www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Improved Lyrebird optimization
for multi microgrid sectionalizing
and cost efficient scheduling of
distributed generation

Karthik Nagarajan?, Arul Rajagopalan?“, Mohit Bajaj*"*, Valliappan Raju*, Vojtech Blazek® &
Lukas Prokop®

The rising energy demand, substantial transmission and distribution losses, and inconsistent power
quality in remote regions highlight the urgent need for innovative solutions to ensure a stable
electricity supply. Microgrids (MGs), integrated with distributed generation (DG), offer a promising
approach to address these challenges by enabling localized power generation, improved grid flexibility,
and enhanced reliability. This paper introduces the Improved Lyrebird Optimization Algorithm (ILOA)
for optimal sectionalizing and scheduling of multi-microgrid systems, aiming to minimize generation
costs and active power losses while ensuring system reliability. To enhance search efficiency, ILOA
incorporates the Levy Flight technique for local search, which introduces adaptive step sizes with
long-distance jumps, improving the exploration-exploitation balance. Unlike conventional local search
strategies that rely on fixed step sizes, Levy Flight prevents premature convergence by allowing

the algorithm to escape local optima and explore the solution space more effectively. Additionally,

a chaotic sine map is integrated to enhance global search capability, ensuring better diversity and
superior optimization performance compared to traditional algorithms. Simulation studies are
conducted on a modified 33-bus distribution system segmented into three independent microgrids.
The algorithm is evaluated under single-objective scenarios (cost and loss minimization) and a multi-
objective optimization framework combining both objectives. In single-objective optimization, ILOA
achieves a generation cost of $19,254.64/hr with 0.7118 kW of power loss, demonstrating marginal
improvements over the standard Lyrebird Optimization Algorithm and significant gains over Genetic
Algorithm (GA) and Jaya Algorithm (JAYA). In multi-objective optimization, ILOA surpasses competing
methods by achieving a generation cost of $89,792.18/hr and 10.26 kW of power loss. The optimization
results indicate that, for the IEEE-33 bus system without considering EIR, the proposed ILOA algorithm
achieves savings of approximately 0.0014%, 0.0041%, and 0.657% in operation costs compared to
LOA, JAYA, and GA, respectively, when MG-1, MG-2, and MG-3 are operational. The analysis of real
power loss reduction demonstrates that, in the IEEE-33 bus system without considering EIR, the
proposed ILOA algorithm effectively minimizes power loss by approximately 0.692%, 1.696%, and
1.962% in comparison to LOA, JAYA, and GA, respectively, under the operational conditions of MG-1,
MG-2, and MG-3. Additionally, reliability constraints based on the Energy Index of Reliability (EIR) are
effectively incorporated, further validating the robustness of the proposed approach. Considering EIR,
the real power loss analysis for the IEEE-33 bus system highlights that the proposed ILOA algorithm
achieves a reduction of approximately 1.319%, 2.069%, and 2.134% in comparison to LOA, JAYA, and
GA, respectively, under the operational scenario where MG-1, MG-2, and MG-3 are active. The results
confirm that ILOA is a highly efficient and reliable solution for distributed generation scheduling and
multi-microgrid sectionalizing, showcasing its potential for real-world applications such as dynamic
economic dispatch and demand response integration in smart grid systems.
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The contemporary energy scenery is evolving, with a modification towards decentralized energy systems.
Microgrids, small-scale power networks encompassing various distributed energy resources, play a pivotal role
in this transformation"2. However, managing these interconnected microgrids poses challenges due to their
diverse energy sources, demand fluctuations, and the necessity for constant optimization®*. The integration of
distributed generation (DG) and microgrids into power systems has garnered significant attention for enhancing
grid reliability, reducing emissions, and achieving energy independence. However, the complex interplay
of sectionalizing multi-microgrids and optimally scheduling DG units necessitates advanced optimization
techniques. Traditional methods often struggle to balance competing objectives such as cost minimization,
emission reduction, and reliability improvement. Multi-microgrid systems represent a paradigm shift in the way
we conceive, design, and operate power networks®. Asan evolution of conventional microgrids, which arelocalized
grids capable of operating self-reliantly or in combination with the utility, multi-microgrid systems expand this
concept by interconnecting multiple microgrids into a more complex network®. Multi-microgrid systems are
designed to improve the resilience and flexibility of power distribution’. By interconnecting several microgrids,
these systems can achieve higher reliability, allowing for more dynamic and robust energy management®.
Unlike standalone microgrids, multi-microgrid systems emphasize interconnectedness. These systems enable
collaboration among individual microgrids, allowing for shared resources, energy trading, and mutual support
during contingencies or peak demand periods®. Scaling up the concept of microgrids, multi-microgrid systems
cater to larger geographical areas, diverse energy sources, and varied load demands!’. Optimization algorithms
play a crucial role in managing multiple objectives such as cost minimization, emission reduction, and system
stability across interconnected microgrids'!. Leveraging renewable energy sources is a cornerstone of multi-
microgrid systems. These systems facilitate the incorporation of various non-conventional energy resources,
for instance wind, photovoltaic and hydro-electric, across multiple microgrids, enabling a more sustainable and
greener energy matrix'?. Effective communication and control systems are essential for the seamless operation
and coordination of multi-microgrid systems'. Advanced control strategies, including hierarchical control
architectures and decentralized control mechanisms, are implemented for efficient management'*. Developing
sophisticated optimization and scheduling algorithms is critical for achieving the best utilization of resources
in multi-microgrid systems. These algorithms consider multiple objectives, uncertainties in renewable energy
generation, load variations, and grid stability constraints'®. Enhancing grid resilience and reliability is a
significant challenge. Multi-microgrid systems need to address issues related to grid stability, fault management,
and rapid response to disturbances to ensure uninterrupted power supply'®. Establishment of suitable regulatory
frameworks and market structures is necessary to facilitate energy trading, incentivize efficient energy
management strategies, and encourage participation from diverse stakeholders in multi-microgrid systems'”.
The integration of optimization techniques within multi-microgrid systems is indispensable, serving as a
linchpin for efficient, resilient, and sustainable energy management!®. These techniques address the complexities
inherent in managing multiple interconnected microgrids, ensuring optimal utilization of resources, and
meeting various operational objectives. Multi-microgrid systems entail juggling multiple objectives, including
cost minimization, emission reduction, reliability enhancement, and grid stability19. Optimization techniques
provide the framework to balance these conflicting objectives effectively. Optimizing resource allocation, such as
distributed generation sources, storage systems, and load management, is essential. These techniques enable the
allocation of resources efficiently across interconnected microgrids to meet demand while minimizing costs?.
The intermittent nature of renewable energy sources adds complexity. Optimization techniques accommodate
uncertainties in renewable generation, ensuring optimal scheduling of renewables while maintaining system
stability?!. The long-term multi-objective optimization of renewable distributed generation (DG) power ratings
and battery energy storage system (BESS) energy and power ratings in a grid-connected microgrid was carried
out using the fuzzified Grey Wolf Optimizer??. A comprehensive approach was implemented to optimize the
sizing of renewable DGs and BESS in grid-connected microgrids. The optimization framework incorporated
multiple objectives, including minimizing total annual costs, emissions, and energy losses, while maximizing
annualized benefits by deferring network upgrades. The day-ahead scheduling of microgrids was formulated
as a multi-objective optimization problem, considering wind turbines, solar photovoltaics, and energy storage
systems (EES)??. This was achieved using game theory and a deep learning neural network (DL-NN) forecasting
model, which integrated the Wind-Corrected Moving Average (WCMA) technique to predict wind speed, solar
radiation, and load demand with improved accuracy.

Recent advancements in microgrid optimization have significantly emphasized cost-efficiency, emission
reduction, and system reliability. Paul et al.?* developed a quantum particle swarm optimization framework
for optimizing sustainable energy management in grid-connected microgrids. Their approach simultaneously
minimized cost and emissions, integrating renewable sources into a multi-objective optimization setup that
addressed environmental and economic performance trade-offs. This study emphasized the role of intelligent
algorithms in handling the conflicting objectives of operational cost and carbon footprint in energy systems.
Phommixay et al.*® presented a comprehensive review of cost optimization techniques for microgrids using
particle swarm optimization (PSO). They highlighted the evolution of PSO variants and their application in
economic dispatch, load scheduling, and system cost reduction. The study underscored the need for more
adaptable and hybrid strategies to manage system uncertainties, particularly in renewable-integrated microgrids.
Singh et al.? introduced a greedy rat swarm optimization algorithm coupled with price-elastic demand response
to enhance economic and environmental efficiency in microgrid operation. Their approach incorporated real-
time pricing signals, enabling responsive load management and improved system-level optimization through
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behavioral modeling of demand-side participants. Nguyen and Crow?” proposed a stochastic optimization
strategy for microgrids with renewable resources, incorporating battery degradation cost into the scheduling
problem. Their model addressed the operational uncertainties of wind and solar power while also accounting
for lifecycle cost implications of energy storage systems, providing a more holistic economic framework for
microgrid planning. In a related study, Singh et al.?® developed a hybrid demand-side policy for microgrid
scheduling that balanced economic and emission objectives. By integrating demand-side management with
generation scheduling, their model achieved enhanced flexibility in dispatch decisions, especially under variable
generation and load conditions. Selvaraj et al.?® applied the crow search algorithm for real-time power scheduling
in distribution systems to improve microgrid performance. Their metaheuristic strategy focused on dynamic
adaptability and convergence speed, demonstrating promising results for real-time operation under changing
demand profiles and resource availability. Garcia-Torres et al.*® examined stochastic optimization of microgrids
incorporating hybrid energy storage systems and energy forecast uncertainties. Their study emphasized the
significance of accounting for forecast deviations in both demand and renewable generation, which affect
the optimal dispatch of storage units for grid flexibility services. Nadimuthu et al.®! explored the feasibility
of renewable energy-based microgrids with vehicle-to-grid (V2G) technology in smart village applications.
Their case study from India highlighted how V2G integration can support energy balancing and storage in
isolated and rural microgrid setups, demonstrating social and technical viability. Singh et al.3> proposed a
machine learning-based framework for energy management and forecasting in grid-connected microgrids. By
leveraging predictive models, their approach improved the scheduling accuracy of distributed energy sources,
enabling proactive optimization under uncertain operating conditions. Ott et al.** developed a mixed-integer
linear programming (MILP) model for restoration planning in multi-microgrid distribution networks. Their
framework supported system reconfiguration and restoration following faults, focusing on operational resilience
and supply continuity in complex distributed environments. Karthik et al.3* introduced a chaotic self-adaptive
sine cosine algorithm for solving microgrid optimal scheduling problems. The chaotic adaptation enhanced
the algorithm’s ability to escape local optima and maintain search diversity, making it suitable for multi-
objective scenarios involving generation cost and power quality metrics. Abdalla et al.>> examined optimized
economic operation of microgrids that integrate combined cooling, heating, and power (CCHP) systems along
with hybrid energy storage. Their model facilitated comprehensive energy flow management and improved
economic efficiency in multiservice microgrid applications. Artis et al.*® proposed a seismic-resilient planning
framework for distribution networks with renewable-based multi-microgrids. Their multi-level strategy
incorporated structural and operational planning to enhance grid survivability under seismic disturbances,
addressing the critical aspect of infrastructure resilience. Rajagopalan et al.>’ developed a multi-objective
energy management model for microgrids integrated with electric vehicles, using an iterative map-based crystal
structure optimization algorithm. Their approach addressed the operational complexity introduced by mobile
storage and dynamic charging demands, while optimizing for cost, emissions, and load balancing. Arefifar et
al.3® investigated the controllability of voltage and current in multi-microgrid smart distribution systems. Their
analysis provided insights into hierarchical control strategies and dynamic coordination among interconnected
microgrids, enabling improved system stability and regulation. Malik et al.*® presented an intelligent multi-stage
optimization approach for community-based microgrids under the multi-microgrid paradigm. Their method
layered multiple decision levels—generation, storage, and load scheduling—achieving fine-grained control
over distributed assets in community-scale applications. He et al.** proposed an improved genetic algorithm
for economic scheduling in multi-microgrid systems. The enhancements in population diversity and crossover
strategy led to better convergence and more robust solutions for cost optimization across interconnected grids.

