mitigation of active power loss for Case_7.

 

Fig. 2.  Convergence characteristics for the mitigation of generation cost for Case_7.

 

Scientific Reports |        (2025) 15:17345 17| https://doi.org/10.1038/s41598-025-02200-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


ILOA exhibits a smoother and more rapid descent toward the optimal solution in comparison to the LOA. This 
indicates that the ILOA not only accelerates the convergence process but also ensures greater stability in the 
optimization trajectory, thereby demonstrating its efficiency and robustness in minimizing active power losses.

Scenario-III (mitigation of generation cost and active power loss)
In this scenario, the optimization of generation cost and reduction of active power loss is considered as a multi-
objective problem. Table 12 presents the optimal power generated by various distributed generators (DGs) 
to mitigate both generation cost and active power loss using the Improved Lyrebird Optimization Algorithm 
(ILOA) for all the case studies considered. The optimal trade-off between the two objectives was achieved by 
fine-tuning the weighting factor w from 1 to 0. This table also serves as a foundation for evaluating the finest 
compromise solution, which aims to balance both minimizing generation costs and active power losses across 
various operational scenarios.

Table 13 illustrates that the ILOA provides the most favourable compromise solution. This indicates that as 
the system size grows, the ILOA proves to be more efficient in reducing operational costs.

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

PG1 164.50147 – – 220.48927 – 326.18602 311.20763

PG2 197.26218 – – 199.90168 – 199.90872 197.30743

PG3 98.89672 – – 99.98631 – 99.98563 61.28723

PG4 – 275.10182 – 217.27153 414.50982 – 444.29776

PG5 – 688.05947 – 704.28419 696.09275 – 623.10761

PG6 – 451.18401 – 433.33101 453.12971 – 482.19874

PG7 – – 498.89042 – 499.79081 441.08667 480.29971

PG8 – – 585.00189 – 543.09156 475.70973 486.46492

PG9 – – 798.98217 – 701.18758 799.86421 699.90426

PLoss(kW) 0.66037 9.3453 32.87448 10.26399 52.80223 32.74098 71.07529

QLoss(kVAr) 0.653805 7.39104 24.80261 8.93205 37.19802 22.86545 46.02468

Cost($/hr) 19,254.85 70,948.59 98,116.47 89,792.18 1,68,778.26 1,15,209.32 1,87,892.37

Table 12.  Optimal results for different case studies in reducing generation cost and active power loss for a 33-
bus test system using the ILOA algorithm. Bold represent the Significant Value.

 

Optimization approach Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 0.5846 8.5169 32.6285 10.25763 52.41465 32.6145 70.4914

LOA 0.6219 9.0291 33.1028 11.3049 53.0127 33.1453 70.9827

JAYA41 0.690474 9.499427 33.673170 12.122236 53.424970 34.635059 71.707680

GA41 0.690496 9.520185 33.708979 12.150093 53.469600 34.644690 71.902238

Table 11.  Comparison of optimization results for the mitigation of active power loss for various case studies. 
Bold represent the Significant Value.

 

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

PG1 160.5847 – – 125.2891 – 337.9032 126.90305

PG2 199.9999 – – 199.9999 – 175.6285 68.92034

PG3 100 – – 98.6218 – 99.9999 99.9999

PG4 – 220.3068 – 263.8029 641.30728 – 849.0385

PG5 – 768.0925 – 760.7936 750.18926 – 666.8302

PG6 – 425.1176 – 426.7503 423.90278 – 415.8048

PG7 – – 500 – 499.5999 499.7999 483.7102

PG8 – – 582.6285 – 220.30954 797.2546 758.8904

PG9 – – 800 – 772.10589 433.0284 315.39401

PLoss(kW) 0.5846 8.5169 32.6285 10.25763 52.41465 32.6145 70.4914

QLoss(kVAr) 0.57192 6.40821 26.30278 8.01748 38.8104 24.80247 48.40294

Cost($/hr) 19,256.84 71,408.32 98,124.46 91,346.73 1,77,742.74 1,16,779.38 2,08,978.29

