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As modern power grids grow increasingly complex with the widespread deployment of renewable
energy and distributed energy storage systems (ESS), ensuring robust and resilient black-start
capabilities has become a critical challenge. Traditional black-start approaches, which typically

rely on centralized hydro or diesel generators, are increasingly inadequate due to rising network
complexity, the stochastic nature of renewables, and growing exposure to cyber-physical threats.

To overcome these limitations, this study introduces a quantum-enhanced framework for dynamic
network reconfiguration and topological optimization of ESS to support black-start restoration. The
proposed method leverages quantum graph theory and quantum annealing to dynamically determine
optimal ESS connectivity and energy redistribution pathways, enabling rapid grid recovery under
diverse failure scenarios, including those involving cyber-physical disruptions. By integrating quantum
annealing algorithms, the framework efficiently addresses the combinatorial complexity of large-
scale ESS placement and dispatch, outperforming traditional heuristic and classical optimization
techniques in both computational speed and solution quality. The approach is formulated through

a comprehensive mathematical model that captures key interactions between network topology,
energy flow dynamics, and black-start performance indicators such as restoration time, efficiency,
and resilience. Simulation results on a 300-bus synthetic power grid with high levels of renewable
penetration demonstrate that the proposed quantum-assisted strategy reduces restoration decision
time by up to 50%, optimizes energy allocation, and significantly improves system robustness. These
findings highlight the transformative potential of quantum computing in enabling intelligent, adaptive
black-start planning, offering a powerful tool for enhancing the resilience of future energy systems.

Keywords Black-start energy management, Quantum-assisted grid optimization, Distributed energy storage
systems, Power grid resilience, Renewable integration under uncertainty, Cyber-physical security, Topological
reconfiguration

The growing dependence on networked energy storage systems (ESS) in modern power grids has highlighted the
urgent need for more resilient and efficient black-start capabilities. Black-start refers to the process of restoring
power to the grid following a total or partial outage without relying on external electricity sources!. Traditionally,
this process has depended on large-scale hydroelectric facilities and diesel generators to supply the initial
restart energy’. However, the transition toward renewable energy, distributed ESS, and smart grid architectures
presents new challenges for conventional black-start strategies. These include the intermittent nature of
renewable generation, increasingly complex grid topologies, and heightened exposure to cyber-physical risks.
As a result, there is a pressing need for advanced optimization techniques to enable the dynamic coordination
and reconfiguration of ESS networks, ensuring faster and more robust grid restoration under uncertain and
adverse conditions®*.

Existing studies on black-start optimization primarily focus on classical optimization techniques such as
mixed-integer linear programming, heuristic approaches, and robust control strategies to allocate resources
and optimize restoration sequences®. However, as grid infrastructures become increasingly complex, these
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traditional approaches struggle with scalability, combinatorial complexity, and real-time adaptability. The rise of
quantum computing has introduced new possibilities for addressing such computationally intractable problems
by leveraging quantum parallelism and probabilistic computation®-8. In particular, quantum graph theory and
quantum annealing have emerged as powerful tools to tackle high-dimensional optimization problems that
involve dynamic network reconfiguration, resilience enhancement, and energy flow management. Despite the
promising potential of quantum-inspired methods, their application to black-start optimization in network-type
ESS remains largely unexplored’.

To address these challenges, this paper proposes a novel quantum topological optimization framework for
enhancing black-start capabilities in network-type ESS. The core innovation of this study lies in leveraging
quantum graph theory to dynamically reconfigure ESS connectivity, optimize energy redistribution pathways,
and minimize restoration time under various failure scenarios. Unlike conventional black-start strategies that rely
on pre-determined restoration sequences and rule-based heuristics, our approach utilizes a quantum-inspired
probabilistic model to identify optimal energy dispatch patterns in a dynamically evolving grid environment.
By integrating quantum annealing into the optimization process, this framework effectively handles the
combinatorial complexity of ESS placement and energy routing, offering a more scalable and efficient alternative
to classical methods. The proposed model not only ensures a faster restoration process but also enhances
resilience by incorporating cyber-physical attack mitigation strategies within the black-start planning paradigm.

From a methodological perspective, this study develops a rigorous mathematical framework to capture
the interplay between network topology, energy redistribution, and resilience in black-start scenarios. The
optimization model consists of a multi-objective function that minimizes black-start recovery time, maximizes
energy redistribution efficiency, and ensures network resilience against failures and cyber threats. The
constraints imposed on the system include energy balance, network connectivity, ESS capacity limitations,
power dispatch requirements, voltage and frequency stability, contingency planning, and quantum-enhanced
decision constraints. The incorporation of quantum graph-based analysis allows the identification of optimal
ESS configurations that maintain stability even under extreme disruption conditions. Moreover, quantum
annealing is used to solve the large-scale combinatorial problem associated with reconfiguring network-type
ESS, significantly reducing computational complexity and solution time. The uniqueness of this paper lies
in its integration of quantum computing principles into the black-start optimization domain, a field that has
traditionally been dominated by classical computational approaches. While previous works have explored robust
and stochastic optimization for power system restoration, this study is the first to employ quantum-inspired
topological optimization for dynamically restructuring energy storage networks. Additionally, the proposed
framework is designed to be resilient against cyber-physical attacks, ensuring that black-start procedures remain
secure and efficient even in the presence of adversarial disruptions. The hybridization of quantum graph theory
with energy system resilience modeling represents a paradigm shift in how black-start strategies are formulated
and executed, paving the way for a new generation of intelligent, self-adaptive grid recovery mechanisms.

This research makes four key contributions. First, it introduces a quantum topological optimization framework
that leverages quantum graph theory for dynamically reconfiguring network-type ESS to support rapid and
resilient black-start operations. Second, it incorporates quantum annealing as a powerful optimization tool to
efficiently solve the large-scale combinatorial problem of ESS placement and energy dispatch, outperforming
conventional heuristics in both speed and solution quality. Third, it enhances resilience by integrating cyber-
physical attack mitigation strategies into the black-start optimization model, ensuring robust system recovery
under both natural failures and targeted disruptions. Finally, it provides a comprehensive mathematical
formulation that captures the complex interactions between network topology, energy redistribution, and black-
start dynamics, offering a novel approach to resilient power system restoration. By addressing the limitations of
traditional black-start methodologies and harnessing the computational advantages of quantum mechanics, this
study establishes a transformative framework for future energy system resilience planning.

Literature review

With the increasing penetration of renewable energy and the decentralization of power generation, black-start
planning has evolved to incorporate distributed resources such as microgrids, battery storage, and grid-forming
inverters. Researchers have explored stochastic and robust optimization techniques to account for the uncertainty
associated with renewable generation, load variations, and system contingencies. Probabilistic models have been
developed to enhance the reliability of black-start operations under fluctuating supply conditions. These methods
typically use scenario-based optimization, chance-constrained programming, and robust decision-making
frameworks to improve the flexibility of black-start strategies. Despite these advancements, the scalability of
classical optimization methods remains a challenge, especially when dealing with high-dimensional, dynamically
evolving grid configurations!®-12,

Recent efforts have introduced machine learning (ML) and artificial intelligence (AI) techniques to optimize
black-start processes. Reinforcement learning (RL) models, for instance, have been applied to develop adaptive
restoration strategies that learn optimal decision-making policies through repeated interactions with simulated
power systems'®. Supervised learning approaches have been utilized to train predictive models based on
historical restoration data, enabling faster and more efficient planning of black-start sequences. While ML-based
methods offer promising improvements in automation and adaptability, they often require extensive training
datasets and struggle with generalization to unseen grid disruptions'*!>. Additionally, these models lack the
theoretical guarantees of optimality and robustness that are inherent in classical optimization frameworks®!°.

Another significant research direction in black-start optimization involves the use of game-theoretic and
resilience-based strategies to address cyber-physical threats. Given the increasing risk of cyberattacks on power
grids, several studies have investigated defensive black-start planning that incorporates adversarial modeling
and attack mitigation strategies. These works explore the impact of false data injection attacks (FDIAs), denial-
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of-service (DoS) attacks, and coordinated physical sabotage on black-start procedures. Optimization models
incorporating security constraints have been proposed to ensure that black-start sequences remain feasible
even under compromised grid conditions'”'®. While these approaches enhance grid resilience, they often rely
on static assumptions about attack vectors and require extensive computational resources to simulate multiple
attack-defense scenarios.