Table 1 presents a comprehensive review of the literature on Multi-Objective Optimal Scheduling of Multi-
Microgrids. The review highlights that real power loss is often overlooked as an objective function, despite its
impact on system efficiency. This underscores the need for a more comprehensive optimization framework that
integrates real power loss for improved practical applicability. The Improved Lyrebird Optimization Algorithm
(ILOA) addresses this gap by analyzing seven case studies, demonstrating its ability to enhance system
performance. These findings reinforce the importance of considering real power loss and diverse operational
conditions to improve the reliability and efficiency of multi-microgrid systems.

The growing adoption of multi-microgrid systems in modern power grids, driven by the demand for
resilience, sustainability, and flexibility, has introduced new challenges in distributed generation (DG)
scheduling. Interconnected microgrids must balance conflicting objectives, such as minimizing generation
costs, reducing power losses, and maintaining system stability under dynamic load conditions. Traditional
optimization methods, including Genetic Algorithm (GA) and Jaya Algorithm (JAYA), often struggle with slow
convergence, suboptimal solution quality, and limited scalability in large, complex systems. A major limitation is
their tendency for premature convergence, restricting their ability to fully explore the solution space.

Additionally, the increasing integration of renewable energy sources introduces variability and uncertainty,
complicating stable and cost-effective energy management. Given these challenges, advanced optimization
techniques are essential to effectively balance exploration and exploitation, address renewable energy
uncertainties, and optimize multi-objective functions in large-scale interconnected microgrid systems.

To enhance the local search efficiency of the Improved Lyrebird Optimization Algorithm (ILOA), the
Levy Flight technique was incorporated due to its ability to balance exploration and exploitation effectively.
Conventional local search strategies, such as Gaussian-based random walks, often struggle with premature
convergence and getting trapped in local optima, limiting their effectiveness in complex optimization problems.
In contrast, Levy Flight introduces adaptive step sizes with occasional long-distance jumps, allowing the
algorithm to explore the solution space more efficiently while maintaining precise searches in promising regions.
This characteristic helps ILOA navigate multi-modal search spaces, leading to faster convergence, improved
solution accuracy, and enhanced robustness. By leveraging Levy Flight, ILOA achieves a well-optimized trade-off
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Selected Energy
energy storage
References | Year | Problem sources system Single/multi-microgrid | Suggested approach Limitations/challenges
R . . . High uncertainty in renewable energy outputs
a1 2022 Mu.ltl_ObJ ective WT, PV, Battery Single MG Bmar)_l Orientation Search and computational burden from stochastic
optimal scheduling | MT, FC Algorithm (BOSA), PSO . .
modeling. Power loss not considered
2 Multi-objective . Chance-constrained Scenario reduction required for computational
2020 optimal scheduling WT, PV Battery Multi MG programming feasibility. Power loss not included
- Reinforcement learning models add
s 2017 gf,lélr“-og:;:v:mem ﬁ,}:’ 15)(\;/) Battery Single MG EDNSGA-II computational complexity. Power loss
8Y 8 > excluded
Operation control Preference-based multi- Limited generalizability as the proposed
u“ 2022 | of a multi-microgrid | WT, PV Battery Multi MG objective reinforcement MORL method is tested only in specific
system learning (PMORL) scenarios. Power loss not addressed
Multi-objective Optimization of AC/DC microgrid power
= 2018 enl;rl mJanaVement WT, PV, EC | Battery Single MG MOPSO management, but cost and power loss not
8y 8 considered
. . Triplet-Critics Challenges in handling uncertainties in
4 2024 gllijctignilig;sgsge}; of WT. PV . Sinale MG Comprehensive Experience | renewable generation, multi-objective
uncer?a inties ’ s Replay Soft Actor-Critic optimization, and reinforcement learning-
(TCSAC) based dispatch
WT. PV, Automated Reinforcement | Excludes real power loss consideration in
7 2022 | Optimal scheduling MT Battery Single MG Learning-based Multi- uncertainty modeling for load forecasting and
period Forecasting energy generation
m Multi-objective . . Neglects operating costs and power loss,
2020 optimal scheduling WTLPV Battery Single MG Goal Programming impacting real-world feasibility
. . . . Strategic load and generation management
49
2016 | Optimal Scheduling | WT, PV Battery Single MG Not Specified focus but lacks cost and power loss analysis
. . Fair cost allocation mechanisms need
0 2021 | Optimal scheduling ;\//IV%’ ll:é/’ Battery Multi MG g};grliﬁ);?grl:pg};mm improvement despite achieving cost reduction.
’ P prog & | Power loss not considered
. . Scalability concerns as the method is tested
st 2023 | Optimal scheduling ‘I\//\I]%, lfg, Battery Single MG (Sél;/[nzf/[ ould Algorithm on a single microgrid setup with limited DG
’ configurations
. . Improved Multi-Objective .
Optimal operational . . . Assumes a power factor of one, neglecting
52 2021 | energy management IY/IV:FL IE’(\ZI) Battery Single MG gﬁggg;a(l)&t’?lnﬁt;;?:;y reactive power and potential real-world
and planning ? Algorithm P impact. Power loss excluded
Accuracy concerns due to unaccounted power
3 2022 | Energy management | WT, PV Battery Multi MG GAMS and CPLEX Solver losses; lacks cost-sharing strategies for multi-
microgrid operation
WT,
Multi-obiective PV, Gas Geographical and network limitations restrict
o4 2024 | imal chhe dulin Turbine, Battery Single MG Improved PSO scalability; substantial grid support required.
P & | Diesel Power loss not included
Generator
Optimization of . Short-term energy storage focus, with
s 2024 | multi-energy cloud | PV,WT, EC, glyir()gen Multi MG I(:/ILtlil;:iiitinotnd;eg;ll:ly er minimal exploration of long-term storage
energy storage 8y P solutions. Power loss not addressed
WT, PV, Hydrogen . Uncertainty modeling challenges persist
56 2023 ?C:};;};ﬁzd CHP and and Multi MG S/HI;Eaacr}lld e-constraint despite stochastic approaches. Power loss not
8 GB Battery PP an objective
Shared S o
Operation hybrid Multl-obJAectlve optimization High computational complexity from
optimization and energy model using Confidence multi-objective optimization and confidence
57 . o -
2024 | ost allocation for WTand PV storage Multi MG %gg;;l:;0;4;hi%r£ d interval-based uncertainty modeling. Power
microgrid system Shaple methi) dp v loss excluded
(SHESS) ey
Optimization WPV, Hybrid
58 2024 | scheduling for MT, Diesel | Energy Multi MG SOCP and MILP Requires integration of multiple advanced
multi-microerids Generator, | Storage mathematical techniques for optimization
s FC System
Electric
energy
. ?Eoggz)gzn d BﬁereIC\/tIII(\)/Ir; ﬁﬂt&%ieinl\geéhod Computationally intensive distributed
5 2024 | Optimal scheduling | WT, PV, GT thermal Multi MG Constraints Generl;tion optimization and income allocation method.
energy (C&CG) Power loss not included
storage
(TES)
Stochastic multi- Self- Adaptive Multi- Pareto frontier analysis demands hich
60 2024 | objective sizing WT, PV Battery Single MG Objective Genetic . st 180
optimization Algorithm (SAMOGA) computational power. Power loss not included
Continued
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Selected Energy
energy storage
References | Year | Problem sources system Single/multi-microgrid | Suggested approach Limitations/challenges
Real-time
collaborative A . . .
61 2024 | optimal energy W:FF, PV, Battery Multi MG Improveld cl}(iftah optimizer Lagks F;al power losshc%nsl{deratlon despite
scheduling and M (ICO) algorithm optimizing energy scheduling
dispatching
Distributed Not gvi?;?z:trigg?:rg:ltigin Real-time complexity concerns due to
62 2024 | Economic dispatch explicitly | Multi MG pLim: s computational overhead. Power loss not
generators . a distributed consensus
specified algorithm addressed
Electrical
and Chaotic Gaussian Quantum | Requires significant computational resources
63 2024 | Optimal scheduling | WT, PV, GT | Thermal | Multi MG Crayfish Optimization for CGQCOA implementation and real-time
Energy Algorithm data handling. Power loss not included
Storage
. Constraint Multi-Objective
6 Economic WT, PV, . Evolutionary Algorithm Economic efficiency-focused optimization.
2024 | optimization Diesel Battery Multi MG os
heduli Enei based on Decomposition Power loss excluded
scheduling ngine (CMOEAD), NSGA-I
Electrical
i Robust collaborative and Column and Constraint Effectiveness of the CRRD model in
65 2024 ust ¢ Ve I wT, PV Thermal | Multi MG Generation (C&CG) heterogeneous microgrid ownership
scheduling E . .
nergy method structures remains unexamined
Storage
Operation
66 scheduling of . Improved Beluga Whale Scalability concerns as IBWO’s computational
2024 distribution WLPV Battery Multi MG Optimization (IBWO) efficiency remains untested on larger networks
network
Optimization of
67 energy management | WT, PV, . Slime Mould Algorithm Power loss not included in the microgrid
2024 (EM) in a microgrid | MT, FC Battery Single MG (SMA) optimization model
(MG)
Optimization .
of microgrid WT, PV, gr(?é(;veqt}?f:ts'i ?—Ilgoz fchr;e Uncertainty in renewable generation and
68 2024 | scheduling for cost GT, Diesel Battery Single MG W 1n Hypercu sustainability concerns. Power loss not
and environmental | Engine Sampling and K-means considered
efficiency s clustering

Table 1. Literature review on multi-objective optimal scheduling of multi-microgrids.

between global and local search, resulting in higher-quality solutions in both single-objective and multi-objective
optimization problems. The effectiveness of this approach is demonstrated through comparative analysis, where
ILOA consistently outperforms traditional optimization techniques in multi-microgrid scheduling tasks.

The key contributions of this paper are as follows:

o Integrated Levy Flight into the Lyrebird Optimization Algorithm (LOA), significantly improving local search
efficiency and accelerating convergence to optimal solutions in multi-microgrid systems.

« Introduced a chaotic sine map to enhance global exploration, ensuring better diversity in the search space and
reducing the likelihood of premature convergence.

 Proposed and applied the Improved Lyrebird Optimization Algorithm (ILOA) to a multi-microgrid test sys-
tem, addressing both single-objective (generation cost minimization) and multi-objective (generation cost
and power loss reduction) optimization problems, with a focus on real-world microgrid applications.

+ Conducted a thorough comparison of ILOA with traditional algorithms like LOA, Genetic Algorithm (GA),
and Jaya Algorithm (JAYA), demonstrating its superior performance in convergence speed, solution quality,
and computational efficiency in large-scale systems.

« Validated the robustness of ILOA through extensive simulations, showing its ability to effectively balance
multiple conflicting objectives, handle renewable energy uncertainties, and maintain system stability in dy-
namic microgrid environments.

« Highlighted ILOA’ potential for real-world applications in smart grid systems, particularly in dynamic eco-
nomic dispatch and demand response integration, positioning the algorithm as a practical solution for future
energy management challenges.

