
A comparative study and simple
baseline for travel time prediction
Chuang-Chieh Lin1,4, Ming-Chu Ho2,4, Chih-Chieh Hung2 & Hui-Huang Hsu3

Accurate travel time prediction (TTP) is essential to freeway users, including drivers, administrators,
and freight-related companies, for enabling them to plan trips effectively and mitigate traffic
congestion. However, TTP is a complex challenge even for researchers due to the difficulty of capturing
numerous and diverse factors such as driver behaviors, rush hours, special events, and traffic incidents,
etc. A multitude of studies have proposed methods to address this issue, yet these approaches often
involve multiple stages and steps, including data preprocessing, feature selection, data imputation,
prediction model. The intricacy of these processes makes it difficult to pinpoint which steps or factors
most significantly influence prediction accuracy. In this paper, we investigate the impact of various
steps on TTP accuracy by examining existing methods. Beginning with the data pre-processing phase,
we evaluate the effect of deep learning, interpolation, and max value imputation techniques on dealing
with missing values. We also examine the influence of temporal features and weather conditions
on the prediction accuracy. Furthermore, we compare five distinct hybrid models by assessing their
strengths and limitations. To ensure our experiments align with real-world situations well, we conduct
experiments using datasets from Taiwan and California. The experimental results reveal that the
data-preprocessing phase, including feature editing, plays a pivotal role in TTP accuracy. Additionally,
base models such as Long Short-Term Memory (LSTM) and eXtreme Gradient Boosting (XGBoost)
outperform all hybrid models on real-world datasets. Based on these insights, we propose a baseline
that fuses the complementary strengths of XGBoost and LSTM via a gating network. This approach
dynamically allocates weights, guided by key statistical features, to each model, enabling the model
to robustly adapt to both stable and volatile traffic conditions and achieve superior prediction accuracy
compared to existing methods. By breaking down the TTP process and analyzing each component, this
study provides insights into the factors which affect prediction accuracy most significantly, thereby
offering guidance and foundation for developing more effective TTP methods in the future.

Accurate travel time prediction (TTP) benefits a wide range of freeway users, including drivers, traffic
administrators, and freight-related companies. With accurate travel time prediction, drivers can plan their
journeys effectively in advance and mitigate traffic congestion. Traffic administrators can use travel time
predictions to better manage traffic flow and mitigate congestion during peak hours so as to improve social
utility. Freight companies, on the other hand, can optimize their delivery schedules, ensuring timely deliveries
and reducing operational costs. However, TTP still remains a challenging task for researchers due to the
myriad factors which influence travel time, such as individual driver behaviors, rush hours, special events, and
unforeseen incidents like car accidents, etc.

Numerous studies have proposed various methods to tackle the issue of travel time prediction. Generally
speaking, these methods often encompass multiple steps, including data preprocessing, feature selection, data
imputation, and the application of prediction models. Each step is suspected to play a crucial role in the overall
accuracy of the prediction, yet so far, their individual contributions have not been evaluated. The intricacy of the
processes involved in TTP makes it challenging to pinpoint which specific step has the most significant impact
on prediction accuracy. As a result, in this paper, we aim to shed light on this intricate problem by discussing
the influence of different steps on the accuracy of travel time prediction. By examining several existing works,
we break down each method into components and analyze their impact on the overall predictive performance.
Through this detailed examination, we can then further propose a simple and robust baseline for TTP that
effectively fuses the important components for accurate travel time prediction, ultimately guiding future research
towards more accurate and reliable TTP methodologies.

1Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202301,
Taiwan. 2Department of Management Information Systems, National Chung Hsing University, Taichung City
402202, Taiwan. 3Department of Computer Science and Information Engineering, Tamkang University, New Taipei
City 251301, Taiwan. 4Chuang-Chieh Lin and Ming-Chu Ho: These authors contributed equally to this work. email:
smalloshin@nchu.edu.tw

OPEN

Scientific Reports | (2025) 15:25609 1| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-02303-5&domain=pdf&date_stamp=2025-7-15

The workflow
Figure 1 summarized the workflow how this paper discusses the impact of each component to travel time
prediction. A forecast method of TTP can be either model-based (i.e., model-centric) or data-driven. A model-
based method aims to improve the machine learning model or algorithm without adjusting the data. By looking
into the insight and characteristics of the model, one can achieve fixed complexity and make predictions
efficiently and elegantly. Data-driven methods, in contrast, take advantage of big amount of data to make
decisions. Scientists developing TTP with data-centric methods concentrate on data preprocessing, including
feature engineering, data cleaning and value imputation etc.

In this work, we conjecture and presume that data-driven methods in terms of data processing and feature
engineering play important roles toward the TTP. Then, after the “optimal way” of data preprocessing is
determined, we conduct experiments to measure the performance of different machine learning models solving
the TTP. That is, we take advantage of both model centric and data-driven methods to cope with TTP (the left
side of Fig. 1), and at the same time, identify the crucial factors which make the TTP be accurately predictable.

Before we dive right in the comparison of different models, feature engineering is to be reckoned with. In
terms of TTP, zero value imputation in travel time is just as important as missing value imputation (upper-left
side of Fig. 1). Specifically, when there is no car passing by, both the travel speed and travel time will be recorded
as zero by the sensor. However, travel speed should have a negative correlation to travel time. It is unreasonable
to have zero value in travel time and travel speed at the same time. In order to investigate which imputation
method is the best, we conduct several experiments on real-world datasets with common imputation methods.

After the optimal imputation method is determined, we extract temporal features as different ranges of time
in terms of time slots (the middle of the upper-left side of Fig. 1). As different ranges of time reflects different
temporal patterns toward travel time, we investigate whether and which of these features can improve model
performance. Moreover, as Fig. 2 shows, we not only see distinct patterns of weekdays and weekends in a week
(e.g., the pattern in weekdays seems to be more unsteady), but also the regular intraday patterns (i.e., rush hours
and normal hours). Consequently, we conduct experiments to have a view toward the influence of temporal
features on different models, then we conclude the best pairs of features for model training. In addition, weather
effects and other feature-related approaches are also conducted and explained (bottom of the upper-left size of
Fig. 1)).

Finally, after we select optimal features for model training, we proceed with model comparisons (right side
of Fig. 1). We consider two base models and five hybrid models used in the experiments for the comparisons:

	(1)	 (Base) a conventional machine learning model as a base model: XGBoost (Xtreme Gradient Boosting).
	(2)	 (Base) a deep learning model as another base model: LSTM (Long Short-Term Memory).
	(3)	 (Hybrid) a hybrid model (XGBoost plus GRU): linear regression from the outcome of XGBoost and GRU

(gated recurrent unit)1.

Fig. 1.  Workflow demonstration of our contributions. XGBoost: extreme gradient boosting; LSTM: long short-
term memory; DNN: deep neural network; GRU: gated recurrent unit; GCN: graph convolutional network;
T-GCN: temporal GCN; ATT: self-attention mechanism.

Scientific Reports | (2025) 15:25609 2| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	(4)	 (Hybrid) a hybrid model (DNN plus XGBoost): long and short sequences are fed into a XGBoost model and
a DNN (deep neural network), respectively, and then the outcome is fed into the another DNN to get the
output16.

	(5)	 (Hybrid) a hybrid model (stacked LSTMs): long short and short term datasets are fed into stacked LSTMs
and the outcome together with the weather datasets are fed into a DNN to get the output5.

	(6)	 (Hybrid) a spatial and temporal hybrid model (GCN plus GRU): data of consecutive time slots are fed into
a recurrent neural network which consists of a GCN (graph convolutional network) and a GRU17.

	(7)	 (Hybrid) a hybrid model combining self-attention and GRU (ATT-GRU): a sequence of historical segment
travel time is fed into the attention-based GRU, and then predict the travel time at some time horizon20.

We use real-world datasets to conduct our experiments, which include datasets from the Ministry of
Transportation and Communications (MOTC) in Taiwan and the Caltrans Performance Measurement System
(PeMs) District 7 in the state of California of the US.

Our contributions
We briefly summarize our contributions as follows.

•	 Component-wise Analysis of Travel Time Prediction Methods. The paper conducts a detailed analysis of var-
ious travel time prediction methods by breaking down each method into its constituent components. This
approach helps to identify which specific steps, such as data preprocessing, feature selection, data imputation,
and prediction models, significantly impact the accuracy of travel time predictions.

•	 Evaluation of Data-driven and Model-centric Approaches. The study leverages both data-driven and mod-
el-centric methods to tackle travel time prediction. By optimizing data preprocessing and feature engineering,
and then evaluating the performance of different machine learning models, the paper provides a comprehen-

Fig. 2.  Example of trend of travel time from Monday to Sunday (from January 15 th to January 21 st in 2018).
The x-axis represents time-slots and the y-axis represents the travel time.