Table 10.  Optimum values for different case studies in mitigating active power loss for a 33-bus test system 
using the ILOA algorithm. Bold represent the Significant Value.
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Figures 4 and 5 provide a comprehensive visual representation of the Pareto fronts obtained for the multi-
objective optimization problem, focusing on the simultaneous minimization of generation cost and active power 
loss reduction. These figures illustrate the comparative performance of both the Improved Lion Optimization 
Algorithm (ILOA) and the standard Lion Optimization Algorithm (LOA) for Case_4 and Case_7, respectively. A 
close examination of the Pareto fronts reveals that the ILOA consistently identifies superior trade-off solutions, 
positioning itself more favourably than the LOA. The optimal points on the Pareto front demonstrate that the 
ILOA not only surpasses the LOA in achieving lower costs and reduced power losses but also exhibits better 
solution distribution and diversity. The well-spread, non-dominated solutions offered by the ILOA confirm its 
robustness and effectiveness in handling the optimization problem. Moreover, these findings underscore the 
feasibility and reliability of the ILOA in optimizing power distribution within the modified IEEE 33-bus system. 
By providing a more comprehensive and balanced set of optimal solutions, the ILOA ensures that decision-
makers can select the most suitable operational conditions based on system requirements, further validating its 
superiority over conventional approaches.

Single and multi-objective optimization of generation cost and real power loss with EIR
Table 14 presents the placement and Forced Outage Rate (FOR) of Distributed Generators (DGs) in each 
microgrid. It outlines the specific buses where DGs are positioned in Microgrid-1 (MG1), Microgrid-2 (MG2), 
and Microgrid-3 (MG3), along with their associated FOR values. This information is crucial for understanding 
the reliability and operational constraints of DGs within each microgrid.

Fig. 4.  Pareto front distribution for generation cost and emission mitigation in Case_4.

 

Optimization 
approach ILOA LOA JAYA41 GA41

Parameters Generation cost
Active power 
loss Generation cost

Active power 
loss Generation cost

Active power 
loss Generation cost

Active 
power 
loss

Case-1 19,254.85 0.66037 19,255.76 0.66507 19,257.51 0.690492 19,257.50 0.690589

Case-2 70,948.59 9.3453 70,952.48 9.4826 70,955.33 9.559371 70,951.86 9.562085

Case-3 98,116.47 32.87448 98,119.26 33.45041 98,120.09 33.679766 98,123.35 33.677627

Case-4 89,792.18 10.26399 89,795.28 11.75026 89,798.02 12.18695 89,991.34 12.301605

Case-5 1,68,778.26 52.80223 1,69,291.27 53.82703 1,69,791.35 54.0869 1,75,424.45 53.4696

Case-6 1,15,209.32 32.74098 1,15,316.28 33.50672 1,15,642.65 34.725637 1,15,623.96 34.744787

Case-7 1,87,892.37 71.07529 1,88,092.15 71.50178 1,89,947.42 72.483248 1,90,814.09 72.076102

Table 13.  Assessment of finest compromise solution for the alleviation of generation cost and active power 
loss for various case studies.
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Scenario-I (mitigation of generation cost)
Table 15 provides a comprehensive analysis of Scenario 1, emphasizing the minimization of operating costs 
while ensuring an Energy Index of Reliability (EIR) of at least 0.97. It provides variables and their corresponding 
values across seven case studies, showcasing the results of optimization efforts to minimize operational costs 
under this scenario. In this context, the fitness function was designed with a primary focus on minimizing 
operational costs. The operating cost coefficients for each distributed generator (DG) within the 33-bus 
distribution system were derived from Ref41. To reduce generation costs, the weighting factors w1 and w2 
were assigned values of 1 and 0, respectively. Under this condition, the minimum generation cost achieved was 
19,254.64 $/hr, with an associated real power loss of 0.6487 kW for Case_1. Similarly, the optimal generation 

