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Prediction of coal and gas
outbursts based on physics
informed neural networks and
traditional machine learning
models

Lei Wang*?, Baoshan Jial?*“ & Guorui Su?

Coal and gas outbursts pose significant risks to underground mining operations, and accurate and
reliable prediction is crucial for improving mine safety. Traditional machine learning models struggle
to balance prediction accuracy and interpretability, particularly in cases of limited data or complex
geological conditions. To address this challenge, this study proposes a prediction model based on
Physics-Informed Neural Networks (PINN), which integrates physical monotonicity constraints with
data-driven learning to ensure that the predictions align with physical laws. Using actual data from a
coal mine, this study compares the performance of the PINN model with traditional machine learning
models, including Random Forest (RF), Support Vector Machine (SVM), and Backpropagation Neural
Network (BPNN). The results show that the PINN model achieves a coefficient of determination (R2)
of 0.966 and a root mean square error (RMSE) of 6.452, outperforming the traditional models in both
prediction accuracy and generalization ability. Furthermore, interpretability is significantly enhanced
by incorporating known physical behaviors and monotonicity constraints. The proposed PINN-based
prediction framework provides a more reliable and theoretically grounded approach to assessing
coal and gas outburst risks. Integrating it into mining safety management systems can significantly
improve early warning mechanisms and risk mitigation strategies.

Keywords Coal and gas outburst, Prediction model, Physics-informed neural network, Mechanism and data
coupling model

As shallow coal reserves in China become increasingly depleted, coal mining operations have shifted to deeper
depths, deteriorating mining conditions. High geological stress, elevated gas content, and severe mining-induced
disturbances threaten worker safety and operational efficiency!. Consequently, developing precise prediction
and early warning methods for coal and gas outbursts is essential for preventing catastrophic incidents and
improving coal mine safety management.

Coal and gas outbursts are influenced by complex nonlinear factors, including mining intensity, coal seam gas
content, mining depth, and ventilation conditions. To improve prediction accuracy, researchers have explored
various computational techniques. Traditional machine learning models have played a significant role in coal
and gas outburst prediction. For example, Shao et al.® employed the Markov Chain Monte Carlo (MCMC)
method to address missing data and developed a prediction model based on a Support Vector Machine (SVM)
optimized by the Sparrow Search Algorithm (SSA). Similarly, Xu et al.* introduced a novel prediction framework
integrating Sparse Kernel Principal Component Analysis (SKPCA) with the Neural Evolution Algorithm
(NEAT), demonstrating enhanced predictive precision. Zhou et al.® further refined machine learning-based
approaches using the SSA-Kernel Extreme Learning Machine (SSA-KELM), achieving significant performance
gains. Wen et al.® tackled missing data challenges through a Whale Optimization Algorithm-Extreme Learning
Machine (WOA-ELM) model. Additional optimization techniques, such as the Improved Real-coded Quantum
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Genetic Algorithm (IRQGA) combined with an Adaptive Neuro-Fuzzy Inference System (ANFIS)” and a double
coupling prediction model incorporating IsoMap and weighted vector machines® have also been explored.

Beyond traditional machine learning models, hybrid approaches and evolutionary algorithms have been
employed to further enhance prediction accuracy. Yang et al.” developed a coal and gas outburst prediction model
using the improved artificial Electric Field Algorithm-Least Square Support Vector Machine (IAEFA-LSSVM),
which exhibited resilience against poor data quality. Wang Wei et al.l® extension theory and the fuzzy analytic
hierarchy process were applied to assess subjective and objective weighting factors, leading to an improved
prediction model. Additionally, Grey Wolf Optimizer-SVM (GWO-SVM)!!, multi-factor fuzzy comprehensive
evaluation'?, and random forest models incorporating the Pauta criterion!> have been employed to refine coal
and gas outburst predictions. Furthermore, Grey Relational Analysis (GRA) has been used to identify key
influencing factors, leading to the development of the Fuzzy Synthetic Prediction Algorithm (F-SPA)™.