The manuscript is organized as follows:"Introduction"section introduces the problem of optimizing distributed
generation in multi-microgrid systems, providing the motivation and background for the study."Sectionalization
of microgrid distribution system'section presents the sectionalization of microgrid distribution systems,
explaining how the system operates under normal and fault conditions, and the process of creating self-sufficient
microgrids."Mathematical formulation of multi-objective optimal scheduling of distributed generators"section
outlines the mathematical formulation of the multi-objective optimal scheduling problem, presenting the
objective functions for cost minimization and power loss reduction, as well as the constraints involved." Improved
lyrebird optimization algorithm"section details the proposed Improved Lyrebird Optimization Algorithm
(ILOA), explaining its structure, including the integration of Levy Flight for local search enhancement and
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chaotic sine map for better global exploration."Simulation results and discussion"section presents the simulation
results and discussions, comparing the performance of ILOA with traditional algorithms such as LOA, GA, and
JAYA, and highlighting its superior performance in both convergence speed and solution quality."Conclusion
and directions for future research" section concludes the paper, summarizing the key findings, and suggestsfuture
directions for research and the real-world application of ILOA in smart grid systems.

Sectionalization of microgrid distribution system

The sectionalization process of a multi-microgrid system ensures a continuous power supply under both normal
and faulty conditions through a self-healing mechanism that autonomously isolates faults while maintaining
stable operation in unaffected areas. The primary goal of this approach is to maximize power delivery to
consumers by dynamically reconfiguring the network in response to system conditions. During normal
operation, control variables such as micro-source allocations across the distribution network are optimized to
achieve specific objectives, including minimization of operating costs, reduction of system losses, and voltage
deviation control. These objectives can be addressed individually or in combination to enhance overall system
performance. The system maintains a radial topology, ensuring stability and effective protection coordination.

When a fault occurs in any microgrid section, the Microgrid Central Controller (MGCC) detects and isolates
the affected region using real-time monitoring data. The faulted section is then disconnected from the rest of
the system by opening the tie-line static switches, ensuring that power flow is maintained in the non-affected
microgrids. If a fault occurs in a single microgrid (e.g., MG-1), it is isolated from MG-2 and MG-3, allowing
the unaffected microgrids to continue operating independently. In the case of a multi-area fault, all impacted
areas are disconnected, ensuring that only the healthy microgrids remain operational. Upon sectionalization,
each microgrid operates independently in islanded mode, supplying its local loads using available distributed
generation (DG) resources. The MGCC plays a crucial role in ensuring that each microgrid maintains self-
sufficiency in supply and demand while optimizing energy distribution.

Following sectionalization, the distributed generation units are dynamically rescheduled to optimize
power supply within the operational microgrids. The optimization process continues to consider the original
objective functions, ensuring reliable and cost-effective energy distribution, efficient power balancing, and
system resilience under fault conditions. Once the fault is cleared, the system gradually transitions back to its
normal state by reclosing the tie-line switches, with the MGCC ensuring the smooth reintegration of previously
disconnected microgrids, preventing power surges or instability. This sectionalization strategy enhances grid
resilience by minimizing service disruptions, reducing downtime, and ensuring a reliable power supply to the
maximum number of consumers. This approach follows established methodologies from prior studies (such as
[Ref.52]) while incorporating modifications tailored to our test system.

Mathematical formulation of multi-objective optimal scheduling of distributed
generators

The problem formulation of multi-objective optimal scheduling of Distributed Generators (DGs) in a Distribution
System entails a nuanced approach aimed at balancing various competing objectives. At its core, this challenge
revolves around achieving efficient energy generation and distribution while minimizing operational costs and
real power loss. At its core, this challenge revolves around achieving efficient energy generation and distribution
while minimizing operational costs and active power loss®. In this complex scenario, the distribution system
is divided into multi-microgrids, each representing a distinct section with its own set of DGs and loads. The
primary objectives to be optimized are the operational costs associated with running the DGs and the reduction
of real power loss within each microgrid. To address these objectives, a multi-objective optimization framework
is employed. This involves formulating mathematical models that simultaneously optimize the operation of DGs
to minimize costs and mitigate real power losses. The formulation process typically involves defining objective
functions that quantify the operational costs and real power loss within each microgrid. Constraints are then
imposed to ensure the feasibility of solutions, considering factors such as power balance, voltage limits, and DG
capacity constraints.

Mitigation of operation cost

The operation costs objective function aims to minimize the expenses associated with running the DGs within
the distribution system. This encompasses various factors for instance generation costs, maintenance costs, and
operational overheads incurred in managing the generation units. By optimizing the scheduling of DGs, the
research seeks to devise strategies that effectively reduce these operation costs, thereby enhancing the economic
efficiency of the system. Here, the generation costs for all units are modelled as second-order quadratic equations,
where the cost is a function of the active power generated by each unit. The objective function for minimizing
these costs is formulated as the summation of the quadratic cost models for each generating unit, articulated as*!:

k
F(Py) = (x5 +y;Pss +2Py;) 1)

Jj=1

Here zj, y;, and z; represent the operational cost coefficients of the jth generating unit. The variable k& denotes
the total number of committed online generators.
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Mitigation of real power loss
Minimizing real power loss, the energy dissipated during electricity flow, is vital for enhancing system efficiency
and reliability. The objective function for real power loss focuses on reducing losses through strategic DG

scheduling, voltage profile optimization, and network congestion mitigation*!-"°.
NL
F(Pioss) = > _ gn [V + Vi = 2V; Vi cos (65 — 6%)] )
n=1

Here, g, represents the conductance of the nth transmission line connecting bus j to bus k. Additionally, N L
signifies the total number of transmission lines.

Constraints ensuring power balance

Power balance constraints enforce the fundamental principle that total power generation must equal total power
consumption within each microgrid. These constraints ensure that the energy produced by DGs matches the
energy demand from consumers, maintaining system stability and reliability. Neglecting to meet power balance
constraints can result in voltage fluctuations, deviations in frequency, and general instability across the grid.
Given that the network operates as a radial system, featuring numerous buses and loads within every feeder, it is
essential to account for losses in transmission within the system®!.

m Ng m m

g g PGi,j = Pi,dcmand + g P’L,loss (3)
i=1 j=1 i=1 i=1

m Ng m m

g g QGi,j = Qi,demand + g Qi,loss (4)
i=1 j=1 =1 =1

Here Pg;,; and Qgi,; represent the active and reactive power generated by the jth generating unit at bus ¢
respectively. The variables P; demand and Qs demana represent the active and reactive power demands at bus
i respectively. Similarly P; ;055 and Q4,105 denote the active and reactive power losses in the system at bus 3.
The term N refers to the total number of generating units, while m represents the total number of buses in the
system. These equations ensure that the total generated power meets the system’s load demand while accounting
for power losses.

Constraints on generation capacity
Generation capacity constraints limit the maximum amount of power that each DG unit can produce within a
given time period. These constraints are essential for preventing overloading of generation units and ensuring
that their operation remains within safe operating limits. By adhering to generation capacity constraints, the
optimization algorithm can prevent the generation units from operating beyond their rated capacities, thereby
safeguarding equipment integrity and reliability. The constraints to ensure power balance are indeed necessary,
as they ensure that the total generation from distributed generation (DG) units and other sources matches the
total load demand and losses in the network. This is critical for maintaining stable operation and avoiding issues
like overloading, under-voltage, or unbalanced power flows. Without these constraints, the optimization results
may be infeasible or lead to unstable network operation.

The active power generation output of every generating unit should be controlled within specified minimum
and maximum boundaries*!.

Pgimin S Pgi S Pgimaz (5)

Py; signifies the active power output of ith generating unit while the maximum and minimum active power
output are characterized as Pyimax, Pgimin for the ith generating unit”!.

Qgimin S Qgi S Qgimaz (6)

Here Pyimin and Pyimaz represent the minimum and maximum active power operational bounds of unit 75/
within MG /7, respectively. Similarly Qgimin and Qgimao denote the minimum and maximum reactive power
operational bounds of unit 75/ within MG /i/.

Constraints on bus voltages

Bus voltage constraints dictate the permissible voltage levels at various nodes or buses within the distribution
network. Maintaining voltage within acceptable limits is crucial for ensuring the proper functioning of electrical
equipment and appliances connected to the grid. Violation of bus voltage constraints can result in equipment
damage, inefficient operation, and voltage instability. By enforcing bus voltage constraints, the optimization
algorithm ensures that the voltage profile across the distribution system remains within specified limits, thus

safeguarding the reliability and quality of power supply to consumers’2.

timin S ‘/gi S Vgimaw (7)
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The above constraint ensures that the voltage magnitude V; at the generating unit remains within the specified
lower Vgimin and upper Vyimaz limits. This maintains system stability and prevents voltage fluctuations that
could impact the reliability and efficiency of power distribution.

Energy index of reliability (EIR)

The Energy Index of Reliability (EIR), represented by (&), is used as a constraint to assess the reliability of the
power supply, indicating the number of customers impacted by supply disruptions. This index measures the
dependability of load power delivery within the system by the collective operation of generators. A higher
EIR value implies a lower likelihood of customers experiencing interruptions. The EIR is influenced by the
Forced Outage Rate (FOR) of the jth generator (A) and its output power (P;). The Forced Outage Rate reflects
the probability of a generator failing to meet the required load demand. The mathematical formulation for
calculating EIR is provided in Eq. (3.8) as referenced in'*73.

Z;V:Gl A;P;
Zj‘vfl )

Here A; and P; represents the forced outage rate and generated output power of jth generating unit
correspondingly.

EIR(§) =1~ (8)

Formulation of multi-objective optimal scheduling problem
The devising of the multi-objective optimal scheduling problem is presented as follows:

In this context, F' (Py) represents the objective function aimed at minimizing generation costs, while
F(P loss) targets the reduction of active power loss, as described in Eq. (2). Various methods exist for tackling
multi-objective optimization problems, including the weighted sum methodology”, evolutionary algorithms”,
and the e-constraint method’®. This paper employs the weighted sum approach to address the multi-objective
optimal scheduling problem. In this approach, different weights are assigned to the conflicting objectives to
generate multiple sets of Pareto optimal solutions. The optimal compromise solution is then selected from
these sets based on the weights. By introducing a price penalty factor through h, the multi-objective problem is
transformed into a single-objective optimization problem, as depicted in Eq. (8). The process for calculating the
value of h is detailed in””.

In this methodology, the weighting factor w1 and w2 indicates the relative importance of each objective
function. When w; is set to 1 and ws is set to 0, the focus is on minimizing generation costs. When w is set to
0 and w2 is set to 1 the emphasis shifts to minimizing active power loss. For multi-objective optimal scheduling,
w1 and wy are gradually varied from 1 to 0, generating a compromise solution at every step.

The multi-objective function minimization using the weighted sum method is defined as follows”3:

F(T)=w1 % F(Py)+ h*ws* F (Ploss) (9)

where w1 +ws =1
A value for w; and ws at 0.5 signifies an equal balance between the generation cost and active power loss
functions.

Determination of the optimal compromise solution with fuzzy logic

Prior to making a decision, it is essential to determine the most balanced solution from the set of optimal
alternatives. The best compromise solution (BCS) is identified using the fuzzy membership methodology
where a decrease in w; leads to an increase in generation costs and lessening in active power loss. The fuzzy
membership approach is employed to identify this ideal compromise’®. In the jth fitness function, the value f;
for individual k is represented by a membership function 4% which incorporates the inherent uncertainty in the
decision maker’s judgment, as detailed below’®:

1fj S szn
" gmae_yp "
By = W;ﬂm<fj< e (10)
. S Of5 > frer

represents the highest value of the jth fitness function, while £ denotes its lowest value among

’ is then computed for every non-

max

Here

> g
the non-dominated solutions. The standardized membership function p
dominated solution k as follows”:

N
. Sy

= —r ~—~N 1
> ket Zj:l 1y

In this context,  symbolizes the overall number of non-dominated solutions. The optimum compromise
solution is determined by selecting the one with the maximum value of y*.