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

PG1 163.2135 – – 159.8243 – 334.7109 352.8911

PG2 198.3098 – – 199.0002 – 190.0015 198.5023

PG3 99.1254 – – 57.2097 – 85.5509 45.0027

PG4 – 748.5002 – 788.1023 688.0021 – 663.0001

PG5 – 602.0009 – 568.0017 624.5012 – 584.0023

PG6 – 72.0503 – 110.0007 168.5024 – 178.5011

PG7 – – 413.5005 – 404.1003 340.0008 384.5006

PG8 – – 1124.201 – 1180.001 1107.172 1114.207

PG9 – – 353.5002 – 248.0005 291.0007 279.5008

PLoss(kW) 0.6487 17.5514 41.2018 17.1389 58.1074 38.4371 85.1083

QLoss(kVAr) 0.6401 13.5008 35.0007 14.2005 45.0004 32.0006 54.0003

Cost($/hr) 19,255.39 87,174.21 110,297.19 102,014.03 196,721.79 125,375.57 213,370.91

EIR 0.97 0.97002 0.97002 0.97045 0.97002 0.97087 0.97

Table 15.  Scenario-I: operating cost minimization with EIR (Λ) ≥ 0.97. Bold represent the Significant Value.

 

Microgrid MG1 MG2 MG3

DG positioned at bus no 1 2 20 3 7 18 23 30 26

Value of FOR 0.03 0.02 0.05 0.02 0.04 0.05 0.04 0.02 0.05

Table 14.  Placement and forced outage rate (FOR) of distributed generators in each microgrid71.

 

Fig. 5.  Pareto front distribution for generation cost and emission mitigation in Case_7.
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cost and corresponding real power losses were calculated for Cases 2 through 7. Furthermore, Table 15 outlines 
the optimal power outputs of various DGs aimed at minimizing generation costs using the Improved Lyrebird 
Optimization Algorithm (ILOA). Additionally, Table 15 demonstrates that the ILOA consistently outperforms 
in terms of generation cost efficiency. The results obtained using the ILOA for Cases 1 through 7 are 19,255.39 
$/hr, 87,174.21 $/hr, 110,297.19 $/hr, 102,014.03 $/hr, 196,721.79 $/hr, 125,375.57 $/hr, and 213,370.91 $/hr, 
respectively. In contrast, the generation costs obtained using the standard Lyrebird Optimization Algorithm 
(LOA) are 19,256.62 $/hr, 87,175.93 $/hr, 110,300.41 $/hr, 102,017.62 $/hr, 196,724.28 $/hr, 125,379.4 $7/hr, 
and 213,375.18 $/hr for the same cases. The comparison shows that as system size increases, ILOA significantly 
outperforms LOA in reducing operational costs. Generation cost minimization was successfully achieved across 
Cases 1 to 7, while maintaining an Energy Index of Reliability (EIR) of at least 0.97 in every scenario. This 
demonstrates that ILOA not only lowers costs but also ensures system reliability, guaranteeing stable and secure 
operation. By keeping EIR at or above 0.97, the optimization strategy effectively balances cost reduction with 
reliability, ensuring that cost-saving measures do not compromise system stability. As EIR reflects the system’s 
ability to deliver power reliably, maintaining this threshold confirms that economic benefits are achieved without 
sacrificing performance. Table 16 presents a detailed evaluation of generation cost minimization across different 
case studies, comparing ILOA with LOA, JAYA, and GA. The results highlight ILOA’s superior efficiency, making 
it a more effective solution for optimizing both economic and operational performance.

Scenario-II (mitigation of active power loss)
Table 17 focuses on Scenario-II, which aims to minimize active power loss with an EIR greater than or equal to 
0.97. It lists the variables and their respective values for the seven case studies, demonstrating the optimization 
results achieved under this scenario. In this scenario, the objective function is exclusively focused on minimizing 
active power loss. It is assumed that the available distributed generators (DGs) are dispatchable and have fixed 
locations. The weighting factors w1 and w2 were set to 0 and 1, respectively, in order to minimize active power 
loss. Under these conditions, the minimum active power loss achieved for Case 1 is 0.6759 kW, accompanied 
by a corresponding generation cost of $19,256.84 per hour. Similarly, the optimal active power loss and the 
associated generation costs were determined for Cases 2 through 7. Table 17 presents the active power losses for 
the various case studies computed using the Improved Lyrebird Optimization Algorithm (ILOA) applied to the 
33-bus distribution system. Moreover Table 16 provides detailed information on the scheduled power outputs 
for each DG, as well as the system’s active and reactive power losses and the overall generation costs. The results 
in Table 17 demonstrate that the ILOA achieves minimal active power losses of 0.6759 kW, 13.893 kW, 42.7795 
kW, 14.2931 kW, 55.0349 kW, 37.9977 kW, and 73.8054 kW for Cases 1 through 7, respectively. In comparison, 
the corresponding results obtained using the Lyrebird Optimization Algorithm (LOA) are 0.6883 kW, 14.591 
kW, 43.3917 kW, 14.8704 kW, 55.7019 kW, 38.8627 kW, and 74.7915 kW. Active power loss minimization was 
successfully achieved across Cases 1 to 7, while maintaining an Energy Index of Reliability (EIR) of at least 0.97. 