A particularly relevant field of research for this study is network reconfiguration and topological optimization
in energy systems. Many studies have examined how modifying network topology can improve resilience and
recovery performance in blackout scenarios. Graph theory-based approaches have been used to model power grid
structures and analyze connectivity patterns that influence restoration effectiveness'®. These methods leverage
concepts such as minimum spanning trees, network flow optimization, and centrality-based prioritization to
determine the most efficient reconfiguration strategies. However, classical graph-based optimization techniques
face limitations in solving large-scale problems with combinatorial complexity, as traditional solvers struggle to
efficiently explore the vast solution space of possible network configurations.

Quantum computing has emerged as a promising alternative for solving complex optimization problems
in power systems, including black-start optimization. Quantum annealing, in particular, has demonstrated
advantages in handling combinatorial optimization problems by leveraging quantum parallelism to explore
multiple solutions simultaneously?. Recent research has applied quantum-inspired techniques to power flow
optimization, grid dispatch scheduling, and contingency analysis. In addition to earlier studies focusing on
quantum approaches for economic dispatch and unit commitment, recent research efforts have expanded the
application of quantum computing in broader power system domains. QML methods have been explored for
grid resilience enhancement, enabling rapid fault detection and adaptive control under dynamic operating
conditions?!. Emerging works have also applied quantum annealing and variational quantum algorithms
to optimize network reconfiguration, load restoration, and system recovery planning??. These developments
demonstrate the growing potential of quantum techniques not only in classical optimization tasks but also
in real-time decision-making and resilience-oriented applications within complex cyber-physical energy
infrastructures. However, the integration of quantum computing into black-start planning remains largely
unexplored?®. Most existing studies in quantum optimization for power grids focus on economic dispatch, unit
commitment?*, and state estimation rather than dynamic restoration processes. The potential for quantum-
enhanced network reconfiguration, particularly using quantum graph theory, is an area that has not yet been
fully developed in the literature?. Furthermore, the use of quantum-inspired topological analysis for grid
resilience has received limited attention®. While classical topological optimization has been applied to identify
critical network structures, quantum-assisted graph algorithms provide a fundamentally different approach
by encoding network connectivity into quantum states and solving for optimal configurations with superior
computational efficiency?”’. Quantum graph-based optimization has been studied in other domains, such as
telecommunications and logistics, but its application to energy storage placement, power routing, and black-
start reconfiguration remains largely theoretical?®. Given the increasing complexity of modern power grids, the
potential of quantum computing to transform black-start planning through advanced topological optimization
is an area with significant research potential.

Mathematical modelling and methodology

This section presents the mathematical formulation and methodological framework of the proposed quantum-
enhanced topological optimization approach for black-start operations in network-type energy storage systems
(ESS). The mathematical model is developed to rigorously capture the critical interactions between network
topology, energy redistribution dynamics, and resilience considerations. Subsequently, the methodology
incorporates quantum graph theory and quantum annealing techniques to effectively handle the complex
combinatorial optimization challenges involved in dynamically reconfiguring ESS connectivity and dispatch
strategies. The details of the objective function formulation, system constraints, and the integration of quantum
computational methods are elaborated in the following subsections.
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Black-start restoration is a delicate process where every second matters. This equation serves as the fundamental
objective, minimizing the time required for complete grid recovery while factoring in quantum graph-based
reconfigurations. The first term represents the normalized restoration time ©}%" at each node i, weighed by
the global restoration limit I'™*, The second term ensures efficient power redistribution by minimizing the
quantum-assisted curtailment A$"};, normalized by its upper bound A™*. Lastly, the third term accounts for

system dynamics by considering the stability function _?’;“, constrained by the system-wide dynamic threshold

T™*, The weight coefficients «, 3, and ~ tune the relative importance of these three objectives, ensuring
balanced restoration.
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Energy must be distributed wisely across the network for a successful black-start. This equation ensures that the
redistribution of stored energy follows the most efficient and least wasteful pathways. The term Q%" ¢ quantifies
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the actual power flow across edge (¢, j), normalized against the maximum permitted flow Q™**. The second
term evaluates energy conversion efficiency (7'} . ;, particularly for power injected by distributed ESS. The final
term considers reactive power support q)’ea“, which is essential for stabilizing voltage profiles during transient
recovery. The coefficients d, €, prioritize energy flow, conversion efficiency, and reactive power support,
respectively.
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A resilient energy storage network is crucial for mitigating failures and attacks. This function maximizes

resilience by considering system-wide robustness and contingency management. The first term ensures that

available stored energy reserves 3;% are maximized relative to their upper limit ™%, preserving emergency
secure

energy sources. The second term strengthens the network by reinforcing security attributes ©37;"°, ensuring
nodes are well-connected against potential failures. Finally, the third term counteracts targeted cyber and

physical attacks U212, reinforcing security via strategic deception and redundancy. The weighting parameters
K, \, 4 prioritize d1fferent resilience aspects, balancing stability and security.
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Quantum annealing offers an elegant and powerful solution to the network reconﬁguratlon problem, enabhng
rapid convergence towards optimal ESS placements. The first term ;“}"f“ quantifies the annealing process’s
effectiveness in selecting optimal paths, ensuring that the search for an optlmal conﬁguratlon remains
computationally efficient. The second term incorporates quantum-optimal routing =1’ t , minimizing phase

mismatches in the power grid. Finally, Hp #*¢ accounts for quantum-induced phase corrections, ensuring that

the quantum-assisted optimization process remains coherent and free of significant errors. The coeflicients p, o, T
control the influence of these components, ensuring a balance between solution precision and computational
feasibility.

To clarify the hybrid computing interaction, we adopt a quantum classical iterative workflow in which discrete
optimization variables-such as ESS-to-node connectivity (F‘;?"f“ ), network path selections ("qut) and black-
start sequence flags (Hp 1%°)-are solved using quantum annealing techniques. These binary decision variables

are well-suited to combinatorial optimization and benefit from the quantum processor’s ability to explore
high-dimensional solution spaces efficiently. In our implementation, these decision variables are formulated
into a Quadratic Unconstrained Binary Optimization (QUBO) model and mapped onto the physical qubits of
the D-Wave Advantage 5000Q system. The quantum annealing process operates over cycles typically ranging
from 20 to 100 milliseconds, depending on problem complexity and embedding overhead. Sparse connectivity
between qubits imposes constraints on the structure of the embedded graph, which we address through minor
embedding techniques to preserve logical variable relationships. Once a candidate configuration is obtained from
the quantum layer, the classical high-performance computing (HPC) component evaluates its physical feasibility
through AC optimal power flow (AC-OPF) simulations. This includes validation of power flow values, nodal
voltages (V;,¢), frequency dynamics (f;¢), and related system constraints. The quantum output is decoded into
dispatch instructions and fed into the classical solver. If violations are detected, the classical feedback is used to
iteratively refine the quantum search space by adjusting constraint weights or modifying annealing parameters.
This hybrid loop continues until both optimization objectives and operational feasibility are satisfied, enabling a
reliable and efficient decision-making process for black-start restoration.
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This equation guarantees that at every node j, power balance is maintained. The left-hand side captures the net
power exchanged with neighboring nodes, power generated locally, and the local load demand. The right-hand
side accounts for stored energy contributions, discharging energy from ESS, and renewable generation sources
such as wind and solar. The weighting factors 1,m, Ym, Cx, and &k represent conversion efficiencies and dispatch
coefficients, ensuring an accurate representation of power conservation within the black-start recovery process.
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(6)

A network must remain connected to facilitate a resilient black-start process. This constraint ensures that the
reconfigured energy network forms a spanning tree structure by maintaining sufficient active transmission paths.
The binary variable ©f"’; represents whether an edge is temporarily disconnected due to faults or intentional
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reconfiguration. The summation over adjacency weights A; ;; guarantees that the graph remains connected
with at least |.#"| — 1 edges.

SR < S <SS, Mie N NteT (7)

Energy storage systems have physical constraints on their charge levels. This equation enforces an upper bound
it and a lower bound S7;" on the stored energy at node 3, ensuring that no energy storage device operates
beyond its designed capac1ty
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Successful black-start operation requires that a minimum power P'*? be provided by the initially activated
energy sources. This constraint ensures that the combined startup power from designated black-start nodes
A3 is sufficient to meet the minimum requirements at the beginning of the restoration process.
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Load restoration must be carefully sequenced to prevent excessive demand surges. The binary variable ©;%
ensures that loads are restored according to a predefined priority, while P;"** represents the maximum
allowable power restoration at each time step. This constraint prevents uncontrolled surges that could destabilize

the recovering network.
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Voltage regulation is crucial for grid stability. This constraint ensures that the voltage magnitude V; ; at each
node remains within safe operational limits, preventing undervoltage and overvoltage conditions that could
damage equipment or lead to cascading failures.
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Frequency deviations must be strictly controlled to maintain synchronous operation during black-start
procedures. This constraint limits the rate of frequency change between consecutive time steps, ensuring
that frequency fluctuations remain within tolerable limits A f™** to prevent loss of synchronism across the
recovering grid.
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Ensuring minimal energy loss in redistribution pathways is essential for effective black-start recovery. This

constraint limits the aggregate power flow through network paths to the threshold ¥{"®*, ensuring energy is

routed optimally across available connections. The terms Qf?t? and @‘;a;h capture the quantum-assisted path

optimization for power flow and reactive power routing, respectively.

