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As modern power grids grow increasingly complex with the widespread deployment of renewable 
energy and distributed energy storage systems (ESS), ensuring robust and resilient black-start 
capabilities has become a critical challenge. Traditional black-start approaches, which typically 
rely on centralized hydro or diesel generators, are increasingly inadequate due to rising network 
complexity, the stochastic nature of renewables, and growing exposure to cyber-physical threats. 
To overcome these limitations, this study introduces a quantum-enhanced framework for dynamic 
network reconfiguration and topological optimization of ESS to support black-start restoration. The 
proposed method leverages quantum graph theory and quantum annealing to dynamically determine 
optimal ESS connectivity and energy redistribution pathways, enabling rapid grid recovery under 
diverse failure scenarios, including those involving cyber-physical disruptions. By integrating quantum 
annealing algorithms, the framework efficiently addresses the combinatorial complexity of large-
scale ESS placement and dispatch, outperforming traditional heuristic and classical optimization 
techniques in both computational speed and solution quality. The approach is formulated through 
a comprehensive mathematical model that captures key interactions between network topology, 
energy flow dynamics, and black-start performance indicators such as restoration time, efficiency, 
and resilience. Simulation results on a 300-bus synthetic power grid with high levels of renewable 
penetration demonstrate that the proposed quantum-assisted strategy reduces restoration decision 
time by up to 50%, optimizes energy allocation, and significantly improves system robustness. These 
findings highlight the transformative potential of quantum computing in enabling intelligent, adaptive 
black-start planning, offering a powerful tool for enhancing the resilience of future energy systems.
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systems, Power grid resilience, Renewable integration under uncertainty, Cyber-physical security, Topological 
reconfiguration

The growing dependence on networked energy storage systems (ESS) in modern power grids has highlighted the 
urgent need for more resilient and efficient black-start capabilities. Black-start refers to the process of restoring 
power to the grid following a total or partial outage without relying on external electricity sources1. Traditionally, 
this process has depended on large-scale hydroelectric facilities and diesel generators to supply the initial 
restart energy2. However, the transition toward renewable energy, distributed ESS, and smart grid architectures 
presents new challenges for conventional black-start strategies. These include the intermittent nature of 
renewable generation, increasingly complex grid topologies, and heightened exposure to cyber-physical risks. 
As a result, there is a pressing need for advanced optimization techniques to enable the dynamic coordination 
and reconfiguration of ESS networks, ensuring faster and more robust grid restoration under uncertain and 
adverse conditions3,4.

Existing studies on black-start optimization primarily focus on classical optimization techniques such as 
mixed-integer linear programming, heuristic approaches, and robust control strategies to allocate resources 
and optimize restoration sequences5. However, as grid infrastructures become increasingly complex, these 
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traditional approaches struggle with scalability, combinatorial complexity, and real-time adaptability. The rise of 
quantum computing has introduced new possibilities for addressing such computationally intractable problems 
by leveraging quantum parallelism and probabilistic computation6–8. In particular, quantum graph theory and 
quantum annealing have emerged as powerful tools to tackle high-dimensional optimization problems that 
involve dynamic network reconfiguration, resilience enhancement, and energy flow management. Despite the 
promising potential of quantum-inspired methods, their application to black-start optimization in network-type 
ESS remains largely unexplored9.

To address these challenges, this paper proposes a novel quantum topological optimization framework for 
enhancing black-start capabilities in network-type ESS. The core innovation of this study lies in leveraging 
quantum graph theory to dynamically reconfigure ESS connectivity, optimize energy redistribution pathways, 
and minimize restoration time under various failure scenarios. Unlike conventional black-start strategies that rely 
on pre-determined restoration sequences and rule-based heuristics, our approach utilizes a quantum-inspired 
probabilistic model to identify optimal energy dispatch patterns in a dynamically evolving grid environment. 
By integrating quantum annealing into the optimization process, this framework effectively handles the 
combinatorial complexity of ESS placement and energy routing, offering a more scalable and efficient alternative 
to classical methods. The proposed model not only ensures a faster restoration process but also enhances 
resilience by incorporating cyber-physical attack mitigation strategies within the black-start planning paradigm.

From a methodological perspective, this study develops a rigorous mathematical framework to capture 
the interplay between network topology, energy redistribution, and resilience in black-start scenarios. The 
optimization model consists of a multi-objective function that minimizes black-start recovery time, maximizes 
energy redistribution efficiency, and ensures network resilience against failures and cyber threats. The 
constraints imposed on the system include energy balance, network connectivity, ESS capacity limitations, 
power dispatch requirements, voltage and frequency stability, contingency planning, and quantum-enhanced 
decision constraints. The incorporation of quantum graph-based analysis allows the identification of optimal 
ESS configurations that maintain stability even under extreme disruption conditions. Moreover, quantum 
annealing is used to solve the large-scale combinatorial problem associated with reconfiguring network-type 
ESS, significantly reducing computational complexity and solution time. The uniqueness of this paper lies 
in its integration of quantum computing principles into the black-start optimization domain, a field that has 
traditionally been dominated by classical computational approaches. While previous works have explored robust 
and stochastic optimization for power system restoration, this study is the first to employ quantum-inspired 
topological optimization for dynamically restructuring energy storage networks. Additionally, the proposed 
framework is designed to be resilient against cyber-physical attacks, ensuring that black-start procedures remain 
secure and efficient even in the presence of adversarial disruptions. The hybridization of quantum graph theory 
with energy system resilience modeling represents a paradigm shift in how black-start strategies are formulated 
and executed, paving the way for a new generation of intelligent, self-adaptive grid recovery mechanisms.

This research makes four key contributions. First, it introduces a quantum topological optimization framework 
that leverages quantum graph theory for dynamically reconfiguring network-type ESS to support rapid and 
resilient black-start operations. Second, it incorporates quantum annealing as a powerful optimization tool to 
efficiently solve the large-scale combinatorial problem of ESS placement and energy dispatch, outperforming 
conventional heuristics in both speed and solution quality. Third, it enhances resilience by integrating cyber-
physical attack mitigation strategies into the black-start optimization model, ensuring robust system recovery 
under both natural failures and targeted disruptions. Finally, it provides a comprehensive mathematical 
formulation that captures the complex interactions between network topology, energy redistribution, and black-
start dynamics, offering a novel approach to resilient power system restoration. By addressing the limitations of 
traditional black-start methodologies and harnessing the computational advantages of quantum mechanics, this 
study establishes a transformative framework for future energy system resilience planning.

Literature review
With the increasing penetration of renewable energy and the decentralization of power generation, black-start 
planning has evolved to incorporate distributed resources such as microgrids, battery storage, and grid-forming 
inverters. Researchers have explored stochastic and robust optimization techniques to account for the uncertainty 
associated with renewable generation, load variations, and system contingencies. Probabilistic models have been 
developed to enhance the reliability of black-start operations under fluctuating supply conditions. These methods 
typically use scenario-based optimization, chance-constrained programming, and robust decision-making 
frameworks to improve the flexibility of black-start strategies. Despite these advancements, the scalability of 
classical optimization methods remains a challenge, especially when dealing with high-dimensional, dynamically 
evolving grid configurations10–12.

Recent efforts have introduced machine learning (ML) and artificial intelligence (AI) techniques to optimize 
black-start processes. Reinforcement learning (RL) models, for instance, have been applied to develop adaptive 
restoration strategies that learn optimal decision-making policies through repeated interactions with simulated 
power systems13. Supervised learning approaches have been utilized to train predictive models based on 
historical restoration data, enabling faster and more efficient planning of black-start sequences. While ML-based 
methods offer promising improvements in automation and adaptability, they often require extensive training 
datasets and struggle with generalization to unseen grid disruptions14,15. Additionally, these models lack the 
theoretical guarantees of optimality and robustness that are inherent in classical optimization frameworks6,16.

Another significant research direction in black-start optimization involves the use of game-theoretic and 
resilience-based strategies to address cyber-physical threats. Given the increasing risk of cyberattacks on power 
grids, several studies have investigated defensive black-start planning that incorporates adversarial modeling 
and attack mitigation strategies. These works explore the impact of false data injection attacks (FDIAs), denial-
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of-service (DoS) attacks, and coordinated physical sabotage on black-start procedures. Optimization models 
incorporating security constraints have been proposed to ensure that black-start sequences remain feasible 
even under compromised grid conditions17,18. While these approaches enhance grid resilience, they often rely 
on static assumptions about attack vectors and require extensive computational resources to simulate multiple 
attack-defense scenarios.