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

PG1 162.4273 – – 166.4283 – 146.5184 133.1347

PG2 199.2165 – – 199.1372 – 198.1583 197.0927

PG3 99.0321 – – 58.2891 – 28.0123 99.5017

PG4 – 890.4926 – 823.0278 1193.2715 – 1510.4267

PG5 – 167.2197 – 365.1812 398.3371 – 229.2976

PG6 – 361.1807 – 267.2295 399.4235 – 318.7541

PG7 – – 499.0784 – 144.4263 170.3321 246.2265

PG8 – – 1097.2915 – 863.7253 1225.4829 575.5123

PG9 – – 296.4096 – 310.8512 579.4937 478.8591

PLoss(kW) 0.6759 13.893 42.7795 14.2931 55.0349 37.9977 73.8054

QLoss(kVAr) 0.6554 11.3859 35.4963 11.0792 43.0112 31.5429 52.2238

Cost($/hr) 19,256.48 96,126.85 110,927.42 117,977.29 221,844.71 130,615.81 263,906.25

EIR 0.97003 0.97001 0.97003 0.97003 0.97028 0.97016 0.97004

Table 17.  Scenario-II: Active power loss minimization with EIR (Λ) ≥ 0.97. Bold represent the Significant 
Value.

 

Optimization approach Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 19,255.39 87,174.21 1,10,297.19 1,02,014.03 1,96,721.79 1,25,375.57 2,13,370.91

LOA 19,256.62 87,175.93 1,10,300.41 1,02,017.62 1,96,724.28 1,25,379.47 2,13,375.18

JAYA71 19,256.43 87,175.14 1,10,298.17 1,02,015.60 1,96,723.42 1,25,377.53 2,13,372.95

GA71 19,256.44 87,183.16 1,10,310.67 1,06,368.97 1,96,736.99 1,26,040.65 2,28,486.67

Table 16.  Assessment of optimization results for the mitigation of generation cost for various case studies.
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This ensures that operational efficiency does not compromise system reliability, demonstrating the robustness 
of the optimization approach. By sustaining an EIR of 0.97 or higher, the system achieves significant power 
loss reduction while preserving high reliability standards, effectively managing complex power distribution 
challenges. Table 18 provides a comparative analysis of active power loss minimization results, evaluating the 
performance of ILOA against LOA, JAYA, and GA. The results highlight ILOA’s superior efficiency in reducing 
power losses, making it a more effective optimization technique compared to conventional methods.

