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Coal and gas outbursts pose significant risks to underground mining operations, and accurate and 
reliable prediction is crucial for improving mine safety. Traditional machine learning models struggle 
to balance prediction accuracy and interpretability, particularly in cases of limited data or complex 
geological conditions. To address this challenge, this study proposes a prediction model based on 
Physics-Informed Neural Networks (PINN), which integrates physical monotonicity constraints with 
data-driven learning to ensure that the predictions align with physical laws. Using actual data from a 
coal mine, this study compares the performance of the PINN model with traditional machine learning 
models, including Random Forest (RF), Support Vector Machine (SVM), and Backpropagation Neural 
Network (BPNN). The results show that the PINN model achieves a coefficient of determination (R2) 
of 0.966 and a root mean square error (RMSE) of 6.452, outperforming the traditional models in both 
prediction accuracy and generalization ability. Furthermore, interpretability is significantly enhanced 
by incorporating known physical behaviors and monotonicity constraints. The proposed PINN-based 
prediction framework provides a more reliable and theoretically grounded approach to assessing 
coal and gas outburst risks. Integrating it into mining safety management systems can significantly 
improve early warning mechanisms and risk mitigation strategies.

Keywords  Coal and gas outburst, Prediction model, Physics-informed neural network, Mechanism and data 
coupling model

As shallow coal reserves in China become increasingly depleted, coal mining operations have shifted to deeper 
depths, deteriorating mining conditions. High geological stress, elevated gas content, and severe mining-induced 
disturbances threaten worker safety and operational efficiency1,2. Consequently, developing precise prediction 
and early warning methods for coal and gas outbursts is essential for preventing catastrophic incidents and 
improving coal mine safety management.

Coal and gas outbursts are influenced by complex nonlinear factors, including mining intensity, coal seam gas 
content, mining depth, and ventilation conditions. To improve prediction accuracy, researchers have explored 
various computational techniques. Traditional machine learning models have played a significant role in coal 
and gas outburst prediction. For example, Shao et al.3 employed the Markov Chain Monte Carlo (MCMC) 
method to address missing data and developed a prediction model based on a Support Vector Machine (SVM) 
optimized by the Sparrow Search Algorithm (SSA). Similarly, Xu et al.4 introduced a novel prediction framework 
integrating Sparse Kernel Principal Component Analysis (SKPCA) with the Neural Evolution Algorithm 
(NEAT), demonstrating enhanced predictive precision. Zhou et al.5 further refined machine learning-based 
approaches using the SSA-Kernel Extreme Learning Machine (SSA-KELM), achieving significant performance 
gains. Wen et al.6 tackled missing data challenges through a Whale Optimization Algorithm-Extreme Learning 
Machine (WOA-ELM) model. Additional optimization techniques, such as the Improved Real-coded Quantum 
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Genetic Algorithm (IRQGA) combined with an Adaptive Neuro-Fuzzy Inference System (ANFIS)7 and a double 
coupling prediction model incorporating IsoMap and weighted vector machines8 have also been explored.

Beyond traditional machine learning models, hybrid approaches and evolutionary algorithms have been 
employed to further enhance prediction accuracy. Yang et al.9 developed a coal and gas outburst prediction model 
using the improved artificial Electric Field Algorithm-Least Square Support Vector Machine (IAEFA-LSSVM), 
which exhibited resilience against poor data quality. Wang Wei et al.10 extension theory and the fuzzy analytic 
hierarchy process were applied to assess subjective and objective weighting factors, leading to an improved 
prediction model. Additionally, Grey Wolf Optimizer-SVM (GWO-SVM)11, multi-factor fuzzy comprehensive 
evaluation12, and random forest models incorporating the Pauta criterion13 have been employed to refine coal 
and gas outburst predictions. Furthermore, Grey Relational Analysis (GRA) has been used to identify key 
influencing factors, leading to the development of the Fuzzy Synthetic Prediction Algorithm (F-SPA)14.