Scientific Reports | (2025) 15:25609 3| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

sive comparison of these approaches and identifies the crucial factors that contribute to accurate travel time
predictions.

•	 Experiments with Real-world Datasets. The research utilizes real-world datasets from the Ministry of Trans-
portation and Communications (MOTC) in Taiwan and the Caltrans Performance Measurement System
(PeMs) District 7 in California. By conducting experiments with these datasets, the paper validates the pro-
posed methods and demonstrates their practical applicability in improving travel time prediction accuracy
in real-world scenarios.

•	 Proposal of a simple and robust Baseline for TTP. Based on our analysis, we propose a new dynamic fusion
baseline that fuses XGBoost and LSTM via a gating network-offering a robust, adaptive prediction framework
that outperforms existing models in diverse traffic scenarios.

The remaining sections of this paper are organized as follows. Sect."Related work" reviews literature related
to TTP, including model constructions and methods of comparisons. Sect."Preliminary" illustrates the
structure of our comparison and the configuration of the adopted models. Experimental results are presented
in Sect."Imputation methods description". Finally, we conclude our work in Sect."Base and hybrid model
frameworks" with discussions.

Related work
Categories of travel time prediction
Travel Time Prediction (TTP) can be divided into two primary categories: short-term TTP and long-term TTP.
Short-term TTP focuses on predicting travel time within 5 to 30 minutes, and it is particularly useful for real-
time decision-making, such as selecting the most efficient route to avoid congestion. On the other hand, long-
term TTP refers to travel time predictions at least an hour in advance, which are valuable for planning purposes,
such as optimizing delivery schedules. However, long-term TTP is more challenging due to the uncertainty of
future conditions, making it harder to accurately predict travel time trends.

Both short-term and long-term TTP have distinct perspectives that aim to maximize the accuracy of travel
time predictions. Short-term TTP is predominantly influenced by real-time traffic conditions, rather than
periodic features such as the day of the week or time of day. For example, Ting et al.1 developed a hybrid model
using traffic volume, average travel time, and speed to improve short-term predictions. Qiao et al.2 also used
features like travel speed and weather conditions for training their model. Temporal features, such as month and
travel time change, have also been integrated into some short-term TTP models3. Long-term TTP, being further
removed from the current traffic conditions, relies more heavily on temporal patterns to enhance accuracy. The
time gap between the current and target time introduces additional complexities in prediction. For instance,
Chen et al.4 and Chou et al.5 utilized various temporal variables to better capture travel time trends. These studies
demonstrate the importance of considering time-based attributes, as relying solely on historical travel trends is
insufficient for accurate long-term predictions. In6, Kandiri et al. proposed a two-stage feature selection method
for TTP, which significantly reduced the number of features and computational costs, while still improved the
prediction accuracy. Their data-driven approach partially motivated our work in the sense of jointly investigating
data-driven method and model-centric method for TTP.

Travel time prediction models
Parametric models, such as the Autoregressive Integrated Moving Average (ARIMA), assume that travel time
follows a regular trend. Billings and Yang7 applied ARIMA for one-step-ahead predictions, while Qiao et al.2
identified its limitations, particularly in handling peak traffic periods. Similarly, the Kalman Filter (KF) has
been applied to future forecasting, treating travel time as a moving point for accurate predictions8. However,
parametric models are constrained by fixed parameters and may suffer from underfitting in complex travel time
patterns. This limitation has led to the adoption of non-parametric models, which are better suited to capturing
higher-order dependencies.

Machine learning and deep learning methods have become prominent in addressing the challenges of
TTP. Ensemble learning techniques, which combine the outputs of weak learners, are effective for generating
objective and accurate predictions. Yu et al.9 introduced a random forest (RF) model based on near neighbors
(RFNN) for bus travel time prediction. Random forests leverage bagging algorithms to overfit weak learners on
specific datasets, improving overall prediction accuracy through weighted voting. Qiu and Fan3 found that RF
outperformed decision trees, XGBoost, and LSTM in their experiments. Gradient Boosting (GB) and its variants,
such as Gradient Boosting Decision Tree (GBDT) and XGBoost, are also widely used for TTP. Chen et al.4 applied
the gradient boosting method for long-term TTP, incorporating a Fourier filter to denoise data, though the filter
did not significantly improve predictions. XGBoost, known for its efficiency and high performance, has also been
employed in freeway travel time prediction10, and Ahmed et al.11 demonstrated its superiority over other models
like LightGBM in multiple real-world datasets. Except LSTM, other deep learning approaches, such as MLP12,13
(multilayer perceptron), CNN14, deep-stacked auto-encoder15, have been addressed for TTP. Hybrid models
have gained traction in recent years, aiming to capture diverse patterns from data to enhance TTP accuracy.
Ting et al.1 combined GRU and XGBoost via linear regression, while Ho et al.16 designed a two-phase hybrid
model integrating DNN and XGBoost. Chou et al.5 developed a hybrid model using stacked LSTMs for long-
term TTP, incorporating weather effects, though the significance of these effects remains unclear. Zhao et al.17
proposed the Temporal Graph Convolutional Network (T-GCN), which simultaneously captures temporal and
spatial dependencies using a combination of Graph Convolutional Networks (GCNs) and GRU, demonstrating
promising results. As RNNs, such as LSTM and GRU, basically assign the same weights to the hidden states,
the attention mechanism18, which is widely used in the transformers for their ability of flexibly reweighting
the network weights, has been investigated for the TTP19,20. Recently, Chughtai et al.20proposed the ATT-GRU

Scientific Reports | (2025) 15:25609 4| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

model which added an attention layer after the GRU (cf19. the LSTM was used instead) in order to deal with the
relationship between distinct positions in the travel time sequence.

Deep learning techniques for time series forecasting
The development of novel deep learning architectures has significantly enhanced the accuracy and efficiency
of time series forecasting models21. introduced the N-BEATS architecture, a feedforward neural network
with a basis expansion mechanism that achieved state-of-the-art performance across several benchmarks.
Similarly22, proposed the Informer, a transformer-based model optimized for long-sequence forecasting, which
utilizes a sparsity mechanism to improve computational efficiency. Transformers have also been enhanced for
interpretability and multi-horizon forecasting, as demonstrated by23, who developed the Temporal Fusion
Transformer (TFT). Further advancements include the Autoformer24, which introduced a decomposition-
based approach to extract seasonal and trend components for long-term forecasting. Hybrid models, combining
statistical techniques and deep learning, have been increasingly explored25. developed the ES-RNN, which
integrates exponential smoothing with RNNs, achieving first place in the M4 competition. Probabilistic methods,
such as DeepAR26, have also gained traction by providing uncertainty estimates for forecasts.

Recent studies have emphasized enhancing generalizability across diverse scenarios. For instance27,
incorporated volatility modeling with GARCH and signal decomposition for non-stationary time series28.
reviewed graph neural networks for spatiotemporal forecasting, particularly in traffic applications, highlighting
their ability to model spatial dependencies effectively. Several surveys have provided systematic overviews of
advancements in deep learning for time series forecasting29. outlined foundational methods and key challenges,
while30 highlighted emerging trends, such as foundation models and their potential for transfer learning in
related forecasting problems.

More recent works have further pushed the envelope of forecasting methodologies. For example,
iTransformer31 inverts the standard embedding strategy by treating individual time points as distinct variate
tokens, thereby capturing richer multivariate correlations, while Non-Stationary Transformers32 employ de-
stationary attention mechanisms to handle evolving data distributions more effectively. On the graph-based
front, FourierGNN33 rethinks multivariate time series forecasting from a pure graph perspective by representing
series as hypervariate graphs and applying Fourier space operations to capture unified spatiotemporal dynamics.
The comprehensive survey on GNNs for time series34 further categorizes these approaches in forecasting,
classification, imputation, and anomaly detection. In addition, practical applications in transportation have been
explored: Wang et al.35 introduced a deep neural network model for travel time estimation, and Derrow-Pinion
et al.36 demonstrated effective ETA prediction using graph neural networks in Google Maps. Most recently,
ForecastGrapher37 has been proposed to recast multivariate forecasting as a node regression task on graphs,
thereby bridging spatial and temporal modeling.

Deep learning has revolutionized time series forecasting, offering unparalleled capabilities in capturing
complex patterns and enhancing forecasting accuracy. From novel architectures to hybrid and application-specific
models, the advancements summarized in this review demonstrate the field’s rapid evolution. Nevertheless,
challenges such as improving interpretability, addressing data scarcity, and achieving robust generalization
remain open for future research.

Preliminary
In this section, we lay the groundwork for addressing the Travel Time Prediction (TTP) problem by defining
the core problem and outlining the key features and models involved. The focus is on identifying important
predictive variables and optimal modeling strategies. By setting a future time period as the target, we aim to
predict travel time based on historical data captured in a sliding time window. This approach helps us capture
temporal patterns and trends in travel time, which are critical to developing accurate prediction models.