Scenario-III (mitigation of generation cost and active power loss)
Table 19 presents Scenario-III, which addresses the combined objectives of minimizing operating costs and 
active power losses while ensuring an EIR of 0.97 or higher. It provides detailed results for various variables and 
their outcomes across seven case studies, highlighting the trade-offs and benefits of addressing both objectives 
simultaneously. In this scenario, the optimization process is formulated as a multi-objective problem, aiming 
to minimize both generation cost and active power loss. This approach ensures a balanced trade-off between 
economic and technical objectives. The optimization is carried out under the condition that the Energy Index 
of Reliability (EIR) remains greater than 0.97 for all cases, thereby maintaining a high level of reliability in the 
system. Table 19 provides detailed insights into the optimal power outputs of the distributed generators (DGs) 
achieved using the Improved Lyrebird Optimization Algorithm (ILOA). The optimal balance between the two 
objectives was achieved by setting the weighting factors w1 and w2 both to 0.5, ensuring the best compromise 
solution. The Improved Lyrebird Optimization Algorithm (ILOA) produced generation costs of 19,254.78$/hr, 
89,388.26 $/hr, 110,383.43 $/hr, 106,527.38 $/hr, 201,843.27 $/hr, 127,333.58 $/hr, and 227,641.59 $/hr, with 
corresponding real power losses of 0.6141 kW, 13.7381 kW, 40.6321 kW, 14.1616 kW, 53.7482 kW, 38.6456 
kW, and 69.8214 kW for Cases 1 through 7, respectively. Table 20 presents the results for all case studies, 
demonstrating ILOA’s effectiveness in reducing both generation costs and active power losses simultaneously. 
This dual-objective optimization ensures efficient system operation while maintaining reliability constraints, 
highlighting ILOA’s robustness in addressing complex power distribution challenges. The results indicate that 
ILOA’s efficiency improves as system size increases, consistently delivering optimal compromise solutions. 
Additionally, the Table 20 provides a comparative analysis of ILOA, LOA, and JAYA, showcasing their respective 
strengths and limitations, with ILOA demonstrating superior optimization performance. ILOA outperforms 
LOA due to its advanced mechanisms, specifically the chaotic sine map and Levy Flight, which significantly 
enhance its search capabilities. The chaotic sine map introduces non-linear, dynamic behavior, enabling broader 
exploration of the solution space while preventing the algorithm from getting trapped in local optima. This 
controlled randomness improves search diversity, ensuring a more effective and extensive search process. 
Meanwhile, Levy Flight enhances exploration by allowing larger, adaptive jumps, facilitating the discovery of 
more optimal solutions. Inspired by natural foraging behavior, this technique enables ILOA to efficiently navigate 

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

PG1 163.2191 – – 118.9127 – 325.1905 311.1089

PG2 198.3058 – – 109.8872 – 199.8926 197.2184

PG3 99.0892 – – 59.9703 – 99.7518 62.3218

PG4 – 1041.317 – 1160.1892 1005.2901 – 842.2951

PG5 – 107.1183 – 205.0938 295.1185 – 224.1458

PG6 – 270.3028 – 225.1084 255.3091 – 273.0825

PG7 – – 399.0842 – 149.2891 257.7183 269.2189

PG8 – – 1164.3372 – 1105.5106 1135.1208 1147.1893

PG9 – – 327.2107 – 498.2308 330.9716 458.2407

PLoss(kW) 0.6141 13.7381 40.6321 14.1616 53.7482 38.6456 69.8214

QLoss(kVAr) 0.63871 7.36082 24.5083 8.7681 36.4019 22.0472 45.7025

Cost($/hr) 19,254.78 89,388.26 110,383.43 106,527.38 201,843.27 127,333.58 227,641.59

EIR 0.97000 0.97277 0.97059 0.97263 0.97048 0.97092 0.97028

Table 19.  Scenario 3: Operating cost and active power loss minimization with EIR (Λ) ≥ 0.97. Bold represent 
the Significant Value.

 

Optimization approach Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 0.6759 13.893 42.7795 14.2931 55.0349 37.9977 73.8054

LOA 0.6883 14.591 43.3917 14.8704 55.7019 38.8627 74.7915

JAYA71 0.6905 14.6949 43.9116 15.1146 56.5737 41.8670 75.3645

GA71 0.6967 14.7158 43.913 15.8492 57.3381 42.4887 75.4144

Table 18.  Comparison of optimization results for the mitigation of active power loss for various case studies. 
Bold represent the Significant Value.
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multi-modal search spaces, improving both solution quality and convergence speed. By integrating these two 
mechanisms, ILOA achieves a more balanced and robust optimization process, outperforming standard LOA 
in solving complex, multi-objective problems. These enhancements make ILOA a highly effective approach for 
optimizing large-scale power distribution systems compared to traditional algorithms.