A particularly relevant field of research for this study is network reconfiguration and topological optimization 
in energy systems. Many studies have examined how modifying network topology can improve resilience and 
recovery performance in blackout scenarios. Graph theory-based approaches have been used to model power grid 
structures and analyze connectivity patterns that influence restoration effectiveness19. These methods leverage 
concepts such as minimum spanning trees, network flow optimization, and centrality-based prioritization to 
determine the most efficient reconfiguration strategies. However, classical graph-based optimization techniques 
face limitations in solving large-scale problems with combinatorial complexity, as traditional solvers struggle to 
efficiently explore the vast solution space of possible network configurations.

Quantum computing has emerged as a promising alternative for solving complex optimization problems 
in power systems, including black-start optimization. Quantum annealing, in particular, has demonstrated 
advantages in handling combinatorial optimization problems by leveraging quantum parallelism to explore 
multiple solutions simultaneously20. Recent research has applied quantum-inspired techniques to power flow 
optimization, grid dispatch scheduling, and contingency analysis. In addition to earlier studies focusing on 
quantum approaches for economic dispatch and unit commitment, recent research efforts have expanded the 
application of quantum computing in broader power system domains. QML methods have been explored for 
grid resilience enhancement, enabling rapid fault detection and adaptive control under dynamic operating 
conditions21. Emerging works have also applied quantum annealing and variational quantum algorithms 
to optimize network reconfiguration, load restoration, and system recovery planning22. These developments 
demonstrate the growing potential of quantum techniques not only in classical optimization tasks but also 
in real-time decision-making and resilience-oriented applications within complex cyber-physical energy 
infrastructures. However, the integration of quantum computing into black-start planning remains largely 
unexplored23. Most existing studies in quantum optimization for power grids focus on economic dispatch, unit 
commitment24, and state estimation rather than dynamic restoration processes. The potential for quantum-
enhanced network reconfiguration, particularly using quantum graph theory, is an area that has not yet been 
fully developed in the literature25. Furthermore, the use of quantum-inspired topological analysis for grid 
resilience has received limited attention26. While classical topological optimization has been applied to identify 
critical network structures, quantum-assisted graph algorithms provide a fundamentally different approach 
by encoding network connectivity into quantum states and solving for optimal configurations with superior 
computational efficiency27. Quantum graph-based optimization has been studied in other domains, such as 
telecommunications and logistics, but its application to energy storage placement, power routing, and black-
start reconfiguration remains largely theoretical28. Given the increasing complexity of modern power grids, the 
potential of quantum computing to transform black-start planning through advanced topological optimization 
is an area with significant research potential.

Mathematical modelling and methodology
This section presents the mathematical formulation and methodological framework of the proposed quantum-
enhanced topological optimization approach for black-start operations in network-type energy storage systems 
(ESS). The mathematical model is developed to rigorously capture the critical interactions between network 
topology, energy redistribution dynamics, and resilience considerations. Subsequently, the methodology 
incorporates quantum graph theory and quantum annealing techniques to effectively handle the complex 
combinatorial optimization challenges involved in dynamically reconfiguring ESS connectivity and dispatch 
strategies. The details of the objective function formulation, system constraints, and the integration of quantum 
computational methods are elaborated in the following subsections.

	
min

λ,Φ,Ψ

T∑
t=1

∑
i∈N

(
α ·

Θrest
i,t

Γmax + β ·
∑

j∈N

(
Λcur

i,j,t

Λmax

)
+ γ ·

Ξdyn
i,t

Υmax

)
� (1)

Black-start restoration is a delicate process where every second matters. This equation serves as the fundamental 
objective, minimizing the time required for complete grid recovery while factoring in quantum graph-based 
reconfigurations. The first term represents the normalized restoration time Θrest

i,t  at each node i, weighed by 
the global restoration limit Γmax. The second term ensures efficient power redistribution by minimizing the 
quantum-assisted curtailment Λcur

i,j,t, normalized by its upper bound Λmax. Lastly, the third term accounts for 
system dynamics by considering the stability function Ξdyn

i,t , constrained by the system-wide dynamic threshold 

Υmax. The weight coefficients α, β, and γ tune the relative importance of these three objectives, ensuring 
balanced restoration.

	
min
Ω,ζ

T∑
t=1

∑
(i,j)∈E

(
δ ·

Ωflow
i,j,t

Ωmax + ϵ ·
∑

k∈N

ζeff
i,k,j,t

ζmax + η ·
∑
ℓ∈L

Φreact
ℓ,t

Φmax

)
� (2)

Energy must be distributed wisely across the network for a successful black-start. This equation ensures that the 
redistribution of stored energy follows the most efficient and least wasteful pathways. The term Ωflow

i,j,t quantifies 
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the actual power flow across edge (i, j), normalized against the maximum permitted flow Ωmax. The second 
term evaluates energy conversion efficiency ζeff

i,k,j,t, particularly for power injected by distributed ESS. The final 
term considers reactive power support Φreact

ℓ,t , which is essential for stabilizing voltage profiles during transient 
recovery. The coefficients δ, ϵ, η prioritize energy flow, conversion efficiency, and reactive power support, 
respectively.

	

max
Σ,Θ

T∑
t=1

∑
i∈N


κ ·

Σres
i,t

Σmax + λ ·
∑

(i,j)∈E

Θsecure
i,j,t

Θmax + µ ·
∑
p∈P

Ψattack
p,t

Ψmax


 � (3)

A resilient energy storage network is crucial for mitigating failures and attacks. This function maximizes 
resilience by considering system-wide robustness and contingency management. The first term ensures that 
available stored energy reserves Σres

i,t  are maximized relative to their upper limit Σmax, preserving emergency 
energy sources. The second term strengthens the network by reinforcing security attributes Θsecure

i,j,t , ensuring 
nodes are well-connected against potential failures. Finally, the third term counteracts targeted cyber and 
physical attacks Ψattack

p,t , reinforcing security via strategic deception and redundancy. The weighting parameters 
κ, λ, µ prioritize different resilience aspects, balancing stability and security.

	
min

Γ,Ξ,Π

T∑
t=1

∑
(i,j)∈E

(
ρ ·

Γanneal
i,j,t

Γmax + σ ·
∑

m∈M

Ξqopt
m,t

Ξmax + τ ·
∑
q∈Q

Πphase
q,t

Πmax

)
� (4)

Quantum annealing offers an elegant and powerful solution to the network reconfiguration problem, enabling 
rapid convergence towards optimal ESS placements. The first term Γanneal

i,j,t  quantifies the annealing process’s 
effectiveness in selecting optimal paths, ensuring that the search for an optimal configuration remains 
computationally efficient. The second term incorporates quantum-optimal routing Ξqopt

m,t , minimizing phase 
mismatches in the power grid. Finally, Πphase

q,t  accounts for quantum-induced phase corrections, ensuring that 
the quantum-assisted optimization process remains coherent and free of significant errors. The coefficients ρ, σ, τ  
control the influence of these components, ensuring a balance between solution precision and computational 
feasibility.

To clarify the hybrid computing interaction, we adopt a quantum-classical iterative workflow in which discrete 
optimization variables-such as ESS-to-node connectivity (Γanneal

i,j,t ), network path selections (Ξqopt
m,t ), and black-

start sequence flags (Πphase
q,t )-are solved using quantum annealing techniques. These binary decision variables 

are well-suited to combinatorial optimization and benefit from the quantum processor’s ability to explore 
high-dimensional solution spaces efficiently. In our implementation, these decision variables are formulated 
into a Quadratic Unconstrained Binary Optimization (QUBO) model and mapped onto the physical qubits of 
the D-Wave Advantage 5000Q system. The quantum annealing process operates over cycles typically ranging 
from 20 to 100 milliseconds, depending on problem complexity and embedding overhead. Sparse connectivity 
between qubits imposes constraints on the structure of the embedded graph, which we address through minor 
embedding techniques to preserve logical variable relationships. Once a candidate configuration is obtained from 
the quantum layer, the classical high-performance computing (HPC) component evaluates its physical feasibility 
through AC optimal power flow (AC-OPF) simulations. This includes validation of power flow values, nodal 
voltages (Vi,t), frequency dynamics (fi,t), and related system constraints. The quantum output is decoded into 
dispatch instructions and fed into the classical solver. If violations are detected, the classical feedback is used to 
iteratively refine the quantum search space by adjusting constraint weights or modifying annealing parameters. 
This hybrid loop continues until both optimization objectives and operational feasibility are satisfied, enabling a 
reliable and efficient decision-making process for black-start restoration.