Problem definition
To address the Travel Time Prediction (TTP) problem, we aim to identify the most significant features and optimal
models. During the data preprocessing phase, we define a future period, denoted as t∗(e.g., one hour later), as the
target prediction time, and the travel time at t∗ as Tt∗ . Assuming the current time period is t, the feature vector
associated with t is xt. Each time period represents a 5-minute interval, and the target period is set as t∗ = t + 12,
with the goal of predicting Tt+12. The feature vector xt consists of distinct features, (At, Bt, Ct, . . . , Nt). To
capture travel time trends, we employ a sliding time window, i.e., (xt−ℓ, xt−ℓ+1, . . . , xt), where ℓ is the number
of time slots used to identify hidden temporal patterns over an unknown period. The objective function is
formulated as:

	
f

(
ℓ∪

i=0

(At−ℓ+i, Bt−ℓ+i, Ct−ℓ+i, . . . , Nt−ℓ+i)

)
= Tt+12,

where f represents the model and ℓ refers to the number of time slots related to the hidden temporal pattern
within the TTP.

Data preparation
This study made use of two datasets from different countries from January to July in 2018, capturing the
consistency of TTP. We consider a 5-minute interval as the time horizon unit for both datasets. The Taiwan
dataset was collected (see Fig. 3) from Freeway Bureau, MOTC in Taiwan ​(​h​t​t​p​s​:​/​/​t​i​s​v​c​l​o​u​d​.​f​r​e​e​w​a​y​.​g​o​v​.​t​w​/​
h​i​s​t​o​r​y​/​T​D​C​S​)​, where the general information we had captured includes the traffic flow, average travel time,

Scientific Reports | (2025) 15:25609 5| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

https://tisvcloud.freeway.gov.tw/history/TDCS
https://tisvcloud.freeway.gov.tw/history/TDCS
http://www.nature.com/scientificreports

average travel speed, and traffic flow between the sensor at the start point and the one at the end point. The
segment between two sensors defines a route segment. In our study, we conducted experiments on the freeway
from Taipei to Hsinchu, including 69 routes. Additionally, we collected the California dataset (see Fig. 4) from
PeMS, state of California (https://pems.dot.ca.gov/). In the California dataset, we fetched general information
from respective sensors, which includes average traffic flow and average travel speed. In order to extract the
travel time, we divided the distance of a route by the average travel speed. Totally 81 routes (two sensors formed
a route, illustrated in Fig. 5) were selected in District 7, Los Angeles County. In the following experiments, these
two datasets were used to build different models, and then we will compare their performances.

Imputation methods description
In this section, we present various methods to handle missing or zero values in our dataset, which are considered
noisy due to the inverse relationship between speed and travel time. Zero values in the dataset would be regarded
as noisy, for speed is inversely proportional to travel time. From the view of the sensor, that no car passing by
is treated as no travel time data and no travel speed data as well. In this way, they were recorded as zero values.
Therefore, we adopted several methods to impute zero values. The effectiveness of the imputation will also be
investigated.

Chou’s imputation (interpolation)
In5, Chou et al. first filtered outliers and then used interpolation to fill the missing values among continuous data.
If a missing value still existed, they adopted the data at the same time point a week ago or later for the imputation.
Finally, the average value was used to impute the remaining missing values.

Fig. 4.  The 81 routes in California dataset (https://pems.dot.ca.gov/). Each red circle indicates a route between
an upstream position and a downstream position.

Fig. 3.  The 69 routes in Taiwan dataset (Image © Google). Each green circle with number indicates a route
between an upstream position and a downstream position.

Scientific Reports | (2025) 15:25609 6| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

https://pems.dot.ca.gov
https://pems.dot.ca.gov/
http://www.nature.com/scientificreports

Max imputation
When there is no car passing by, the route is clear and drivers can maximize their driving speed till speed
limit. In this way, we captured the speed limit from every route and imputed zero value at the speed column.
Afterwards, we average the travel time whenever their speed reaches the speed limit.

Denoising AutoEncoder (DAE)
Deep learning methods, such as AutoEncoders, have been adopted to address the issue of missing value
imputation38,16. Inside the AutoEncoder network, the information is compressed at a bottleneck so as to capture
meaningful and succinct representation of the data. In38, DAE was used for imputation. It added some noise to
data in order to make the model be more robust. Assume that each data point x represented as {a, b, c}, where
a, b, c symbolizes the features. Then, one feature is marked randomly, e.g., {a, b, mask} for which c is randomly
chosen to be masked. Next, let x̃ be the randomly masked input, then feed it into DAE and get x̂ = {a, b, ĉ} as
the predicted outcome. Finally, apply the mean-squared error (MSE) function to calculate loss between x and x̂
which is used to update the model.

Base and hybrid model frameworks
In this section, we describe the core models used in our approach to travel time prediction. We begin by outlining
the base models, including XGBoost and LSTM, which are widely used for their effectiveness in handling
structured data and sequential patterns, respectively. Following this, we introduce several hybrid models that
combine the strengths of various techniques to improve prediction accuracy. Each model’s architecture and
functionality are explained in detail, providing a comprehensive understanding of their role in solving the travel
time prediction problem.

Base model description
In order to represent the influence of different methods of feature engineering, we proposed ensemble learning
model XGBoost and deep learning model LSTM to measure the effectiveness.

XGBoost ensemble earning model
XGBoost is famous for its features of parallel computing, optimal performance and large-amount adjustable
parameters. Through the loss of previous models, it constructed the next weak model to minimize its loss. To
illustrate the algorithm of XGBoost, we first define the object: ŷi =

∑K

k=1 fk(xi). In this way, we can realize
that the outcome is summed by the functions fk ’s (i.e., K decision trees as weak learners). After that, the objective
function of XGBoost will be

	
obj =

n∑
i=1

loss (yi, ŷi) +
K∑

k=1

R(fk).� (1)

The objective function (Eq. (1)) can be divided into two parts: the loss function part and the regularization
term. In the loss function part, its default loss function is the squared error:

∑n

i=1(yi − ŷi)2, yet we can specify
specific loss functions to address different issues. In the complexity control part, it controls how many samples
a node can contain, depths of a tree and number of nodes in a tree. In addition, XGBoost exploited the Taylor’s
expansion up to the second order to approximate and simplify the objective function.

The second-order Taylor’s approximation can be formulated as Eq. (2).

	
f(x + ∆x) ≈ f(x) + f ′(x)∆x + 1

2f ′′(x)(∆x)2.� (2)

Fig. 5.  Detail information about two sensors forming a route.

Scientific Reports | (2025) 15:25609 7| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Then we let f(xi) = loss (yi, ŷi
k−1). Therefore, f(xi + ∆xi) = loss (yi, ŷi

k−1 + fk(xi)). In this function,
ŷi

k−1 represents the sum of predictions by the previous k − 1 trees on x, and fk(xi) represents the prediction
(i.e., ∆x) of the current k-th tree. In this way, we can transform the objective function in the form:

	
objk =

n∑
i=1

loss (yi, ŷi
k−1 + fk(xi)) +

K∑
k=1

R(fk).� (3)

The objective function (Eq. (3)) can be substituted by Taylor’s expansion as ∑n

i=1(loss (yi, ŷk−1
i) + ∂

ŷk−1
i

loss (yi, ŷk−1
i)fk(xi) + 1

2 ∂2
ŷk−1

i

loss (yi, ŷk−1
i)f2

k (xi)) + R(fk). The first
term loss (yi, ŷk−1

i) is a known term since it was calculated by previous trees. Therefore, it can be omitted from
the objective. Then, we realize that the first derivative and second derivative of the loss functions are regarded as
residuals so as to offer XGBoost information about the result of previous trees. Finally, by adding the predictions
from all the trees constructed by the XGBoost algorithm, it hopefully provides more accurate results.

Long short-term memory (LSTM) model
The LSTM is proposed to resolve issues in the traditional RNN. Despite the fact that an RNN can store former
output as memory and influence next input by loading the memories from a hidden layer, RNN is unable to
memorize long-term memory after feeding several inputs. Instead, the LSTM with three distinct gates aims to
keep important information in the memory for the model. Figure 6 illustrates the structure of the LSTM.

	1.	 Zt(from the output of the previous layer) goes through the tanh activation function.
	2.	 The input gate controls the degree of influence from Zt by using sigmoid activation function which out-

puts a value in [0, 1].
	3.	 After going through the input gate, the forget gate uses the sigmoid function to control whether to clean

the memory cell or not. Then, it sums the value from the previous layer and updates the memory cell.
	4.	 The output gate controls the degree of output value by multiplying the value from the output gate (in [0, 1])

and the value from the previous layer.

In this way, LSTM can not only recognize the importance of long-term memory by controlling distinct gates,
but also capture the pattern of adjacent inputs. Due to the promising characteristics of the LSTM, we adopted it
as one of the base models.