With the rapid advancement of artificial intelligence, deep learning and neural network-based models have 
emerged as powerful alternatives to traditional methods. Studies have shown that Artificial Neural Networks 
(ANNs) demonstrate superior predictive capabilities in various engineering applications. For instance, Srii 
Ihssan et al.15 validated the predictive efficiency of Bayesian-regularized ANNs for assessing tensile strength, 
while Nagoor Basha Shaik et al.16 integrated ANN with Gaussian Process Regression (GPR) for structural health 
monitoring. In coal mining applications, Monalisa Maiti et al.17 highlighted the advantages of Fractional-Order 
Neural Networks (FONN) in modeling long-term coal-rock interactions. Similarly, Geleta Warkisa Deressa 
and Bhanwar Singh Choudhary18 applied Random Forest Regression (RFR) in mining productivity analysis, 
demonstrating its interpretability using SHAP values. Comparative studies on ANN, Genetic Algorithms (GA), 
and Multiple Adaptive Regression Splines (MARS)19 have reinforced ANN’s superior performance in coal 
property predictions. At the same time, Multi-Input Single-Output White Box ANN (MISOWB-ANN) models20 
have proven effective for mineral composition forecasting. Moreover, hybrid approaches such as Spotted Hyena 
Optimization-ANN (SHO-ANN)21 have further enhanced deep learning-based predictions in mining safety 
assessments. Previous studies have developed various prediction models and trend analyses for coal and gas 
outbursts using different datasets and algorithms. However, existing outburst prediction models primarily rely 
on data-driven approaches, such as Support Vector Machines (SVM) and Neural Networks (NN), which often 
function as “black boxes”, making it difficult to interpret their predictions within the framework of underlying 
physical mechanisms. Furthermore, these models require large volumes of high-quality training data. However, 
the variability of geological conditions and the scarcity of historical outburst data significantly limit their 
applicability in coal and gas outburst prediction.

To overcome these challenges, this study introduces the PINN, which integrates data-driven learning with 
physics-based constraints. This approach establishes a physics-data hybrid modeling framework by embedding 
monotonicity constraints into the neural network. It improves predictive accuracy and effectively reveals 
underlying physical mechanisms, overcoming the "black-box" limitations of traditional models and providing 
robust support for coal mine safety management.

PINN model
Model construction
N training samples are selected, 

{(
x(i), t(i))}N

i=1
, i = 1, ..., N,x(i) ∈ Rn is the input vector, t(i) is the output 

value, and the corresponding model prediction value can be expressed as:

	 o(i) = f
(
x(i)) = βg

(
wx(i) + b

)
� (1)

where o(i) denotes the model’s predicted outcome; f(.) signifies the operation performed by the neural network; w 
is the connection weight between the input and hidden layers; β acts as the weight linking the hidden and output 
layers; g(.) is the sigmoid activation function; b refers to the bias vector of the hidden layer.

The process of training the neural network involves optimizing the parameters w ,β, and b22,23. The aim of 
training is to minimize the error Er between the predicted output of the model and the target value, as illustrated 
in the following equation:

	
Er =

i=1∑
N

(
o(i) − t(i))2

� (2)

Monotonicity expression
Equation  (3) provides the expression for the partial derivative of the output variable o with respect to the 
input variable xj .In cases where a monotonically increasing relationship exists between o and xj , then 
∂o

∂xj
(x) > 0,otherwise ∂o

∂xj
(x) < 0.
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∂o

∂xj
= ∂ (βg (wx + b))

∂xj

= ∂ (β1g (w11x1 + . . . + w1nxn + b1)) + . . .

∂xj
+ ∂ (βÑ g (wÑ1x1 + ... + wÑnxn + bÑ ))

∂xj

=
k=1∑

N

βkwkjg (wkx + bk) (1 − g (wkx + bk))

� (3)

where j = 1, 2, …, n.

The loss function of the PINN model
In traditional neural network training, the model’s loss function is typically defined by the difference between 
observed and predicted values. During training, all internal parameters of the model are optimized to minimize 
the loss function. Building on traditional neural networks, this study takes into complete account the prior 
monotonicity between input and output parameters and introduces a novel PINN modeling approach22. This 
method adds two additional constraint constraints to the training loss function: structural losses and physical 
discordance. These details can be seen in Eqs. (4) and (5):

	
Es =

j=1∑
n

k=1∑
N

(wjk)2 +
k=1∑

N

(βk)2� (4)

	
Ep =

n∑
j=1

Tj∑
i=1

1 − m
(i)
j × sign

(
∂o

∂xj
(x(i)

syn)
)

2
� (5)

where sign(θ) =
{ −1, θ < 0

1, θ ≥ 0 ; x(i)
syn is the manual input part of the i-th recombination sample; m(i)

j  is 

its monotonicity divisor, if the physical monotonicity is positive, then m(i)
j = 1, otherwise m(i)

j = −1; Tj  
represents the number of comprehensive samples that maintain a monotonic relationship between input and 
output in the j-th dimension.