With the rapid advancement of artificial intelligence, deep learning and neural network-based models have
emerged as powerful alternatives to traditional methods. Studies have shown that Artificial Neural Networks
(ANNs) demonstrate superior predictive capabilities in various engineering applications. For instance, Srii
Thssan et al.!> validated the predictive efficiency of Bayesian-regularized ANNs for assessing tensile strength,
while Nagoor Basha Shaik et al.'® integrated ANN with Gaussian Process Regression (GPR) for structural health
monitoring. In coal mining applications, Monalisa Maiti et al.'” highlighted the advantages of Fractional-Order
Neural Networks (FONN) in modeling long-term coal-rock interactions. Similarly, Geleta Warkisa Deressa
and Bhanwar Singh Choudhary'® applied Random Forest Regression (RFR) in mining productivity analysis,
demonstrating its interpretability using SHAP values. Comparative studies on ANN, Genetic Algorithms (GA),
and Multiple Adaptive Regression Splines (MARS)' have reinforced ANN’s superior performance in coal
property predictions. At the same time, Multi-Input Single-Output White Box ANN (MISOWB-ANN) models?
have proven effective for mineral composition forecasting. Moreover, hybrid approaches such as Spotted Hyena
Optimization-ANN (SHO-ANN)?! have further enhanced deep learning-based predictions in mining safety
assessments. Previous studies have developed various prediction models and trend analyses for coal and gas
outbursts using different datasets and algorithms. However, existing outburst prediction models primarily rely
on data-driven approaches, such as Support Vector Machines (SVM) and Neural Networks (NN), which often
function as “black boxes”, making it difficult to interpret their predictions within the framework of underlying
physical mechanisms. Furthermore, these models require large volumes of high-quality training data. However,
the variability of geological conditions and the scarcity of historical outburst data significantly limit their
applicability in coal and gas outburst prediction.

To overcome these challenges, this study introduces the PINN, which integrates data-driven learning with
physics-based constraints. This approach establishes a physics-data hybrid modeling framework by embedding
monotonicity constraints into the neural network. It improves predictive accuracy and effectively reveals
underlying physical mechanisms, overcoming the "black-box" limitations of traditional models and providing
robust support for coal mine safety management.

PINN model
Model construction
N training samples are selected, { (m(“, t(i)) }ivzl ,i=1,..., N,z € R" is the input vector, ) is the output

value, and the corresponding model prediction value can be expressed as:
o® = f (2 = Bg (wz +b) (1)

where 0o denotes the model’s predicted outcome; f{(.) signifies the operation performed by the neural network; w
is the connection weight between the input and hidden layers; f acts as the weight linking the hidden and output
layers; g(.) is the sigmoid activation function; b refers to the bias vector of the hidden layer.

The process of training the neural network involves optimizing the parameters w ,3, and ¥*>?*. The aim of
training is to minimize the error Er between the predicted output of the model and the target value, as illustrated
in the following equation:

i=1
E=Y (o — @) (2)
N

Monotonicity expression
Equation (3) provides the expression for the partial derivative of the output variable o with respect to the
input variable x; .In cases where a monotonically increasing relationship exists between o and X then

9 . 9
ﬁ(x) > 0,otherwise i(m) < 0.
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where j=1,2, ..., n.

The loss function of the PINN model

In traditional neural network training, the model’s loss function is typically defined by the difference between
observed and predicted values. During training, all internal parameters of the model are optimized to minimize
the loss function. Building on traditional neural networks, this study takes into complete account the prior
monotonicity between input and output parameters and introduces a novel PINN modeling approach??. This
method adds two additional constraint constraints to the training loss function: structural losses and physical
discordance. These details can be seen in Egs. (4) and (5):

j=1 k=1 k=1
Bo=) ) (wi)’+3 (B’ @
N N

n

n T 1— my) X sign (%(ﬁ%))

B, :ZZ 5 (5)

where sign(0) = { _11’96><00 ; xé;)n is the manual input part of the i-th recombination sample; m;i) is

;” = 1, otherwise mél) =-1L1T;
represents the number of comprehensive samples that maintain a monotonic relationship between input and
output in the j-th dimension.