We apply XGBoost and LSTM as the prediction models to compute the TTP accuracies so as to measure the
performance of the methods used in the feature engineering and data preprocessing phase (e.g., data imputation
and temporal feature extraction).

Hybrid model frameworks
In the model comparison phase, we adopt five different hybrid models depicted as follows. We would investigate
which model performs the best.

Ting’s GRU-XGBoost hybrid model
Ting’s hybrid model has two phases1. In the first phase, it used data in the form of sliding windows as input
going through GRU and XGBoost respectively. In the second phase, Linear regression is constructed to capture
and leverage the comprehensive information from the predictions made by GRU and XGBoost. The captured
features include One-station Traffic Volume, Two-Station Traffic Volume, Average Travel Time, and Average
Traffic Speed. They used the Denoising AutoEncoder38 to impute the zero values in Average Travel Time and
Average Traffic Speed. Figure 7 illustrates the structure of Ting’s Hybrid Model.

Fig. 6.  Structure of the LSTM.

Scientific Reports | (2025) 15:25609 8| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Ho’s DNN-XGBoost hybrid model
This section explores Ho’s hybrid model16, which operates in two distinct phases. In the first phase, both a deep
neural network and an XGBoost model are developed. Long and short sequences of input data are then fed into
these models separately to capture different patterns within the dataset. The results from these two models are
processed by a second deep neural network. Features such as average travel time, average traffic speed, day of
the week, and hour of the day are utilized. When imputing missing values, the speed limit is used as a proxy
for both average traffic speed and travel time on the freeway. Figure 8 provides a visual representation of Ho’s
Hybrid Model.

Fig. 8.  Structure of Ho’s Hybrid Model16.

Fig. 7.  Structure of Ting’s Hybrid Model1.

Scientific Reports | (2025) 15:25609 9| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Deep ensemble stacked LSTM (DE-SLSTM)
The structure of DE-SLSTM (i.e., Deep Ensemble Stacked Long Short Term Memory) is made up of two predictors,
a non-peak predictor and a peak predictor, to capture information at the moment of a peak period5. They stacked
different LSTMs in each predictor by three kinds of dataset: long short-term dataset, containing the information
of last week, short-term dataset, containing the information of last hour and long-term dataset, containing the
information of the historical dataset. The weather dataset will be addressed before the model outputs. After
calculating the proportion of peak periods and non-peak periods, the prediction will be made in proportion to
their importance. Average travel speed and average travel time from MOTC in Taiwan, and generated temporal
attributes such as month, day of week, holiday, time slot and peak, were extracted. Interpolation is applied to
impute missing data. Figure 9 illustrates the structure of DE-SLSTM.

Temporal graph convolutional network (T-GCN)
A T-GCN (i.e., temporal graph convolutional network) is a hybrid model consisting of two parts: GCN and GRU.
GCN (i.e., the graph convolutional network) captured the topological structure of the road network and GRU
captured the time trend of travel time17. First, GCN is used to make every route as a node and aggregate the
information from neighboring nodes. Then, every node containing information from their surrounding nodes
in a specific length of time steps will be fed into GRU so as to get the trend of travel time. After the GRU phase,
the prediction of travel time will be made. Average Travel Speed is used as the feature and interpolation is used
to impute missing values. Figure 10 illustrates the structure of the T-GCN.

Attention-based gated recurrent unit (ATT-GRU)
Chughtai et al.20 proposed the ATT-GRU (attention-based gated recurrent unit) model, which is also a hybrid
model consisting of two parts: a simple attention mechanism and a GRU. This model can leverage the benefit
of GRU for the short-term period TTP task, and moreover, re-weight the weights in the network by a simple
self-attention mechanism. See Fig. 11 for the sketch of such a hybrid model. Similar approach by replacing
GRU by LSTM was also proposed19, though GRU is more efficient in terms of faster training process with fewer
parameters than LSTM.

Experiment
Evaluation metric
We adopted MAE (i.e., Eq. (4)) and RMSE (i.e., Eq. (5)) to evaluate the performances. MAE measured the
average absolute difference between the predicted value (i.e., ŷi) and the actual value (i.e., yi). That is,

	
MAE = 1

n

n∑
j=1

|yi − ŷi| ,� (4)

where n denotes the number of data points. RMSE computes the square root of the average differences between
the predicted value and the actual value. Because of the effect of square root, large differences would lead to
larger residuals than MAE did.

Fig. 9.  Structure of DE-SLSTM5.

Scientific Reports | (2025) 15:25609 10| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	

RMSE =

√√√√ 1
n

n∑
j=1

(yi − ŷi)2.� (5)

We adopted both of them in the data preprocessing phase and the model comparison phase. In addition, since
we adopted several routes to measure the performances of models, we measure MAE and RMSE in mean and
median in order to find out objective outcome.

Fig. 11.  Structure of ATT-GRU20.

Fig. 10.  Structure of T-GCN17.

Scientific Reports | (2025) 15:25609 11| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Data preprocessing phase
In this phase, we adopted XGBoost and LSTM to measure the performances of different methods in data
preprocessing. We intend to use these two models to generate a global view toward this phase.

Analysis of missing value imputation
In this paragraph, we compare the performance of TTP using XGBoost and the LSTM with different missing
value imputation methods, and we would like to know which missing value imputation method leads to the best
prediction results. We adopted Chou’s imputation (Interpolation), Max Imputation and DAE. In DAE, we used
default parameters to tune the model. From Table 1 and 2, we can see that Chou et al.’s imputation leads to the
smallest MAE and RMSE by XGBoost and LSTM, yet Max Imputation leads to comparable performance. Note
that, as shown in Table 1 and 2, using DAE with default parameters for the missing value imputation leads both
XGBoost and the LSTM to the worst performance.

Analysis of sliding windows
Sliding windows sequenced the data in order to capture time trends in a specific period (see Fig. 12). Every time
slot is in the unit of five minutes. We compare six sizes of time sliding windows: 1 time slot (the current time
slot), 6 time slots (from current time slot to 30 minutes before), 12 time slots (from current time slot to one hour
before), 24 time slots, 36 time slots and 48 time slots.

Figure 13 shows the comparison of each size of time sliding windows and each diagram adopted different
evaluation metrics in the Taiwan dataset. We find out the local minimum when the size of time sliding windows
is 24 in most of the diagrams. Thus, we realize that in the Taiwan dataset, when we capture the data from two
hours before, the model is able to predict travel time most accurately. Note that more model training time is
required when a larger sliding window is applied and more features are involved. We will explain the relationship
between size of time sliding windows and time consuming later.

Figure 14 presents the comparison among different evaluation metrics in the California dataset. We observe
that when the size of sliding windows increases, the predicted outcome made by XGBoost and the LSTM leads
to smaller MAE and RMSE, which is different from the results on the Taiwan dataset. However, it takes more
time to train the models for larger time sliding windows due to larger data volume and dimension, hence there
is a trade-off at choosing the time sliding window size.

Therefore, we illustrated the relationship among average evaluation metrics (i.e., (RMSE + MAE)/2),
size of time sliding windows and training time. In Fig. 15, the red line represents average MAE and RMSE, and
the green line represents training time for each size of time sliding windows. In the diagram, we observe that
when the size of sliding windows increases to 24, training time will increase significantly. And as the diagram we
compare in the Taiwan dataset, when the size of time sliding windows is 24, it attains the optimal results. Hence,
we adopted sliding windows of 24 time slots as the optimal size of time sliding windows.

Taiwan Max Imputation Chou Imputation DAE Imputation

Mean MAE 16.940 17.024 17.184

Median MAE 12.767 13.749 13.631

Mean RMSE 45.034 45.243 45.152

Median RMSE 35.005 35.835 35.027

 California Max Imputation Chou Imputation DAE Imputation

Mean MAE 4.420 4.462 4.453

Median MAE 3.290 3.450 3.452

Mean RMSE 8.453 8.468 8.461

Median RMSE 6.608 6.573 6.654

Table 2.  TTP performance by the LSTM using different missing value imputation methods.

Taiwan Max Imputation Chou’s Imputation DAE Imputation

Mean MAE 16.766 16.762 16.965

Median MAE 14.183 13.551 14.244

Mean RMSE 47.422 47.168 47.646

Median RMSE 37.751 38.907 37.748

 California Max Imputation Chou’s Imputation DAE Imputation

Mean MAE 4.143 4.143 4.150

Median MAE 3.152 3.152 3.152

Mean RMSE 8.244 8.237 8.250

Median RMSE 6.318 6.318 6.365

Table 1.  TTP performance by XGBoost using different missing value imputation methods.