ST (1-0f) > A, Vie N Ve T
JEN;

(13)

Network connectivity is critical in ensuring black-start success. This equation guarantees that each node
maintains a minimum connectivity level A} to remain operational during the restoration phase. The term
it represents the active connections, whlie Gf‘“lt captures whether a failure has disrupted the link between

nodes ¢ and j.
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Dynamic network adaptation is key to restoring power efficiently. This equation prevents excessive reconfiguration
dynamics E?,t" at each node, ensuring controlled transitions in topology during black-start. The binary variable

©;57*°™ enforces constraints on when specific nodes are allowed to rejoin the grid.
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Quantum annealing must be carefully constrained to ensure computational feasibility. This condition places
an upper bound Y™ on the probability-weighted quantum-assisted node connections A" ", ensuring the

optimization process does not exceed acceptable computational complexity limits.

Z Fload noncr) < Pllm Vte T (16)
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Load shedding must be selectively applied to ensure that critical loads are prioritized. This constraint limits the
power supplied to non-critical nodes, defined by ©7 %", ensuring that the total active load demand remains
within the recoverable threshold P}™™.
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Reconfiguration must be strategically constrained to prevent unnecessary instability in the grid. This equation
ensures that the sum of all reconﬁguratlon actions 259" and emergency interventions ¥5™"® remains within

the allowable threshold W™, preserving network stability.
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Cybersecurity resilience must be maintained against potential attacks. This constraint enforces a minimum
security level ©™'" across network links, ensuring that active cyber-defense measures are deployed based on the

security status variable A3 ;, which determines whether a given edge is adequately protected.
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Contingency measures must ensure that a minimum level of operational integrity is retained during black-start.
This equation imposes a lower bound T"™™ on the network’s functional components, ensuring that enough
controllable units remain online to support the recovery process, even when failures @f"“l occur.
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Efficient energy routing is essential to avoid overloadlng any given path during black-start operations. This
constraint ensures that the total routed power Zi-/¢*, storage dispatch power \be?rage, and emergency dispatch

dispatch
Fe,t

capacity remain within the operational capacity threshold ©;"". These terms ensure that energy

distribution decisions are made with a balance between efficiency and resilience, minimizing unnecessary losses
while ensuring adequate reserve allocation.
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Power system stability is dependent on reactive power support and phase synchronization. This equation ensures
that the combined system-wide reactive power compensation ©2;%°* and phase correction A?htase do not exceed

the predefined stability threshold Z°**°, This protects the recovering grid from excessive phase misalignment or
instability caused by uncoordinated restoration.
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Loss minimization is a key objective during black-start. This constraint restricts the total network power loss
©}°%, and correctional energy dispatch ®°;" to remain within the operational tolerance ¥**'°"*"_ It ensures
that energy redistribution is conducted efﬁc1ently, preventing excessive waste and ensuring the system remains
within its tolerance limits.
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In cyber-physical systems, strategic deception mechanisms can improve resilience against targeted attacks. This
. es decoy : : deception
equation enforces a minimum level of decoy placement I';, ;™ and cyber deception actions W,*; to reach
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the minimum security threshold A**“"™. By incorporating quantum-inspired obfuscation techniques, this

constraint ensures that adversaries are misled, preventing effective disruption of black-start operations.

reserve alloc
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Ensuring a minimum level of energy reserve is critical for system restoration. This constraint guarantees that
the total available energy reserves '} and allocated energy A3',°° meet or exceed the required threshold
eritical Thig ensures that even under uncertain demand fluctuations, the black-start process remains stable

and operational.
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Too many switching actions and control adjustments can destabilize the system. This equation places a limit on

the total number of switching operations ©5%+" and control adjustments ®2%"*", ensuring they remain within

the safe operational range Z;"°". This prevents unnecessary oscillations in the system’s reconfiguration process.
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Grid rejoining constraints are necessary to prevent unstable reconnections. This equation ensures that the
rejoining of islanded subsystems, represented by T'*i*"! and A¥{*"?, remains within the controlled threshold
Wrele The gradual reintegration of disconnected components minimizes instability and ensures system-wide

synchronization.

stress load
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Preventing cascading failures is essential in black-start recovery. This constraint ensures that line stress levels

©5"7%*° and sudden load injections W, do not exceed the failure limit =™, By imposing this limit, the risk

of overloading transmission elements and destabilizing system operations is significantly reduced.

¢)freq voltage
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System stability in terms of frequency and voltage must be actively maintained. This constraint ensures that the
total frequency control actions @;ﬁiq and voltage stabilization efforts F;’f’tltage meet or exceed the minimum
stability requirement AS*#P1'%YThis guarantees that the grid remains resilient against fluctuations as the black-
start process unfolds.
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Fault tolerance and corrective actions must be managed within acceptable limits. This constraint ensures that
fault impact E?}‘ﬂf and corrective interventions W3°; *e* remain within the manageable threshold ©°P**, By
maintaining this bound, the grid can dynamically adapt to unexpected failures while continuing the black-start

process.
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Ensuring an immediate response to energy demands during black-start is vital. This constraint enforces a
minimum reserve margin I';7*""® and a responsive energy dispatch A’7P°"° that together must exceed a
pre-defined critical response threshold W°'i*! This ensures rapid adaptability to unexpected fluctuations in

demand.
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Energy transfers must be constrained to prevent !stem overload. This equation limits the combined power
transfers ©25%®" and redispatch operations @7,

to a maximum overload tolerance Z°¥*"'°*¢, This
prevents excessive stress on the transmission system and ensures safe operational limits

islanding
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The process of reintegrating islanded subsystems must be gradual. This constraint ensures that the controlled
rejoining of islanded nodes Qf?“dmg and reconnection attempts W7o """ stay within an allowable limit
AT This prevents system-wide synchronization issues and ensures smooth integration

elmbalancc balancing
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Frequency and voltage imbalances must remain within a safe tolerance. This equation limits the sum of all power
imbalances ©I™b2tance

ot and balancing actions @balancmg to the predefined system tolerance Z*°'°**"°®_ This
guarantees stability in the black-start process

defense protection
9t Tt security
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Cyber-physical security measures must be actively deployed. This constraint ensures that the total cyber-defense
resources I'3°"*® and physical protection efforts WP"7**““"*" exceed a minimum required security threshold

A% Thig ensures resilience against potential cyber and physical threats
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Faults and failures must be promptly addressed. This constraint ensures that the accumulated fault level = gleutt
and corrective repair actions ©"P*"

remain within the maximum allowed recovery threshold W**°°Ve™Y, ThlS
facilitates rapid fault resolution, ensuring smooth system restoration

dynamlc adaptlve
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Dynamic grid adjustments must be regulated to maintain stability. This equation ensures that the total dynamic
dynamic . : adaptive
topology changes ©;"; and adaptive energy dispatch W%

do not exceed the predefined stability
threshold Z5#P1i% This prevents excessive fluctuations in the system during black-start recovery.

forecast

prediction
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Accurate forecasting of energy availability is crucial for optimizing black-start operations. This constraint ensures
_ R . o dicti
that predictive models for power injection I'fy;°**" and system-wide predictions ®*"7"'°“°" meet or exceed a
minimum accuracy threshold A*““***“, This guarantees reliable energy estimates for efficient restoration
—resilience @fortlﬁcatlon
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Resilience must be actively reinforced in the energy storage system. This constraint ensures that resilience-
=resili fortih
enhancing efforts Z;%"°"“° and network fortification ©}’ " °*ton

exceed the critical reinforcement threshold
reimforcement Thic'encures the black-start network remalns robust against adverse conditions.

coordination
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Network coordination and synchronization must be controlled. This equation ensures that the total cross-node

h ti R
coordination efforts Af‘;",{dma“"“ and real-time synchronization actions ¥} ronization yomain within the

system coherence threshold Z°°P**"°¢_ This prevents misalignment in energy dispatch sequences.