The physical discordance Ep injects information about monotonicity into the PINN model by creating 
synthetic samples. Unlike the actual operational data, each composite sample consists of an artificially generated 
input component xsyn and a specified monotonicity factor m, which contains no output label information. It 
should be noted that Ep measures the overall physical discordance of the PINN model. A large EP indicates that 
the internal mechanism of the network seriously deviates from the actual process, and the model’s explanatory 
power is weak. For example, consider a synthetic sample 

(
x

(i)
syn, m

(i)
j

)
, where m(i)

j = −1, means that the 
relationship between the input and output of the j-th dimension shows negative monotonicity. In each iterative 
training of the PINN model, the partial derivative ∂o

∂xj
(x(i)

syn) of o with respect to xj will be calculated and 

adjusted. If ∂o
∂xj

(x(i)
syn) > 0, then  sign( ∂o

∂xj
(x(i)

syn)) = 1, means that the relationship between the input and 
output of the j-th dimension shows positive monotonicity in the PINN model. This is inconsistent with the given 
monotonicity factor m(i)

j = −1. Therefore, according to the formula (5), the Ep corresponding to the synthetic 

sample 
(

x
(i)
syn, m

(i)
j

)
 is a penalty term in the loss function. If ∂o

∂xj
(x(i)

syn) < 0, then the corresponding Ep is 0, 

indicating that ∂o
∂xj

(x(i)
syn) can match the given monotonicity factor m(i)

j  and there is no penalty value in the 
loss function.

In summary, the loss calculation function of PINN can be denoted as:

	

E = Er + λsEs + λpEp =
N∑

i=1

(o(i) − t(i))2 + λs




n∑
j=1

∼
N∑

k=1

(wjk)2+

∼
N∑

k=1

(βk)2





+λp

n∑
j=1

Tj∑
i=1

1 − m
(i)
j × sign

(
∂o

∂xj

(
x

(i)
syn

))

2

� (6)

where the λs and λp represent the weight coefficients of structural losses and physical inconsistency, respectively.
The regression loss Er represents the distance between the measured value and the predicted value, the 

structural loss Es is the L2 norm of the network weight to decrease the over-fitting of the model, and the physical 
inconsistency Ep represents the degree of deviation between the model and the physical monotonicity.

PINN model training
Artificial neural networks typically use backward propagating methods to obtain the best network parameters. 
However, the backward propagating algorithm is unsuitable for the non-differentiable monotonicity constraint in 
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the loss function of the PINN model. Therefore, this study employs the Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES) to optimize parameters during the PINN training. CMA-ES is a stochastic, derivative-free 
evolutionary algorithm well-suited for non-convex and complex optimization problems. It adapts the covariance 
matrix of a multivariate normal distribution to efficiently explore the search space and improve convergence 
stability in high-dimensional scenarios. The Training Procedure for PINN Utilizing CMA-ES22 is summarized 
here.

Step 1 Determine the quantity of nodes present in the hidden layer of the PINN based on the specific training 
dataset. In this study, the hidden layer of the coal and gas outburst prediction model is configured to contain 
two nodes.

Step 2 Initialize the variables of CMA-ES. The optimization targets include the weights β, w* and all 
components of the bias b. The fitness function for CMA-ES is determined by the Eq. (6).

Step 3 Start the optimization process of CMA-ES. Upon completion of the iterations, the obtained optimal 
solution will be adopted as the network parameter for the PINN model.

The model was trained on a Lenovo laptop equipped with an i5-12400H CPU, 16 GB RAM, and an RTX 3050 
GPU with 4 GB of memory.

Model-evaluation index
This study uses RF, SVM, and BPNN as comparison models. We employ Particle Swarm Optimization (PSO) 
to fine-tune the SVM’s hyperparameters. In addition, BPNN and PINN are designed with the same network 
structure for comparison. These measures ensure optimal performance for each model and guarantee fairness 
in comparison and analysis. Lastly, we utilize the subsequent two statistical measures to evaluate the predictive 
effectiveness of the models.