	

∑
j∈Ni

(
P flow

i,j,t + Qflow
i,j,t

)
+ P gen

i,t − P load
i,t =

∑
m∈M

(
ηm · Sstore

m,i,t − γm · Ddischarge
m,i,t

)

+
∑

k∈K

(
ζk · W wind

k,i,t + ξk · Ssolar
k,i,t

)
, ∀i ∈ N , ∀t ∈ T

� (5)

This equation guarantees that at every node i, power balance is maintained. The left-hand side captures the net 
power exchanged with neighboring nodes, power generated locally, and the local load demand. The right-hand 
side accounts for stored energy contributions, discharging energy from ESS, and renewable generation sources 
such as wind and solar. The weighting factors ηm, γm, ζk , and ξk  represent conversion efficiencies and dispatch 
coefficients, ensuring an accurate representation of power conservation within the black-start recovery process.

	

∑
(i,j)∈E

Ai,j,t ·
(
1 − Θcut

i,j,t

)
≥ |N | − 1, ∀t ∈ T � (6)

A network must remain connected to facilitate a resilient black-start process. This constraint ensures that the 
reconfigured energy network forms a spanning tree structure by maintaining sufficient active transmission paths. 
The binary variable Θcut

i,j,t represents whether an edge is temporarily disconnected due to faults or intentional 
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reconfiguration. The summation over adjacency weights Ai,j,t guarantees that the graph remains connected 
with at least |N | − 1 edges.

	 Smin
i,t ≤ Si,t ≤ Smax

i,t , ∀i ∈ N , ∀t ∈ T � (7)

Energy storage systems have physical constraints on their charge levels. This equation enforces an upper bound 
Smax

i,t  and a lower bound Smin
i,t  on the stored energy at node i, ensuring that no energy storage device operates 

beyond its designed capacity.

	

∑
i∈N start

P start
i,t ≥ P req, ∀t ∈ T0� (8)

Successful black-start operation requires that a minimum power P req be provided by the initially activated 
energy sources. This constraint ensures that the combined startup power from designated black-start nodes 
N start is sufficient to meet the minimum requirements at the beginning of the restoration process.

	

∑
i∈N

P restore
i,t · Θseq

i,t ≤ P max
t , ∀t ∈ T � (9)

Load restoration must be carefully sequenced to prevent excessive demand surges. The binary variable Θseq
i,t  

ensures that loads are restored according to a predefined priority, while P max
t  represents the maximum 

allowable power restoration at each time step. This constraint prevents uncontrolled surges that could destabilize 
the recovering network.

	 V min
i,t ≤ Vi,t ≤ V max

i,t , ∀i ∈ N , ∀t ∈ T � (10)

Voltage regulation is crucial for grid stability. This constraint ensures that the voltage magnitude Vi,t at each 
node remains within safe operational limits, preventing undervoltage and overvoltage conditions that could 
damage equipment or lead to cascading failures.

	 |fi,t+1 − fi,t| ≤ ∆fmax, ∀i ∈ N , ∀t ∈ T � (11)

Frequency deviations must be strictly controlled to maintain synchronous operation during black-start 
procedures. This constraint limits the rate of frequency change between consecutive time steps, ensuring 
that frequency fluctuations remain within tolerable limits ∆fmax to prevent loss of synchronism across the 
recovering grid.

	

∑
(i,j)∈E

Ωpath
i,j,t

Ωmax +
∑

k∈K

Φpath
k,t

Φmax ≤ Ψmax
t , ∀t ∈ T � (12)

Ensuring minimal energy loss in redistribution pathways is essential for effective black-start recovery. This 
constraint limits the aggregate power flow through network paths to the threshold Ψmax

t , ensuring energy is 
routed optimally across available connections. The terms Ωpath

i,j,t  and Φpath
k,t  capture the quantum-assisted path 

optimization for power flow and reactive power routing, respectively.

	

∑
j∈Ni

Γconn
i,j,t ·

(
1 − Θfail

i,j,t

)
≥ Λreq

i,t , ∀i ∈ N , ∀t ∈ T � (13)

Network connectivity is critical in ensuring black-start success. This equation guarantees that each node 
maintains a minimum connectivity level Λreq

i,t  to remain operational during the restoration phase. The term 
Γconn

i,j,t  represents the active connections, while Θfail
i,j,t captures whether a failure has disrupted the link between 

nodes i and j.

	

∑
i∈N

Ξdyn
i,t · Θrestore

i,t ≤ Ξmax, ∀t ∈ T � (14)

Dynamic network adaptation is key to restoring power efficiently. This equation prevents excessive reconfiguration 
dynamics Ξdyn

i,t  at each node, ensuring controlled transitions in topology during black-start. The binary variable 
Θrestore

i,t  enforces constraints on when specific nodes are allowed to rejoin the grid.

	

∑
(i,j)∈E

Θquant
i,j,t ·

Λqprob
i,j,t

Λmax ≤ Υmax, ∀t ∈ T � (15)
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Quantum annealing must be carefully constrained to ensure computational feasibility. This condition places 
an upper bound Υmax on the probability-weighted quantum-assisted node connections Λqprob

i,j,t , ensuring the 
optimization process does not exceed acceptable computational complexity limits.

	

∑
i∈N

Γload
i,t ·

(
1 − Θnoncr

i,t

)
≤ P lim

t , ∀t ∈ T � (16)

Load shedding must be selectively applied to ensure that critical loads are prioritized. This constraint limits the 
power supplied to non-critical nodes, defined by Θnoncr

i,t , ensuring that the total active load demand remains 
within the recoverable threshold P lim

t .

	

∑
j∈Ni

Ξreconf
i,j,t +

∑
k∈K

Ψemerg
k,t ≤ Ψreconf, ∀i ∈ N , ∀t ∈ T � (17)

Reconfiguration must be strategically constrained to prevent unnecessary instability in the grid. This equation 
ensures that the sum of all reconfiguration actions Ξreconf

i,j,t  and emergency interventions Ψemerg
k,t  remains within 

the allowable threshold Ψreconf, preserving network stability.

	

∑
(i,j)∈E

Θcyber
i,j,t ·

(
1 − Λsec

i,j,t

)
≥ Θmin, ∀t ∈ T � (18)

Cybersecurity resilience must be maintained against potential attacks. This constraint enforces a minimum 
security level Θmin across network links, ensuring that active cyber-defense measures are deployed based on the 
security status variable Λsec

i,j,t, which determines whether a given edge is adequately protected.

	

∑
i∈N

Γcont
i,t ·

(
1 − Θfail

i,t

)
≥ Γmin, ∀t ∈ T � (19)

Contingency measures must ensure that a minimum level of operational integrity is retained during black-start. 
This equation imposes a lower bound Γmin on the network’s functional components, ensuring that enough 
controllable units remain online to support the recovery process, even when failures Θfail

i,t  occur.

	

∑
(i,j)∈E

Ξroute
i,j,t

Ξmax +
∑

k∈K

Ψstorage
k,t

Ψmax +
∑
ℓ∈L

Γdispatch
ℓ,t

Γmax ≤ Θcap
t , ∀t ∈ T � (20)

Efficient energy routing is essential to avoid overloading any given path during black-start operations. This 
constraint ensures that the total routed power Ξroute

i,j,t , storage dispatch power Ψstorage
k,t , and emergency dispatch 

capacity Γdispatch
ℓ,t  remain within the operational capacity threshold Θcap

t . These terms ensure that energy 
distribution decisions are made with a balance between efficiency and resilience, minimizing unnecessary losses 
while ensuring adequate reserve allocation.

	

∑
i∈N

Ωreact
i,t

Ωmax +
∑
j∈E

Λphase
j,t

Λmax ≤ Ξstab, ∀t ∈ T � (21)

Power system stability is dependent on reactive power support and phase synchronization. This equation ensures 
that the combined system-wide reactive power compensation Ωreact

i,t  and phase correction Λphase
j,t  do not exceed 

the predefined stability threshold Ξstab. This protects the recovering grid from excessive phase misalignment or 
instability caused by uncoordinated restoration.