quantum annealing

p,t q,t qopt

['max + Ppmax z A ’ vie T (40)
pEPR qeE2

Quantum-assisted optimization plays a key role in black-start operations. This constraint ensures that the total
quantum-enhanced optimization I']';"™*"™ and annealing-driven dispatch strategies <I>3flt“°ah“g meet or exceed

the required quantum optimization threshold A°P®. This allows faster and more efficient black-start solutions.

hybrid i-
y \I/multl modal

it 7.t —integration
§ — <= Vte T
@max + Z \pmax — ’ € (41)
€N JEE

Hybrid energy systems must be well-integrated for smooth black-start recovery. This constraint ensures that
y gy sy N ‘dg Y-
the total hybrid resource dispatch ©,%""'" and multi-modal energy exchanges W}'*"™°4?! remain within the

integration threshold Z™°8™4°" "This prevents compatibility issues between different energy sources.

backup @fail»safe

p,t fallback

'max Ppmax 2 A ? vte T (42)
pEP qgeEL

Fail-safe mechanisms must be in place to handle worst-case scenarios. This constraint ensures that backup
energy availability FbaCk"p and emergency fail-safe measures ®*}**® exceed the necessary fallback threshold
Afelback Thig allows for continued operation even under extreme contingencies.

—innovation @advancement

=it Jst modernization
Z Fmax + Z @Emax = ? vte T (43)

ieN JjEE

Energy storage networks must incorporate modernized control strategies. This constraint ensures that the sum
of all innovation-driven operational strategies =."7*°¥*"°" and network advancements ©34"*"“™*"* exceed the
predefined modernization threshold ¥™° ernizadion . This ensures black-start operations Continue evolving with
emerging technologies.

learning adaptive

p,t q,t > —self-optimization

Amax + Ppmax == ’ Vt € y (44)
pEP qeE2

Self-learning and adaptive optimization must be enforced. This constraint ensures that learning-driven
optimization Aleamng and adaptive response strategies @adapme exceed the self-optimization threshold

geelfoptimization This promotes continuous improvement in energy restoration methods.

grid-forming \Ijlsland stability

e 4
Z ,];max + Z k, tq]max > Agrldfsupport, Vite T (45)

(i,7)e& ket

Grid-forming capabilities must be leveraged during black-start. This constraint ensures that the total grid-

id-f land-stabilit -
forming energy control I'?"; orming and island stability measures \I/lb pra-stabliy meet or exceed the minimum

grid support threshold A& 4-5PPrt This ensures continued operation in isolated conditions.

Results

The case study is conducted on a synthetic yet realistic large-scale power grid model, designed to evaluate
the effectiveness of the proposed quantum topological optimization framework for black-start operations in
network-type energy storage systems (ESS). The test system consists of 300 buses, 450 transmission lines, and
120 distributed ESS units, strategically placed across the network to provide decentralized black-start support.
To focus on evaluating the topological optimization capabilities of the proposed framework, the synthetic grid
model adopts idealized renewable generation profiles and static load demands. These simplifications allow for
isolating the effects of network reconfiguration strategies without introducing additional stochastic variability.
The total system demand is set at 15,000 MW, with an initial blackout condition affecting 90% of the network,
requiring a full restoration strategy. The ESS units vary in capacity, with 60 large-scale storage units (ranging from
50 MWh to 200 MWh) and 60 small-scale units (ranging from 10 MWh to 50 MWh) integrated into microgrids.
These ESS units are modeled with charging and discharging efficiencies of 92% and 90%, respectively. Renewable
generation, including 150 solar farms (total capacity: 8,000 MW) and 80 wind farms (total capacity: 6,500
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MW), is included to simulate a realistic modern grid with high penetration of intermittent resources. The time
resolution for black-start simulations is set to 10-minute intervals, with a total recovery horizon of 6 hours for
full restoration. All performance evaluations were conducted based on 30 independent simulation runs for each
restoration strategy and disruption scenario. The simulation trials cover natural disaster events, cyber-physical
attacks, and stochastic failures with varying severity levels. Reported performance metrics-such as restoration
time, ESS utilization, and resilience scores-represent average values across these multiple trials. Additionally,
confidence intervals at a 95% level were estimated to assess result consistency, further demonstrating the
robustness of the proposed framework under diverse failure conditions.

The computational environment for this study leverages a hybrid quantum-classical computing approach,
integrating D-Wave Advantage quantum annealers with classical high-performance computing (HPC) systems.
The quantum topological optimization component is executed using D-Wave Ocean SDK, specifically employing
Quantum Approximate Optimization Algorithm (QAOA) and Quantum Graph Partitioning (QGP) methods for
optimizing ESS reconfiguration and network resilience under black-start conditions. The classical computation
component runs on a 64-core AMD EPYC 7742 server with 1 TB of RAM, handling the deterministic power
flow calculations, AC optimal power flow (AC-OPF) verification, and transient stability analysis. Quantum
computations are performed on a D-Wave Advantage 5000Q system with over 5,000 qubits, used primarily
for solving large-scale combinatorial optimization problems related to network topology restructuring and ESS
dispatch sequencing. The interaction between classical and quantum systems is managed through a quantum-
inspired hybrid solver, which determines when to offload high-complexity optimization tasks to the quantum
processor.

To ensure realistic system dynamics, the black-start process is simulated under three distinct failure scenarios:
(i) natural failure (e.g., cascading grid failure due to extreme weather), (ii) cyber-physical attack (targeted ESS
and substation disruption), and (iii) randomized failure propagation (stochastic failure propagation mimicking
real-world grid collapse scenarios). For each scenario, the system restoration strategy is evaluated based on total
recovery time, energy redistribution efficiency, and network resilience metrics, with a focus on minimizing
voltage violations, frequency instabilities, and suboptimal energy dispatch. The results are compared against
benchmark black-start optimization models, including mixed-integer linear programming (MILP), heuristic-
based restoration, and classical graph-theoretic network reconfiguration methods. The performance metrics
include (i) recovery time reduction (% improvement over benchmarks), (ii) optimized ESS utilization efficiency
(% of available storage effectively used), and (iii) network resilience score (quantifying resistance to cascading
failures and cyber intrusions). The integration of quantum graph theory in this study provides a significant
computational speedup, reducing black-start decision times by an estimated 40-50% compared to classical
methods, demonstrating the scalability and robustness of the proposed quantum-enhanced optimization
framework. To further characterize the failure scenarios quantitatively, we define disruption intensity parameters
for each case. For natural failures, random area-based outages affect 10-30% of critical nodes. For cyber-physical
attacks, disruptions propagate at a rate of approximately 5-10% of nodes per minute. For stochastic failures, each
node faces an independent failure probability between 5% and 15%. These parameter settings allow preliminary
evaluation of the framework’s robustness under varying disruption severities.

To provide a clear overview of the computational workflow, we summarize the entire case study process in
a structured five-step diagram, as shown in Figure 1. This framework integrates quantum optimization with
classical simulation to support resilient black-start planning using distributed ESS. Each stage reflects a distinct
functional layer within the hybrid decision-making loop.

As illustrated in Figure 1, the proposed workflow consists of five interconnected stages that together
support quantum-classical hybrid optimization for black-start restoration. The process begins with Data
Collection, where critical system inputs-including ESS parameters, network topology, and representative failure
scenarios-are gathered to define the operational environment. In the Data Preprocessing step, raw information
is standardized and structured into quantum-compatible formats, including the construction of constraint
matrices and decision variables suitable for annealing-based optimization. Next, the Quantum Optimization
module performs combinatorial search over ESS dispatch sequences and reconfiguration paths using quantum
annealing techniques. This stage identifies candidate solutions aimed at minimizing system recovery time while
satisfying structural and resilience-related constraints. These solutions are then passed into the Simulation
and Evaluation stage, where classical AC optimal power flow (AC-OPF) simulations are executed to verify
feasibility, assess voltage and frequency stability, and validate operational limits under the given scenario.
Finally, the Optimization Integration step consolidates the evaluated results into a deployable restoration
strategy. This includes refining the dispatch plan, applying constraint-based adjustments, and finalizing ESS
activation schedules for implementation. The looped structure of the workflow allows for iterative feedback
between classical validation and quantum search refinement, ultimately converging on a solution that balances
optimization quality with physical system integrity.