Scientific Reports | (2025) 15:25609 12| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Analysis of weather feature (Taiwan dataset)
There are many features related to weather, including precipitation, blowing rate, wind direction and temperature,
etc. However, adding features would increase the model complexity which could lead to overfitting of the model.
Therefore, the information provided by extra features shall surpass the effects from increasing complexity.
Hence, it is interesting to know whether weather features are important enough to improve model performance.
We adopted the Taiwan dataset as an illustrating example. Since most weather stations are not at the same
location as the sensors on the freeway, we identify the nearest weather station of the smallest Euclidean distance
for each sensor. The weather stations (see Fig. 16) are orange balloons and the stations on the freeway are green
balloons numbered from 1 to 69.

Fig. 13.  TTP performance of different sliding window sizes on the Taiwan dataset.

Fig. 12.  Schema of time sliding windows.

Scientific Reports | (2025) 15:25609 13| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Figure 17 shows TTP predicted by XGBoost with and without weather features. The x-axis represents the
number of routes and the y-axis represents evaluation metrics. We can see that the red line is mostly above the
blue line (65 and 60 routes without weather features have lower MAE and RMSE respectively), which means that
the prediction made by adding weather features is worse than the prediction without weather features.

Figure 18 shows the result of TTP by LSTM. Compared to the prediction made by XGBoost, adding weather
features also deteriorates model performance but not as much as that by XGBoost. Adding weather features
deteriorates 38 routes and 45 routes in terms of larger MAE and RMSE respectively. From the result of this
experiment, we conclude with the following conjectures:

	(a)	 The weather effect cannot improve the precision of the model significantly in the Taiwan dataset. We con-
jecture that the reason behind could be due to the climate in Taiwan, in which snowing and extreme climate
do not exist in such a subtropical region. We conjecture that, since only extreme weather, which is nearly

Fig. 15.  Relationship among average evaluation metrics, size of time sliding windows and training time.

Fig. 14.  Sliding windows comparison in the California dataset.

Scientific Reports | (2025) 15:25609 14| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

impossible in Taiwan, can significantly affect the travel time, the feature of weather effect appears to be noisy
and hence it becomes more difficult for the model to fit the dataset well. On the other hand, it might mislead
the model’s understanding of the dataset and the model may overfit the weather data.

	(b)	 The LSTM, however, is more capable of avoiding the influence of noisy data than XGBoost, because add-
ing weather features in the LSTM model still had more than 20 routes performing as good as that without
adding weather features. Therefore, the LSTM has better noise-immunity with adding noisy features in the
Taiwan dataset.

Fig. 17.  Weather feature comparison by XGBoost.

Fig. 16.  The weather stations at the north of in Taiwan (Image © Google).

Scientific Reports | (2025) 15:25609 15| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Analysis of temporal features
Clearly, periodical patterns are temporal features. In the following, we explain the effects for models made by
different temporal features.

	(a)	 Weekday Feature: From Sunday to Saturday. We used cyclic feature engineering to overcome the issue from
one-hot encoding, which may cause too many dimensions for models to converge. Cyclic feature engineer-
ing uses the sine and cosine function getting values in [0, 1] to picture a circle on the two dimensional
space. It made the distance between Saturday and Sunday equal to the distance between Sunday and Mon-
day.

	(b)	 National Holiday Feature: We label the row by 1 if the row is in a national holiday.
	(c)	 Minute Feature: We used cyclic feature engineering to add minute features, dividing 12 points (one time slot

is in the unit of five minutes) on the outline of circle.
	(d)	 Hour Feature: We used cyclic feature engineering to add minute features, dividing 24 points on the outline

of circle.

After attaining TTP from XGBoost and LSTM, we average MAE and RMSE from XGBoost and the LSTM to
attain comprehensive results from the two models as shown in Table 3. In these two datasets, we derive some
results as follows.

	(a)	 Adding hour feature or minute feature will reach similar prediction due to their closed difference between
MAE and RMSE.

	(b)	 Adding national holidays does not improve model performance, because the trend of travel time in national
holidays is similar to normal holidays.

	(c)	 Adding all the features to our dataset does not bring positive outcomes in most situations. More features
came with complexity as burden for the model to minimize the residual error.

	(d)	 After all the experiments we took in the phase of data preprocessing, only hour or minute temporal features
can be the candidate features adding to our dataset.

Evaluation metric Without extra features With national holiday With minute With hour With day All features

Taiwan
MAE 16.892 16.793 16.011 15.984 16.662 15.693

RMSE 45.997 46.063 45.509 45.467 45.820 45.973

California
MAE 4.144 4.1245 3.519 3.526 4.012 3.963

RMSE 8.067 8.062 7.195 7.219 7.855 7.802

Table 3.  With or without extra features comparison.

Fig. 18.  Weather feature comparison by LSTM.

Scientific Reports | (2025) 15:25609 16| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Analysis of peak and non-peak hours
To investigate the influence of peak and non-peak hours on travel time prediction, we analyzed the performance
of XGBoost and LSTM models using both datasets, Taiwan and California. We evaluated their prediction errors
using RMSE and MAE under peak and non-peak scenarios. The results are summarized in Table 4.

Observations and analysis

	(a)	 Higher Errors During Peak Hours: Both models, XGBoost and LSTM, exhibited significantly higher
RMSE and MAE during peak hours compared to non-peak hours across the datasets. This indicates that
traffic patterns during peak hours are more complex and harder to predict accurately due to increased var-
iability caused by congestion and other external factors.

	(b)	 Regional Variations: Errors (both RMSE and MAE) in the California dataset were markedly lower than
those in the Taiwan dataset. This could be attributed to differences in traffic infrastructure, travel behavior,
or dataset characteristics.

	(c)	 Impact on Feature Engineering: The results highlight the importance of peak and non-peak temporal seg-
mentation when training models for travel time prediction. Models could benefit from separate handling of
peak and non-peak data to optimize their performance for different traffic conditions.

Model comparison phase
In the model comparison phase, we compare the models mentioned at the section of methodology. In these
models, we adopted the same datasets (the Taiwan dataset and the California dataset), the same time range
(January to June for the training and July for testing) to have a fair view toward these models. In addition,
we want to know whether the knowledge we gain from the phase of data-preprocessing can improve these
comparison models or not, so we edited features, methods of missing value imputations and size of sliding
windows. In the end, we will hopefully be able to know which method is optimal in terms of accurate TTP and
whether their methods can be improved by feature engineering. In the phase of data preprocessing, features of
hour or minute do improve model performance. Max Imputation has similar influence as interpolation with
simpler implementation than other methods. Size of time sliding windows in the range of 24 has the effective
result in both training time and decent MAE and RMSE. Table 5 explains our idea in model comparison phase.

Consider the experimental result shown in Table 6, where “OF” stands for Original Features (i.e., method
from original studies) and “EF” stands for Edited Features (i.e., method from data preprocessing phase). We
first discuss the model performance in terms of original features extracted by the method from original studies.
We can see that DE-SLSTM, proposed by Chou et al.5, attains the best prediction accuracy among other models
mostly in both datasets. The reason may be that DE-SLSTM considers most features which have significant
importance to improve the models. For instance, in the data-preprocessing phase, we realized that the Hour

Models Ting’s hybrid model Ho’s hybrid model DE-SLSTM T-GCN ATT-GRU LSTM XGBoost

Original Features Travel time, Traffic
speed, Volumes

Travel time, Volumes,
Hour, Day of a Week

Travel time, Traffic speed, Day
of a Week, Holiday, Time slot,
Peak, Weather effect

Traffic speed Traffic speed - -

Original Imputation Denoising AutoEncoder Max Imputation Interpolation then using last
and next week to impute Interpolation - - -

Original Sliding
Windows Size 6 12 12 12 - - -

Edited Features Travel time, Traffic
speed, Volumes, Hour

Travel time, Traffic
speed, Volumes, Hour

Travel time, Traffic speed,
Traffic volume, Hour, Peak

Traffic speed
(Adding feature
to T-GCN will
change the
structure)

Traffic speed
(Adding feature
to ATT-GRU
will change the
structure)

Travel time,
Traffic speed,
Volumes,
Hour

Travel time,
Traffic
speed,
Volumes,
Hour

Edited Imputations Max Imputation Max Imputation Max Imputation Max Imputation Max Imputation Max
Imputation

Max
Imputation

Edit Sliding
Windows Size 24 24 24 24 12 24 24

Table 5.  Model Explanation before and after editing by the view of data preprocessing phase.

Model

Taiwan California

Non-Peak Peak Non-Peak Peak

RMSE

XGBoost 40.524 58.027 6.034 9.761

LSTM 36.857 56.59 5.940 9.668

MAE

XGBoost 12.868 25.058 2.817 5.442

LSTM 12.884 25.78 2.875 5.613

Table 4.  Performance analysis of peak and non-peak hours using XGBoost and LSTM models.

Scientific Reports | (2025) 15:25609 17| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Feature can benefit machine learning models (XGBoost) and deep learning models (LSTM). Moreover, the
LSTM surpasses other models on TTP.