The physical discordance Ep injects information about monotonicity into the PINN model by creating
synthetic samples. Unlike the actual operational data, each composite sample consists of an artificially generated
input component x_ and a specified monotonicity factor m, which contains no output label information. It
should be noted that Ep measures the overall physical discordance of the PINN model. A large E,, indicates that
the internal mechanism of the network seriously deviates from the actual process, and the model’s explanatory

power is weak. For example, consider a synthetic sample xg,)n, méi) , where m;-l)

relationship between the input and output of the j-th dimension shows negative monotonicity. In each iterative
do (4)

training of the PINN model, the partial derivative 8Tj(assyn) of o with respect to X will be calculated and

its monotonicity divisor, if the physical monotonicity is positive, then m

= —1, means that the

adjusted. If aax(; (m&%) > 0, then sign( aax‘fj (:pg,)n)) = 1, means that the relationship between the input and

output of the j-th dimension shows positive monotonicity in the PINN model. This is inconsistent with the given

monotonicity factor m§7') = —1. Therefore, according to the formula (5), the Ep corresponding to the synthetic

sample (Jcéfy)ﬂ, m;i)) is a penalty term in the loss function. If % (mgi,)n) < 0, then the corresponding Ep is 0,
J

ai% (mg,)n) can match the given monotonicity factor mg-i) and there is no penalty value in the

indicating that

loss function.
In summary, the loss calculation function of PINN can be denoted as:
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where the A; and A, represent the weight coefficients of structural losses and physical inconsistency, respectively.
The regression loss Er represents the distance between the measured value and the predicted value, the

structural loss Es is the L, norm of the network weight to decrease the over-fitting of the model, and the physical

inconsistency Ep represents the degree of deviation between the model and the physical monotonicity.

PINN model training
Artificial neural networks typically use backward propagating methods to obtain the best network parameters.
However, the backward propagating algorithm is unsuitable for the non-differentiable monotonicity constraint in
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the loss function of the PINN model. Therefore, this study employs the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) to optimize parameters during the PINN training. CMA-ES is a stochastic, derivative-free
evolutionary algorithm well-suited for non-convex and complex optimization problems. It adapts the covariance
matrix of a multivariate normal distribution to efficiently explore the search space and improve convergence
stability in high-dimensional scenarios. The Training Procedure for PINN Utilizing CMA-ES?? is summarized
here.

Step 1 Determine the quantity of nodes present in the hidden layer of the PINN based on the specific training
dataset. In this study, the hidden layer of the coal and gas outburst prediction model is configured to contain
two nodes.

Step 2 Initialize the variables of CMA-ES. The optimization targets include the weights 3, w* and all
components of the bias b. The fitness function for CMA-ES is determined by the Eq. (6).

Step 3 Start the optimization process of CMA-ES. Upon completion of the iterations, the obtained optimal
solution will be adopted as the network parameter for the PINN model.

The model was trained on a Lenovo laptop equipped with an i5-12400H CPU, 16 GB RAM, and an RTX 3050
GPU with 4 GB of memory.

Model-evaluation index
This study uses RE, SVM, and BPNN as comparison models. We employ Particle Swarm Optimization (PSO)
to fine-tune the SVM’s hyperparameters. In addition, BPNN and PINN are designed with the same network
structure for comparison. These measures ensure optimal performance for each model and guarantee fairness
in comparison and analysis. Lastly, we utilize the subsequent two statistical measures to evaluate the predictive
effectiveness of the models.

(1) The closer the value of the decisive coefficient (R?) is to 1, the higher the fitting degree of the model to
the data.

gj(t() )
R2—1_"

U 2
5 (10 -1)

where N indicates the sample size; ¥ and o!” correspond to the observed and expected values of the i-th test
sample, respectively; ¢ represents the average value across all test samples.