To determine the best compromise solution (BCS) from the complete set of Pareto optimal solutions, the
min-max criterion”® is applied as follows:

i (11
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max (min; (fr)) (12)

This implies that the solution with the highest value of min; ( f,) is considered the best compromise solution. In
this study, for objective functions (1) and (2), the normalized fitness values are represented as follows®:

Pg _ P;VL(LIII
Pg = .fl = Pgnln _ Pg}m'az (13)
Pioss — lmal
Ploss,pu - f2 =095 (14)
Pred — P

Improved lyrebird optimization algorithm

The Lyrebird Optimization Algorithm (LOA) is a population-based metaheuristic technique inspired by the
adaptive behaviors of lyrebirds in nature®’. When faced with threats, lyrebirds either flee rapidly or remain
motionless in a concealed location, demonstrating an effective exploration-exploitation balance. In LOA, each
individual represents a lyrebird, forming a population that iteratively searches for optimal solutions.

To enhance LOAs performance, the Improved Lyrebird Optimization Algorithm (ILOA) integrates Levy
Flight and a chaotic sine map. Levy Flight enhances exploitation, enabling a more efficient local search and
faster convergence, while the chaotic sine map improves exploration, increasing search diversity and reducing
premature convergence. Each lyrebird, acting as an agent, determines decision parameters based on its location
in the search space. The population is represented as a matrix, where each vector corresponds to a decision
variable, with initial positions set randomly as defined by Eq. (16).

X1 1,1 Z1,j Z1,m
X = X; = Ti1 Ti,j Li,m (15)
Xn Nxm IN1 IN,j IN,m Nxm
Tiq = lbg + 1 - (ubd — lbd) (16)

In this context, X represents the ILOA population matrix, where X denotes the ¢h ILOA member (candidate
solution). Each X represents the dth dimension of the search space where IV is the number of lyrebirds, m is
the total number of decision variables, 7 is a random number within the interval [0,1] and lbq and ubgq denote
the lower and upper bounds of the dth decision parameter correspondingly.

Every ILOA member serves as a candidate solution to the problem, and for every member, the objective
function of the problem can be computed. Consequently, for every population member, a corresponding value
for the objective function is obtained. These objective function values, equal in number to the size of population,
can be organized into a vector representation, as per Eq. (17), indicating the set of evaluated objective function
values for the problem?®!.

Fi F(X4)
F= F; = F(X;) (17)
Fy Nx1 F(XN) Nx1

In this context, F' represents the vector of fitness function evaluations, with F; denoting the evaluation of the
objective function using the i¢h ILOA member. These evaluations serve as a measure of the quality of candidate
solutions. The optimal solution corresponds to the best evaluated objective function value (associated with the
best ILOA member), while the poorest solution corresponds to the worst evaluated objective function value
(linked to the worst ILOA member). Additionally, since the lyrebirds’positions in the problem-solving space
is adjusted in each iteration and the finest candidate solution must be revised depending on a comparison of
objective function values.

Mathematical modeling approach for ILOA

In the proposed ILOA methodology, the adjustment of population member positions occurs iteratively, guided
by the mathematical emulation of lyrebird behavior in response to perceived threats. This modeling incorporates
two distinct phases: (i) escape and (ii) concealment, mirroring the decision-making process observed in lyrebirds
facing danger.

Within the ILOA framework, the decision-making process of lyrebirds, whether to employ escape or
concealment strategies when confronted with danger, is replicated using Eq. (18). Equation (18) in the ILOA
framework represents the decision-making mechanism inspired by the behavior of lyrebirds when responding
to danger. Specifically:

The decision to either escape or conceal is determined by a randomly generated number 7, within the range
[0, 1]. Consequently, the position update of each ILOA member is determined solely by either the escape or
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concealment phase. If r, < 0.5, the position update is governed by Stage-I, corresponding to the“escape’strategy.
Otherwise, the position update follows Stage-II, corresponding to the“concealment’strategy. This mechanism
mimics how lyrebirds dynamically choose their response based on situational cues. Within the optimization
process, these two stages represent different position update strategies tailored to exploration (escape) and
exploitation (concealment), ensuring a balanced search process for optimal solutions.

X, = { Based on Stage — 1, rp < 0.5

Basedon Stage — 11, else, (18)

Exploration stage
During this stage of ILOA, the adjustment of population member positions within the search space is depending
on simulating the lyrebird’s evasive maneuvers from a perilous location to safer zones. The transition of the
lyrebird to these secure regions results in substantial alterations to its position, facilitating the exploration of
diverse regions within the problem-solving space. This underscores ILOA' capacity for global exploration.

In the design of ILOA, each member identifies safer areas by considering the loci of other population
associates with superior fitness function values. Consequently, Eq. (19) can be utilized to determine the set of
safe zones for each ILOA member®.

SA; ={Xy:Fp < Fyand k # i,where i = {1,2,...,N} and k € {1,2,..., N} (19)

In this context, S A; denotes the set of secure zones for the ith lyrebird, while X, represents the kth row of the X
matrix, where X has a better fitness function value (i.e., i) compared to the ith ILOA associate (i.e., Fi < F;).

Within the ILOA framework, it is presumed that the lyrebird arbitrarily selects one of these safe zones for
evasion. Following the modeling of lyrebird transposition in this stage, an updated location is computed for each
ILOA member by applying Eq. (20). Subsequently, if this new location leads to an enhancement in the fitness
function value, it supplants the earlier location of the equivalent associate as per Eq. (15).

1’531 =i +7ij- (SSAZ,J — L;y]'..’ri,j) (20)
_ [ xRNSR,
Xi= { X, else, (1)

In this context, SSA; represents the chosen secure zone for the ith lyrebird, where SSA;, denotes its jth
dimension. X! represents the newly calculated position for the ith lyrebird depending on the escape strategy
of the suggested ILOA, with X! representing its jth dimension. FiP1 corresponds to its objective function
value and I; ; are randomly selected as either 1 or 281,

The indiscriminate number in Eq. (20) can be computed utilizing a sine map, with the preliminary values
of C; and a set to 0.36 and 2.8, respectively®>®>. The sine map introduces a chaotic behavior in the sequence
generation, enhancing the algorithm’s exploration capability and preventing premature convergence. By iterating
through Eq. (22), the sequence of C'; maintains a non-linear and dynamic progression, improving the diversity
of solutions in the optimization process.

Cip1 = %sin (7Ct),0<a <4 (22)

where ¢ is the existing iteration number.

Exploitation stage

In the course of this phase of ILOA, the population member’s position within the exploration space is adjusted
according to the lyrebird’s hiding strategy, aiming to seek refuge in nearby secure areas. This strategy involves
meticulously surveying the surrounding environment and taking incremental steps to find an optimal hiding
spot, resulting in minor adjustments to the lyrebird’s position. This characteristic highlights ILOA’s proficiency
in local exploitation.

In the design of ILOA, the movement of each member towards a nearby suitable hiding area is modeled, and
an updated position is computed for every associate using Eq. (23). If this new position enhances the fitness
function value, it swaps the preceding location of the respective associate as per Eq. (26).

In this phase, the Levy flight methodology is used to modify the position of the overall finest component3*85.

Known for its exploratory capabilities, the Levy flight technique is also connected with restricted search®%’.
ol =xi;+ (1 -2 Levy (\)) - @ (23)
50
Levy (\) = 0.01——+ (24)
6|7

where o is determined as:

o fraeman(s3)/ (r ()]
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where I' (x) = (x — 1)!,, r5 represents the 76 random numbers in the range [0,1], and 1 < 8 < 2,. In this
research, a persistent value of (B =1.5) is applied. Levy(A) relates to the step length realized by the Levy
distribution, which has infinite mean and variance for 1< A < 3. A is the distribution factor, and I'(.) signifies the
gamma distribution function.

J— X7ZP27 FiPZSF’h
Xi= { Xi, else (26)

In this context, X2 represents the newly calculated position for the ith lyrebird depending on the hiding
approach of the suggested ILOA, where X2 denotes its jth dimension. F{"? corresponds to its objective
function value. Additionally, ¢ denotes the iteration counter.

Iterative process for implementing the ILOA algorithm
After revising the positions of all yrebirds, the principal iteration of ILOA concludes. Subsequently, the algorithm
progresses to the next iteration, where the ILOA population update process, guided by Eqs. (11)-(19), persists
until the final iteration. The finest candidate solution is revised and stored during each iteration. Upon the full
execution of ILOA, the finest candidate solution accumulated throughout the algorithms iterations is outputted
as the problem solution.

The procedural workflow for implementing the ILOA algorithm is outlined below:

i. Input problem information: Gather details such as the fitness function, constraints, and decision parame-
ters.
ii. Set population and iteration parameters: Determine the number of population associates (lyrebirds) and
the total iterations necessary for solving the problem.
iii. Initial population generation: Randomly generate the initial population of lyrebirds and evaluate each
lyrebird using the objective function.
iv. Start iterative process: Begin with the first iteration.
v. Update lyrebird positions: Update the locus of the main lyrebird in the problem-solving space. This update
considers two strategies, chosen randomly with equal probability depending on Eq. (4):
vi. If the escape approach is chosen, update the position using Egs. (5)-(7).
vii. If the hide strategy is chosen, update the position using Eqgs. (8) and (9).
viii. Update positions for all lyrebirds: Repeat the position update process for all lyrebirds in the population,
similar to the first lyrebird.
ix. Complete iteration: Once all lyrebirds’positions are updated, complete the current iteration. Save the best
candidate solution based on the objective function evaluations during this iteration.
x. Proceed to the next iteration: Repeat the lyrebird position update process iteratively until the final iteration
is reached.
xi. Finalize algorithm execution: After completing all iterations, identify and output the finest solution at-
tained through the algorithm’s execution as the elucidation to the specified problem.

This concludes the implementation of the ILOA algorithm, providing the optimal solution based on the specified
problem parameters and constraints.

Figure 1 illustrates a systematic flowchart representing the optimization process for power system operation,
focusing on balancing generation costs, minimizing losses, and ensuring voltage stability. It integrates load flow
analysis, candidate evaluation, and iterative updates to refine solutions based on fitness metrics. The flowchart
effectively visualizes the decision-making process, highlighting convergence checks and scenario-specific
objective weighting to achieve an optimal configuration. This structured approach ensures efficient handling of
computational tasks and adaptable implementation across various case studies.

Evaluation of the proposed ILOA algorithm

To assess the effectiveness of the proposed ILOA algorithm, it is implemented in MATLAB R2023 A and tested
on five standard benchmark functions. Its performance is compared against LOA, SCA, FSAPSO, KH, GA, DE,
PSO, CLPSO, ICLPSO, FBCLPSO and FBICLPSO algorithms. The results demonstrate that ILOA outperforms
all competing methods in terms of the best solution, mean solution, and standard deviation across all benchmark
functions, as presented in Table 2.

Simulation results and discussion

The test system utilized in this research is the standard IEEE 33-bus distribution network, with input data
obtained from Ref*!. It is separated into three independent microgrids, while preserving the radial configuration
of the system. During the creation of these microgrids, specific modifications were made to the existing 33-bus
system, as detailed below. The allocation of active and reactive power loads for each area is also based on the
data from Ref*!.

Altered 33-bus distribution test system and microgrid realization
The 33-bus distribution system is partitioned into three microgrids, designated as MG-1, MG-2, and MG-3%.
The specifics of line status, including reactance and resistance, are obtained from Ref?!, for both scenarios:
mitigation of generation cost and mitigation of active power loss.