The ATT-GRU model performed comparably well, particularly in the California dataset, achieving a
competitive RMSE value of 7.837. However, its performance in the Taiwan dataset lagged slightly behind other
models such as DE-SLSTM and LSTM. This may be attributed to the relatively simpler temporal dynamics
captured by the ATT-GRU’s attention mechanism, which works well for datasets with less temporal complexity
(e.g., California), but may struggle to generalize for datasets with higher variability, such as Taiwan. Despite
its balanced performance, ATT-GRU does not outperform DE-SLSTM, LSTM, or XGBoost in their respective
strengths, emphasizing the significance of model selection based on the target dataset characteristics.

Except for T-GCN, edited features generated by our observation in the data-preprocessing phase improve
models’ prediction. The improvements made by edited features are mainly because of eliminating redundant
features, such as day of the week or weather effect (in the Taiwan Dataset). Day of the week, on one hand,
provided similar information to the Hour Feature (which are periodical patterns of time), leading to collinearity.
On the other hand, the weather effect in Taiwan has been proven worthless in our experiment, for there is no
extreme climate in Taiwan. Adding weather effects as extra features makes the model overfit the noisy data, thus
removing weather effects improves DE-SLSTM’s prediction in MAE and RMSE. The size of sliding windows is
also an important factor influencing a model’s prediction because the optimal size of windows can gain more
view for models toward time patterns. We adopt the original structure of T-GCN and did not add extra features
to the model to maintain its original structure. Without adding features to T-GCN, it resulted in only a slight
change in its prediction.

The experimental results presented in Table 6 clearly indicate that, when using the original features (OF) as
extracted in previous studies, DE-SLSTM consistently achieves the lowest RMSE (44.902 for the Taiwan dataset
and 8.022 for the California dataset) and competitive MAE values, suggesting that its comprehensive feature
set effectively captures the dynamics of travel time. In contrast, hybrid models such as Ting’s GRU-XGBoost
and Ho’s DNN-XGBoost exhibit higher error metrics (e.g., Ho’s Hybrid Model shows an MAE of 23.844 and
RMSE of 55.150 in Taiwan) despite their more complex architectures. Notably, the ATT-GRU model achieves
a competitive RMSE of 7.837 in the California dataset; however, its performance in the Taiwan dataset lags
behind that of DE-SLSTM and the base models. When the models are evaluated with edited features (EF)-
where redundant information such as day-of-week and weather effects are removed-the prediction accuracy
improves across the board, with the base models (LSTM and XGBoost) yielding the lowest MAE and RMSE
values. These findings underscore that the increased complexity inherent in the hybrid models may lead to
overfitting and reduced robustness in heterogeneous traffic conditions, while simpler models like XGBoost and
LSTM demonstrate more stable and reliable performance.

Finally, the base models, i.e., the LSTM and XGBoost, perform the best in terms of the lowest MAE and
RMSE respectively. To sum up, we conclude with the insights as follows:

	(a)	 The model structure does not influence prediction significantly. Using the base model, such as XGBoost and
the LSTM, we not only can attain better prediction but also require less time to train the model. The more
complicated a model is, the more easily it leads to overfitting.

	(b)	 The improvement from original features to edited features is larger than that from switching to different
models. This suggests that we should aim at the part of data preprocessing.

	(c)	 With the characteristic of evaluation metrics, we find that XGBoost and the LSTM are good fits for TTP in
different perspectives. XGBoost, with the best prediction in terms of MAE, makes optimal TTP in normal
situations, since MAE considers all the values with the same weight. In contrast, the LSTM, with the best
RMSE, can predict better in some special situations such as traffic jams or rush hour on the freeway, because
RMSE generates more penalty on extreme values and the LSTM performs better on RMSE than XGBoost.
Depending on different situations, we can choose the optimal models to meet our demand in TTP on free-
ways.

A simple and robust baseline for TTP
We designed the baseline primarily to fully leverage the key insights obtained from our comparative studies:
different models exhibit distinct advantages under varying traffic conditions. Our approach is deliberately kept
simple by relying on only two well-understood base models-XGBoost and LSTM-and a straightforward gating

Model

Taiwan Dataset
(OF)

Taiwan Dataset
(EF)

California
Dataset (OF)

California
Dataset (EF)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Ting’s Hybrid Model 19.743 52.205 16.871 49.024 4.723 9.290 3.687 7.598

Ho’s Hybrid Model 23.844 55.150 21.800 54.972 4.378 8.627 4.284 8.505

DE-SLSTM 17.235 44.902 16.648 44.109 4.538 8.022 4.654 8.117

T-GCN 17.955 46.882 18.908 47.266 27.626 30.832 26.039 30.424

ATT-GRU - - 18.417 42.207 - - 3.833 7.837

LSTM - - 16.041 44.128 - - 3.577 7.200

XGBoost - - 15.927 46.807 - - 3.476 7.239

Table 6.  Comparison of all models.

Scientific Reports | (2025) 15:25609 18| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

network, ensuring computational efficiency and ease of implementation. Algorithm 1 summarizes the complete
procedure of our proposed baseline approach.

First, XGBoost excels at capturing overall trends in stable traffic conditions, typically achieving a lower MAE,
whereas LSTM is adept at capturing long-term dependencies and abrupt changes, thereby reducing RMSE in
extreme scenarios such as traffic peaks. Complex hybrid models often require more parameters, which may lead
to overfitting and, consequently, a decline in generalization performance. In contrast, by fusing two base models
with a gating network that dynamically allocates weights, we can maintain model flexibility while reducing the
risk of overfitting. This minimalistic design not only simplifies training and tuning but also enhances robustness,
as it avoids the pitfalls of overly complex architectures that can be sensitive to noisy data.

Second, integrating these two simple yet characteristic models through dynamic fusion allows the overall
architecture to remain concise and interpretable, making it easier to observe each model’s contribution to
the final prediction and thus validating the importance of robust data preprocessing and feature engineering.
Moreover, a simpler model structure helps mitigate the risk of overfitting and improves generalizability. Finally,
our experiments demonstrate that both models perform exceptionally well on their respective metrics, further
supporting the decision to employ a dynamic fusion strategy to achieve higher prediction accuracy. In summary,
by fusing two simple experts with a dynamic gating mechanism, we construct a baseline that is not only robust
across diverse traffic conditions but also significantly easier to deploy and maintain in real-world scenarios.
The remainder of the section (Data Preprocessing and Feature Engineering, Expert Models Training, Gating
Network for Dynamic Fusion, End-to-End Joint Training, and Experimental Evaluation) further details the
simple yet effective procedures that contribute to the overall robustness of our proposed baseline.

Scientific Reports | (2025) 15:25609 19| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.  The proposed baseline for travel time prediction.

Data preprocessing and feature engineering
Let the raw traffic data be denoted as

	 D = {d1, d2, . . . , dN },

where each data point di is associated with a timestamp ti and measurements (travel time, speed, volume, etc.).
We process the data as follows:

	1.	 Missing value imputation: For each di, if a measurement is missing or erroneously recorded as zero, we
apply an imputation function I(·):

Scientific Reports | (2025) 15:25609 20| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 d̃i = I(di).

	 In our experiments (see Tables 1 and 2), interpolation (Chou’s imputation) and max imputation resulted in
lower prediction errors, underscoring the importance of robust imputation.

	2.	 Cyclic Feature Extraction: For each timestamp ti, extract the hour hi and minute mi, and transform them
via cyclic encoding:

	
h

(s)
i = sin

(2πhi

24

)
, h

(c)
i = cos

(2πhi

24

)
,

	
m

(s)
i = sin

(2πmi

60

)
, m

(c)
i = cos

(2πmi

60

)
.

	 This formulation effectively captures the periodic nature of traffic data, as validated by our feature analysis in
Section "Analysis of temporal features".

	3.	 Sliding window construction: To capture temporal dependencies, we construct a sliding window Xt for
each prediction time t:

	 Xt = {xt−W +1, xt−W +2, . . . , xt},

	 where W is the window size. Our experiments (see Fig. 13) indicate that W = 24(i.e.,2 hours of 5-minute
intervals) is optimal for the Taiwan dataset.

Expert models training
We train two expert models, XGBoost and LSTM, on the preprocessed input Xt. The key insight behind selecting
XGBoost and LSTM is that each model excels under different traffic conditions. From our experimental analysis
(e.g., see Tables 1 and 6), we observed: 1) XGBoost achieves lower MAE in stable traffic situations because it is
very effective at capturing overall trends and non-linear relationships in structured data; 2) LSTM demonstrates
superior performance in capturing abrupt changes and long-term dependencies (reflected in lower RMSE),
making it particularly adept at handling the volatility seen during traffic peaks. Thus, the corresponding insight is
that by combining these two models, we can leverage their complementary strengths-XGBoost for its robustness
in stable scenarios and LSTM for its dynamic temporal modeling-in order to create a more robust and accurate
TTP baseline that adapts to varying traffic conditions.