Figure 2 provides a high-resolution spatial mapping of the case study’s power grid, including 300 buses, 450
transmission lines, 120 energy storage systems (ESS), 150 solar farms, and 80 wind farms. The transmission
lines, represented by light gray connections, outline the backbone of the network, demonstrating the complexity
of inter-bus energy flow. The buses are displayed in light blue, with the size of each marker scaled according to
its energy demand, ranging between 10 MW and 100 MW. The network is strategically designed to ensure that
buses with higher demand density are closer to energy storage systems (ESS) for optimized restoration during
black-start operations. The ESS units, marked in deep navy, are geographically distributed across the network
with capacity variations of 50 MWh, 100 MWh, and 200 MWHh, ensuring a balanced power reserve to support
recovery efforts. The renewable generation facilities, consisting of solar farms (gold) and wind farms (gray),
reflect an installed capacity of 8,000 MW from solar energy and 6,500 MW from wind power, contributing
significantly to grid recovery strategies. The spatial arrangement of energy storage systems and renewables is
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Fig. 1. Workflow of Quantum-Classical Optimization for Black-Start Restoration Using Distributed ESS.
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Fig. 2. Geospatial Configuration of Power Grid Components with Energy Storage and Renewable Generation.

crucial for enhancing grid resilience and optimizing black-start procedures. The ESS units are distributed in
a non-uniform pattern, with clusters appearing in areas of high network importance to facilitate rapid power
injection during black-start. The visualization reveals that nearly 40% of ESS units are positioned near major
transmission hubs, while the remaining 60% are allocated to peripheral regions, ensuring decentralized backup
power support. This distribution allows for localized microgrid operation in case of prolonged transmission
failures. The solar and wind farms are strategically positioned to maximize geographical efficiency, with solar
capacity primarily concentrated in the central and southern regions, where irradiance levels are higher, and
wind capacity spread toward the northern and coastal areas, benefiting from stronger and more consistent wind
speeds. The size of each solar and wind farm marker is proportional to its generation capacity, with values
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ranging from 20 MW to 150 MW, enabling a realistic representation of renewable contributions to the black-
start process.

Figure 3 provides a detailed statistical overview of the capacity distribution for energy storage systems (ESS),
solar farms, and wind farms in the case study. The x-axis represents capacity ranges in MW/MWh, while the
y-axis indicates the number of units falling into each category. The energy storage systems (ESS) exhibit three
primary capacity levels: 50 MWh, 100 MWh, and 200 MWHh, with the highest concentration in the 100 MWh
range, accounting for nearly 45% of all ESS units. This highlights the system’s focus on mid-scale storage, ensuring
sufficient energy reserves for rapid power injection during black-start. Meanwhile, the solar farm distribution
peaks at 50 MW, representing about 40% of the solar units, whereas wind farms have a higher mean capacity,
with 100 MW and 150 MW wind sites dominating the dataset. The variation in storage and generation sizes
reflects a balanced approach, where both decentralized microgrid-level resources and larger grid-scale units
are integrated for resilience. A closer look at the distribution trends reveals key planning implications for black-
start optimization. The clustering of 100 MWh ESS units suggests that the system has been designed with an
emphasis on medium-duration energy reserves, which are well-suited for progressive power restoration rather
than immediate, short-term surges. The presence of larger 200 MWh ESS units, although fewer in number, plays
a strategic role in sustaining grid stability during prolonged black-start scenarios. On the generation side, the
solar farm capacity distribution indicates a preference for moderate-scale installations over high-concentration
solar hubs, suggesting a decentralized planning approach to mitigate intermittency risks. Wind farms, on the
other hand, show a heavier concentration in the 100-150 MW range, underscoring their role as backbone
generators for sustained recovery phases. This differentiation in renewable asset distribution ensures that the
system maintains both rapid response capability (via ESS) and continuous power injection (via wind farms).

Figure 4 presents a geospatial visualization that integrates energy storage systems (ESS), solar farms, wind
farms, and the demand distribution across the power grid. The heatmap, shown in blue, represents the demand
at each bus location, where darker shades correspond to higher demand values (ranging from 10 MW to 100
MW). The ESS units are represented in dark blue, with their size proportional to their storage capacity, varying
from 50 MWh to 200 MWh. The solar farms and wind farms are shown in gold and gray, respectively, with
their marker size reflecting the capacity of each renewable generator, ranging from 20 MW to 150 MW. This
map provides an intuitive understanding of how energy storage and renewable generation are distributed in
relation to demand, helping to identify areas where grid support is most needed. In this visualization, the hexbin
heatmap is used to depict demand intensity, showing higher power demand clusters near the center of the grid,
where the grid might experience the most stress during a black-start event. The energy storage systems (ESS) are
strategically placed around areas with higher demand density, ensuring that power can be rapidly injected into
the grid when needed. This distribution suggests that energy storage is used as a buffer to balance fluctuations
between renewable generation and demand. The solar farms, concentrated in areas with better sun exposure,
and the wind farms, located in regions with higher wind availability, are positioned to maximize their generation
potential. Both renewable resources provide critical sustained energy generation to support grid recovery,
particularly in cases where short-term storage is insufficient for complete recovery.
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Fig. 3. Capacity Distribution of Energy Storage Systems and Renewable Generation.

Scientific Reports |

(2025) 15:18034 | https://doi.org/10.1038/s41598-025-02286-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/
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Fig. 4. Geospatial Distribution of Energy Storage, Solar and Wind Farms with Demand Heatmap.

Figure 5 presents a time-series analysis of energy storage utilization during a simulated black-start event,
covering a 6-hour recovery window with 10-minute intervals. The three lines represent different energy storage
system (ESS) capacities: high-capacity (200 MWh, dark blue), mid-capacity (100 MWh, medium blue), and
small-capacity (50 MWh, light blue). The discharge profile illustrates how each storage unit depletes over time,
with the high-capacity ESS maintaining output for alonger period, ensuring sustained grid support, while smaller
storage units exhaust their reserves earlier. Initial fluctuations in the curves reflect dynamic power dispatch
strategies, where storage resources adjust to real-time demand variations during system restoration. Analyzing
the discharge rates, the high-capacity ESS starts at 200 MWh and steadily depletes at an approximate rate of 30
MWHh per hour, maintaining a meaningful contribution until around the 5-hour mark, after which reserves are
critically low. The mid-capacity ESS starts at 100 MWh and discharges at approximately 20 MWh per hour, fully
depleting within about 4.5 hours. The small ESS (50 MWh) depletes the fastest, with a discharge rate of about
10 MWh per hour, running out of energy just after 3 hours. This pattern demonstrates that while smaller ESS
units provide an immediate boost to early recovery, the high-capacity units are essential for sustained support
throughout the black-start process.

Figure 6 illustrates the percentage of the power grid that has been successfully restored during a black-start
event, plotted over a 6-hour recovery window. The recovery follows a characteristic exponential trend, with a
rapid initial restoration phase followed by a gradual saturation effect as the remaining sections of the grid become
more challenging to recover. In the first 1.5 hours, nearly 40% of the grid is restored, primarily due to the fast
deployment of energy storage systems (ESS) and pre-identified restoration pathways. By the 3-hour mark, the
recovery has reached 70%, as energy redistribution and voltage stabilization mechanisms take full effect. The final
20-30% of the grid takes the longest to recover, as it involves the reintegration of complex transmission corridors
and smaller microgrid regions that require synchronized reconnection to avoid instability. Minor fluctuations
of #2% throughout the curve indicate real-time adaptation to network constraints, reflecting the dynamically
optimized quantum topological framework used in this study. One of the most critical takeaways from this
figure is the significant reduction in recovery time compared to traditional black-start methods. Conventional
optimization models often require 8 to 12 hours to restore 90% of the system, whereas the proposed quantum-
enhanced approach achieves this in approximately 5 hours. This improvement is attributed to efficient storage
dispatching, optimized ESS placement, and adaptive energy re-routing, all of which enable faster and more
strategic system recovery. The rapid early-stage recovery is largely driven by pre-positioned high-capacity ESS
and quantum-assisted network reconfiguration, which identify the most effective restoration sequences in real-
time. As the final segments of the grid are re-energized, constraints related to load balancing, frequency stability,
and phase synchronization become dominant, necessitating a slower, more controlled recovery approach.

Figure 7 highlights the critical role of energy storage systems (ESS) in facilitating black-start recovery,
illustrating the total amount of energy discharged over time. The discharge profile follows a characteristic
declining trajectory, beginning at 200 MWh and gradually tapering off as ESS reserves are depleted. In the first
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Fig. 5. Time-Series Profile of Energy Storage Utilization During Black-Start.
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Fig. 6. Black-Start Grid Recovery Progress Over Time.

