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Over the years, toxicity prediction has been a challenging task. Artificial intelligence and machine 
learning provide a platform to study toxicity prediction more accurately with a reduced time span. 
An optimized ensembled model is used to contrast the results of seven machine learning algorithms 
and three deep learning models with regard to state-of-the-art parameters. In the paper, optimized 
model is developed that combined eager random forest and sluggish k star techniques. State-of-the-
art parameters have been evaluated and compared for three scenarios. In first scenario with original 
features, in the second scenario using feature selection and resampling technique with the percentage 
split method, and in the third scenario using feature selection and resampling technique with 10-fold 
cross-validation. The principal component analysis is performed for feature selection. An optimized 
ensembled model performs well in comparison to other models in all three scenarios. It achieved an 
accuracy of 77% in the first scenario, 89% in the second scenario, and 93% in the third scenario. The 
proposed model shows the performance increase in accuracy by 8% as compared to the top performer 
Kstar machine learning model and 21% as compared to deep learning model AIPs-DeepEnC-GA which 
is remarkable. Also there is significant improvement in other important evaluation parameters in 
comparison to top performing models. Further concept of W-saw score and L-saw is presented for all 
the scenarios. An optimized ensembled model using feature selection and resampling technique with 
tenfold cross-validation performs best among all machine learning models in all the scenarios.
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The degree to which a medicinal compound is hazardous to living things is known as its toxicity1. Toxicology 
prediction is extremely difficult. Worldwide, numerous medicinal compounds are created each year. Toxicity 
is related to the amount of chemicals that are inhaled, applied, or injected and can result in death, allergies, 
or negative consequences on living organisms2. A drug’s toxicity can differ from person to person as per their 
characteristics. Therefore, a dose that is curative for one patient may be poisonous for other3. Drugs are necessary 
for living beings to help with illness, disease diagnosis, or disease prevention4. A new medication or chemical 
molecule must go through a lengthy, expensive process of development. There are two types of chemicals, namely 
active and inactive ingredients found in every medicine. The term “active ingredients” refers to the substance 
that constitutes the therapeutic essence of medicine5. The other is known as an inactive component, which has 
no direct therapeutic benefit but is utilized to balance a drug’s potency. Inactive medications are occasionally 
used to bind, coat, flavor, or even speed up the breakdown of active pharmaceuticals. Therefore, maintaining a 
balance between active and inactive medications is crucial. The imbalance of active and inactive medications 
results in toxicity6. Thus, predicting drug toxicity is vital. Over the last few decades, toxicity has been a crucial 
subject of ongoing research7. In the past, drug testing was performed on animals followed by human trials but 
computational intelligence makes it possible to forecast and assess a drug’s toxicity8. It is possible to forecast 
drug toxicity using machine learning approaches9. These methods reduce the cost and duration of the evolution 
process. A critical phase in the machine learning pipeline is FS, where pertinent characteristics are selected in 
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the dataset and excludes redundant attributes10. Proper feature selection can shorten training times, prevent 
overfitting, and enhance model performance. There are numerous ways for selecting features, ranging from 
straightforward to sophisticated11. The best feature subset for a particular machine learning assignment is 
detected by frequently considering a combination of approaches and experimenting carefully. Additionally to 
prevent data leakage and estimate performance of model precisely, feature selection must be carried out inside 
a validated framework12. A common dimensionality reduction method in statistics and machine learning is 
principal component analysis13. Its main applications are feature selection and data visualization, with the aim 
of decreasing a dataset’s dimensionality while retaining as much crucial data as feasible. Principal component 
Analysis uses linear combinations to produce the main components, and the term “combinations” refers to the 
linear combinations of the original features14. The goal of PCA is to identify a set of orthogonal (i.e., uncorrelated) 
linear combinations of the initial characteristics that best account for the data’s variation. The original attributes 
are combined with particular weights or coefficients to create these linear combinations, which are known as the 
principal components. In brief, PCA diminishes the amplitude of the data by keeping as much information as 
feasible. The process of dimension reduction is applied by combining the actual features presented as principal 
components15. These combinations are determined by assigning weight to original features that are necessary 
for structure and reducing the dimension of data. Resampling is a method to change the dataset by addition, 
deletion, or change of dataset points. This is used to overcome class imbalance and fitting problems in a dataset16. 
Oversampling and undersampling can add biases or lower the quantity of data accessible for training17. It must 
be done with caution. The resampling approach and parameters are persuaded by the dataset, specific challenge, 
and the desired result. The appropriate model selection, hyperparameter tweaking, and cross-validation must 
be used in association with resampling to get a balanced and robust machine-learning model18. The process 
of splitting a dataset into subsets for training, testing, and validation is termed as percentage split in machine 
learning19. These subsets are given in terms of the percentage of a dataset. The percentage split selection is 
based on the size of the dataset and the data accessibility. In a typical percentage split, for training, testing, and 
validation for instance criteria of 80%, 10%, and 10% can be utilized20. Depending upon data size we can build 
a robust model21. However, depending upon the need of a project, the percentage split can be adjusted to get the 
best machine learning model. To avoid biases, it is important to split data at random or by the use of a method 
that ensures the best subsets of the entire dataset. K-fold cross-validation is a well-known technique to apply22. 
It helps to estimate the performance on data when a dataset is small. In the technique, the dataset is split into 
equal size of k-folds. Noted the performance statistics or metrics23. Calculate the performance metric(s) average 
and standard deviation over all K iterations. In comparison to a single train-test split, these statistics offer a 
more reliable estimation of your model’s performance. The size of our dataset and the available computational 
resources are only two examples of the many variables that influence the choice of K. K frequently has values 
between 5 and 10, and 10-fold cross-validation is frequently a suitable place to start. We can experiment with 
several K values to discover which one gives the most accurate performance estimates for your model24. K-fold 
cross-validation offers a more thorough review than a single train-test split, which can be impacted by the 
randomness of the split, and aids in evaluating. A number of machines learning algorithms are applied and the 
performance is evaluated which is quite satisfactory but still the challenges needs to be addressed are overfitting, 
generalization, dependency on a single factor i.e. accuracy. The presented paper uses k-fold cross validation 
method to deal with overfitting. Ensembling of lazy and eager is performed to address generalization. Saw scores 
are composite scores of all performance parameters which strengthens the optimized model.