(1) The closer the value of the decisive coefficient (R2) is to 1, the higher the fitting degree of the model to 
the data.

	

R2 = 1 −

N∑
t=1

(
t(i) − o(i))2

N∑
t=1

(
t(i) − t

)2
� (7)

where N indicates the sample size; t(i) and o(i) correspond to the observed and expected values of the i-th test 
sample, respectively; t represents the average value across all test samples.

(2) The Root Means Square Error (RMSE) indicates the model’s absolute fitting capability concerning the 
data. Additionally, R2 serves as a measure of the relative proportion of variance explained by the model. The 
RMSE has the same unit as the dependent variable, which gives it specific advantages. It is defined as follows:

	

RMSE =

√√√√ 1
N

i=1∑
N

(t(i) − o(i))2� (8)

Model construction
Evolution process of coal and gas outburst
Coal and gas outbursts occur as a dynamic event resulting from the interplay of subterranean stress, gas in coal 
seams, and the physical characteristics of coal and rock, among other variables12. The complexity of geological 
structures and the mining depth are primary factors influencing in-situ stress conditions. Factors associated 
with coal seam gas include gas pressure, the amount of gas present, and its release rate. Moreover, the physical 
properties of coal and rock include the firmness coefficient, seam permeability, and the initial speed of gas 
escape. The process of a coal and gas outburst unfolds in four stages: evolution, formation, development, and 
termination, as illustrated in Fig. 1.

Variable selection and data set construction
(1) Analysis of key controlling factors.

Considering the accessibility and easy quantification of the influence index data, combined with the relevant 
research results, the ground stress Po (MPa), coal firmness coefficient f, mining depth H (m), gas pressure 
Pg (MPa), gas content Gc (m3/t), and initial velocity of gas emission V (m/s) are the main controlling factors 
affecting coal and gas outburst.

(2) Data collection.
In order to accurately describe the relationship between coal and gas outburst intensity and its main 

influencing factors, coal mine data was collected from a coal mine of China. These data were used to establish 
a predictive model based on the PINN framework. A total of 392 sets of working condition data were collected. 
Each data sample includes six key input parameters: ground stress (Po, MPa), coal firmness coefficient (f), 
mining depth (H, m), gas pressure (Pg, MPa), gas content (Gc, m3/t), and initial gas emission velocity (V, m/s). 
The corresponding coal and gas outburst intensity serves as the output parameter. This setup allows for studying 
the variation of gas outburst intensity under the influence of various factors24. Table 1 presents some of the data 
of the study. To ensure a balanced evaluation of the model’s performance, the dataset was randomly divided into 
two equal parts: 196 samples (50%) were used for training, and the remaining 196 samples (50%) were used 
for testing. This allocation aims to minimize sampling bias and provide a reliable assessment of the model’s 
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No P0 (MPa) f H(m) Pg (MPa) Gc (m3/t) V (m/s) Outburst intensity (MPa)

1 15.01 0.31 620 2.76 10.02 19 150.2

2 11.50 0.24 445 0.95 13.04 6 142.6

3 12.36 0.38 543 1.58 12.48 13 138.4

4 12.98 0.27 396 1.37 9.87 9 149.3

5 13.41 0.16 462 1.20 10.36 18 153.1

6 17.24 0.61 395 1.17 9.04 5 154.0

7 15.05 0.53 482 1.29 8.25 7 162.9

8 8.40 0.54 510 0.46 4.60 7 0

9 14.37 0.36 745 1.25 9.01 8 176.5

10 12.86 0.59 425 2.80 10.25 8 210.2

11 11.11 0.54 647 2.50 11.52 11 212.8

12 13.04 0.33 512 2.98 10.09 9 203.3

13 13.75 0.48 460 2.00 9.50 7 196.1

14 10.98 0.22 543 3.95 8.23 14 220.2

15 7.10 0.21 440 0.78 7.00 9 20.6

16 5.90 0.61 400 0.63 2.01 6 0

17 13.00 0.48 560 0.86 13.10 18 106.4

18 14.30 0.34 620 1.87 13.60 15 150.0

19 10.20 0.35 750 0.74 5.20 8 76.5

20 12.90 0.22 540 1.75 12.41 14 110.2

Table 1.  Original data of coal and gas outburst influence factors (Partial)

 

Fig. 1.  Influencing factors and evolution process of coal and gas outburst.
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generalization ability. Due to confidentiality agreements with the data-providing entity, specific details about the 
coal mine cannot be disclosed.