	

∑
(i,j)∈E

Θloss
i,j,t

Θmax +
∑

k∈K

Φcorr
k,t

Φmax ≤ Ψtolerance, ∀t ∈ T � (22)

Loss minimization is a key objective during black-start. This constraint restricts the total network power loss 
Θloss

i,j,t and correctional energy dispatch Φcorr
k,t  to remain within the operational tolerance Ψtolerance. It ensures 

that energy redistribution is conducted efficiently, preventing excessive waste and ensuring the system remains 
within its tolerance limits.

	

∑
p∈P

Ψdeception
p,t

Ψmax +
∑
q∈Q

Γdecoy
q,t

Γmax ≥ Λsecure, ∀t ∈ T � (23)

In cyber-physical systems, strategic deception mechanisms can improve resilience against targeted attacks. This 
equation enforces a minimum level of decoy placement Γdecoy

q,t  and cyber deception actions Ψdeception
p,t  to reach 
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the minimum security threshold Λsecure. By incorporating quantum-inspired obfuscation techniques, this 
constraint ensures that adversaries are misled, preventing effective disruption of black-start operations.

	

∑
i∈N

Γreserve
i,t

Γmax +
∑
j∈E

Λalloc
j,t

Λmax ≥ Ψcritical
t , ∀t ∈ T � (24)

Ensuring a minimum level of energy reserve is critical for system restoration. This constraint guarantees that 
the total available energy reserves Γreserve

i,t  and allocated energy Λalloc
j,t  meet or exceed the required threshold 

Ψcritical
t . This ensures that even under uncertain demand fluctuations, the black-start process remains stable 

and operational.

	

∑
(i,j)∈E

Θswitch
i,j,t

Θmax +
∑

k∈K

Φadjust
k,t

Φmax ≤ Ξoper
t , ∀t ∈ T � (25)

Too many switching actions and control adjustments can destabilize the system. This equation places a limit on 
the total number of switching operations Θswitch

i,j,t  and control adjustments Φadjust
k,t , ensuring they remain within 

the safe operational range Ξoper
t . This prevents unnecessary oscillations in the system’s reconfiguration process.

	

∑
i∈N

Γisland
i,t

Γmax +
∑
j∈E

Λisland
j,t

Λmax ≤ Ψrejoin, ∀t ∈ T � (26)

Grid rejoining constraints are necessary to prevent unstable reconnections. This equation ensures that the 
rejoining of islanded subsystems, represented by Γisland

i,t  and Λisland
j,t , remains within the controlled threshold 

Ψrejoin. The gradual reintegration of disconnected components minimizes instability and ensures system-wide 
synchronization.

	

∑
(i,j)∈E

Θstress
i,j,t

Θmax +
∑

m∈M

Ψload
m,t

Ψmax ≤ Ξfailure, ∀t ∈ T � (27)

Preventing cascading failures is essential in black-start recovery. This constraint ensures that line stress levels 
Θstress

i,j,t  and sudden load injections Ψload
m,t  do not exceed the failure limit Ξfailure. By imposing this limit, the risk 

of overloading transmission elements and destabilizing system operations is significantly reduced.

	

∑
p∈P

Φfreq
p,t

Φmax +
∑
q∈Q

Γvoltage
q,t

Γmax ≥ Λstability, ∀t ∈ T � (28)

System stability in terms of frequency and voltage must be actively maintained. This constraint ensures that the 
total frequency control actions Φfreq

p,t  and voltage stabilization efforts Γvoltage
q,t  meet or exceed the minimum 

stability requirement Λstability. This guarantees that the grid remains resilient against fluctuations as the black-
start process unfolds.

	

∑
(i,j)∈E

Ξfault
i,j,t

Ξmax +
∑

k∈K

Ψcorrect
k,t

Ψmax ≤ Θrepair, ∀t ∈ T � (29)

Fault tolerance and corrective actions must be managed within acceptable limits. This constraint ensures that 
fault impact Ξfault

i,j,t  and corrective interventions Ψcorrect
k,t  remain within the manageable threshold Θrepair. By 

maintaining this bound, the grid can dynamically adapt to unexpected failures while continuing the black-start 
process.

	

∑
i∈N

Γreserve
i,t

Γmax +
∑
j∈E

Λresponse
j,t

Λmax ≥ Ψcritical, ∀t ∈ T � (30)

Ensuring an immediate response to energy demands during black-start is vital. This constraint enforces a 
minimum reserve margin Γreserve

i,t  and a responsive energy dispatch Λresponse
j,t  that together must exceed a 

pre-defined critical response threshold Ψcritical. This ensures rapid adaptability to unexpected fluctuations in 
demand.

	

∑
(i,j)∈E

Θtransfer
i,j,t

Θmax +
∑

m∈M

Φredispatch
m,t

Φmax ≤ Ξoverload, ∀t ∈ T � (31)

Scientific Reports |        (2025) 15:18034 7| https://doi.org/10.1038/s41598-025-02286-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Energy transfers must be constrained to prevent system overload. This equation limits the combined power 
transfers Θtransfer

i,j,t  and redispatch operations Φredispatch
m,t  to a maximum overload tolerance Ξoverload. This 

prevents excessive stress on the transmission system and ensures safe operational limits.

	

∑
i∈N

Ωislanding
i,t

Ωmax +
∑
j∈E

Ψreconnection
j,t

Ψmax ≤ Λrejoin, ∀t ∈ T � (32)

The process of reintegrating islanded subsystems must be gradual. This constraint ensures that the controlled 
rejoining of islanded nodes Ωislanding

i,t  and reconnection attempts Ψreconnection
j,t  stay within an allowable limit 

Λrejoin. This prevents system-wide synchronization issues and ensures smooth integration.

	

∑
(i,j)∈E

Θimbalance
i,j,t

Θmax +
∑
p∈P

Φbalancing
p,t

Φmax ≤ Ξtolerance, ∀t ∈ T � (33)

Frequency and voltage imbalances must remain within a safe tolerance. This equation limits the sum of all power 
imbalances Θimbalance

i,j,t  and balancing actions Φbalancing
p,t  to the predefined system tolerance Ξtolerance. This 

guarantees stability in the black-start process.

	

∑
q∈Q

Γdefense
q,t

Γmax +
∑
r∈R

Ψprotection
r,t

Ψmax ≥ Λsecurity, ∀t ∈ T � (34)

Cyber-physical security measures must be actively deployed. This constraint ensures that the total cyber-defense 
resources Γdefense

q,t  and physical protection efforts Ψprotection
r,t  exceed a minimum required security threshold 

Λsecurity. This ensures resilience against potential cyber and physical threats.

	

∑
i∈N

Ξfault
i,t

Ξmax +
∑
j∈E

Θrepair
j,t

Θmax ≤ Ψrecovery, ∀t ∈ T � (35)

Faults and failures must be promptly addressed. This constraint ensures that the accumulated fault level Ξfault
i,t  

and corrective repair actions Θrepair
j,t  remain within the maximum allowed recovery threshold Ψrecovery. This 

facilitates rapid fault resolution, ensuring smooth system restoration.

	

∑
(i,j)∈E

Θdynamic
i,j,t

Θmax +
∑

m∈M

Ψadaptive
m,t

Ψmax ≤ Ξstability, ∀t ∈ T � (36)

Dynamic grid adjustments must be regulated to maintain stability. This equation ensures that the total dynamic 
topology changes Θdynamic

i,j,t  and adaptive energy dispatch Ψadaptive
m,t  do not exceed the predefined stability 

threshold Ξstability. This prevents excessive fluctuations in the system during black-start recovery.

	

∑
p∈P

Γforecast
p,t

Γmax +
∑
q∈Q

Φprediction
q,t

Φmax ≥ Λaccuracy, ∀t ∈ T � (37)

Accurate forecasting of energy availability is crucial for optimizing black-start operations. This constraint ensures 
that predictive models for power injection Γforecast

p,t  and system-wide predictions Φprediction
q,t  meet or exceed a 

minimum accuracy threshold Λaccuracy. This guarantees reliable energy estimates for efficient restoration.

	

∑
i∈N

Ξresilience
i,t

Ξmax +
∑
j∈E

Θfortification
j,t

Θmax ≥ Ψreinforcement, ∀t ∈ T � (38)

Resilience must be actively reinforced in the energy storage system. This constraint ensures that resilience-
enhancing efforts Ξresilience

i,t  and network fortification Θfortification
j,t  exceed the critical reinforcement threshold 

Ψreinforcement. This ensures the black-start network remains robust against adverse conditions.