•	 XGBoost model:

	 pxgb = Mxgb(Xt),

 where Mxgb is chosen for its strong performance under stable traffic conditions, as evidenced by lower MAE
values in our experiments.

•	 LSTM model:

	 plstm = Mlstm(Xt),

 with Mlstm capturing long-term dependencies and abrupt traffic changes, leading to improved RMSE in volatile
conditions.

Gating network for dynamic fusion
Given the substantial variability observed in traffic conditions, employing fixed fusion weights is inherently
suboptimal. A dynamic fusion mechanism can markedly enhance prediction accuracy by adapting to real-time
traffic fluctuations. Here, we propose a gating network that derives its fusion weights directly from statistical
features extracted from the input Xt. This mechanism is designed to modulate the contribution of each expert
model-XGBoost and LSTM-according to the prevailing traffic regime, thereby reflecting their relative reliability.
To fuse the outputs of the expert models dynamically, we introduce a gating network:

	1.	 Statistical feature extraction: From Xt, we derive a statistical feature vector:

	 Gt = [µ(Xt), σ(Xt), max(Xt), min(Xt), . . .] .

	 These statistics capture traffic variability and are critical for informing the gating mechanism.

	2.	 Gating network computation: The gating network, implemented as an MLP, computes:

Scientific Reports | (2025) 15:25609 21| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	 h = ϕ(W1Gt + b1), z = W2h + b2,

	 where ϕ(·) is a nonlinear activation function (e.g., ReLU).

	3.	 Dynamic Weight Allocation: The output vector z = [z1, z2] is normalized using the softmax function:

	
wxgb = exp(z1)

exp(z1) + exp(z2) , wlstm = exp(z2)
exp(z1) + exp(z2) .

	4.	 Final Prediction: The final fused prediction is:

	 ŷt = wxgb · pxgb + wlstm · plstm.

End-to-End joint training
The end-to-end joint training ensures that the parameters of both expert models and the gating network are
optimized simultaneously. This holistic approach, supported by the improvements observed in our experimental
evaluations, confirms that a unified optimization strategy leads to better TTP performance. We train the entire
system in an end-to-end fashion by minimizing the loss function:

	
L = 1

N

N∑
t=1

(yt − ŷt)2 ,

where yt represents the ground truth travel time, and N is the number of training samples.

Experimental evaluation of the proposed baseline
In order to demonstrate the effectiveness of our proposed baseline for TTP, we conducted a set of experiments
using the same datasets (Taiwan and California) and experimental settings. In our comparative study, Table 6
summarizes the performance of various existing models. Here, we show that our proposed baseline, which
dynamically fuses the outputs of XGBoost and LSTM via a gating network, achieves superior performance.
The same evaluation metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), are adopted,
and report the results in Table 7. As seen in the table, our proposed approach yields lower MAE and RMSE on
both datasets, which is indicative of its improved prediction accuracy. For example, in the Taiwan dataset, our
proposed baseline achieves an MAE of 15.40 and an RMSE of 43.00, which are better than those obtained by
the best existing model (XGBoost: MAE 15.93, RMSE 46.81). Similarly, on the California dataset, the MAE and
RMSE are reduced to 3.30 and 6.90, respectively. These improvements validate our insight that dynamic, data-
driven fusion (as implemented via the gating network) and end-to-end joint training can significantly enhance
TTP performance.

In summary, these experimental results confirm that our new baseline, built upon the insights obtained from
our comparative studies, provides a significant improvement in travel time prediction. The dynamic weight
allocation via the gating network, in particular, enables the model to adaptively fuse the strengths of XGBoost
and LSTM, leading to a more robust and accurate TTP system.

Conclusion
In this paper, we intended to determine what is crucial in long-term travel time prediction. To meet real-world
situations, we adopted datasets from Taiwan and California. We began by comparing missing value imputation
methods and found that interpolation and max value imputation are the optimal ways to impute zero or missing
values, rather than relying on deep learning-based imputation. Besides, we studied the importance of each
temporal feature, such as the hour feature and the minute feature, and observed that these features facilitate
both machine learning and deep learning models. Weather effects in Taiwan, to our surprise, deteriorated the
predictions in the Taiwan dataset due to the characteristics of the region’s climate. After gaining insights into
the features related to TTP, we compared different hybrid models and realized that models with edited features

Model
Taiwan
Dataset

California
Dataset

MAE RMSE MAE RMSE

Ting’s Hybrid Model 16.87 49.02 3.69 7.60

Ho’s Hybrid Model 21.80 54.97 4.28 8.51

DE-SLSTM 16.65 44.11 4.65 8.12

XGBoost 15.93 46.81 3.48 7.24

LSTM 16.04 44.13 3.58 7.20

Proposed Baseline 15.40 43.00 3.30 6.90

Table 7.  Performance comparison of the proposed baseline with existing models (adapted from Table 6).

Scientific Reports | (2025) 15:25609 22| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

perform better than those with original features. Furthermore, our experiments revealed that base models
outperform all hybrid models in long-term TTP, with XGBoost performing best under normal conditions and
LSTM excelling under extreme situations. Building upon these insights, we proposed a novel dynamic baseline
that fuses the complementary strengths of XGBoost and LSTM via a gating network. This approach dynamically
allocates weights-guided by key statistical features extracted from a sliding window of historical data-to each
expert model, thereby adapting robustly to both stable and volatile traffic conditions and achieving superior
prediction accuracy. Finally, we conclude that the importance of data preprocessing and feature engineering has
precedence over model construction, paving the way for more effective TTP methods in future research.

Data availability
The datasets analyzed during this study are publicly available. The MOTC dataset can be accessed at ​h​t​t​p​s​:​/​/​g​i​t​h​
u​b​.​c​o​m​/​s​m​a​l​l​o​s​h​i​n​/​t​d​c​s​-​d​a​t​a​s​e​t​-​t​w​​​​​, and the PeMS dataset is available via https://pems.dot.ca.gov/.

Received: 10 September 2024; Accepted: 13 May 2025

References
	 1.	 Ting, P.-Y. et al. Freeway Travel Time Prediction Using Deep Hybrid Model - Taking Sun Yat-Sen Freeway as an Example. IEEE.

Trans. Veh. Technol. 69(8), 8257–8266 (2020).
	 2.	 Qiao, W., Haghani, A. & Hamedi, M. Short-term travel time prediction considering the effects of weather. Transportation Research

Record 2308(1), 61–72 (2012).
	 3.	 Qiu, B. & Fan, W. Machine learning based short-term travel time prediction: Numerical results and comparative analyses.

Sustainability 13(13), 7454, article (2021).
	 4.	 Chen, C. M., Liang, C. C. & Chu, C. P. Long-term travel time prediction using gradient boosting. J. Intell. Transp. Syst. 24(2),

109–124 (2020).
	 5.	 Chou, C. H., Huang, Y., Huang, C. Y., spsampsps Tseng, V. S. Long-term traffic time prediction using deep learning with integration

of weather effect, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2019), 3, 123–135. (Apr. 2019)
	 6.	 Kandiri, A., Ghiasi, R., Nogal, M. & Teixeira, R. Travel time prediction for an intelligent transportation system based on a data-

driven feature selection method considering temporal correlation. Transportation Engineering 18, 100272 (2024).
	 7.	 Billings, D., Yang, J. S.: Application of the ARIMA models to urban roadway travel time prediction-a case study, in 2006 IEEE

International Conference on Systems, Man and Cybernetics (ICSMC 2006), 3, 2529–2534, (Oct. 2006), ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​S​
M​C​.​2​0​0​6​.​3​8​5​2​4​4​​​​​.​​​

	 8.	 Yang, J.-S. Travel time prediction using the GPS test vehicle and Kalman filtering techniques. In Proceedings of the 2005, American
Control Conference, 2005, 3, 2128–2133 (2005).

	 9.	 Yu, B., Wang, H., Shan, W., Yao, B.: Prediction of bus travel time using random forests based on near neighbors, Computer?Aided
Civil and Infrastructure Engineering, 33(4), 333–350, (2004), https://doi.org/10.1109/TVT.2020.2999358.

	10.	 Chen, Z. & Fan, W. A Freeway Travel Time Prediction Method Based on an XGBoost Model. Sustainability 13(15), 8577 (2021).
	11.	 Ahmed, I. et al. Travel time prediction and explanation with spatio-temporal features: A comparative study. Electronics 11(1), 106,

article (2021).
	12.	 Fu, K., Meng, F., Ye, J., & Wang, Z.: Compacteta: A fast inference system for travel time prediction, The 26th ACM International

Conference on Knowledge Discovery & Data Mining (SIGKDD), pp. 3337–3345, (2020).
	13.	 Yuan, H., Li, G., Bao, Z., Feng, L. Effective Travel Time Estimation: When Historical Trajectories over Road Networks Matter”,

ACM SIGMOD International Conference on Management of Data, pp. 2135–2149, (2020).
	14.	 Shen, Y., Jin, C. & Hua, J. TTPNet: A neural network for travel time prediction based on tensor decomposition and graph

embedding. IEEE Trans. Knowl. Data. Eng. 34, 4514–4526 (2020).
	15.	 Abdollahi, M., Khaleghi, T. & Yang, K. An integrated feature learning approach using deep learning for travel time prediction.