The main contribution of presented paper is to

•	 A number of machine learning approaches are already used to improve the performance of the model.
•	 Optimize and strengthen the model with multidisciplinary domain operational research where W-saw and 

L-saw are calculated and their respective scores validate the performance of optimized model before deploy-
ment.

Literature review
In this section, different techniques used by researchers in machine learning have been discussed with their 
findings of the research. Sukumaran et al. created a mongrel method based on particle swarm optimisation and 
support vector machines to autonomously analyse computed tomography images, offering a high likelihood 
of detecting the existence of Covid-19-related pneumonia25. The model was trained and clarifies the existence 
of disease in patients that saves time frame for physicians. Sarwar et al. exhibited an ensembled model in 
deaconing type II diabetes26. The authors considered a total of 15 models but used five main approaches. To 
achieve the desired results they employed matrix laboratory and the weka tool. The voting technique is used 
in ensembling the classifiers. A medical dataset of 400 people around the globe is considered during the 
research. Verma et al. provided an analysis of machine learning methods, both supervised and unsupervised, 
for identifying incredulous behaviour27. The authors studied the behavior of a single person in a crowd with 
artificial intelligence techniques. Bojamma et al. studied the importance of plant identification in balancing the 
nature and saving the geodiversity of a zone28. The authors assessed the condition to explore latest approaches 
for systematic identifications of flora. The combined efforts of artificial intelligence and botanists are important 
to robotize the complete method of recognition of plants considering leaves as crucial characteristics that help 
identify between different plants. Shidnal et al. studied about lack of nutrients in a paddy crop. They used neural 
network to categorise the shortcomings using tensor flow29. Clustering technique k means is applied to build 
clusters30. The authors estimated state of deficiencies on a measurable basis. A rule-based matrix is also used to 
estimate cropland’s yield. Table 1 represents the literature based on the algorithm used in the study.

Tables  2 and 3 present the study of evaluation parameters and approaches used in different research 
respectively.
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Renowned researchers are applying machine learning algorithms to understand highly complex problems. 
There is always a need for pre-processing to better understand complex data. New techniques are needed for 
pre-processing methods like feature selection and clustering as well. Prominent work is done by the researchers 
in the field, now ensembling in the feature selection is necessary to make a robust model. Gini index, principal 
component analysis, recursive feature selection, fisher filtering, Lasso regression, correlation attribute evaluator, 
and many more feature selection methods are used by researchers. Now researchers are optimizing their 
prominent work toward hybrid or ensembling of algorithms.

The paper is structured as:

Author

Approaches

Classification Regression Ensemble Feature Selection Class Balancing Hybrid Others
31 Y N Y N N N N
32 Y N Y N N N Y
33 Y N N N N N N
34 Y N Y Y Y N N
35 Y N N N Y N N
36 Y N N Y N N N
37 Y N N N N N Y
38 Y Y Y Y N N Y
39 N Y N Y N N N
40 N Y N Y N N N
41 Y N Y Y Y N N

Table 3.  Literature based on the approaches used.