(2) The Root Means Square Error (RMSE) indicates the model’s absolute fitting capability concerning the
data. Additionally, R? serves as a measure of the relative proportion of variance explained by the model. The
RMSE has the same unit as the dependent variable, which gives it specific advantages. It is defined as follows:

Ruse = Z (t@D — o(0)? (8)
N

Model construction

Evolution process of coal and gas outburst

Coal and gas outbursts occur as a dynamic event resulting from the interplay of subterranean stress, gas in coal
seams, and the physical characteristics of coal and rock, among other variables'. The complexity of geological
structures and the mining depth are primary factors influencing in-situ stress conditions. Factors associated
with coal seam gas include gas pressure, the amount of gas present, and its release rate. Moreover, the physical
properties of coal and rock include the firmness coefficient, seam permeability, and the initial speed of gas
escape. The process of a coal and gas outburst unfolds in four stages: evolution, formation, development, and
termination, as illustrated in Fig. 1.

Variable selection and data set construction
(1) Analysis of key controlling factors.

Considering the accessibility and easy quantification of the influence index data, combined with the relevant
research results, the ground stress Po (MPa), coal firmness coeflicient f, mining depth H (m), gas pressure
Pg (MPa), gas content Gc (m>/t), and initial velocity of gas emission V (m/s) are the main controlling factors
affecting coal and gas outburst.

(2) Data collection.

In order to accurately describe the relationship between coal and gas outburst intensity and its main
influencing factors, coal mine data was collected from a coal mine of China. These data were used to establish
a predictive model based on the PINN framework. A total of 392 sets of working condition data were collected.
Each data sample includes six key input parameters: ground stress (Po, MPa), coal firmness coefficient (f),
mining depth (H, m), gas pressure (Pg, MPa), gas content (Gc, m3/t), and initial gas emission velocity (V, m/s).
The corresponding coal and gas outburst intensity serves as the output parameter. This setup allows for studying
the variation of gas outburst intensity under the influence of various factors?. Table 1 presents some of the data
of the study. To ensure a balanced evaluation of the model’s performance, the dataset was randomly divided into
two equal parts: 196 samples (50%) were used for training, and the remaining 196 samples (50%) were used
for testing. This allocation aims to minimize sampling bias and provide a reliable assessment of the model’s
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Fig. 1. Influencing factors and evolution process of coal and gas outburst.

No | P,(MPa) | f H (m) P, (MPa) | G (m*/t) | V (m/s) | Outburst intensity (MPa)
1 15.01 0.31 | 620 2.76 10.02 19 150.2
2 11.50 0.24 | 445 0.95 13.04 6 142.6
3 12.36 0.38 | 543 1.58 12.48 13 138.4
4 12.98 0.27 | 396 1.37 9.87 9 149.3
5 13.41 0.16 | 462 1.20 10.36 18 153.1
6 17.24 0.61 | 395 1.17 9.04 5 154.0
7 15.05 0.53 | 482 1.29 8.25 7 162.9
8 8.40 0.54 | 510 0.46 4.60 7 0

9 14.37 0.36 | 745 1.25 9.01 8 176.5
10 | 12.86 0.59 | 425 2.80 10.25 8 210.2
11 |11.11 0.54 | 647 2.50 11.52 11 212.8
12 | 13.04 0.33 | 512 2.98 10.09 9 203.3
13 | 13.75 0.48 | 460 2.00 9.50 7 196.1
14 |10.98 0.22 | 543 3.95 8.23 14 220.2
15 7.10 0.21 | 440 0.78 7.00 9 20.6
16 5.90 0.61 | 400 0.63 2.01 6 0

17 | 13.00 0.48 | 560 0.86 13.10 18 106.4
18 | 14.30 0.34 | 620 1.87 13.60 15 150.0
19 |10.20 0.35 | 750 0.74 5.20 8 76.5
20 | 12.90 0.22 | 540 1.75 12.41 14 110.2

Table 1. Original data of coal and gas outburst influence factors (Partial)
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generalization ability. Due to confidentiality agreements with the data-providing entity, specific details about the
coal mine cannot be disclosed.

(3) Data preprocessing.