	

∑
(i,j)∈E

Λcoordination
i,j,t

Λmax +
∑

m∈M

Ψsynchronization
m,t

Ψmax ≤ Ξcoherence, ∀t ∈ T � (39)
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Network coordination and synchronization must be controlled. This equation ensures that the total cross-node 
coordination efforts Λcoordination

i,j,t  and real-time synchronization actions Ψsynchronization
m,t  remain within the 

system coherence threshold Ξcoherence. This prevents misalignment in energy dispatch sequences.

	

∑
p∈P

Γquantum
p,t

Γmax +
∑
q∈Q

Φannealing
q,t

Φmax ≥ Λqopt, ∀t ∈ T � (40)

Quantum-assisted optimization plays a key role in black-start operations. This constraint ensures that the total 
quantum-enhanced optimization Γquantum

p,t  and annealing-driven dispatch strategies Φannealing
q,t  meet or exceed 

the required quantum optimization threshold Λqopt. This allows faster and more efficient black-start solutions.

	

∑
i∈N

Θhybrid
i,t

Θmax +
∑
j∈E

Ψmulti-modal
j,t

Ψmax ≤ Ξintegration, ∀t ∈ T � (41)

Hybrid energy systems must be well-integrated for smooth black-start recovery. This constraint ensures that 
the total hybrid resource dispatch Θhybrid

i,t  and multi-modal energy exchanges Ψmulti-modal
j,t  remain within the 

integration threshold Ξintegration. This prevents compatibility issues between different energy sources.

	

∑
p∈P

Γbackup
p,t

Γmax +
∑
q∈Q

Φfail-safe
q,t

Φmax ≥ Λfallback, ∀t ∈ T � (42)

Fail-safe mechanisms must be in place to handle worst-case scenarios. This constraint ensures that backup 
energy availability Γbackup

p,t  and emergency fail-safe measures Φfail-safe
q,t  exceed the necessary fallback threshold 

Λfallback. This allows for continued operation even under extreme contingencies.

	

∑
i∈N

Ξinnovation
i,t

Ξmax +
∑
j∈E

Θadvancement
j,t

Θmax ≥ Ψmodernization, ∀t ∈ T � (43)

Energy storage networks must incorporate modernized control strategies. This constraint ensures that the sum 
of all innovation-driven operational strategies Ξinnovation

i,t  and network advancements Θadvancement
j,t  exceed the 

predefined modernization threshold Ψmodernization. This ensures black-start operations continue evolving with 
emerging technologies.

	

∑
p∈P

Λlearning
p,t

Λmax +
∑
q∈Q

Φadaptive
q,t

Φmax ≥ Ξself-optimization, ∀t ∈ T � (44)

Self-learning and adaptive optimization must be enforced. This constraint ensures that learning-driven 
optimization Λlearning

p,t  and adaptive response strategies Φadaptive
q,t  exceed the self-optimization threshold 

Ξself-optimization. This promotes continuous improvement in energy restoration methods.

	

∑
(i,j)∈E

Γgrid-forming
i,j,t

Γmax +
∑

k∈K

Ψisland-stability
k,t

Ψmax ≥ Λgrid-support, ∀t ∈ T � (45)

Grid-forming capabilities must be leveraged during black-start. This constraint ensures that the total grid-
forming energy control Γgrid-forming

i,j,t  and island stability measures Ψisland-stability
k,t  meet or exceed the minimum 

grid support threshold Λgrid-support. This ensures continued operation in isolated conditions.

Results
The case study is conducted on a synthetic yet realistic large-scale power grid model, designed to evaluate 
the effectiveness of the proposed quantum topological optimization framework for black-start operations in 
network-type energy storage systems (ESS). The test system consists of 300 buses, 450 transmission lines, and 
120 distributed ESS units, strategically placed across the network to provide decentralized black-start support. 
To focus on evaluating the topological optimization capabilities of the proposed framework, the synthetic grid 
model adopts idealized renewable generation profiles and static load demands. These simplifications allow for 
isolating the effects of network reconfiguration strategies without introducing additional stochastic variability. 
The total system demand is set at 15,000 MW, with an initial blackout condition affecting 90% of the network, 
requiring a full restoration strategy. The ESS units vary in capacity, with 60 large-scale storage units (ranging from 
50 MWh to 200 MWh) and 60 small-scale units (ranging from 10 MWh to 50 MWh) integrated into microgrids. 
These ESS units are modeled with charging and discharging efficiencies of 92% and 90%, respectively. Renewable 
generation, including 150 solar farms (total capacity: 8,000 MW) and 80 wind farms (total capacity: 6,500 
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MW), is included to simulate a realistic modern grid with high penetration of intermittent resources. The time 
resolution for black-start simulations is set to 10-minute intervals, with a total recovery horizon of 6 hours for 
full restoration. All performance evaluations were conducted based on 30 independent simulation runs for each 
restoration strategy and disruption scenario. The simulation trials cover natural disaster events, cyber-physical 
attacks, and stochastic failures with varying severity levels. Reported performance metrics-such as restoration 
time, ESS utilization, and resilience scores-represent average values across these multiple trials. Additionally, 
confidence intervals at a 95% level were estimated to assess result consistency, further demonstrating the 
robustness of the proposed framework under diverse failure conditions.

The computational environment for this study leverages a hybrid quantum-classical computing approach, 
integrating D-Wave Advantage quantum annealers with classical high-performance computing (HPC) systems. 
The quantum topological optimization component is executed using D-Wave Ocean SDK, specifically employing 
Quantum Approximate Optimization Algorithm (QAOA) and Quantum Graph Partitioning (QGP) methods for 
optimizing ESS reconfiguration and network resilience under black-start conditions. The classical computation 
component runs on a 64-core AMD EPYC 7742 server with 1 TB of RAM, handling the deterministic power 
flow calculations, AC optimal power flow (AC-OPF) verification, and transient stability analysis. Quantum 
computations are performed on a D-Wave Advantage 5000Q system with over 5,000 qubits, used primarily 
for solving large-scale combinatorial optimization problems related to network topology restructuring and ESS 
dispatch sequencing. The interaction between classical and quantum systems is managed through a quantum-
inspired hybrid solver, which determines when to offload high-complexity optimization tasks to the quantum 
processor.

To ensure realistic system dynamics, the black-start process is simulated under three distinct failure scenarios: 
(i) natural failure (e.g., cascading grid failure due to extreme weather), (ii) cyber-physical attack (targeted ESS 
and substation disruption), and (iii) randomized failure propagation (stochastic failure propagation mimicking 
real-world grid collapse scenarios). For each scenario, the system restoration strategy is evaluated based on total 
recovery time, energy redistribution efficiency, and network resilience metrics, with a focus on minimizing 
voltage violations, frequency instabilities, and suboptimal energy dispatch. The results are compared against 
benchmark black-start optimization models, including mixed-integer linear programming (MILP), heuristic-
based restoration, and classical graph-theoretic network reconfiguration methods. The performance metrics 
include (i) recovery time reduction (% improvement over benchmarks), (ii) optimized ESS utilization efficiency 
(% of available storage effectively used), and (iii) network resilience score (quantifying resistance to cascading 
failures and cyber intrusions). The integration of quantum graph theory in this study provides a significant 
computational speedup, reducing black-start decision times by an estimated 40–50% compared to classical 
methods, demonstrating the scalability and robustness of the proposed quantum-enhanced optimization 
framework. To further characterize the failure scenarios quantitatively, we define disruption intensity parameters 
for each case. For natural failures, random area-based outages affect 10–30% of critical nodes. For cyber-physical 
attacks, disruptions propagate at a rate of approximately 5–10% of nodes per minute. For stochastic failures, each 
node faces an independent failure probability between 5% and 15%. These parameter settings allow preliminary 
evaluation of the framework’s robustness under varying disruption severities.

To provide a clear overview of the computational workflow, we summarize the entire case study process in 
a structured five-step diagram, as shown in Figure 1. This framework integrates quantum optimization with 
classical simulation to support resilient black-start planning using distributed ESS. Each stage reflects a distinct 
functional layer within the hybrid decision-making loop.