To examine the suggested ILOA algorithm, the subsequent conventions are made:
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Fig. 1. Flowchart illustrating the optimal scheduling of microgrids using the Improved lyrebird optimization
algorithm across diverse scenarios and case studies.
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Area wise real power (P) | Area wise reactive power (Q)

Microgrids % %

MGl 12.38 9.57

MG2 37.82 29.57

MG3 49.8 60.87

MGI1 & MG2 50.2 39.13

MG2 & MG3 87.62 90.43

MGI1 & MG3 62.18 70.43

MGI1, MG2 & MG3 | 100 100

Table 3. Area-wise distribution of real and reactive power load percentages®!.

Active microgrids Lineno | Frombus | Tobus | RinP.U | XinP.U
2 2 3 Line open | Line open
MG-1
34 2 23 Line open | Line open
2 2 3 Line open | Line open
MG-2 22 3 23 Line open | Line open
25 6 26 Line open | Line open
33 25 29 0.001264 | 0.000644
22 3 23 Line open | Line open
MG-3
25 6 26 Line open | Line open
34 2 23 Line open | Line open
22 3 23 Line open | Line open
MG-1 & MG-2 25 6 26 Line open | Line open
34 2 23 Line open | Line open
2 2 3 Line open | Line open
MG-2 & MG-3
34 2 23 Line open | Line open
33 25 29 0.001264 | 0.000644
34 2 23 0.002809 | 0.00192
MG-1 & MG-3 2 2 3 Line open | Line open
22 3 23 Line open | Line open
25 6 26 Line open | Line open
33 25 29 Line open | Line open
MG-1, MG-2 & MG-3
34 2 23 Line open | Line open

Table 4. Line parameters of closed/opened lines for 33-bus system for various cases*!.

o The distributed generators (DGs) used in this study are dispatchable, and their locations remain fixed.
« Isolation and tie-line connections can be established using a static switch.

The population size is fixed as 80, and the maximum no. of iterations is 200. Depending on these optimization
attributes, two case studies are implemented to achieve optimal operation of the microgrid, namely cost
minimization and real power loss minimization. The subsequent case studies are also examined:

Multiple areas fault:

Case-1: MG-1 is currently operational.

Case-2: MG-2 is currently operational.

Case-3: MG-3 is currently operational.

Single area fault:

Case-4: MG-1 & MG-2 are currently operational.

Case-5: MG-2 & MG-3 are currently operational.

Case-6: MG-1 & MG-3 are currently operational.

Not any fault:

Case-7: MG-1, MG-2 & MG-3 are currently operational.

Table 3 provides the percentage contributions of real power (P) and reactive power (Q) loads from different
microgrids (MG1, MG2, MG3) and their combinations. MG1 has the smallest contribution, while MG3
contributes the largest share. The table also shows combined contributions from multiple microgrids, such as
MGI1 & MG2, MG2 & MG3, and MG1 & MG3. When all three microgrids operate together, they account for
100% of both real and reactive power. This information is essential for understanding how loads are distributed
across the system. Table 4 outlines the line parameters (resistance R and reactance X in per-unit) for specific bus
connections under various microgrid configurations. It also indicates whether certain lines are opened or closed
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S.No | Bus system Microgrid-1 | Microgrid-2 | Microgrid-3
1 33- Bus System | 1,2,20 3,7,18 23, 26,30

Table 5. Placement of distributed generators (DGs) in a 33-bus system*!.

Pgmin | Pgmax

Busno | Generator | ($/kW?) | y($/kW) | 2(8) | (kW) | (kW)
1 Gl 0.0696 26.244 31.67 |0 600

2 G2 0.0288 37.697 1795 | 0 200

20 G3 0.0468 40.122 22.02 |0 100

3 G4 0.0468 40.122 22.02 |0 2000

7 G5 0.0268 30.122 22,02 |0 800

18 G6 0.0288 37.697 2195 |0 600

23 G7 0.0681 12.441 32.01 |0 500

30 G8 0.0288 37.697 2195 |0 5000
26 G9 0.0288 30.697 2195 |0 800

Table 6. Cost coefficients for generators in the 33-bus system*!.

Line Impedances Loads connected to Line impedances Loads connected to
in p.u buses in p.u buses

Line no | Frombus | Tobus | R(p.u) | X (p.u) | P(kW) | Q(kVAR) |Lineno | Frombus | Tobus | R(p.u) | X (p.u) | P(kW) | Q(kVAR)

1 1 2 0.000574 | 0.000293 | 100 60 17 17 18 0.004558 | 0.003574 | 90 40

2 2 3 0.00307 0.001564 | 90 40 18 2 19 0.001021 | 0.000974 | 90 40

3 3 4 0.002279 | 0.001161 | 120 80 19 19 20 0.009366 | 0.00844 90 40

4 4 5 0.002373 | 0.001209 | 60 30 20 20 21 0.00255 0.002979 | 90 40

5 5 6 0.0051 0.004402 | 60 20 21 21 22 0.004414 | 0.005836 | 90 40

6 6 7 0.001166 | 0.003853 | 200 100 22 3 23 0.002809 | 0.00192 90 50

7 7 8 0.00443 0.001464 | 200 100 23 23 24 0.005592 | 0.004415 | 420 200

8 8 9 0.006413 | 0.004608 | 60 20 24 24 25 0.005579 | 0.004366 | 420 200

9 9 10 0.006501 | 0.004608 | 60 20 25 6 26 0.001264 | 0.000644 | 60 25

10 10 11 0.001224 | 0.000405 | 45 30 26 26 27 0.00177 0.000901 | 60 25

11 11 12 0.002331 | 0.000771 | 60 35 27 27 28 0.006594 | 0.005814 | 60 20

12 12 13 0.009141 | 0.007192 | 60 35 28 28 29 0.005007 | 0.004362 | 120 70

13 13 14 0.003372 | 0.004439 | 120 80 29 29 30 0.00316 0.00161 200 600

14 14 15 0.00368 0.003275 | 60 10 30 30 31 0.006067 | 0.005996 | 150 70

15 15 16 0.004647 | 0.003394 | 60 20 31 31 32 0.001933 | 0.002253 | 210 100

16 16 17 0.008026 | 0.010716 | 60 20 32 32 33 0.002123 | 0.003301 | 60 40

Table 7. Data for the 33-bus system*!.

for different scenarios, such as MG1, MG2, MG3, and their combinations. For example, Line 22 (from bus 3 to
23) remains open in many configurations. This data is crucial for analyzing the flexibility and reliability of the
system under different microgrid operations. Table 5 presents the placement of distributed generators (DGs) in
the 33-bus system for each microgrid. Microgrid-1 has DGs on buses 1, 2, and 20; Microgrid-2 has DGs on buses
3,7, and 18; and Microgrid-3 has DGs on buses 23, 26, and 30. The strategic placement of DGs ensures optimal
power generation and efficient energy distribution across the system. Table 6 provides the cost coefficients and
operational constraints for each generator in the system. These coefficients are used to determine the generation
costs. Additionally, the table specifies the minimum and maximum generation limits for each generator. The
data for the 33-bus distribution system*! is provided in Table 7. Table 7 provides detailed information on line
impedances and connected loads for the 33-bus system. It includes the resistance (R) and reactance (X) of each
line in per-unit and the real (P) and reactive (Q) power loads connected to the buses. This data is fundamental
for power flow analysis and optimizing system performance.

Single and multi-objective optimization of generation cost and real power loss without EIR
Scenario-I (mitigation of generation cost)

In this scenario, the fitness function was focused exclusively on cost reduction. The operating cost coefticients
for each distributed generator (DG) in the 33-bus distribution system were obtained from Ref'!. For the
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Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Pa1 165.2085 | - - 267.3759 | - 325.7942 318.9853
Pgo 197.5207 | - - 193.0362 | - 198.8326 197.7649
Pgs 97.9826 | - - 98.87462 | - 99.9988 99.1754
Paa - 274.1286 | - 260.5027 | 339.7109 - 301.8093
Pgs - 660.9784 | - 619.5326 | 747.2081 - 715.0782
Pgs - 479.4947 | - 437.4269 | 539.0284 - 488.5013
Par - - 462.0945 | - 437.2187 441.8608 437.8096
Pgs - - 641.2894 | - 543.8913 580.4096 562.3857
Pgo - - 779.4851 | - 702.1872 698.0731 665.7028
Pross (kW) 0.7118 9.6017 33.0889 | 11.74892 | 54.2446 34.9691 722125
QLoss(kKVAr) | 0.661943 |7.682567 | 26.02592 | 8.3609 40.9826 25.8093 49.5107
Cost($/hr) 19,254.64 | 70,900.83 | 97,915.95 | 89,443.86 | 1,68,662.74 | 1,15,061.66 | 1,87,645.04

Table 8. optimum values for different case studies in mitigating generation cost for a 33-bus system using the
ILOA algorithm.

Optimization approach | Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 19,254.64 | 70,900.83 | 97,915.95 | 89,443.86 | 1,68,662.74 | 1,15,061.66 | 1,87,645.04
LOA 19,255.52 | 70,901.79 | 97,917.64 | 89,445.27 | 1,68,664.36 | 1,15,063.75 | 1,87,647.63
JAYA*! 19,256.43 | 70,902.88 | 97,919.59 | 89,446.93 | 1,68,665.57 | 1,15,067.73 | 1,87,652.72
GA*Y 19,256.44 | 70,902.99 | 97,919.86 | 89,480.97 |1,68,996.73 | 1,15,367.94 | 1,88,885.73

Table 9. Assessment of optimization results for the mitigation of generation cost for various case studies. Bold
represent the Significant Value.

minimization of generation cost, when the weighting factor w is fixed as 1, the minimum generation cost
attained is 19,254.64 $/hr, with a corresponding real power loss of 0.7118 kW for Case-1. Similarly, the optimal
generation cost and corresponding real power loss were determined for Case-2 through Case-7. Table 8 displays
the optimal power generated by various distributed generators (DGs) for minimizing generation cost using
the ILOA. Different generator units are activated based on system requirements, with some cases excluding
certain generators to optimize cost and minimize losses. Case_1 has the lowest power losses and the lowest
cost, indicating a minimal load scenario. Case_5 experiences the highest losses and the highest operational cost,
suggesting a high-demand scenario. Cases with higher power demand (e.g., Case_7) show increased generation
costs and losses, requiring multiple generators to meet load demand efficiently. Table 9 reveals that the ILOA
algorithm yields better generation cost results, with values of 19,254.64 $/hr, 70,900.83 $/hr, 97,915.95 $/hr,
89,443.86 $/hr, 168,662.74 $/hr, 115,061.66 $/hr and 187,645.94 $/hr for cases 1 through 7, respectively. In
comparison, the generation costs obtained using the LOA are 19,255.52 $/hr, 70,901.79 $/hr, 97,917.64 $/hr,
89,445.27 $/hr, 168,664.36 $/hr, 115,063.75 $/hr, and 187,647.63 $/hr for the same cases. In every case study,
ILOA achieves the lowest operating cost compared to LOA, JAYA, and GA, making it a cost-effective choice
for power system operators, particularly under high-load conditions. The results indicate that ILOA becomes
increasingly efficient in reducing operational costs as system size grows. Figure 2 illustrates the convergence
behavior of ILOA and LOA for Case-7, showing their progression toward the optimal solution. ILOA converges
significantly faster, reaching the optimal value within 26 iterations, whereas LOA requires more iterations and
exhibits fluctuations, reflecting instability in its optimization path. These oscillations indicate a less efficient
trajectory, making LOA slower and less reliable in achieving convergence. In contrast, ILOA maintains a smooth
and consistent search path, demonstrating superior exploration and exploitation capabilities that enable it to
locate the global optimum more effectively. Figure 3 further highlights ILOA’s advantages, confirming its faster,
steadier, and more reliable convergence, making it a more robust optimization approach than standard LOA.