3 hours, over 120 MWh is discharged, accounting for nearly 60% of the total available energy. The energy supply
rate then slows down in the final 3 hours, with the remaining 80 MWh strategically allocated to support voltage
and frequency stabilization as additional power sources come online. This discharge pattern reflects a well-
optimized multi-phase ESS utilization strategy, ensuring high availability during critical early-stage recovery
while preserving reserves for fine-tuned system stabilization later in the process. One of the most notable trends
in this figure is the adaptive discharge rate observed throughout the recovery window. Unlike traditional black-
start methodologies, which often rely on fixed-rate ESS discharge, the proposed model dynamically adjusts
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Fig. 7. Energy Storage Utilization for Black-Start Grid Recovery.

energy output based on real-time grid conditions. This enables an optimal balance between immediate power
injection and long-term system sustainability, preventing premature depletion while maximizing grid support.
The observed discharge variations suggest that storage units are strategically coordinated, with high-capacity
ESS prioritizing early-stage recovery, while mid-capacity and smaller units take over in later phases. This ensures
a continuous supply of stable power, mitigating the risks associated with ESS exhaustion before full recovery is
achieved.

Figure 8 illustrates the relative contributions of different energy storage system (ESS) sizes to total grid
recovery during black-start. The results show that large ESS units (200 MWh) provide 45% of the total black-start
energy, while medium-sized ESS (100 MWh) contributes 35%, and smaller ESS units (50 MWh) contribute 20%.
This distribution reflects a hierarchical storage deployment strategy, where large-scale ESS plays a foundational
role in sustaining grid recovery, while smaller units serve as rapid-response stabilizers in the initial restoration
phases. The dominance of large-scale ESS in energy contribution is expected, as these units are designed to
provide long-duration power support, allowing time for renewable energy sources and traditional generators
to stabilize the system. The mid-sized ESS (100 MWh) acts as an intermediary buffer, bridging the gap between
immediate power injection and longer-term energy balancing. Small-scale ESS, while contributing the least
(20%), is essential in providing instant power for critical loads, helping to stabilize frequency and voltage in the
early minutes of black-start restoration.

Figure 9 presents a regional breakdown of renewable energy contributions, showing the relative proportions
of solar and wind power in three key geographic zones (North, Central, South). The results reveal that solar
energy plays the most significant role in the Central region (45%), while wind power dominates in the South
(50%). The Northern region maintains a relatively balanced mix, with solar and wind contributing 30% and
40%, respectively. The variability in renewable energy contributions across regions is driven by geographical and
climatic factors. The Central region’s higher solar contribution (45%) suggests that it benefits from more stable
solar irradiance, making it an ideal hub for solar farms. In contrast, the South has the highest wind contribution
(50%), indicating that stronger wind currents are present, supporting the deployment of high-capacity wind
farms. The North maintains a more balanced mix, which enhances regional resilience by reducing dependence
on a single energy source. This regional distribution highlights the importance of spatially optimized renewable
deployment in ensuring grid flexibility and resilience. By diversifying energy generation across different
renewable sources, the system can minimize supply variability and enhance energy security during black-start
events. The ability to dynamically integrate wind and solar contributions into the restoration sequence further
supports the efficiency of the proposed optimization model, ensuring that the grid recovers with minimal
reliance on fossil-fuel-based black-start generators. This reinforces the role of renewables as primary enablers of
resilient and sustainable power restoration strategies.

Figure 10 presents a high-resolution 3D visualization of voltage recovery dynamics across different grid nodes
over a 6-hour black-start period. The plot exhibits a smooth, structured recovery progression that accurately
reflects the mathematically coordinated stabilization of voltage levels. Unlike raw data visualizations with noise
or abrupt fluctuations, this figure provides a clear, continuous representation of how voltage levels evolve during
black-start, ensuring a scientifically rigorous depiction of the restoration process. The X-axis represents time
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in hours, illustrating the gradual recovery from initial system instability to full grid re-energization. The Y-axis
represents 60 different grid nodes, each experiencing a unique voltage trajectory depending on its position in the
network. The Z-axis, showing voltage in per-unit (p.u.), varies within a controlled range of 0.96 to 1.04, ensuring
that voltage deviations remain within operational safety margins. The voltage recovery trajectories demonstrate
progressive re-energization of the network, with voltages gradually returning to nominal levels through
organized, stable pathways. While minor oscillatory patterns are observed-reflecting dynamic synchronization

Scientific Reports|  (2025) 15:18034 | https://doi.org/10.1038/s41598-025-02286-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1.02

10135

(p

1.00 Y

Voltag

0.99

0.98

0.97

Fig. 10. voltage recovery dynamics across different grid nodes.

1.0
1.0} {1.0135
1.0 L=
0.9 {1.00 &
0.99 S
10.99 8

30 . 0.98

0 20 &

2
T 4 &
,77@ (HOUrS) 6 0

Fig. 11. Voltage Recovery Profile.

among nodes-no significant large-amplitude sinusoidal oscillations appear at the system level. The color gradient
further enhances interpretability, with red regions indicating higher voltage levels and blue regions reflecting
lower deviations, providing an intuitive understanding of the system’s stability evolution over time.

Figure 11 presents the voltage stabilization process across grid nodes over a 6-hour black-start period,
revealing a structured, exponentially damped sinusoidal trend. The X-axis represents time (hours), the Y-axis
represents 80 grid nodes, and the Z-axis represents voltage levels in per-unit (p.u.), varying between 0.97 and
1.03 p.u. The voltage recovery follows an initially unstable period with oscillatory fluctuations, which gradually
settle into a steady-state condition as the restoration process progresses. The presence of sinusoidal patterns
across the nodes highlights the impact of spatial differences in energy dispatch and load balancing, where
certain nodes experience a faster return to stable voltage conditions, while others require additional time for
full synchronization. The active power dispatch trajectories of distributed ESS units during restoration exhibit
corresponding dynamic fluctuations, reflecting decentralized energy reallocation efforts among ESS units in
response to evolving load demands and grid stability requirements. The exponential decay observed in the first
two hours of recovery suggests that the proposed quantum-assisted black-start method effectively minimizes
voltage deviations and ensures a controlled restoration sequence. By the 4-hour mark, nearly all nodes converge
towards the operational setpoint of 1.00 p.u., demonstrating the effectiveness of reactive power management and
adaptive restoration planning. The spatial variation in the voltage response observed across the Y-axis further
indicates that nodes connected to high-capacity energy storage units or key transmission corridors experience
earlier stabilization, while peripheral nodes, which may rely on more distributed restoration efforts, stabilize
slightly later. The visualization successfully captures the dynamic adaptation of voltage levels and ensures
that the black-start methodology prevents excessive transients that could lead to system-wide instability. This
structured approach to voltage restoration confirms that the proposed model enhances grid robustness, reduces
voltage collapse risks, and optimally allocates reactive power to achieve a seamless transition from blackout to
full grid operation.
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Method Computation Time (min) | Average Restoration Time (min) | ESS Utilization Rate (%) | Resilience Score
Quantum-Classical Hybrid (Proposed) | 12 32 91 0.91
MILP Optimization 85 48 85 0.87
Heuristic Strategy 65 60 78 0.82

Table 1. Comparative Analysis of Black-Start Restoration Performance Across Different Methods.

Figure 12 illustrates the power dispatch strategy across the grid during black-start recovery, focusing on
energy allocation from storage units and generators. The X-axis represents time in hours, Y-axis represents
80 grid nodes, and Z-axis represents power dispatch in MW, following a sinusoidal wave pattern with an
exponential decay component. Initially, power dispatch experiences significant oscillations, caused by sudden
load fluctuations and varying restoration priorities across different sections of the grid. These mild oscillations
are attributed to transient synchronization behaviors between gradually reconnected loads and distributed
generation resources, reflecting the system’s dynamic adaptation toward full operational stability. The structured
nature of the dispatch pattern reflects the adaptive optimization mechanism embedded in the quantum-assisted
black-start methodology, ensuring that energy is injected into the system in a staged and controlled manner to
prevent grid congestion and overloads. A notable observation in the figure is the higher initial power dispatch
levels, which gradually taper off as additional generation units come online, reducing the burden on storage-
based energy supply. The power injection rate is highest in the first 1.5 hours, reaching a peak of approximately
115 MW, before declining toward 100 MW as stabilization progresses. This behavior aligns with the need for
rapid energy deployment at the onset of black-start, followed by a phase of controlled load management. The
sinusoidal nature of the power dispatch response suggests that different regions of the grid are restored at
different intervals.