(3) Data preprocessing.
The original dataset comes from a real mining environment, containing multiple variables influenced by 

measurement techniques and geological variations. To ensure the robustness of the model, the raw coal mine 
data underwent a strict preprocessing procedure, including handling missing values, detecting anomalies, data 
resampling, and feature normalization25–28.

In actual mining operations, missing values often occur due to sensor failures, incomplete records, or 
measurement errors. To minimize the potential impact of missing values on the analysis, we applied different 
imputation methods based on the proportion of missing values. We imputed the missing values using the 
mean or median for features with a missing rate of less than 5%. When the disappeared rate ranged from 5 
to 20%, we applied the K-Nearest Neighbors (KNN) imputation method to estimate missing values based on 
the similarity between data points. For features with a missing rate exceeding 20%, we removed these records 
to avoid introducing bias into the model. This approach ensures that the dataset retains its integrity while still 
representing actual mining conditions.

We employed the interquartile range (IQR) method to detect outliers, defining extreme values as those lying 
beyond 1.5 times the IQR from the first or third quartile. Once identified, each anomaly was examined based on 
its origin. If an anomaly resulted from a measurement error, it was removed from the dataset. In contrast, if the 
value was determined to be an extreme yet valid observation, it was replaced with the nearest data point within 
the acceptable range to mitigate its influence on model training and preserve data integrity.

Given the varying scales and physical units of input features such as ground stress, gas content, and mining 
depth, feature normalization was performed to ensure consistency across variables. We adopted min–max 
normalization, which linearly transforms each feature to the range [0, 1], thereby facilitating efficient convergence 
during training. The normalization formula is shown below:

	
x′ = x − xmin

xmax − xmin
� (9)

where x' represents the normalized data, x is the original data, and xmin and xmax are the minimum and maximum 
values of the feature data, respectively.

Through these steps, we provided high-quality input data for the PINN model, ensuring it can effectively 
capture the complex relationships between geological factors and coal and gas outbursts. This significantly 
improved the model’s predictive performance.

Analysis of physical monotonicity relation
(1) Gas pressure. Stress is a key driving force for coal and gas outbursts4. As ground stress intensifies, the 
potential energy for an outburst also rises. Simultaneously, the coal’s structural integrity weakens while gas 
content and pressure rise, increasing the likelihood of coal and gas outburst incidents. Consequently, there exists 
a monotonically increasing relationship between ground stress and the risk of coal and gas outbursts, which 
means:

	
∂o

∂Po
(x) > 0� (10)

(2) Coal firmness coefficient. The firmness coefficient of coal showcases the seam’s physical and mechanical 
traits, serving as a key factor in analyzing coal and gas outbursts6. A more robust coal seam possesses more 
excellent resistance to coal and gas outbursts, thereby diminishing the outburst risk. Consequently, there is a 
decreasing monotonic correlation between the coal firmness coefficient and the risk of gas outbursts, implying 
that:

	
∂o

∂f
(x) < 0� (11)

(3) Mining depth. As coal extraction extends deeper, rising ground stress reduces the permeability of coal seams 
and surrounding rock, leading to significant gas accumulation9. Simultaneously, deeper mining elevates the 
intensity of potential outbursts. Thus, a direct monotonic relationship exists between mining depth and outburst 
risk, meaning:

	
∂o

∂H
(x) > 0� (12)

(4) Gas factor. As a primary component of outbursts, gas pressure contributes significantly to the force driving 
these events7,12. Increased gas pressure corresponds to a heightened risk of outbursts. The gas content within 
the coal seam is a significant determinant of outbursts. Reaching a critical gas content could trigger an outburst. 
Higher gas content is associated with more intense outbursts. The initial speed of gas release indicates coal’s 
permeability and gas flow characteristics. A swifter initial gas emission signifies a higher outburst risk. Thus, the 
relationship between gas pressure, content, and emission velocity with outburst risk is increasingly monotonic, 
indicating:
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∂o

∂Gc
(x) > 0� (13)

	
∂o

∂V
(x) > 0� (14)

	
∂o

∂Pg
(x) > 0� (15)

Based on this analysis, the study integrates the relationships among in-situ stress, coal firmness, mining depth, 
gas pressure, and emission characteristics with outburst risk into a PINN model to enable accurate outburst risk 
predictions. Figure 2 illustrates the prediction model for coal and gas outburst risk.