The original dataset comes from a real mining environment, containing multiple variables influenced by
measurement techniques and geological variations. To ensure the robustness of the model, the raw coal mine
data underwent a strict preprocessing procedure, including handling missing values, detecting anomalies, data
resampling, and feature normalization?>-28,

In actual mining operations, missing values often occur due to sensor failures, incomplete records, or
measurement errors. To minimize the potential impact of missing values on the analysis, we applied different
imputation methods based on the proportion of missing values. We imputed the missing values using the
mean or median for features with a missing rate of less than 5%. When the disappeared rate ranged from 5
to 20%, we applied the K-Nearest Neighbors (KNN) imputation method to estimate missing values based on
the similarity between data points. For features with a missing rate exceeding 20%, we removed these records
to avoid introducing bias into the model. This approach ensures that the dataset retains its integrity while still
representing actual mining conditions.

We employed the interquartile range (IQR) method to detect outliers, defining extreme values as those lying
beyond 1.5 times the IQR from the first or third quartile. Once identified, each anomaly was examined based on
its origin. If an anomaly resulted from a measurement error, it was removed from the dataset. In contrast, if the
value was determined to be an extreme yet valid observation, it was replaced with the nearest data point within
the acceptable range to mitigate its influence on model training and preserve data integrity.

Given the varying scales and physical units of input features such as ground stress, gas content, and mining
depth, feature normalization was performed to ensure consistency across variables. We adopted min-max
normalization, which linearly transforms each feature to the range [0, 1], thereby facilitating efficient convergence
during training. The normalization formula is shown below:

o = T — Tmin 9)

Tmazx — Tmin

where x'represents the normalized data, x is the original data, and X and X0 AT€ the minimum and maximum
values of the feature data, respectively.

Through these steps, we provided high-quality input data for the PINN model, ensuring it can effectively
capture the complex relationships between geological factors and coal and gas outbursts. This significantly
improved the model’s predictive performance.

Analysis of physical monotonicity relation

(1) Gas pressure. Stress is a key driving force for coal and gas outbursts®. As ground stress intensifies, the
potential energy for an outburst also rises. Simultaneously, the coal’s structural integrity weakens while gas
content and pressure rise, increasing the likelihood of coal and gas outburst incidents. Consequently, there exists
a monotonically increasing relationship between ground stress and the risk of coal and gas outbursts, which
means:

do
oP,

() >0 (10)

(2) Coal firmness coefficient. The firmness coefficient of coal showcases the seam’s physical and mechanical
traits, serving as a key factor in analyzing coal and gas outbursts®. A more robust coal seam possesses more
excellent resistance to coal and gas outbursts, thereby diminishing the outburst risk. Consequently, there is a
decreasing monotonic correlation between the coal firmness coefficient and the risk of gas outbursts, implying
that:

0o
—(x) <0 11
7@ (an
(3) Mining depth. As coal extraction extends deeper, rising ground stress reduces the permeability of coal seams
and surrounding rock, leading to significant gas accumulation’. Simultaneously, deeper mining elevates the
intensity of potential outbursts. Thus, a direct monotonic relationship exists between mining depth and outburst
risk, meaning:

%(m) >0 (12)
(4) Gas factor. As a primary component of outbursts, gas pressure contributes significantly to the force driving
these events”!2 Increased gas pressure corresponds to a heightened risk of outbursts. The gas content within
the coal seam is a significant determinant of outbursts. Reaching a critical gas content could trigger an outburst.
Higher gas content is associated with more intense outbursts. The initial speed of gas release indicates coal’s
permeability and gas flow characteristics. A swifter initial gas emission signifies a higher outburst risk. Thus, the
relationship between gas pressure, content, and emission velocity with outburst risk is increasingly monotonic,
indicating:
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Based on this analysis, the study integrates the relationships among in-situ stress, coal firmness, mining depth,
gas pressure, and emission characteristics with outburst risk into a PINN model to enable accurate outburst risk
predictions. Figure 2 illustrates the prediction model for coal and gas outburst risk.

Discussion and analysis

Model performance analysis
To assess the efficacy of the proposed approach, this study contrasts the predictive performance of three
conventional machine learning models—RF?, SVM?*, and BPNN?—against the PINN model using identical

training and testing datasets.