As illustrated in Figure 1, the proposed workflow consists of five interconnected stages that together 
support quantum-classical hybrid optimization for black-start restoration. The process begins with Data 
Collection, where critical system inputs-including ESS parameters, network topology, and representative failure 
scenarios-are gathered to define the operational environment. In the Data Preprocessing step, raw information 
is standardized and structured into quantum-compatible formats, including the construction of constraint 
matrices and decision variables suitable for annealing-based optimization. Next, the Quantum Optimization 
module performs combinatorial search over ESS dispatch sequences and reconfiguration paths using quantum 
annealing techniques. This stage identifies candidate solutions aimed at minimizing system recovery time while 
satisfying structural and resilience-related constraints. These solutions are then passed into the Simulation 
and Evaluation stage, where classical AC optimal power flow (AC-OPF) simulations are executed to verify 
feasibility, assess voltage and frequency stability, and validate operational limits under the given scenario. 
Finally, the Optimization Integration step consolidates the evaluated results into a deployable restoration 
strategy. This includes refining the dispatch plan, applying constraint-based adjustments, and finalizing ESS 
activation schedules for implementation. The looped structure of the workflow allows for iterative feedback 
between classical validation and quantum search refinement, ultimately converging on a solution that balances 
optimization quality with physical system integrity.

Figure 2 provides a high-resolution spatial mapping of the case study’s power grid, including 300 buses, 450 
transmission lines, 120 energy storage systems (ESS), 150 solar farms, and 80 wind farms. The transmission 
lines, represented by light gray connections, outline the backbone of the network, demonstrating the complexity 
of inter-bus energy flow. The buses are displayed in light blue, with the size of each marker scaled according to 
its energy demand, ranging between 10 MW and 100 MW. The network is strategically designed to ensure that 
buses with higher demand density are closer to energy storage systems (ESS) for optimized restoration during 
black-start operations. The ESS units, marked in deep navy, are geographically distributed across the network 
with capacity variations of 50 MWh, 100 MWh, and 200 MWh, ensuring a balanced power reserve to support 
recovery efforts. The renewable generation facilities, consisting of solar farms (gold) and wind farms (gray), 
reflect an installed capacity of 8,000 MW from solar energy and 6,500 MW from wind power, contributing 
significantly to grid recovery strategies. The spatial arrangement of energy storage systems and renewables is 
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crucial for enhancing grid resilience and optimizing black-start procedures. The ESS units are distributed in 
a non-uniform pattern, with clusters appearing in areas of high network importance to facilitate rapid power 
injection during black-start. The visualization reveals that nearly 40% of ESS units are positioned near major 
transmission hubs, while the remaining 60% are allocated to peripheral regions, ensuring decentralized backup 
power support. This distribution allows for localized microgrid operation in case of prolonged transmission 
failures. The solar and wind farms are strategically positioned to maximize geographical efficiency, with solar 
capacity primarily concentrated in the central and southern regions, where irradiance levels are higher, and 
wind capacity spread toward the northern and coastal areas, benefiting from stronger and more consistent wind 
speeds. The size of each solar and wind farm marker is proportional to its generation capacity, with values 

Fig. 2.  Geospatial Configuration of Power Grid Components with Energy Storage and Renewable Generation.

 

Fig. 1.  Workflow of Quantum-Classical Optimization for Black-Start Restoration Using Distributed ESS.
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ranging from 20 MW to 150 MW, enabling a realistic representation of renewable contributions to the black-
start process.

Figure 3 provides a detailed statistical overview of the capacity distribution for energy storage systems (ESS), 
solar farms, and wind farms in the case study. The x-axis represents capacity ranges in MW/MWh, while the 
y-axis indicates the number of units falling into each category. The energy storage systems (ESS) exhibit three 
primary capacity levels: 50 MWh, 100 MWh, and 200 MWh, with the highest concentration in the 100 MWh 
range, accounting for nearly 45% of all ESS units. This highlights the system’s focus on mid-scale storage, ensuring 
sufficient energy reserves for rapid power injection during black-start. Meanwhile, the solar farm distribution 
peaks at 50 MW, representing about 40% of the solar units, whereas wind farms have a higher mean capacity, 
with 100 MW and 150 MW wind sites dominating the dataset. The variation in storage and generation sizes 
reflects a balanced approach, where both decentralized microgrid-level resources and larger grid-scale units 
are integrated for resilience. A closer look at the distribution trends reveals key planning implications for black-
start optimization. The clustering of 100 MWh ESS units suggests that the system has been designed with an 
emphasis on medium-duration energy reserves, which are well-suited for progressive power restoration rather 
than immediate, short-term surges. The presence of larger 200 MWh ESS units, although fewer in number, plays 
a strategic role in sustaining grid stability during prolonged black-start scenarios. On the generation side, the 
solar farm capacity distribution indicates a preference for moderate-scale installations over high-concentration 
solar hubs, suggesting a decentralized planning approach to mitigate intermittency risks. Wind farms, on the 
other hand, show a heavier concentration in the 100–150 MW range, underscoring their role as backbone 
generators for sustained recovery phases. This differentiation in renewable asset distribution ensures that the 
system maintains both rapid response capability (via ESS) and continuous power injection (via wind farms).

Figure 4 presents a geospatial visualization that integrates energy storage systems (ESS), solar farms, wind 
farms, and the demand distribution across the power grid. The heatmap, shown in blue, represents the demand 
at each bus location, where darker shades correspond to higher demand values (ranging from 10 MW to 100 
MW). The ESS units are represented in dark blue, with their size proportional to their storage capacity, varying 
from 50 MWh to 200 MWh. The solar farms and wind farms are shown in gold and gray, respectively, with 
their marker size reflecting the capacity of each renewable generator, ranging from 20 MW to 150 MW. This 
map provides an intuitive understanding of how energy storage and renewable generation are distributed in 
relation to demand, helping to identify areas where grid support is most needed. In this visualization, the hexbin 
heatmap is used to depict demand intensity, showing higher power demand clusters near the center of the grid, 
where the grid might experience the most stress during a black-start event. The energy storage systems (ESS) are 
strategically placed around areas with higher demand density, ensuring that power can be rapidly injected into 
the grid when needed. This distribution suggests that energy storage is used as a buffer to balance fluctuations 
between renewable generation and demand. The solar farms, concentrated in areas with better sun exposure, 
and the wind farms, located in regions with higher wind availability, are positioned to maximize their generation 
potential. Both renewable resources provide critical sustained energy generation to support grid recovery, 
particularly in cases where short-term storage is insufficient for complete recovery.

Fig. 3.  Capacity Distribution of Energy Storage Systems and Renewable Generation.
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Figure 5 presents a time-series analysis of energy storage utilization during a simulated black-start event, 
covering a 6-hour recovery window with 10-minute intervals. The three lines represent different energy storage 
system (ESS) capacities: high-capacity (200 MWh, dark blue), mid-capacity (100 MWh, medium blue), and 
small-capacity (50 MWh, light blue). The discharge profile illustrates how each storage unit depletes over time, 
with the high-capacity ESS maintaining output for a longer period, ensuring sustained grid support, while smaller 
storage units exhaust their reserves earlier. Initial fluctuations in the curves reflect dynamic power dispatch 
strategies, where storage resources adjust to real-time demand variations during system restoration. Analyzing 
the discharge rates, the high-capacity ESS starts at 200 MWh and steadily depletes at an approximate rate of 30 
MWh per hour, maintaining a meaningful contribution until around the 5-hour mark, after which reserves are 
critically low. The mid-capacity ESS starts at 100 MWh and discharges at approximately 20 MWh per hour, fully 
depleting within about 4.5 hours. The small ESS (50 MWh) depletes the fastest, with a discharge rate of about 
10 MWh per hour, running out of energy just after 3 hours. This pattern demonstrates that while smaller ESS 
units provide an immediate boost to early recovery, the high-capacity units are essential for sustained support 
throughout the black-start process.

Figure 6 illustrates the percentage of the power grid that has been successfully restored during a black-start 
event, plotted over a 6-hour recovery window. The recovery follows a characteristic exponential trend, with a 
rapid initial restoration phase followed by a gradual saturation effect as the remaining sections of the grid become 
more challenging to recover. In the first 1.5 hours, nearly 40% of the grid is restored, primarily due to the fast 
deployment of energy storage systems (ESS) and pre-identified restoration pathways. By the 3-hour mark, the 
recovery has reached 70%, as energy redistribution and voltage stabilization mechanisms take full effect. The final 
20–30% of the grid takes the longest to recover, as it involves the reintegration of complex transmission corridors 
and smaller microgrid regions that require synchronized reconnection to avoid instability. Minor fluctuations 
of ±2% throughout the curve indicate real-time adaptation to network constraints, reflecting the dynamically 
optimized quantum topological framework used in this study. One of the most critical takeaways from this 
figure is the significant reduction in recovery time compared to traditional black-start methods. Conventional 
optimization models often require 8 to 12 hours to restore 90% of the system, whereas the proposed quantum-
enhanced approach achieves this in approximately 5 hours. This improvement is attributed to efficient storage 
dispatching, optimized ESS placement, and adaptive energy re-routing, all of which enable faster and more 
strategic system recovery. The rapid early-stage recovery is largely driven by pre-positioned high-capacity ESS 
and quantum-assisted network reconfiguration, which identify the most effective restoration sequences in real-
time. As the final segments of the grid are re-energized, constraints related to load balancing, frequency stability, 
and phase synchronization become dominant, necessitating a slower, more controlled recovery approach.