Scenario-II (mitigation of active power loss)

In this state, the objective function considered is solely the mitigation of active power loss. It is presumed that
the accessible DGs are dispatchable with stable locations. To minimize active power loss, when the weighting
factor w is fixed as 0, the lowest active power loss achieved is 0.5846 kW, with a corresponding generation cost
of 19,256.84 $/hr for Case-1. Likewise, the optimal real power loss and corresponding generation cost were
calculated for Cases 2 through 7. The losses for different case studies, as designated above, are presented in
Table 10 for the ILOA algorithm applied to the 33-bus distribution system. Power generation is dynamically
adjusted based on system demand, ensuring optimal loss reduction. Case_1 shows the best performance with the
lowest active power loss of 0.5846 kW. This suggests that the ILOA algorithm is effective in reducing losses and
achieving cost-efficient operations. Case_2 and Case_3 demonstrate higher losses, at 8.5169 kW and 32.6285
kW, respectively, but still outperform the other algorithms in terms of minimizing power loss. Case_4, Case_5,
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Fig. 3. Convergence characteristics for the mitigation of active power loss for Case_7.

Case_6, and Case_7 all show varying degrees of active power loss with ILOA achieving relatively better results
compared to the other methods in most cases.

Table 10 provides the scheduled output power for each distributed generator (DG), along with the system’s
active and reactive power losses and the overall generation cost. From Table 11, it is observed that the ILOA
approach achieves minimum losses of 0.5846 kW, 8.5169 kW, 32.6285 kW, 10.25763 kW, 52.41465 kW, 32.6145
kW, and 70.4914 kW for cases I through VII, respectively. In contrast, the LOA results are 0.6219 kW, 9.0291
kW, 33.1028 kW, 11.3049 kW, 53.0127 kW, 33.1453 kW, and 70.9827 kW for the same cases. The convergence
characteristics depicted in Fig. 3 vividly illustrate the superior performance of the Improved Lion Optimization
Algorithm (ILOA) in reducing power losses when compared to the conventional Lion Optimization Algorithm
(LOA). Moreover Fig. 3 highlights that the ILOA achieves a more significant reduction in active power loss,
underscoring its enhanced optimization capabilities. Furthermore, the convergence curve of the proposed
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Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Pa1 160.5847 | - - 1252891 | - 337.9032 126.90305
Pgo 199.9999 | - - 199.9999 | - 175.6285 68.92034
Pgs 100 - - 98.6218 | - 99.9999 99.9999
Paa - 220.3068 | - 263.8029 | 641.30728 | - 849.0385
Pgs - 768.0925 | - 760.7936 | 750.18926 | - 666.8302
Pgs - 4251176 | - 426.7503 | 423.90278 | - 415.8048
Pgr - - 500 - 499.5999 499.7999 483.7102
Pgs - - 582.6285 | - 220.30954 | 797.2546 758.8904
Pgo - - 800 - 772.10589 | 433.0284 315.39401
Pross (kW) 0.5846 8.5169 32.6285 | 10.25763 | 52.41465 | 32.6145 70.4914
QLoss(kKVAr) | 057192 | 6.40821 |26.30278 |8.01748 | 38.8104 24.80247 48.40294
Cost($/hr) 19,256.84 | 71,408.32 | 98,124.46 | 91,346.73 | 1,77,742.74 | 1,16,779.38 | 2,08,978.29

Table 10. Optimum values for different case studies in mitigating active power loss for a 33-bus test system
using the ILOA algorithm. Bold represent the Significant Value.

Optimization approach | Case_1 | Case_2 | Case_3 Case_4 Case_5 Case_6 Case_7
ILOA 0.5846 8.5169 32.6285 10.25763 | 52.41465 | 32.6145 70.4914
LOA 0.6219 9.0291 33.1028 11.3049 53.0127 33.1453 70.9827
JAYA*! 0.690474 | 9.499427 | 33.673170 | 12.122236 | 53.424970 | 34.635059 | 71.707680
GA*Y 0.690496 | 9.520185 | 33.708979 | 12.150093 | 53.469600 | 34.644690 | 71.902238

Table 11. Comparison of optimization results for the mitigation of active power loss for various case studies.
Bold represent the Significant Value.

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Pg1 164.50147 | - - 220.48927 | - 326.18602 311.20763
Pgo 197.26218 | - - 199.90168 | - 199.90872 197.30743
Pgs 98.89672 | - - 99.98631 | - 99.98563 61.28723
Pga - 275.10182 | - 217.27153 | 414.50982 - 444.29776
Pgs - 688.05947 | - 704.28419 | 696.09275 - 623.10761
Pge - 451.18401 | - 433.33101 | 453.12971 - 482.19874
Pgr - - 498.89042 | - 499.79081 441.08667 480.29971
Pgs - - 585.00189 | - 543.09156 475.70973 486.46492
Pgo - - 798.98217 | - 701.18758 799.86421 699.90426
Pross (kW) 0.66037 9.3453 32.87448 | 10.26399 | 52.80223 32.74098 71.07529
QrLoss(kVAr) | 0.653805 | 7.39104 24.80261 8.93205 37.19802 22.86545 46.02468
Cost($/hr) 19,254.85 | 70,948.59 | 98,116.47 | 89,792.18 | 1,68,778.26 | 1,15,209.32 | 1,87,892.37

Table 12. Optimal results for different case studies in reducing generation cost and active power loss for a 33-
bus test system using the ILOA algorithm. Bold represent the Significant Value.

ILOA exhibits a smoother and more rapid descent toward the optimal solution in comparison to the LOA. This
indicates that the ILOA not only accelerates the convergence process but also ensures greater stability in the
optimization trajectory, thereby demonstrating its efficiency and robustness in minimizing active power losses.

Scenario-III (mitigation of generation cost and active power loss)
In this scenario, the optimization of generation cost and reduction of active power loss is considered as a multi-
objective problem. Table 12 presents the optimal power generated by various distributed generators (DGs)
to mitigate both generation cost and active power loss using the Improved Lyrebird Optimization Algorithm
(ILOA) for all the case studies considered. The optimal trade-off between the two objectives was achieved by
fine-tuning the weighting factor w from 1 to 0. This table also serves as a foundation for evaluating the finest
compromise solution, which aims to balance both minimizing generation costs and active power losses across
various operational scenarios.

Table 13 illustrates that the ILOA provides the most favourable compromise solution. This indicates that as
the system size grows, the ILOA proves to be more efficient in reducing operational costs.
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Optimization
approach ILOA LOA JAYA*! GA*
Active

Active power Active power Active power power
Parameters Generation cost | loss Generation cost | loss Generation cost | loss Generation cost | loss
Case-1 19,254.85 0.66037 19,255.76 0.66507 19,257.51 0.690492 19,257.50 0.690589
Case-2 70,948.59 9.3453 70,952.48 9.4826 70,955.33 9.559371 70,951.86 9.562085
Case-3 98,116.47 32.87448 98,119.26 33.45041 98,120.09 33.679766 98,123.35 33.677627
Case-4 89,792.18 10.26399 89,795.28 11.75026 89,798.02 12.18695 89,991.34 12.301605
Case-5 1,68,778.26 52.80223 1,69,291.27 53.82703 1,69,791.35 54.0869 1,75,424.45 53.4696
Case-6 1,15,209.32 32.74098 1,15,316.28 33.50672 1,15,642.65 34.725637 1,15,623.96 34.744787
Case-7 1,87,892.37 71.07529 1,88,092.15 71.50178 1,89,947.42 72.483248 1,90,814.09 72.076102

Table 13. Assessment of finest compromise solution for the alleviation of generation cost and active power
loss for various case studies.
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Fig. 4. Pareto front distribution for generation cost and emission mitigation in Case_4.

Figures 4 and 5 provide a comprehensive visual representation of the Pareto fronts obtained for the multi-
objective optimization problem, focusing on the simultaneous minimization of generation cost and active power
loss reduction. These figures illustrate the comparative performance of both the Improved Lion Optimization
Algorithm (ILOA) and the standard Lion Optimization Algorithm (LOA) for Case_4 and Case_7, respectively. A
close examination of the Pareto fronts reveals that the ILOA consistently identifies superior trade-off solutions,
positioning itself more favourably than the LOA. The optimal points on the Pareto front demonstrate that the
ILOA not only surpasses the LOA in achieving lower costs and reduced power losses but also exhibits better
solution distribution and diversity. The well-spread, non-dominated solutions offered by the ILOA confirm its
robustness and effectiveness in handling the optimization problem. Moreover, these findings underscore the
feasibility and reliability of the ILOA in optimizing power distribution within the modified IEEE 33-bus system.
By providing a more comprehensive and balanced set of optimal solutions, the ILOA ensures that decision-
makers can select the most suitable operational conditions based on system requirements, further validating its
superiority over conventional approaches.

Single and multi-objective optimization of generation cost and real power loss with EIR

Table 14 presents the placement and Forced Outage Rate (FOR) of Distributed Generators (DGs) in each
microgrid. It outlines the specific buses where DGs are positioned in Microgrid-1 (MG1), Microgrid-2 (MG2),
and Microgrid-3 (MG3), along with their associated FOR values. This information is crucial for understanding
the reliability and operational constraints of DGs within each microgrid.
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Fig. 5. Pareto front distribution for generation cost and emission mitigation in Case_7.

Microgrid MG1 MG2 MG3
DG positioned at bus no | 1 2 20 |3 7 18 |23 |30 |26
Value of FOR 0.03 | 0.02 | 0.05 | 0.02 | 0.04 | 0.05 | 0.04 | 0.02 | 0.05

Table 14. Placement and forced outage rate (FOR) of distributed generators in each microgrid”’.

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Pg1 163.2135 | - - 159.8243 - 334.7109 352.8911
Pga 198.3098 | - - 199.0002 - 190.0015 198.5023
Pgs 99.1254 - - 57.2097 - 85.5509 45.0027
Pga - 748.5002 | - 788.1023 688.0021 - 663.0001
Pgs - 602.0009 | - 568.0017 624.5012 - 584.0023
Pge - 72.0503 - 110.0007 168.5024 - 178.5011
Pgr - - 413.5005 - 404.1003 340.0008 384.5006
Pgs - - 1124.201 - 1180.001 1107.172 1114.207
Pgo - - 353.5002 - 248.0005 291.0007 279.5008
Pross (kW) 0.6487 17.5514 41.2018 17.1389 58.1074 38.4371 85.1083
QLoss(kVAr) | 0.6401 13.5008 35.0007 14.2005 45.0004 32.0006 54.0003
Cost($/hr) 19,255.39 | 87,174.21 | 110,297.19 | 102,014.03 | 196,721.79 | 125,375.57 | 213,370.91
EIR 0.97 0.97002 0.97002 0.97045 0.97002 0.97087 0.97

Table 15. Scenario-I: operating cost minimization with EIR (A) 20.97. Bold represent the Significant Value.