The training dataset is used to train the model and help it understand and learn to construct potential
linear relationships between input variables and output variables. The test dataset is not involved in the model’s
training process as an unknown data set. Still, it is a scalability test to test the model’s performance in the location
condition. The training is mainly carried out on a Windows 11 computer with a CPU of R7-5800H and 16G of

RAM.

Figure 3 presents the prediction outcomes for both the training and testing samples across all four models.
The diagram clearly indicates that the PINN model achieves the most accurate fit, outperforming the other
three models. From the perspective of evaluation indicators, the R? values of the SVM, RE, BPNN, and PINN
models on the test set are 0.883, 0.925, 0.947, and 0.966, respectively; the RMSE values of each model are 9.728,
6.452, 6.751, and 5.289, respectively. In addition, the MAE values are 8.041, 5.303, 5.624, and 4.121, while the
MAPE values are 12.3%, 8.7%, 9.2%, and 6.1%, respectively. The PINN model achieves an R? value nearly equal
to 1 and has the lowest RMSE, MAE, and MAPE, signifying the best fit and demonstrating a 13% performance
improvement over the SVM model in terms of R%. Analyzing the models using a 15% deviation threshold, the
PINN model’s predictions consistently fall within this range. This indicates that the PINN surpasses the accuracy
of the other three models and exhibits superior generalization and robustness. This superior performance can
be attributed to the incorporation of physical constraints into the loss function, which effectively enhances the

model’s generalization ability and reduces overfitting.

Additionally, the PINN model excels in forecasting the outburst intensity, delivering the most reliable results.
It also shows that it is feasible to select six factors, like ground stress Po (MPa), coal firmness coefficient f, mining
depth H (m), gas pressure Pg (MPa), gas content Gc (m3/t), initial velocity of gas emission V (m/s), as the input
of the model to predict the outburst intensity.

Interpretability analysis

In this paper, the interpretability of the four models is analyzed by comparing the physical monotonicity between
ground stress Po (MPa), coal firmness coefficient f, mining depth H (m), gas pressure P, (MPa), gas content G,
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Fig. 2. Coal and gas outburst risk prediction model architecture.
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Fig. 3. Comparison of four models.

(m?/t), initial velocity of gas emission V (m/s) and the gas outburst intensity, to evaluate the consistency between
the model and the actual process.

Figure 4 presents the influence of gas content on outburst intensity as it increases, considering variables
such as ground stress, coal firmness coeflicient, mining depth, gas pressure, and initial velocity of gas emission
across four different models. The results demonstrate that a significant limitation of traditional machine learning
models (such as RF, SVM, and BPNN) is their "black-box" nature. While these models can learn complex
patterns, they often fail to provide reasoning that aligns with physical laws. As shown in Fig. 4a and b, the RF
and SVM models do not exhibit a consistent monotonic trend between gas pressure and outburst intensity.
This contradicts established geological principles, which suggest that higher gas pressure typically leads to more
severe outbursts due to the increased energy stored within the coal seam?*. Similarly, as shown in Fig. 4c, while
BPNN captures some relationships, it still demonstrates oscillatory behavior, indicating a lack of robust physical
constraints in its learning process.

In contrast, the PINN model (see Fig. 4d) shows predictions that are highly consistent with physical
expectations. As gas content increases, the outburst intensity steadily rises, a trend explained by the monotonicity
constraints we introduced during training, which ensure the model adheres to known physical principles.
Additionally, the PINN model successfully captures the interactions between multiple influencing factors. For
example, as ground stress increases and coal seam hardness decreases, the model predicts a more severe outburst
intensity, which aligns with real-world geological observations. By integrating these physical constraints, the
PINN model overcomes the limitations of purely data-driven approaches, offering a more interpretable and
reliable framework for coal and gas outburst prediction. This improvement not only enhances prediction
accuracy but also boosts the model’s credibility in safety—critical mining applications.