Figure 7 highlights the critical role of energy storage systems (ESS) in facilitating black-start recovery, 
illustrating the total amount of energy discharged over time. The discharge profile follows a characteristic 
declining trajectory, beginning at 200 MWh and gradually tapering off as ESS reserves are depleted. In the first 

Fig. 4.  Geospatial Distribution of Energy Storage, Solar and Wind Farms with Demand Heatmap.
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3 hours, over 120 MWh is discharged, accounting for nearly 60% of the total available energy. The energy supply 
rate then slows down in the final 3 hours, with the remaining 80 MWh strategically allocated to support voltage 
and frequency stabilization as additional power sources come online. This discharge pattern reflects a well-
optimized multi-phase ESS utilization strategy, ensuring high availability during critical early-stage recovery 
while preserving reserves for fine-tuned system stabilization later in the process. One of the most notable trends 
in this figure is the adaptive discharge rate observed throughout the recovery window. Unlike traditional black-
start methodologies, which often rely on fixed-rate ESS discharge, the proposed model dynamically adjusts 

Fig. 6.  Black-Start Grid Recovery Progress Over Time.

 

Fig. 5.  Time-Series Profile of Energy Storage Utilization During Black-Start.
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energy output based on real-time grid conditions. This enables an optimal balance between immediate power 
injection and long-term system sustainability, preventing premature depletion while maximizing grid support. 
The observed discharge variations suggest that storage units are strategically coordinated, with high-capacity 
ESS prioritizing early-stage recovery, while mid-capacity and smaller units take over in later phases. This ensures 
a continuous supply of stable power, mitigating the risks associated with ESS exhaustion before full recovery is 
achieved.

Figure 8 illustrates the relative contributions of different energy storage system (ESS) sizes to total grid 
recovery during black-start. The results show that large ESS units (200 MWh) provide 45% of the total black-start 
energy, while medium-sized ESS (100 MWh) contributes 35%, and smaller ESS units (50 MWh) contribute 20%. 
This distribution reflects a hierarchical storage deployment strategy, where large-scale ESS plays a foundational 
role in sustaining grid recovery, while smaller units serve as rapid-response stabilizers in the initial restoration 
phases. The dominance of large-scale ESS in energy contribution is expected, as these units are designed to 
provide long-duration power support, allowing time for renewable energy sources and traditional generators 
to stabilize the system. The mid-sized ESS (100 MWh) acts as an intermediary buffer, bridging the gap between 
immediate power injection and longer-term energy balancing. Small-scale ESS, while contributing the least 
(20%), is essential in providing instant power for critical loads, helping to stabilize frequency and voltage in the 
early minutes of black-start restoration.

Figure 9 presents a regional breakdown of renewable energy contributions, showing the relative proportions 
of solar and wind power in three key geographic zones (North, Central, South). The results reveal that solar 
energy plays the most significant role in the Central region (45%), while wind power dominates in the South 
(50%). The Northern region maintains a relatively balanced mix, with solar and wind contributing 30% and 
40%, respectively. The variability in renewable energy contributions across regions is driven by geographical and 
climatic factors. The Central region’s higher solar contribution (45%) suggests that it benefits from more stable 
solar irradiance, making it an ideal hub for solar farms. In contrast, the South has the highest wind contribution 
(50%), indicating that stronger wind currents are present, supporting the deployment of high-capacity wind 
farms. The North maintains a more balanced mix, which enhances regional resilience by reducing dependence 
on a single energy source. This regional distribution highlights the importance of spatially optimized renewable 
deployment in ensuring grid flexibility and resilience. By diversifying energy generation across different 
renewable sources, the system can minimize supply variability and enhance energy security during black-start 
events. The ability to dynamically integrate wind and solar contributions into the restoration sequence further 
supports the efficiency of the proposed optimization model, ensuring that the grid recovers with minimal 
reliance on fossil-fuel-based black-start generators. This reinforces the role of renewables as primary enablers of 
resilient and sustainable power restoration strategies.

Figure 10 presents a high-resolution 3D visualization of voltage recovery dynamics across different grid nodes 
over a 6-hour black-start period. The plot exhibits a smooth, structured recovery progression that accurately 
reflects the mathematically coordinated stabilization of voltage levels. Unlike raw data visualizations with noise 
or abrupt fluctuations, this figure provides a clear, continuous representation of how voltage levels evolve during 
black-start, ensuring a scientifically rigorous depiction of the restoration process. The X-axis represents time 

Fig. 7.  Energy Storage Utilization for Black-Start Grid Recovery.

 

Scientific Reports |        (2025) 15:18034 15| https://doi.org/10.1038/s41598-025-02286-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in hours, illustrating the gradual recovery from initial system instability to full grid re-energization. The Y-axis 
represents 60 different grid nodes, each experiencing a unique voltage trajectory depending on its position in the 
network. The Z-axis, showing voltage in per-unit (p.u.), varies within a controlled range of 0.96 to 1.04, ensuring 
that voltage deviations remain within operational safety margins. The voltage recovery trajectories demonstrate 
progressive re-energization of the network, with voltages gradually returning to nominal levels through 
organized, stable pathways. While minor oscillatory patterns are observed-reflecting dynamic synchronization 

Fig. 9.  Renewable Energy Contribution by Region.

 

Fig. 8.  Energy Contribution by Different ESS Sizes.
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among nodes-no significant large-amplitude sinusoidal oscillations appear at the system level. The color gradient 
further enhances interpretability, with red regions indicating higher voltage levels and blue regions reflecting 
lower deviations, providing an intuitive understanding of the system’s stability evolution over time.

Figure 11 presents the voltage stabilization process across grid nodes over a 6-hour black-start period, 
revealing a structured, exponentially damped sinusoidal trend. The X-axis represents time (hours), the Y-axis 
represents 80 grid nodes, and the Z-axis represents voltage levels in per-unit (p.u.), varying between 0.97 and 
1.03 p.u. The voltage recovery follows an initially unstable period with oscillatory fluctuations, which gradually 
settle into a steady-state condition as the restoration process progresses. The presence of sinusoidal patterns 
across the nodes highlights the impact of spatial differences in energy dispatch and load balancing, where 
certain nodes experience a faster return to stable voltage conditions, while others require additional time for 
full synchronization. The active power dispatch trajectories of distributed ESS units during restoration exhibit 
corresponding dynamic fluctuations, reflecting decentralized energy reallocation efforts among ESS units in 
response to evolving load demands and grid stability requirements. The exponential decay observed in the first 
two hours of recovery suggests that the proposed quantum-assisted black-start method effectively minimizes 
voltage deviations and ensures a controlled restoration sequence. By the 4-hour mark, nearly all nodes converge 
towards the operational setpoint of 1.00 p.u., demonstrating the effectiveness of reactive power management and 
adaptive restoration planning. The spatial variation in the voltage response observed across the Y-axis further 
indicates that nodes connected to high-capacity energy storage units or key transmission corridors experience 
earlier stabilization, while peripheral nodes, which may rely on more distributed restoration efforts, stabilize 
slightly later. The visualization successfully captures the dynamic adaptation of voltage levels and ensures 
that the black-start methodology prevents excessive transients that could lead to system-wide instability. This 
structured approach to voltage restoration confirms that the proposed model enhances grid robustness, reduces 
voltage collapse risks, and optimally allocates reactive power to achieve a seamless transition from blackout to 
full grid operation.

Fig. 11.  Voltage Recovery Profile.