Scenario-I (mitigation of generation cost)

Table 15 provides a comprehensive analysis of Scenario 1, emphasizing the minimization of operating costs
while ensuring an Energy Index of Reliability (EIR) of at least 0.97. It provides variables and their corresponding
values across seven case studies, showcasing the results of optimization efforts to minimize operational costs
under this scenario. In this context, the fitness function was designed with a primary focus on minimizing
operational costs. The operating cost coefficients for each distributed generator (DG) within the 33-bus
distribution system were derived from Ref*. To reduce generation costs, the weighting factors w1 and ws
were assigned values of 1 and 0, respectively. Under this condition, the minimum generation cost achieved was
19,254.64 $/hr, with an associated real power loss of 0.6487 kW for Case_1. Similarly, the optimal generation
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Optimization approach | Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 19,255.39 | 87,174.21 | 1,10,297.19 | 1,02,014.03 | 1,96,721.79 | 1,25,375.57 | 2,13,370.91
LOA 19,256.62 | 87,175.93 | 1,10,300.41 | 1,02,017.62 | 1,96,724.28 | 1,25,379.47 | 2,13,375.18
JAYA”! 19,256.43 | 87,175.14 | 1,10,298.17 | 1,02,015.60 | 1,96,723.42 | 1,25,377.53 | 2,13,372.95
GA”! 19,256.44 | 87,183.16 | 1,10,310.67 | 1,06,368.97 | 1,96,736.99 | 1,26,040.65 | 2,28,486.67

Table 16. Assessment of optimization results for the mitigation of generation cost for various case studies.

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Pci 162.4273 | - - 166.4283 - 146.5184 133.1347
Pga 199.2165 | - - 199.1372 - 198.1583 197.0927
Pgs 99.0321 - - 58.2891 - 28.0123 99.5017
Pga - 890.4926 | - 823.0278 1193.2715 | - 1510.4267
Pgs - 167.2197 | - 365.1812 398.3371 - 229.2976
Pce - 361.1807 | - 267.2295 399.4235 - 318.7541
Pgr - - 499.0784 - 144.4263 170.3321 246.2265
Pgs - - 1097.2915 | - 863.7253 1225.4829 | 575.5123
Pgo - - 296.4096 - 310.8512 579.4937 478.8591
PrLoss(KW) 0.6759 13.893 42.7795 14.2931 55.0349 37.9977 73.8054
QLoss(kVATr) | 0.6554 11.3859 35.4963 11.0792 43.0112 31.5429 52.2238
Cost($/hr) 19,256.48 | 96,126.85 | 110,927.42 | 117,977.29 | 221,844.71 | 130,615.81 | 263,906.25
EIR 0.97003 0.97001 0.97003 0.97003 0.97028 0.97016 0.97004

Table 17. Scenario-II: Active power loss minimization with EIR (A) 20.97. Bold represent the Significant
Value.

cost and corresponding real power losses were calculated for Cases 2 through 7. Furthermore, Table 15 outlines
the optimal power outputs of various DGs aimed at minimizing generation costs using the Improved Lyrebird
Optimization Algorithm (ILOA). Additionally, Table 15 demonstrates that the ILOA consistently outperforms
in terms of generation cost efficiency. The results obtained using the ILOA for Cases 1 through 7 are 19,255.39
$/hr, 87,174.21 $/hr, 110,297.19 $/hr, 102,014.03 $/hr, 196,721.79 $/hr, 125,375.57 $/hr, and 213,370.91 $/hr,
respectively. In contrast, the generation costs obtained using the standard Lyrebird Optimization Algorithm
(LOA) are 19,256.62 $/hr, 87,175.93 $/hr, 110,300.41 $/hr, 102,017.62 $/hr, 196,724.28 $/hr, 125,379.4 $7/hr,
and 213,375.18 $/hr for the same cases. The comparison shows that as system size increases, ILOA significantly
outperforms LOA in reducing operational costs. Generation cost minimization was successfully achieved across
Cases 1 to 7, while maintaining an Energy Index of Reliability (EIR) of at least 0.97 in every scenario. This
demonstrates that ILOA not only lowers costs but also ensures system reliability, guaranteeing stable and secure
operation. By keeping EIR at or above 0.97, the optimization strategy effectively balances cost reduction with
reliability, ensuring that cost-saving measures do not compromise system stability. As EIR reflects the system’s
ability to deliver power reliably, maintaining this threshold confirms that economic benefits are achieved without
sacrificing performance. Table 16 presents a detailed evaluation of generation cost minimization across different
case studies, comparing ILOA with LOA, JAYA, and GA. The results highlight ILOA’ superior efficiency, making
it a more effective solution for optimizing both economic and operational performance.

Scenario-II (mitigation of active power loss)

Table 17 focuses on Scenario-II, which aims to minimize active power loss with an EIR greater than or equal to
0.97. It lists the variables and their respective values for the seven case studies, demonstrating the optimization
results achieved under this scenario. In this scenario, the objective function is exclusively focused on minimizing
active power loss. It is assumed that the available distributed generators (DGs) are dispatchable and have fixed
locations. The weighting factors w1 and w2 were set to 0 and 1, respectively, in order to minimize active power
loss. Under these conditions, the minimum active power loss achieved for Case 1 is 0.6759 kW, accompanied
by a corresponding generation cost of $19,256.84 per hour. Similarly, the optimal active power loss and the
associated generation costs were determined for Cases 2 through 7. Table 17 presents the active power losses for
the various case studies computed using the Improved Lyrebird Optimization Algorithm (ILOA) applied to the
33-bus distribution system. Moreover Table 16 provides detailed information on the scheduled power outputs
for each DG, as well as the system’s active and reactive power losses and the overall generation costs. The results
in Table 17 demonstrate that the ILOA achieves minimal active power losses of 0.6759 kW, 13.893 kW, 42.7795
kW, 14.2931 kW, 55.0349 kW, 37.9977 kW, and 73.8054 kW for Cases 1 through 7, respectively. In comparison,
the corresponding results obtained using the Lyrebird Optimization Algorithm (LOA) are 0.6883 kW, 14.591
kW, 43.3917 kW, 14.8704 kW, 55.7019 kW, 38.8627 kW, and 74.7915 kW. Active power loss minimization was
successfully achieved across Cases 1 to 7, while maintaining an Energy Index of Reliability (EIR) of at least 0.97.
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Optimization approach | Case_1 | Case_2 | Case_3 | Case_4 | Case_5 | Case 6 | Case_7
ILOA 0.6759 | 13.893 |42.7795 | 14.2931 | 55.0349 | 37.9977 | 73.8054
LOA 0.6883 | 14.591 |43.3917 | 14.8704 |55.7019 | 38.8627 |74.7915
JAYA”! 0.6905 | 14.6949 | 43.9116 | 15.1146 | 56.5737 | 41.8670 | 75.3645
GA”! 0.6967 | 14.7158 | 43.913 | 15.8492 |57.3381 | 42.4887 |75.4144

Table 18. Comparison of optimization results for the mitigation of active power loss for various case studies.
Bold represent the Significant Value.

Variables Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Pg1 163.2191 | - - 118.9127 - 325.1905 311.1089
Pgo 198.3058 | - - 109.8872 - 199.8926 197.2184
Pgs 99.0892 - - 59.9703 - 99.7518 62.3218
Pga - 1041.317 | - 1160.1892 | 1005.2901 | - 842.2951
Pgs - 107.1183 | - 205.0938 295.1185 - 224.1458
Pgs - 2703028 | - 225.1084 255.3091 - 273.0825
Pgr - - 399.0842 - 149.2891 257.7183 269.2189
Pgs - - 1164.3372 | - 1105.5106 1135.1208 1147.1893
Pgo - - 327.2107 - 498.2308 330.9716 458.2407
PrLoss(kW) 0.6141 13.7381 40.6321 14.1616 53.7482 38.6456 69.8214
QLoss(kVAr) | 0.63871 7.36082 24.5083 8.7681 36.4019 22.0472 45.7025
Cost($/hr) 19,254.78 | 89,388.26 | 110,383.43 | 106,527.38 | 201,843.27 | 127,333.58 | 227,641.59
EIR 0.97000 0.97277 0.97059 0.97263 0.97048 0.97092 0.97028

Table 19. Scenario 3: Operating cost and active power loss minimization with EIR (A) 20.97. Bold represent
the Significant Value.

This ensures that operational efficiency does not compromise system reliability, demonstrating the robustness
of the optimization approach. By sustaining an EIR of 0.97 or higher, the system achieves significant power
loss reduction while preserving high reliability standards, effectively managing complex power distribution
challenges. Table 18 provides a comparative analysis of active power loss minimization results, evaluating the
performance of ILOA against LOA, JAYA, and GA. The results highlight ILOA’s superior efficiency in reducing
power losses, making it a more effective optimization technique compared to conventional methods.

Scenario-III (mitigation of generation cost and active power loss)

Table 19 presents Scenario-III, which addresses the combined objectives of minimizing operating costs and
active power losses while ensuring an EIR of 0.97 or higher. It provides detailed results for various variables and
their outcomes across seven case studies, highlighting the trade-offs and benefits of addressing both objectives
simultaneously. In this scenario, the optimization process is formulated as a multi-objective problem, aiming
to minimize both generation cost and active power loss. This approach ensures a balanced trade-off between
economic and technical objectives. The optimization is carried out under the condition that the Energy Index
of Reliability (EIR) remains greater than 0.97 for all cases, thereby maintaining a high level of reliability in the
system. Table 19 provides detailed insights into the optimal power outputs of the distributed generators (DGs)
achieved using the Improved Lyrebird Optimization Algorithm (ILOA). The optimal balance between the two
objectives was achieved by setting the weighting factors w1 and w2 both to 0.5, ensuring the best compromise
solution. The Improved Lyrebird Optimization Algorithm (ILOA) produced generation costs of 19,254.78$/hr,
89,388.26 $/hr, 110,383.43 $/hr, 106,527.38 $/hr, 201,843.27 $/hr, 127,333.58 $/hr, and 227,641.59 $/hr, with
corresponding real power losses of 0.6141 kW, 13.7381 kW, 40.6321 kW, 14.1616 kW, 53.7482 kW, 38.6456
kW, and 69.8214 kW for Cases 1 through 7, respectively. Table 20 presents the results for all case studies,
demonstrating ILOA’ effectiveness in reducing both generation costs and active power losses simultaneously.
This dual-objective optimization ensures efficient system operation while maintaining reliability constraints,
highlighting ILOA’s robustness in addressing complex power distribution challenges. The results indicate that
ILOA efficiency improves as system size increases, consistently delivering optimal compromise solutions.
Additionally, the Table 20 provides a comparative analysis of ILOA, LOA, and JAYA, showcasing their respective
strengths and limitations, with ILOA demonstrating superior optimization performance. ILOA outperforms
LOA due to its advanced mechanisms, specifically the chaotic sine map and Levy Flight, which significantly
enhance its search capabilities. The chaotic sine map introduces non-linear, dynamic behavior, enabling broader
exploration of the solution space while preventing the algorithm from getting trapped in local optima. This
controlled randomness improves search diversity, ensuring a more effective and extensive search process.
Meanwhile, Levy Flight enhances exploration by allowing larger, adaptive jumps, facilitating the discovery of
more optimal solutions. Inspired by natural foraging behavior, this technique enables ILOA to efficiently navigate
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Optimization Approach | ILOA LOA JAYA”!

Parameters Generation cost | Active power loss | Generation cost | Active power loss | Generation cost | Active power loss
Case_1 19,254.78 0.6141 19,255.83 0.6608 19,256.65 0.69382

Case_2 89,388.26 13.7381 89,400.18 14.8062 89,412.07 15.98204

Case_3 110,383.43 40.6321 110,398.69 42.5196 110,411.04 44.14713

Case_4 106,527.38 14.1616 106,534.27 16.1893 106,546.16 17.79089

Case_5 201,843.27 53.7482 201,861.83 56.5826 201,912.72 58.55761

Case_6 127,333.58 38.6456 127,351.07 40.7025 127,374.03 42.73342

Case_7 227,641.59 69.8214 227,654.46 72.7831 227,690.37 76.27862

Table 20. Assessment of finest compromise solution for the alleviation of generation cost and active power
loss for various case studies.