Analysis of results
A comprehensive analysis of distributed generation (DG) scheduling is presented, utilizing various optimization 
algorithms within an altered 33-bus electrical distribution system. The study is organized across multiple case 
studies and divided into two main optimization strategies: single-objective optimization and multi-objective 
optimization. Table 21 and 22 offer an extensive dataset, examining operating costs and real power losses across 
different scenarios, both with and without the Enhanced Index of Reliability (EIR) criterion. Table 20 showcases 
the performance of the proposed Improved Lyrebird Optimization Algorithm (ILOA) alongside the Lyrebird 
Optimization Algorithm (LOA), JAYA, and Genetic Algorithm (GA) across seven distinct case studies. These 
results are compared for scenarios with and without the inclusion of EIR as a scheduling criterion. The EIR 
values for optimal scheduling without considering the EIR criterion have been derived based on the DG power 
outputs from the test results summarized in Tables 15, 16, 17, 18, 19 and 20. Furthermore, Table 21 highlights 
that incorporating the EIR criterion into the scheduling process ensures that DGs are optimally scheduled to 
meet the reliability requirement, in addition to achieving the desired minimization objectives. This approach 
enhances system performance by simultaneously addressing reliability and operational efficiency.

Single objective optimization

Minimization of operating cost

Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

Operating Cost ($/hr)

Without EIR

ILOA 19,254.64 70,900.83 97,915.95 89,443.86 168,662.74 115,061.66 187,645.04

LOA 19,255.52 70,901.79 97,917.64 89,445.27 168,664.36 115,063.75 187,647.63

JAYA41 19,256.43 70,902.88 97,919.59 89,446.93 168,665.57 115,067.73 187,652.72

GA41 19,256.44 70,902.99 97,919.86 89,480.97 168,996.73 115,367.94 188,885.73

With EIR

ILOA 19,255.39 87,174.21 110,297.19 102,014.03 196,721.79 125,375.57 213,370.91

LOA 19,256.62 87,175.93 110,300.41 102,017.62 196,724.28 125,379.47 213,375.18

JAYA71 19,256.43 87,175.14 110,298.17 102,015.60 196,723.42 125,377.53 213,372.95

GA71 19,256.44 87,183.16 110,310.67 106,368.97 196,736.99 126,040.65 228,486.67

Minimization of real power loss

Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

Real Power Loss 
(kW)

Without EIR

ILOA 0.5846 8.5169 32.6285 10.25763 52.41465 32.6145 70.4914

LOA 0.6219 9.0291 33.1028 11.3049 53.0127 33.1453 70.9827

JAYA41 0.690474 9.499427 33.673170 12.122236 53.42497 34.635059 71.707680

GA41 0.690496 9.520185 33.708979 12.150093 53.46960 34.644690 71.902238

With EIR

ILOA 0.6759 13.893 42.7795 14.2931 55.0349 37.9977 73.8054

LOA 0.6883 14.591 43.3917 14.8704 55.7019 38.8627 74.7915

JAYA71 0.6905 14.6949 43.9116 15.1146 56.5737 41.8670 75.3645

GA71 0.6967 14.7158 43.913 15.8492 57.3381 42.4887 75.4144

Table 21.  Comparison of EIR values for optimal dg scheduling across different scenarios in the altered 33-bus 
system with and without the reliability criterion (single-objective optimization). Bold represent the Significant 
Value.

 

Optimization Approach ILOA LOA JAYA71

Parameters Generation cost Active power loss Generation cost Active power loss Generation cost Active power loss