Discussion and analysis
Model performance analysis
To assess the efficacy of the proposed approach, this study contrasts the predictive performance of three 
conventional machine learning models—RF25, SVM26, and BPNN27—against the PINN model using identical 
training and testing datasets.

The training dataset is used to train the model and help it understand and learn to construct potential 
linear relationships between input variables and output variables. The test dataset is not involved in the model’s 
training process as an unknown data set. Still, it is a scalability test to test the model’s performance in the location 
condition. The training is mainly carried out on a Windows 11 computer with a CPU of R7-5800H and 16G of 
RAM.

Figure 3 presents the prediction outcomes for both the training and testing samples across all four models. 
The diagram clearly indicates that the PINN model achieves the most accurate fit, outperforming the other 
three models. From the perspective of evaluation indicators, the R2 values of the SVM, RF, BPNN, and PINN 
models on the test set are 0.883, 0.925, 0.947, and 0.966, respectively; the RMSE values of each model are 9.728, 
6.452, 6.751, and 5.289, respectively. In addition, the MAE values are 8.041, 5.303, 5.624, and 4.121, while the 
MAPE values are 12.3%, 8.7%, 9.2%, and 6.1%, respectively. The PINN model achieves an R2 value nearly equal 
to 1 and has the lowest RMSE, MAE, and MAPE, signifying the best fit and demonstrating a 13% performance 
improvement over the SVM model in terms of R2. Analyzing the models using a 15% deviation threshold, the 
PINN model’s predictions consistently fall within this range. This indicates that the PINN surpasses the accuracy 
of the other three models and exhibits superior generalization and robustness. This superior performance can 
be attributed to the incorporation of physical constraints into the loss function, which effectively enhances the 
model’s generalization ability and reduces overfitting.

Additionally, the PINN model excels in forecasting the outburst intensity, delivering the most reliable results. 
It also shows that it is feasible to select six factors, like ground stress Po (MPa), coal firmness coefficient f, mining 
depth H (m), gas pressure Pg (MPa), gas content Gc (m3/t), initial velocity of gas emission V (m/s), as the input 
of the model to predict the outburst intensity.

Interpretability analysis
In this paper, the interpretability of the four models is analyzed by comparing the physical monotonicity between 
ground stress Po (MPa), coal firmness coefficient f, mining depth H (m), gas pressure Pg (MPa), gas content Gc 

Fig. 2.  Coal and gas outburst risk prediction model architecture.
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(m3/t), initial velocity of gas emission V (m/s) and the gas outburst intensity, to evaluate the consistency between 
the model and the actual process.

Figure  4 presents the influence of gas content on outburst intensity as it increases, considering variables 
such as ground stress, coal firmness coefficient, mining depth, gas pressure, and initial velocity of gas emission 
across four different models. The results demonstrate that a significant limitation of traditional machine learning 
models (such as RF, SVM, and BPNN) is their "black-box" nature. While these models can learn complex 
patterns, they often fail to provide reasoning that aligns with physical laws. As shown in Fig. 4a and b, the RF 
and SVM models do not exhibit a consistent monotonic trend between gas pressure and outburst intensity. 
This contradicts established geological principles, which suggest that higher gas pressure typically leads to more 
severe outbursts due to the increased energy stored within the coal seam29. Similarly, as shown in Fig. 4c, while 
BPNN captures some relationships, it still demonstrates oscillatory behavior, indicating a lack of robust physical 
constraints in its learning process.

In contrast, the PINN model (see Fig.  4d) shows predictions that are highly consistent with physical 
expectations. As gas content increases, the outburst intensity steadily rises, a trend explained by the monotonicity 
constraints we introduced during training, which ensure the model adheres to known physical principles. 
Additionally, the PINN model successfully captures the interactions between multiple influencing factors. For 
example, as ground stress increases and coal seam hardness decreases, the model predicts a more severe outburst 
intensity, which aligns with real-world geological observations. By integrating these physical constraints, the 
PINN model overcomes the limitations of purely data-driven approaches, offering a more interpretable and 
reliable framework for coal and gas outburst prediction. This improvement not only enhances prediction 
accuracy but also boosts the model’s credibility in safety–critical mining applications.