Limitations of the PINN approach and future prospects

Traditional empirical models typically rely on predefined thresholds for parameters such as gas pressure, mining
depth, and coal hardness to assess the risk of coal and gas outbursts. These models are computationally efficient,
highly interpretable, and well-suited for specific scenarios. However, due to their dependence on limited
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Fig. 4. Comparison of gas outburst intensity PDA.

historical data, they often struggle with generalization when applied to new mining areas with scarce data or
significantly different geological conditions.

In contrast, PINN integrates physical constraints into neural networks, enabling stable predictive performance
even with limited training data, thereby reducing reliance on large-scale historical datasets. This unique
advantage makes PINN particularly valuable in data-scarce or geologically complex mining environments.
Despite its strengths, PINN has certain limitations. The incorporation of physics-based constraints increases
its computational cost compared to traditional machine learning models. Moreover, the model’s performance is
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Fig. 4. (continued)

highly sensitive to the choice of loss function weight coefficients (A; and A). Improper tuning of these parameters
may lead to performance degradation or even divergence during training.

Additionally, the current PINN model does not yet incorporate rock degradation mechanisms induced by
high-temperature, chemical, or impact conditions—factors increasingly relevant in deep mining and geothermal
settings. Recent studies have shown that such environments significantly compromise rock integrity. Zhang et
al.® demonstrated that under thermo-acid coupling, elevated temperatures become the dominant driver of mass
loss and porosity increase, accelerating microcrack development. Lin et al.?! proposed a multi-factor degradation
model incorporating thermal stress and mineral phase transitions, revealing that temperatures above 600 °C
primarily cause mechanical deterioration through mineral decomposition and crack propagation. Hong et al.3
identified 500-600 °C as a critical threshold beyond which high-temperature and water-cooling cycles markedly
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reduce sandstone’s impact resistance and deformation capacity. These findings underscore the importance of
integrating thermo-hydro-mechanical-chemical (THMC) processes into future PINN frameworks to more
accurately model rock instability under extreme conditions.

In general, PINN offers a highly interpretable, reliable, and practical approach for coal and gas outburst
prediction, enhancing accuracy and reinforcing the credibility of Al-driven mining safety decisions. In mine
management, PINN predictions can aid in optimizing safety strategies, such as adjusting ventilation, refining
drilling sequences, or implementing additional reinforcement measures in high-risk areas to mitigate outburst
hazards. Future research could further explore PINN’s application in multi-physics coupling scenarios, such as
integrating seepage mechanics and rock mechanics equations to more accurately simulate the dynamic evolution
of coal and gas outbursts. This would improve the model’s adaptability and reliability, advancing intelligent and
efficient mining safety management.

From a practical standpoint, to adjust the PINN model parameters in real coal mine applications, practitioners
are advised to calibrate the loss function weights (A; and ;) based on geological similarity indices or expert
knowledge of physical constraints. In data-rich conditions, a lower A, may emphasize data fidelity, while in data-
scarce regions with strong physical prior knowledge, a higher A, can ensure physical consistency. Additionally,
adaptive optimization strategies such as dynamic weight adjustment or Bayesian optimization can be employed
to automate tuning for site-specific deployments. Field engineers can iteratively update the model by integrating
real-time monitoring data to refine predictions under evolving mining conditions.

Conclusion

This study proposes a novel coal and gas outburst prediction framework by integrating physical monotonicity
constraints into a neural network (PINN). By analyzing six key factors (ground stress, coal firmness coeflicient,
mining depth, gas pressure, gas content, and coal firmness coefficient), the model achieves an R2 of 0.966 and
an RMSE of 6.452, outperforming traditional machine learning methods (RE, SVM, BPNN). Beyond improving
predictive accuracy, the PINN framework offers interpretable insights into underlying physical mechanisms,
addressing conventional models’ "black-box" limitations.

Future research could incorporate more complex physical constraints like seepage and rock mechanics to
develop a multi-physics coupled PINN model. This would enable more precise characterization of the dynamic
evolution of coal and gas outbursts, enhance the model’s adaptability and reliability across diverse geological
conditions, and ultimately advance the safety and efficiency of deep mining operations.
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