Case_1 19,254.78 0.6141 19,255.83 0.6608 19,256.65 0.69382

Case_2 89,388.26 13.7381 89,400.18 14.8062 89,412.07 15.98204

Case_3 110,383.43 40.6321 110,398.69 42.5196 110,411.04 44.14713

Case_4 106,527.38 14.1616 106,534.27 16.1893 106,546.16 17.79089

Case_5 201,843.27 53.7482 201,861.83 56.5826 201,912.72 58.55761

Case_6 127,333.58 38.6456 127,351.07 40.7025 127,374.03 42.73342

Case_7 227,641.59 69.8214 227,654.46 72.7831 227,690.37 76.27862

Table 20.  Assessment of finest compromise solution for the alleviation of generation cost and active power 
loss for various case studies.
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The results are divided into two scenarios: without EIR and with EIR. Across all cases, the inclusion of EIR 
results in higher operating costs, indicating that reliability considerations introduce additional operational 
expenses. The operating cost varies significantly across the different cases. Among the algorithms, ILOA 
consistently yields lower operating costs compared to LOA, JAYA, and GA, making it a potentially more cost-
effective choice for DG scheduling. A similar trend is observed for real power loss minimization, where the 
inclusion of EIR generally leads to higher losses. The real power loss values vary across the cases, with Case_1 
showing the lowest losses (around 0.58 kW without EIR and 0.67 kW with EIR), whereas Case_7 has significantly 
higher losses (70.49 kW without EIR and 73.80 kW with EIR). Among the optimization algorithms, GA and 
JAYA tend to exhibit slightly higher power losses compared to ILOA and LOA, although the differences are 
marginal in certain cases.

Table 22 extends the analysis to a multi-objective framework, considering a compromise between operating 
cost and real power loss. The evaluation follows the same seven-case structure, comparing the four optimization 
techniques with and without EIR. Without EIR, the operating costs are significantly lower across all cases 
compared to the EIR-included scenarios. In higher complexity cases like Case_5 and Case_7, the cost increase is 
more substantial. For example, in Case_7, the cost rises from 1,87,892.37 $/hr (ILOA) without EIR to 2,27,642 
$/hr with EIR, indicating a major impact of reliability considerations. The real power loss values also increase 
when EIR is considered, though the magnitude of increase varies across cases and algorithms. For instance, in 
Case_1, the real power loss remains relatively low at 0.66037 kW (ILOA) without EIR, but with EIR, it is slightly 
reduced to 0.6141 kW. This suggests that in some cases, EIR can actually help optimize power loss while still 
increasing costs. However, in higher load cases like Case_7, the power loss increases from 71.07 kW to 69.82 kW 
with EIR, showing that reliability considerations do not always lead to higher losses, but often create a trade-off 
between cost and loss performance.

Across both single and multi-objective optimization frameworks, including EIR consistently raises 
operational costs, reflecting the additional constraints imposed by reliability. While most cases show an 
increase in power loss with EIR, some cases (such as Case_1) exhibit reduced power loss, highlighting non-
linear interactions between DG scheduling, reliability, and power flow optimization. Unlike single-objective 
optimization, where either cost or loss is minimized independently, the multi-objective approach balances the 
two, resulting in compromise solutions that reflect real-world trade-offs. ILOA consistently achieves lower 
operating costs compared to LOA, JAYA, and GA, making it an optimal choice for economic DG scheduling. In 
many scenarios, ILOA maintains lower real power losses, ensuring higher energy efficiency. Unlike traditional 
optimization methods that prioritize global solutions, ILOA achieves a more balanced approach between cost 
efficiency and power loss reduction.

Conclusion and directions for future research
This paper proposed the Improved Lyrebird Optimization Algorithm (ILOA) as a robust and efficient 
solution for the optimal sectionalizing and scheduling of multi-microgrid systems.

•	 The algorithm effectively minimized generation costs and active power losses while addressing reliability con-
straints, such as the Energy Index of Reliability (EIR), and ensured stable system performance with renewable 
energy integration.

•	 By integrating advanced mechanisms like Levy Flight for enhanced local search and a chaotic sine map for 
improved global exploration, ILOA achieved faster convergence and superior optimization results compared 

Multi objective optimization

Best compromise solution

Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

Without EIR

ILOA
Cost ($/hr) 19,254.85 70,948.59 98,116.47 89,792.18 1,68,778.26 1,15,209.32 1,87,892.37

Real Power Loss (kW) 0.66037 9.3453 32.87448 10.26399 52.80223 32.74098 71.07529

LOA
Cost ($/hr) 19,255.76 70,952.48 98,119.26 89,795.28 1,69,291.27 1,15,316.28 1,88,092.15