Limitations of the PINN approach and future prospects
Traditional empirical models typically rely on predefined thresholds for parameters such as gas pressure, mining 
depth, and coal hardness to assess the risk of coal and gas outbursts. These models are computationally efficient, 
highly interpretable, and well-suited for specific scenarios. However, due to their dependence on limited 

Fig. 3.  Comparison of four models.
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historical data, they often struggle with generalization when applied to new mining areas with scarce data or 
significantly different geological conditions.

In contrast, PINN integrates physical constraints into neural networks, enabling stable predictive performance 
even with limited training data, thereby reducing reliance on large-scale historical datasets. This unique 
advantage makes PINN particularly valuable in data-scarce or geologically complex mining environments. 
Despite its strengths, PINN has certain limitations. The incorporation of physics-based constraints increases 
its computational cost compared to traditional machine learning models. Moreover, the model’s performance is 

Fig. 4.  Comparison of gas outburst intensity PDA.
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highly sensitive to the choice of loss function weight coefficients (λ₁ and λ₂). Improper tuning of these parameters 
may lead to performance degradation or even divergence during training.

Additionally, the current PINN model does not yet incorporate rock degradation mechanisms induced by 
high-temperature, chemical, or impact conditions—factors increasingly relevant in deep mining and geothermal 
settings. Recent studies have shown that such environments significantly compromise rock integrity. Zhang et 
al.30 demonstrated that under thermo-acid coupling, elevated temperatures become the dominant driver of mass 
loss and porosity increase, accelerating microcrack development. Lin et al.31 proposed a multi-factor degradation 
model incorporating thermal stress and mineral phase transitions, revealing that temperatures above 600 °C 
primarily cause mechanical deterioration through mineral decomposition and crack propagation. Hong et al.32 
identified 500–600 °C as a critical threshold beyond which high-temperature and water-cooling cycles markedly 

Fig. 4.  (continued)
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reduce sandstone’s impact resistance and deformation capacity. These findings underscore the importance of 
integrating thermo-hydro-mechanical-chemical (THMC) processes into future PINN frameworks to more 
accurately model rock instability under extreme conditions.

In general, PINN offers a highly interpretable, reliable, and practical approach for coal and gas outburst 
prediction, enhancing accuracy and reinforcing the credibility of AI-driven mining safety decisions. In mine 
management, PINN predictions can aid in optimizing safety strategies, such as adjusting ventilation, refining 
drilling sequences, or implementing additional reinforcement measures in high-risk areas to mitigate outburst 
hazards. Future research could further explore PINN’s application in multi-physics coupling scenarios, such as 
integrating seepage mechanics and rock mechanics equations to more accurately simulate the dynamic evolution 
of coal and gas outbursts. This would improve the model’s adaptability and reliability, advancing intelligent and 
efficient mining safety management.

From a practical standpoint, to adjust the PINN model parameters in real coal mine applications, practitioners 
are advised to calibrate the loss function weights (λ₁ and λ₂) based on geological similarity indices or expert 
knowledge of physical constraints. In data-rich conditions, a lower λ₂ may emphasize data fidelity, while in data-
scarce regions with strong physical prior knowledge, a higher λ₂ can ensure physical consistency. Additionally, 
adaptive optimization strategies such as dynamic weight adjustment or Bayesian optimization can be employed 
to automate tuning for site-specific deployments. Field engineers can iteratively update the model by integrating 
real-time monitoring data to refine predictions under evolving mining conditions.

Conclusion
This study proposes a novel coal and gas outburst prediction framework by integrating physical monotonicity 
constraints into a neural network (PINN). By analyzing six key factors (ground stress, coal firmness coefficient, 
mining depth, gas pressure, gas content, and coal firmness coefficient), the model achieves an R2 of 0.966 and 
an RMSE of 6.452, outperforming traditional machine learning methods (RF, SVM, BPNN). Beyond improving 
predictive accuracy, the PINN framework offers interpretable insights into underlying physical mechanisms, 
addressing conventional models’ "black-box" limitations.

Future research could incorporate more complex physical constraints like seepage and rock mechanics to 
develop a multi-physics coupled PINN model. This would enable more precise characterization of the dynamic 
evolution of coal and gas outbursts, enhance the model’s adaptability and reliability across diverse geological 
conditions, and ultimately advance the safety and efficiency of deep mining operations.

Data availability
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