To provide a comprehensive validation of the proposed method’s advantages over traditional restoration
approaches, Table 1 summarizes the comparative performance metrics, including computation time, average
restoration time, ESS utilization rate, and resilience scores across different optimization strategies.

As shown in Table 1, the proposed quantum-classical hybrid approach significantly reduces computation time
and restoration duration while achieving higher ESS utilization rates and superior resilience scores compared
to MILP-based and heuristic restoration methods. This comparative analysis further validates the advantages of
integrating quantum optimization techniques into resilient black-start planning.

To demonstrate the advantages of the proposed quantum-assisted dynamic reconfiguration strategy, Table 2
compares the black-start restoration performance across multiple restoration strategies.

As observed, the proposed strategy achieves faster restoration times, higher ESS utilization, and superior
resilience scores compared to fixed-sequence and priority-based load restoration methods. These results
confirm the benefits of employing dynamic and adaptive optimization approaches enabled by quantum-assisted
methodologies for resilient black-start planning.

To further evaluate the robustness and adaptability of the proposed framework, a sensitivity analysis was
conducted by varying the severity of disruption scenarios. Three different levels of failure intensity-mild,
moderate, and severe-were simulated, corresponding to increasing proportions of grid components being
initially disrupted. Table 3 summarizes the restoration performance metrics under these different conditions.

The results demonstrate that although restoration time slightly increases and resilience scores marginally
decline as disruption severity escalates, the proposed framework consistently maintains high performance levels.
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Restoration Strategy Average Restoration Time (min) | ESS Utilization Rate (%) | Resilience Score
Quantum-Assisted Dynamic Reconfiguration (Proposed) | 32 91 091
Fixed-Sequence Restoration 44 84 0.85
Priority-Based Load Restoration 39 86 0.87

Table 2. Comparison of Black-Start Restoration Performance Across Different Strategies.

Failure Severity | Average Restoration Time (min) | ESS Utilization Rate (%) | Resilience Score
10% (Mild) 28 92 0.93
20% (Moderate) | 34 89 0.90
30% (Severe) 41 86 0.87

Table 3. Sensitivity Analysis of Restoration Performance Under Different Disruption Severities.

Scenario Type Average Restoration Time (min) | ESS Utilization Rate (%) | Resilience Score
Natural Disaster (Moderate) 33 90 0.90
Cyber-Physical Attack (Moderate) | 35 89 0.88
Stochastic Failure (Moderate) 34 91 0.89

Table 4. Summary of Restoration Performance Metrics Across Disruption Scenarios.

This confirms its robust adaptability under a wide range of failure conditions, thereby validating its potential
effectiveness for resilient black-start planning in dynamic and uncertain operating environments.

To improve the interpretability of simulation outcomes and facilitate cross-scenario comparisons, Table 4
provides a consolidated summary of key performance metrics across the different disruption types simulated in
this study.

As shown in Table 4, the proposed framework achieves consistent performance across different types of
disruptions, with minimal variation in restoration time and resilience scores. This further confirms the
generalizability and robustness of the method under heterogeneous failure conditions.

Limitations and future challenges
While the proposed quantum-enhanced topological optimization framework demonstrates promising capabilities
for black-start restoration planning, certain limitations must be acknowledged to provide a balanced assessment.
First, the framework inherently depends on the capabilities of current quantum computing hardware, particularly
quantum annealers. Constraints such as limited qubit counts, sparse inter-qubit connectivity, environmental
noise susceptibility, and the need for minor embedding limit the scalability of the optimization approach for
extremely large-scale power systems. Additionally, although quantum annealing accelerates combinatorial
searches, the hybrid quantum-classical iterative workflow introduces considerable computational overhead,
as repeated quantum optimization, AC-OPF validation, and constraint refinement cycles are required. This
overhead may pose challenges for real-time restoration in large, highly dynamic networks. Future improvements
in quantum hardware technologies, as well as advancements in hierarchical decomposition and faster quantum-
classical interfacing methods, are necessary to enhance the framework’s practical efficiency and scalability.
Moreover, the current threat modeling adopted in the study is based on simplified disruption scenarios,
assuming static blackout topologies and predefined fault propagation patterns. In practical settings, cyber-
physical attacks, stochastic failures, and cascading disruptions often involve highly dynamic, unpredictable
behaviors that require more sophisticated and adaptive modeling techniques. Incorporating real-time threat
detection, dynamic resilience assessment, and probabilistic risk modeling into the restoration framework
represents an important future research direction. While the present work provides a conceptual foundation for
quantum-enabled black-start planning, substantial efforts are still needed to address hardware dependencies,
computational costs, and real-world threat complexities before widespread deployment in operational power
systems can be realized.

Conclusion

This paper presented a quantum-enhanced topological optimization framework to improve the resilience and
efficiency of black-start operations in networked energy storage systems (ESS). By leveraging quantum graph
theory and quantum annealing, the proposed approach effectively tackled the challenges of increasing grid
complexity, scalability constraints, and cyber-physical vulnerabilities. The optimization model was designed to
minimize system restoration time, enhance energy dispatch efficiency, and reinforce grid resilience under both
natural failures and deliberate attacks.
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Extensive simulations on a large-scale synthetic power grid validated the frameworK’s effectiveness, showing
up to a 50% reduction in decision-making time, improved ESS coordination, and a marked reduction in
vulnerability to cyber-physical threats. These results demonstrate the potential of quantum computing as a
transformative tool for resilient energy system planning. The proposed methodology offers a promising direction
for modernizing black-start strategies and sets the stage for broader integration of quantum algorithms in future
power system operations.

Despite the promising performance demonstrated in our simulations, it is important to acknowledge
several limitations of the current framework. First, contemporary quantum annealers, such as those developed
by D-Wave, face inherent constraints including limited qubit counts, sparse connectivity, susceptibility to
environmental noise, and latency during quantum-classical interaction. A typical annealing cycle incurs a
computation delay ranging from tens to hundreds of milliseconds, which may limit the real-time applicability
of the proposed framework in large-scale or time-critical black-start scenarios. Furthermore, the effective
problem size is bounded by the number of coupled qubits and the overhead associated with minor embedding,
making it challenging to optimize densely connected models without decomposition. These hardware-related
challenges may affect deployment on current-generation platforms, although ongoing advancements in
quantum technologies-such as improved coherence times, scalable architectures, and better error mitigation-
are expected to progressively mitigate these limitations. Second, the current simulation setup involves several
modeling simplifications, including idealized renewable generation profiles and static load demands. In real-
world applications, renewable outputs are inherently intermittent, and load profiles are highly time-varying
and uncertain. Incorporating dynamic operational conditions, adaptive threat modeling, and real-time grid
dynamics into the optimization framework represents an important future research direction. Overall, while the
present work lays a conceptual foundation for quantum-enabled resilient power system restoration planning,
substantial further development is required to bridge the gap between synthetic simulations and real-world
deployment.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to conflict
of interest but are available from the corresponding author on reasonable request.

Received: 8 April 2025; Accepted: 12 May 2025
Published online: 23 May 2025

References

1. Gruber, K., Gauster, T., Laaha, G., Regner, P. & Schmidt, J. Profitability and investment risk of Texan power system winterization.
Nature Energy 7(5), 409-416. https://doi.org/10.1038/s41560-022-00994-y (2022) (2022/05/01).

2. Khazaei, ]. & Amini, M. H. Protection of large-scale smart grids against false data injection cyberattacks leading to blackouts.
International Journal of Critical Infrastructure Protection 35, 100457. https://doi.org/10.1016/j.ijcip.2021.100457 (2021)
(2021/12/01/).

3. Busby, J. W. et al. Cascading risks: Understanding the 2021 winter blackout in Texas. Energy Research & Social Science 77, 102106.
https://doi.org/10.1016/j.erss.2021.102106 (2021) (2021/07/01/).

4. Li, Y,, Zhang, H., Liang, X. & Huang, B. Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy
Systems. IEEE Transactions on Industrial Informatics 15(4), 2008-2022. https://doi.org/10.1109/T11.2018.2862436 (2019).

5. Li, X, Hu, C,, Luo, S, Lu, H,, Piao, Z. & Jing, L. Distributed Hybrid-Triggered Observer-Based Secondary Control of Multi-Bus
DC Microgrids Over Directed Networks, IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1-14, (2025), https://d
0i.org/10.1109/TCSI.2024.3523339.

6. Li, Y. et al. Digital Twin for Secure Peer-to-Peer Trading in Cyber-Physical Energy Systems. IEEE Transactions on Network Science
and Engineering 12(2), 669-683. https://doi.org/10.1109/TNSE.2024.3507956 (2025).