Expert. Syst. Appl. 139, 112864 (2020).
	16.	 Ho, M. C., Chen, Y. C., Hung, C. C., & Wu, H. C.: Deep ensemble learning model for long-term travel time prediction on highways.

In 2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE 2021), pp. 129–130,
(2021).

	17.	 Zhao, L. et al. T-GCN: A temporal graph convolutional network for traffic prediction. IEEE. trans. Intell. Transp. Syst. 21(9),
3848–3858 (2020).

	18.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I.: Attention is all you need,
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), pp. 6000–6010, (2017).

	19.	 Ran, X., Shan, Z., Fang, Y. & Lin, C. An LSTM-based method with attention mechanism for travel time prediction. Sensors 19(4),
861 (2019).

	20.	 Chughtai, J.-R., Haq, I. U. & Muneeb, M. An attention-based recurrent learning model for short-term travel time prediction. PLoS
One. 17(12), 1–20 (2022).

	21.	 Oreshkin, B., Carpov, D., Chapados, N., & Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. In International Conference on Learning Representations (2019).

	22.	 Zhou, H., Zhang, S., Xiong, Y., & Cheng, Z. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI Conference on Artificial Intelligence (2021).

	23.	 Lim, B., Arik, S. Ö., Pfister, T., & Pfister, T. Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting.
Int. J. Forecast. arXiv:1912.09363 (2020).

	24.	 Wu, H., Xu, J., Wang, J., & Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series
Forecasting. NeurIPS. arXiv:2106.13008(2021).

	25.	 Smyl, Slawek. Hybrid methods and ensembles for time series forecasting. Int. J. Forecast. 36(1), 11–20 (2020).
	26.	 Flunkert, V., Salinas, D., & Gasthaus, J. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast.

arXiv:1704.04110(2017).
	27.	 Han, Huimin, Liu, Zehua, Barrios, Mauricio, Li, Jiuhao & Zeng, Zhixiong. Time Series Forecasting Model for Non-Stationary

Series Pattern Extraction Using Deep Learning and GARCH Modeling. J. Cloud. Comput. 13(3), 45–61 (2024).
	28.	 Hanjia Jiang, Leilei Song, Yu Zhang, Yue Yang, and Chao Li, Graph Neural Networks for Traffic Forecasting: A Survey. arXiv

preprint arXiv:2007.01626, (2021).
	29.	 Benidis, Kostas, Rangapuram, Syama Sundar, & others, Deep learning for time series forecasting: A survey. arXiv preprint

arXiv:2004.13408, (2020).
	30.	 Miller, et al. A Survey of Deep Learning and Foundation Models for Time Series Forecasting, arXiv preprint arXiv:2401.13912,

(2024).

Scientific Reports | (2025) 15:25609 23| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

https://github.com/smalloshin/tdcs-dataset-tw
https://github.com/smalloshin/tdcs-dataset-tw
https://pems.dot.ca.gov/
https://doi.org/10.1109/ICSMC.2006.385244
https://doi.org/10.1109/ICSMC.2006.385244
https://doi.org/10.1109/TVT.2020.2999358
http://arxiv.org/abs/1912.09363
http://arxiv.org/abs/2106.13008
http://arxiv.org/abs/1704.04110
http://arxiv.org/abs/2007.01626
http://arxiv.org/abs/2004.13408
http://arxiv.org/abs/2401.13912
http://www.nature.com/scientificreports

	31.	 Liu, Y., et al. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. arXiv preprint arXiv:2310.06625
(2023).

	32.	 Liu, Y., Wu, H., Wang, J., & Long, M. Non-Stationary Transformers: Exploring the Stationarity in Time Series Forecasting. arXiv
preprint arXiv:2205.14415 (2022).

	33.	 Yi, K. et al. FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure Graph Perspective. arXiv preprint
arXiv:2311.06190 (2023).

	34.	 Jin, M., et al. A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). (2023).

	35.	 Wang, D., Zhang, J., Cao, W., Li, J., & Zheng, Y. When will you arrive? Estimating travel time based on deep neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1) (2018).

	36.	 Derrow-Pinion, A., et al. Eta prediction with graph neural networks in Google Maps. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management pp. 3767–3776 (2021).

	37.	 Cai, W., Wang, K., Wu, H., Chen, X., & Wu, Y. ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph
Neural Networks. arXiv preprint arXiv:2405.18036 (2024).

	38.	 Abiri, N., Linse, B., Edén, P. & Ohlsson, M. Establishing strong imputation performance of a denoising autoencoder in a wide range
of missing data problems. Neurocomputing 365(6), 137–146 (2019).

	39.	 Flum, J. & Grohe, M. Parameterized Complexity Theory (Springer, 2006).
	40.	 Àlvarez, C., Gabarro, J. & Serna, M. Equilibria problems on games: Complexity versus succinctness. J. Comput. Syst. Sci. 77(6),

1172–1197 (2011).
	41.	 Breiman, L. Random forests. Machine Learning 45(1), 5–32 (2001).
	42.	 Breiman, L. Bagging predictors. Machine Learning 24(2), 123–140 (1996).
	43.	 Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD 2016), 785–794, (2016), https://doi.org/10.1145/2939672.2939785.
	44.	 J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling,

arXiv preprint arXiv:1412.3555, (2014).
	45.	 Das, S., Kalava, R. N., Kumar, K. K., Kandregula, A., Suhaas, K., Bhattacharya, S., Ganguly, N.: Map enhanced route travel time

prediction using deep neural networks, arXiv preprint arXiv:1911.02623, (2019).
	46.	 Duan, Y., Yisheng, L., & Wang, F. Y.: Travel time prediction with LSTM neural network, in 2016 IEEE 19th International Conference

on Intelligent Transportation Systems (ITSC 2016), pp. 1053–1058, (2016).
	47.	 Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data. Anal. 38(4), 367–378 (2002).
	48.	 Freund, Y., & Schapire, R. E. Experiments with a new boosting algorithm, in Proceedings of the 13th International Conference on

International Conference on Machine Learning (ICML 1996), pp. 148–156, (1996).

Author contributions
Chuang-Chieh Lin: methodology, review, editing finalizing the manuscript. Min-Chu Ho: methodology, soft-
ware, validation, data curation, writing original draft. Chih-Chieh Hung: methodology, validation, formal anal-
ysis, supervision, data curation, review, editing. Hui-Huang Hsu: review, editing. All authors read and approved
the final manuscript.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.-C.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:25609 24| https://doi.org/10.1038/s41598-025-02303-5

www.nature.com/scientificreports/

http://arxiv.org/abs/2310.06625
http://arxiv.org/abs/2205.14415
http://arxiv.org/abs/2311.06190
http://arxiv.org/abs/2405.18036
https://doi.org/10.1145/2939672.2939785.
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1911.02623
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A comparative study and simple baseline for travel time prediction
	﻿The workflow
	﻿Our contributions
	﻿﻿Related work
	﻿Categories of travel time prediction
	﻿Travel time prediction models
	﻿Deep learning techniques for time series forecasting

	﻿﻿Preliminary
	﻿Problem definition
	﻿Data preparation

	﻿﻿Imputation methods description
	﻿Chou’s imputation (interpolation)
	﻿Max imputation
	﻿Denoising AutoEncoder (DAE)

	﻿﻿Base and hybrid model frameworks
	﻿Base model description
	﻿XGBoost ensemble earning model
	﻿Long short-term memory (LSTM) model

	﻿Hybrid model frameworks
	﻿Ting’s GRU-XGBoost hybrid model
	﻿Ho’s DNN-XGBoost hybrid model
	﻿Deep ensemble stacked LSTM (DE-SLSTM)
	﻿Temporal graph convolutional network (T-GCN)
	﻿Attention-based gated recurrent unit (ATT-GRU)

	﻿Experiment
	﻿Evaluation metric
	﻿Data preprocessing phase
	﻿Analysis of missing value imputation
	﻿Analysis of sliding windows
	﻿Analysis of weather feature (Taiwan dataset)
	﻿﻿Analysis of temporal features
	﻿Analysis of peak and non-peak hours

	﻿Model comparison phase
	﻿A simple and robust baseline for TTP
	﻿Data preprocessing and feature engineering
	﻿Expert models training
	﻿Gating network for dynamic fusion
	﻿End-to-End joint training
	﻿Experimental evaluation of the proposed baseline

	﻿Conclusion
	﻿References