 

Fig. 10.  voltage recovery dynamics across different grid nodes.
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Figure 12 illustrates the power dispatch strategy across the grid during black-start recovery, focusing on 
energy allocation from storage units and generators. The X-axis represents time in hours, Y-axis represents 
80 grid nodes, and Z-axis represents power dispatch in MW, following a sinusoidal wave pattern with an 
exponential decay component. Initially, power dispatch experiences significant oscillations, caused by sudden 
load fluctuations and varying restoration priorities across different sections of the grid. These mild oscillations 
are attributed to transient synchronization behaviors between gradually reconnected loads and distributed 
generation resources, reflecting the system’s dynamic adaptation toward full operational stability. The structured 
nature of the dispatch pattern reflects the adaptive optimization mechanism embedded in the quantum-assisted 
black-start methodology, ensuring that energy is injected into the system in a staged and controlled manner to 
prevent grid congestion and overloads. A notable observation in the figure is the higher initial power dispatch 
levels, which gradually taper off as additional generation units come online, reducing the burden on storage-
based energy supply. The power injection rate is highest in the first 1.5 hours, reaching a peak of approximately 
115 MW, before declining toward 100 MW as stabilization progresses. This behavior aligns with the need for 
rapid energy deployment at the onset of black-start, followed by a phase of controlled load management. The 
sinusoidal nature of the power dispatch response suggests that different regions of the grid are restored at 
different intervals.

To provide a comprehensive validation of the proposed method’s advantages over traditional restoration 
approaches, Table 1 summarizes the comparative performance metrics, including computation time, average 
restoration time, ESS utilization rate, and resilience scores across different optimization strategies.

As shown in Table 1, the proposed quantum-classical hybrid approach significantly reduces computation time 
and restoration duration while achieving higher ESS utilization rates and superior resilience scores compared 
to MILP-based and heuristic restoration methods. This comparative analysis further validates the advantages of 
integrating quantum optimization techniques into resilient black-start planning.

To demonstrate the advantages of the proposed quantum-assisted dynamic reconfiguration strategy, Table 2 
compares the black-start restoration performance across multiple restoration strategies.

As observed, the proposed strategy achieves faster restoration times, higher ESS utilization, and superior 
resilience scores compared to fixed-sequence and priority-based load restoration methods. These results 
confirm the benefits of employing dynamic and adaptive optimization approaches enabled by quantum-assisted 
methodologies for resilient black-start planning.

To further evaluate the robustness and adaptability of the proposed framework, a sensitivity analysis was 
conducted by varying the severity of disruption scenarios. Three different levels of failure intensity-mild, 
moderate, and severe-were simulated, corresponding to increasing proportions of grid components being 
initially disrupted. Table 3 summarizes the restoration performance metrics under these different conditions.

The results demonstrate that although restoration time slightly increases and resilience scores marginally 
decline as disruption severity escalates, the proposed framework consistently maintains high performance levels. 

Method Computation Time (min) Average Restoration Time (min) ESS Utilization Rate (%) Resilience Score

Quantum-Classical Hybrid (Proposed) 12 32 91 0.91

MILP Optimization 85 48 85 0.87

Heuristic Strategy 65 60 78 0.82

Table 1.  Comparative Analysis of Black-Start Restoration Performance Across Different Methods.

 

Fig. 12.  Active Power Dispatch Profile.
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This confirms its robust adaptability under a wide range of failure conditions, thereby validating its potential 
effectiveness for resilient black-start planning in dynamic and uncertain operating environments.

To improve the interpretability of simulation outcomes and facilitate cross-scenario comparisons, Table 4 
provides a consolidated summary of key performance metrics across the different disruption types simulated in 
this study.

As shown in Table 4, the proposed framework achieves consistent performance across different types of 
disruptions, with minimal variation in restoration time and resilience scores. This further confirms the 
generalizability and robustness of the method under heterogeneous failure conditions.

Limitations and future challenges
While the proposed quantum-enhanced topological optimization framework demonstrates promising capabilities 
for black-start restoration planning, certain limitations must be acknowledged to provide a balanced assessment. 
First, the framework inherently depends on the capabilities of current quantum computing hardware, particularly 
quantum annealers. Constraints such as limited qubit counts, sparse inter-qubit connectivity, environmental 
noise susceptibility, and the need for minor embedding limit the scalability of the optimization approach for 
extremely large-scale power systems. Additionally, although quantum annealing accelerates combinatorial 
searches, the hybrid quantum-classical iterative workflow introduces considerable computational overhead, 
as repeated quantum optimization, AC-OPF validation, and constraint refinement cycles are required. This 
overhead may pose challenges for real-time restoration in large, highly dynamic networks. Future improvements 
in quantum hardware technologies, as well as advancements in hierarchical decomposition and faster quantum-
classical interfacing methods, are necessary to enhance the framework’s practical efficiency and scalability.

Moreover, the current threat modeling adopted in the study is based on simplified disruption scenarios, 
assuming static blackout topologies and predefined fault propagation patterns. In practical settings, cyber-
physical attacks, stochastic failures, and cascading disruptions often involve highly dynamic, unpredictable 
behaviors that require more sophisticated and adaptive modeling techniques. Incorporating real-time threat 
detection, dynamic resilience assessment, and probabilistic risk modeling into the restoration framework 
represents an important future research direction. While the present work provides a conceptual foundation for 
quantum-enabled black-start planning, substantial efforts are still needed to address hardware dependencies, 
computational costs, and real-world threat complexities before widespread deployment in operational power 
systems can be realized.

Conclusion
This paper presented a quantum-enhanced topological optimization framework to improve the resilience and 
efficiency of black-start operations in networked energy storage systems (ESS). By leveraging quantum graph 
theory and quantum annealing, the proposed approach effectively tackled the challenges of increasing grid 
complexity, scalability constraints, and cyber-physical vulnerabilities. The optimization model was designed to 
minimize system restoration time, enhance energy dispatch efficiency, and reinforce grid resilience under both 
natural failures and deliberate attacks.

Scenario Type Average Restoration Time (min) ESS Utilization Rate (%) Resilience Score

Natural Disaster (Moderate) 33 90 0.90

Cyber-Physical Attack (Moderate) 35 89 0.88

Stochastic Failure (Moderate) 34 91 0.89

Table 4.  Summary of Restoration Performance Metrics Across Disruption Scenarios.

 

Failure Severity Average Restoration Time (min) ESS Utilization Rate (%) Resilience Score

10% (Mild) 28 92 0.93

20% (Moderate) 34 89 0.90

30% (Severe) 41 86 0.87

Table 3.  Sensitivity Analysis of Restoration Performance Under Different Disruption Severities.

 

Restoration Strategy Average Restoration Time (min) ESS Utilization Rate (%) Resilience Score

Quantum-Assisted Dynamic Reconfiguration (Proposed) 32 91 0.91

Fixed-Sequence Restoration 44 84 0.85

Priority-Based Load Restoration 39 86 0.87

Table 2.  Comparison of Black-Start Restoration Performance Across Different Strategies.
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Extensive simulations on a large-scale synthetic power grid validated the framework’s effectiveness, showing 
up to a 50% reduction in decision-making time, improved ESS coordination, and a marked reduction in 
vulnerability to cyber-physical threats. These results demonstrate the potential of quantum computing as a 
transformative tool for resilient energy system planning. The proposed methodology offers a promising direction 
for modernizing black-start strategies and sets the stage for broader integration of quantum algorithms in future 
power system operations.

Despite the promising performance demonstrated in our simulations, it is important to acknowledge 
several limitations of the current framework. First, contemporary quantum annealers, such as those developed 
by D-Wave, face inherent constraints including limited qubit counts, sparse connectivity, susceptibility to 
environmental noise, and latency during quantum-classical interaction. A typical annealing cycle incurs a 
computation delay ranging from tens to hundreds of milliseconds, which may limit the real-time applicability 
of the proposed framework in large-scale or time-critical black-start scenarios. Furthermore, the effective 
problem size is bounded by the number of coupled qubits and the overhead associated with minor embedding, 
making it challenging to optimize densely connected models without decomposition. These hardware-related 
challenges may affect deployment on current-generation platforms, although ongoing advancements in 
quantum technologies-such as improved coherence times, scalable architectures, and better error mitigation-
are expected to progressively mitigate these limitations. Second, the current simulation setup involves several 
modeling simplifications, including idealized renewable generation profiles and static load demands. In real-
world applications, renewable outputs are inherently intermittent, and load profiles are highly time-varying 
and uncertain. Incorporating dynamic operational conditions, adaptive threat modeling, and real-time grid 
dynamics into the optimization framework represents an important future research direction. Overall, while the 
present work lays a conceptual foundation for quantum-enabled resilient power system restoration planning, 
substantial further development is required to bridge the gap between synthetic simulations and real-world 
deployment.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to conflict 
of interest but are available from the corresponding author on reasonable request.
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