Single objective optimization

Minimization of operating cost

Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 19,254.64 | 70,900.83 | 97,915.95 | 89,443.86 | 168,662.74 | 115,061.66 | 187,645.04

LOA 19,255.52 | 70,901.79 | 97,917.64 | 89,445.27 168,664.36 | 115,063.75 | 187,647.63

Without EIR
JAYA*' |19,256.43 |70,902.88 | 97,919.59 89,446.93 168,665.57 | 115,067.73 | 187,652.72
GA# 19,256.44 | 70,902.99 | 97,919.86 89,480.97 168,996.73 | 115,367.94 | 188,885.73
Operating Cost ($/hr)
ILOA 19,255.39 | 87,174.21 | 110,297.19 | 102,014.03 | 196,721.79 | 125,375.57 | 213,370.91
LOA 19,256.62 | 87,175.93 | 110,300.41 | 102,017.62 | 196,724.28 | 125,379.47 | 213,375.18
With EIR

JAYA”! |19,256.43 |87,175.14 | 110,298.17 | 102,015.60 | 196,723.42 | 125377.53 |213,372.95

GA”! 19,256.44 | 87,183.16 | 110,310.67 | 106,368.97 | 196,736.99 | 126,040.65 | 228,486.67

Minimization of real power loss

Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7

ILOA 0.5846 8.5169 32.6285 10.25763 52.41465 32.6145 70.4914

LOA 0.6219 9.0291 33.1028 11.3049 53.0127 33.1453 70.9827
Without EIR

JAYA*! | 0.690474 |9.499427 |33.673170 |12.122236 | 53.42497 34.635059 | 71.707680

Real Power Loss GA* | 0.690496 |9.520185 |33.708979 |12.150093 |53.46960 | 34.644690 |71.902238

(kW) ILOA 0.6759 13.893 42.7795 14.2931 55.0349 37.9977 73.8054

LOA 0.6883 14.591 43.3917 14.8704 55.7019 38.8627 74.7915

With EIR _
JAYA”! | 0.6905 14.6949 | 43.9116 15.1146 56.5737 41.8670 75.3645

GA”! 0.6967 14.7158 43913 15.8492 57.3381 42.4887 75.4144

Table 21. Comparison of EIR values for optimal dg scheduling across different scenarios in the altered 33-bus
system with and without the reliability criterion (single-objective optimization). Bold represent the Significant
Value.

multi-modal search spaces, improving both solution quality and convergence speed. By integrating these two
mechanisms, ILOA achieves a more balanced and robust optimization process, outperforming standard LOA
in solving complex, multi-objective problems. These enhancements make ILOA a highly effective approach for
optimizing large-scale power distribution systems compared to traditional algorithms.

Analysis of results

A comprehensive analysis of distributed generation (DG) scheduling is presented, utilizing various optimization
algorithms within an altered 33-bus electrical distribution system. The study is organized across multiple case
studies and divided into two main optimization strategies: single-objective optimization and multi-objective
optimization. Table 21 and 22 offer an extensive dataset, examining operating costs and real power losses across
different scenarios, both with and without the Enhanced Index of Reliability (EIR) criterion. Table 20 showcases
the performance of the proposed Improved Lyrebird Optimization Algorithm (ILOA) alongside the Lyrebird
Optimization Algorithm (LOA), JAYA, and Genetic Algorithm (GA) across seven distinct case studies. These
results are compared for scenarios with and without the inclusion of EIR as a scheduling criterion. The EIR
values for optimal scheduling without considering the EIR criterion have been derived based on the DG power
outputs from the test results summarized in Tables 15, 16, 17, 18, 19 and 20. Furthermore, Table 21 highlights
that incorporating the EIR criterion into the scheduling process ensures that DGs are optimally scheduled to
meet the reliability requirement, in addition to achieving the desired minimization objectives. This approach
enhances system performance by simultaneously addressing reliability and operational efficiency.
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Multi objective optimization
Best compromise solution
Case_1 Case_2 Case_3 Case_4 Case_5 Case_6 Case_7
Cost ($/hr) 19,254.85 | 70,948.59 | 98,116.47 | 89,792.18 | 1,68,778.26 | 1,15,209.32 | 1,87,892.37
TLOA Real Power Loss (kW) | 0.66037 9.3453 32.87448 | 10.26399 | 52.80223 32.74098 71.07529
LOA Cost ($/hr) 19,255.76 | 70,952.48 | 98,119.26 | 89,795.28 | 1,69,291.27 | 1,15,316.28 | 1,88,092.15
Without EIR Real Power Loss (kW) | 0.66507 9.4826 33.45041 | 11.75026 | 53.82703 33.50672 71.50178
JAYA® Cost ($/hr) 19,257.51 | 70,955.33 | 98,120.09 | 89,798.02 | 1,69,791.35 | 1,15,642.65 | 1,89,947.42
Real Power Loss (kW) | 0.690492 | 9.559371 | 33.67977 | 12.18695 | 54.0869 34.725637 | 34.744787
GAY Cost ($/hr) 19,257.50 | 70,951.86 | 98,123.35 | 89,991.34 | 1,75,424.45 | 1,15,623.96 | 1,90,814.09
Real Power Loss (kW) | 0.690589 | 9.562085 | 33.67763 | 12.30161 | 53.4696 72.483248 | 72.076102
LOA Cost ($/hr) 19,254.8 | 89,388.3 | 1,10,383 | 1,06,527 |2,01,843 1,27,334 2,27,642
Real Power Loss (kW) | 0.6141 13.7381 40.6321 14.1616 53.7482 38.6456 69.8214
With EIR LOA Cost ($/hr) 19,255.8 | 89,400.2 1,10,399 1,06,534 | 2,01,862 1,27,351 2,27,654
Real Power Loss (kW) | 0.6608 14.8062 42.5196 16.1893 56.5826 40.7025 72.7831
JAYA! Cost ($/hr) 19,256.7 | 89,412.1 | 1,10,411 1,06,546 | 2,01,913 1,27,374 2,27,690
Real Power Loss (kW) | 0.69382 15.982 44.1471 17.7909 58.5576 42.7334 76.2786

Table 22. Comparison of EIR values for optimal DG Scheduling across different scenarios in the altered 33-
bus system with and without the reliability criterion (multi-objective optimization).

The results are divided into two scenarios: without EIR and with EIR. Across all cases, the inclusion of EIR
results in higher operating costs, indicating that reliability considerations introduce additional operational
expenses. The operating cost varies significantly across the different cases. Among the algorithms, ILOA
consistently yields lower operating costs compared to LOA, JAYA, and GA, making it a potentially more cost-
effective choice for DG scheduling. A similar trend is observed for real power loss minimization, where the
inclusion of EIR generally leads to higher losses. The real power loss values vary across the cases, with Case_1
showing the lowest losses (around 0.58 kW without EIR and 0.67 kW with EIR), whereas Case_7 has significantly
higher losses (70.49 kW without EIR and 73.80 kW with EIR). Among the optimization algorithms, GA and
JAYA tend to exhibit slightly higher power losses compared to ILOA and LOA, although the differences are
marginal in certain cases.

Table 22 extends the analysis to a multi-objective framework, considering a compromise between operating
cost and real power loss. The evaluation follows the same seven-case structure, comparing the four optimization
techniques with and without EIR. Without EIR, the operating costs are significantly lower across all cases
compared to the EIR-included scenarios. In higher complexity cases like Case_5 and Case_7, the cost increase is
more substantial. For example, in Case_7, the cost rises from 1,87,892.37 $/hr (ILOA) without EIR to 2,27,642
$/hr with EIR, indicating a major impact of reliability considerations. The real power loss values also increase
when EIR is considered, though the magnitude of increase varies across cases and algorithms. For instance, in
Case_l, the real power loss remains relatively low at 0.66037 kW (ILOA) without EIR, but with EIR, it is slightly
reduced to 0.6141 kW. This suggests that in some cases, EIR can actually help optimize power loss while still
increasing costs. However, in higher load cases like Case_7, the power loss increases from 71.07 kW to 69.82 kW
with EIR, showing that reliability considerations do not always lead to higher losses, but often create a trade-off
between cost and loss performance.

Across both single and multi-objective optimization frameworks, including EIR consistently raises
operational costs, reflecting the additional constraints imposed by reliability. While most cases show an
increase in power loss with EIR, some cases (such as Case_1) exhibit reduced power loss, highlighting non-
linear interactions between DG scheduling, reliability, and power flow optimization. Unlike single-objective
optimization, where either cost or loss is minimized independently, the multi-objective approach balances the
two, resulting in compromise solutions that reflect real-world trade-offs. ILOA consistently achieves lower
operating costs compared to LOA, JAYA, and GA, making it an optimal choice for economic DG scheduling. In
many scenarios, ILOA maintains lower real power losses, ensuring higher energy efficiency. Unlike traditional
optimization methods that prioritize global solutions, ILOA achieves a more balanced approach between cost
efficiency and power loss reduction.

Conclusion and directions for future research

This paper proposed the Improved Lyrebird Optimization Algorithm (ILOA) as a robust and efficient
solution for the optimal sectionalizing and scheduling of multi-microgrid systems.

o The algorithm effectively minimized generation costs and active power losses while addressing reliability con-
straints, such as the Energy Index of Reliability (EIR), and ensured stable system performance with renewable
energy integration.

« By integrating advanced mechanisms like Levy Flight for enhanced local search and a chaotic sine map for
improved global exploration, ILOA achieved faster convergence and superior optimization results compared

Scientific Reports |

(2025) 15:17345 | https://doi.org/10.1038/s41598-025-02200-x

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

to conventional algorithms like the Genetic Algorithm (GA), Jaya Algorithm (JAYA), and the original Lyre-
bird Optimization Algorithm (LOA).

« Simulation results on a modified 33-bus distribution system, segmented into three independent microgrids,
demonstrated the practical applicability of ILOA in both single-objective and multi-objective optimization
scenarios.

« In single-objective cases, the algorithm achieved notable improvements in generation cost and active power
loss reduction. In multi-objective optimization, it balanced these objectives more effectively than competing
methods, further validating its robustness and effectiveness.

o For the IEEE-33 bus system under multi-objective optimization without considering EIR, the proposed ILOA
algorithm significantly enhances system performance by reducing generation cost by approximately 0.1062%,
1.0822%, and 1.5318% compared to LOA, JAYA, and GA, respectively. Additionally, ILOA lowers active pow-
er loss by around 0.5968%, 1.942%, and 1.3891% relative to LOA, JAYA, and GA, respectively, under the
operational scenario of Case-7. These results highlight the effectiveness of ILOA in optimizing both economic
and technical parameters in power system operation.

o For the IEEE-33 bus system with considering EIR, the proposed ILOA algorithm achieves generation cost
savings of approximately 0.0057% and 0.0214% compared to LOA and JAYA, respectively. Additionally, ILOA
demonstrates a notable reduction in active power loss by 4.07% and 8.47% compared to LOA and JAYA, re-
spectively, under the operational scenario of Case-7. These findings further validate the effectiveness of ILOA
in optimizing economic and technical performance in power systems.

« While the results highlighted the significant potential of ILOA, certain limitations remained. The scalability of
the algorithm to larger, more complex systems and its adaptability to dynamic and uncertain grid conditions
warranted further exploration.

Additionally, the incorporation of constraint-handling mechanisms, such as reliability indices and advanced
forecasting techniques for renewable energy sources, could have enhanced its robustness.Future work could
focus on leveraging real-time grid data and integrating machine learning techniques to improve decision-
making under uncertainty. Exploring hybrid frameworks combining ILOA with methods like game theory
or reinforcement learning could extend its application to more complex objectives, including energy storage
management, demand response, and fault detection in multi-microgrid systems. The ILOA showcased its
capability as an efficient and reliable method for optimizing distributed generation scheduling and sectionalizing
multi-microgrid systems, highlighting its promise as a key enabler for future advancements in smart grid
applications.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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