Real Power Loss (kW) 0.66507 9.4826 33.45041 11.75026 53.82703 33.50672 71.50178

JAYA41
Cost ($/hr) 19,257.51 70,955.33 98,120.09 89,798.02 1,69,791.35 1,15,642.65 1,89,947.42

Real Power Loss (kW) 0.690492 9.559371 33.67977 12.18695 54.0869 34.725637 34.744787

GA41
Cost ($/hr) 19,257.50 70,951.86 98,123.35 89,991.34 1,75,424.45 1,15,623.96 1,90,814.09

Real Power Loss (kW) 0.690589 9.562085 33.67763 12.30161 53.4696 72.483248 72.076102

With EIR

ILOA
Cost ($/hr) 19,254.8 89,388.3 1,10,383 1,06,527 2,01,843 1,27,334 2,27,642

Real Power Loss (kW) 0.6141 13.7381 40.6321 14.1616 53.7482 38.6456 69.8214

LOA
Cost ($/hr) 19,255.8 89,400.2 1,10,399 1,06,534 2,01,862 1,27,351 2,27,654

Real Power Loss (kW) 0.6608 14.8062 42.5196 16.1893 56.5826 40.7025 72.7831

JAYA71
Cost ($/hr) 19,256.7 89,412.1 1,10,411 1,06,546 2,01,913 1,27,374 2,27,690

Real Power Loss (kW) 0.69382 15.982 44.1471 17.7909 58.5576 42.7334 76.2786

Table 22.  Comparison of EIR values for optimal DG Scheduling across different scenarios in the altered 33-
bus system with and without the reliability criterion (multi-objective optimization).

 

Scientific Reports |        (2025) 15:17345 24| https://doi.org/10.1038/s41598-025-02200-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to conventional algorithms like the Genetic Algorithm (GA), Jaya Algorithm (JAYA), and the original Lyre-
bird Optimization Algorithm (LOA).

•	 Simulation results on a modified 33-bus distribution system, segmented into three independent microgrids, 
demonstrated the practical applicability of ILOA in both single-objective and multi-objective optimization 
scenarios.

•	 In single-objective cases, the algorithm achieved notable improvements in generation cost and active power 
loss reduction. In multi-objective optimization, it balanced these objectives more effectively than competing 
methods, further validating its robustness and effectiveness.

•	 For the IEEE-33 bus system under multi-objective optimization without considering EIR, the proposed ILOA 
algorithm significantly enhances system performance by reducing generation cost by approximately 0.1062%, 
1.0822%, and 1.5318% compared to LOA, JAYA, and GA, respectively. Additionally, ILOA lowers active pow-
er loss by around 0.5968%, 1.942%, and 1.3891% relative to LOA, JAYA, and GA, respectively, under the 
operational scenario of Case-7. These results highlight the effectiveness of ILOA in optimizing both economic 
and technical parameters in power system operation.

•	 For the IEEE-33 bus system with considering EIR, the proposed ILOA algorithm achieves generation cost 
savings of approximately 0.0057% and 0.0214% compared to LOA and JAYA, respectively. Additionally, ILOA 
demonstrates a notable reduction in active power loss by 4.07% and 8.47% compared to LOA and JAYA, re-
spectively, under the operational scenario of Case-7. These findings further validate the effectiveness of ILOA 
in optimizing economic and technical performance in power systems.

•	 While the results highlighted the significant potential of ILOA, certain limitations remained. The scalability of 
the algorithm to larger, more complex systems and its adaptability to dynamic and uncertain grid conditions 
warranted further exploration.

Additionally, the incorporation of constraint-handling mechanisms, such as reliability indices and advanced 
forecasting techniques for renewable energy sources, could have enhanced its robustness.Future work could 
focus on leveraging real-time grid data and integrating machine learning techniques to improve decision-
making under uncertainty. Exploring hybrid frameworks combining ILOA with methods like game theory 
or reinforcement learning could extend its application to more complex objectives, including energy storage 
management, demand response, and fault detection in multi-microgrid systems. The ILOA showcased its 
capability as an efficient and reliable method for optimizing distributed generation scheduling and sectionalizing 
multi-microgrid systems, highlighting its promise as a key enabler for future advancements in smart grid 
applications.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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