7. Blekos, K. et al. A review on quantum approximate optimization algorithm and its variants. Physics Reports 1068, 1-66 (2024).

8. Zhao, N., Zhang, H., Yang, X,, Yan, J. & You, FE. Emerging information and communication technologies for smart energy
systems and renewable transition. Advances in Applied Energy 9, 100125. https://doi.org/10.1016/j.adapen.2023.100125 (2023)
(2023/02/01/).

9. Ullah, M. H., Eskandarpour, R., Zheng, H. & Khodaei, A. Quantum computing for smart grid applications. IET Generation,
Transmission & Distribution 16(21), 4239-4257 (2022).

10. Wu, G. & Li, Z. S. Cyber-Physical Power System (CPPS): A review on measures and optimization methods of system resilience.
Frontiers of Engineering Management 8(4), 503-518. https://doi.org/10.1007/s42524-021-0163-3 (2021) (2021/12/01).

11. Devanny, J., Goldoni, L. R. F. & Medeiros, B. P. The 2019 Venezuelan blackout and the consequences of cyber uncertainty. Revista
Brasileira de Estudos de Defesa 7(2), (2020).

12. Olujobi, O. J. The legal sustainability of energy substitution in Nigeria’s electric power sector: renewable energy as alternative.
Protection and Control of Modern Power Systems 5(1), 32. https://doi.org/10.1186/s41601-020-00179-3 (2020) (2020/12/01).

13. Hu, Z,, Su, R, Zhang, K., Wang, R. & Ma, R. Resilient Frequency Estimation for Renewable Power Generation Against Phasor
Measurement Unit and Communication Link Failures. IEEE Transactions on Circuits and Systems 1I: Express Briefs 72(1), 233-237.
https://doi.org/10.1109/TCSIL.2024.3496192 (2025).

14. Zhao, P, Li, S., Cao, Z., Hu, P. ].-H., Zeng, D. D,, Xie, D., Shen, Y., Li, J. & Luo, T. A Social Computing Method for Energy Safety,
Journal of Safety Science and Resilience, 2024/01/12/ (2024), https://doi.org/10.1016/j.jnlssr.2023.12.001.

15. Li, S. et al. Online battery-protective vehicle to grid behavior management. Energy 243, 123083. https://doi.org/10.1016/j.energy.2
021.123083 (2022) (2022/03/15/).

16. Shang, Y, Li, D,, Li, Y. & Li, S. Explainable spatiotemporal multi-task learning for electric vehicle charging demand prediction.
Applied Energy 384, 125460. https://doi.org/10.1016/j.apenergy.2025.125460 (2025) (2025/04/15/).

17. Bitirgen, K., & Filik, U. B. A hybrid deep learning model for discrimination of physical disturbance and cyber-attack detection in
smart grid, International Journal of Critical Infrastructure Protection, vol. 40, p. 100582, 2023/03/01/ (2023), https://doi.org/10.1
016/.ijcip.2022.100582.

18. Anubi, O. M. & Konstantinou, C. Enhanced Resilient State Estimation Using Data-Driven Auxiliary Models. IEEE Transactions on
Industrial Informatics 16(1), 639-647. https://doi.org/10.1109/T11.2019.2924246 (2020).

19. Munikoti, S., Lai, K. & Natarajan, B. Robustness assessment of hetero-functional graph theory based model of interdependent
urban utility networks. Reliability Engineering & System Safety 212, 107627 (2021).

Scientific Reports |

(2025) 15:18034 | https://doi.org/10.1038/s41598-025-02286-3 nature portfolio


https://doi.org/10.1038/s41560-022-00994-y
https://doi.org/10.1016/j.ijcip.2021.100457
https://doi.org/10.1016/j.erss.2021.102106
https://doi.org/10.1109/TII.2018.2862436
https://doi.org/10.1109/TCSI.2024.3523339
https://doi.org/10.1109/TCSI.2024.3523339
https://doi.org/10.1109/TNSE.2024.3507956
https://doi.org/10.1016/j.adapen.2023.100125
https://doi.org/10.1007/s42524-021-0163-3
https://doi.org/10.1186/s41601-020-00179-3
https://doi.org/10.1109/TCSII.2024.3496192
https://doi.org/10.1016/j.jnlssr.2023.12.001
https://doi.org/10.1016/j.energy.2021.123083
https://doi.org/10.1016/j.energy.2021.123083
https://doi.org/10.1016/j.apenergy.2025.125460
https://doi.org/10.1016/j.ijcip.2022.100582
https://doi.org/10.1016/j.ijcip.2022.100582
https://doi.org/10.1109/TII.2019.2924246
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

20. Bartolucci, S. et al. Fusion-based quantum computation. Nature Communications 14(1), 912 (2023).

21. Amani, F, & Kargarian, A. Quantum Optimization for Energy Management: A Coherent Variational Approach, arXiv preprint
arXiv:2412.14095, 2024/01/01/ (2024).

22. Soltaninia, M. & Zhan, J. Quantum Neural Networks for Solving Power System Transient Simulation Problem, arXiv preprint
arXiv:2405.11427, 2024/05/20/ (2024).

23. Coccia, M., Roshani, S. & Mosleh, M. Evolution of quantum computing: Theoretical and innovation management implications for
emerging quantum industry, IEEE Transactions on Engineering Management, (2022).

24. De Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372(6539), eabb2823
(2021).

25. Iwabuchi, K. et al. Enhancing grid stability in PV systems: A novel ramp rate control method utilizing PV cooling technology.
Applied Energy 378, 124737. https://doi.org/10.1016/j.apenergy.2024.124737 (2025).

26. Zhao, D., Onoye, T., Taniguchi, I. & Catthoor, . Transient Response and Non-Linear Capacity Variation Aware Unified Equivalent
Circuit Battery Model, *ResearchGate*, (Dec. 2022). [Online]. Available: https://www.researchgate.net/publication/366215648_Tr
ansient_Response_and_Non-Linear_Capacity_Variation_Aware_Unified_Equivalent_Circuit_Battery_Model

27. 1i, Y, Hu, C,, Luo, S, Lu, H,, Piao, Z., & Jing, L. Distributed Hybrid-Triggered Observer-Based Secondary Control of Multi-Bus
DC Microgrids Over Directed Networks, *IEEE Transactions on Circuits and Systems I: Regular Papers*, pp. 1-14, (2025), https:/
/doi.org/10.1109/TCSI1.2024.3523339.

28. Shang, Y., Li, D, Li, Y. & Li, S. Explainable spatiotemporal multi-task learning for electric vehicle charging demand prediction.
Applied Energy 384, 125460. https://doi.org/10.1016/j.apenergy.2024.125460 (2025).

Acknowledgements
None.

Author contributions

Yinchi Shao, Yu Gong, Xiaoyu Wan, Xianmiao Huang: Responsible for the practical engineering problem defini-
tion, industrial background, data support, and validation of the proposed model in real-world mining scenarios.
Shanna Luo (corresponding author): Conceptualized the academic framework, contributed to the methodology
and writing of the manuscript, and coordinated the collaborative research effort. Yuntao Cao, Tao Zhang: Assist-
ed in model formulation, algorithm design, and sensitivity analysis.

Funding
This research was funded by the Science and Technology Project of the State Grid Corporation of China (Grant
No. B3018 K24006 C).

Declarations

Competing interests
The authors declare no conflicts of interest.

Additional information
Correspondence and requests for materials should be addressed to S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:18034 | https://doi.org/10.1038/s41598-025-02286-3 nature portfolio


http://arxiv.org/abs/2412.14095
http://arxiv.org/abs/2405.11427
https://doi.org/10.1016/j.apenergy.2024.124737
https://www.researchgate.net/publication/366215648_Transient_Response_and_Non-Linear_Capacity_Variation_Aware_Unified_Equivalent_Circuit_Battery_Model
https://www.researchgate.net/publication/366215648_Transient_Response_and_Non-Linear_Capacity_Variation_Aware_Unified_Equivalent_Circuit_Battery_Model
https://doi.org/10.1109/TCSI.2024.3523339
https://doi.org/10.1109/TCSI.2024.3523339
https://doi.org/10.1016/j.apenergy.2024.125460
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Quantum-enabled topological optimization of distributed energy storage for resilient black-start operations
	﻿Literature review
	﻿Mathematical modelling and methodology
	﻿Results
	﻿Limitations and future challenges
	﻿Conclusion
	﻿References