 

Author

Evaluation Parameters

Q SE SP AUC F-1 R R2 MAE RMSE Others
31 Y Y Y N N N N N N N
32 Y Y Y Y N N N N N N
33 Y Y Y N N N N N N Y
34 Y Y Y Y N N Y N N Y
35 Y N N N N N N N N Y
36 Y Y Y Y N N N N N N
37 N N N N N Y Y Y Y N
38 Y Y Y Y N Y Y N N N
39 Y N N N N Y Y N Y N
40 Y N N N N Y Y N Y N
41 Y N N Y Y N N N N Y

Table 2.  Literature based on the evaluation parameters.

 

Author

Algorithms

SVM RF KNN NB NN DT ANN J48 MLP BN LR Other
31 Y Y Y Y Y N N N N N N N
32 Y Y Y Y N N N N N N N N
33 Y Y Y Y N Y Y N N N N N
34 Y Y N N N N N Y N N N Y
35 Y Y N Y N N N Y N N N N
36 Y Y Y Y N N Y Y N N N N
37 N N Y N N N N N N N N Y
38 Y Y N N N N N N N N N Y
39 N Y N N Y Y N N N N N Y
40 N Y N N Y Y N N N N N Y
41 Y Y N N Y N N Y N Y Y Y

Table 1.  Literature based on the algorithms studied.
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	 I)	 Section “Proposed Methodology” depicts methodology adopted.
	 II)	 Section “Results and discussions” presents detailed discussions about the dataset and results achieved in all 

the three scenarios described.
	III)	 Section “Conclusion” presents conclusion and future scope.

Proposed methodology
In the research, seven computer-aided machine learning models are evaluated and the performance is compared. 
Gaussian Process (GP), Linear Regression (LR), Sequential monitoring optimization (SMO), Kstar, Bagging, 
Decision Tree (DT) and Random Forest (RF) are taken into consideration to predict toxicity. Through ensemble 
of the Random Forest and Kstar algorithms, we were able to develop an optimized ensembled model (OEKRF). 
Three scenarios are introduced for the preprocessing and training of data. Seven machine learning algorithms 
and optimized KRF are evaluated and compared in all three scenarios. Results are compared in aspects state of 
art parameters. Further to strengthen the model, W-saw and L-saw scores are also evaluated, and the framework 
of a robust model is deployed. Figure 1 represents methodology proposed for the model.

Pseudocode is also presented below to elaborate the process in detail:

1. Import Dataset 

D = import_dataset () 

2. Preprocessing 

preprocessed_D = preprocess (D) 

3.1 With Original Features 

model_with_original_features = train_model (preprocessed_D) 

3.2 Feature Selection, Resampling, and Percentage Split Method 

selected_features_D, resampled_D = feature_selection_resampling (preprocessed_D) 

model_with_feature_selection_percentage_split = train_model (selected_features_D) 

3.3 Feature Selection, Resampling, and 10-fold Cross-Validation 

selected_features_D, resampled_D = feature_selection_resampling (preprocessed_D) 

model_with_feature_selection_cross_validation=train_model_cross_validation 

(selected_features_D) 

4. Train the Preprocessed Data 

(Models are already trained in the previous steps) 

5. Test and Validate the Performance of an Optimized Model 

Parameters_without_feature_selection=test_model (model_without_FS, D_test) 

parameters_with_FS_percentage_split=test_model 

(model_with_feature_selection_percentage_split, D_test) 

parameters_with_feature_selection_cross_validation=test_model 

(model_with_feature_selection_cross_validation, D_test) 

6. Feedback and Analysis 

user_satisfaction=analyze_feedback  

(parameters_with_original_features,parameters_with_feature_selection_percentage_split, 

parameters_with_feature_selection_cross_validation) 

If user_satisfaction >= user_satisfaction_threshold: 

deployed_model = deploy_model (model_with_feature_selection_cross_validation) 

else: 

7. Satisfactory? If No, Go back to the 5th point 

user_feedback = gather_feedback () 

improve_model (model_with_feature_selection_cross_validation, user_feedback) 

Loop back to Step 5 

Results and discussions
This section is divided into two subsections. First subsection presents the dataset description in which different 
attributes of dataset are described and the second subsection depicts the result analysis with discussions.
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Dataset description
The toxicity dataset that is used in an implementation is obtained from UC Irvine ML depository. There are 546 
instances in the dataset, and there are eight predictive attributes. The attributes are listed in Table 4 and a detailed 
description is also presented.

Table 5 shows some tuples of dataset which are representative of the entire dataset.
In the paper, the principal component analysis technique is employed to procure prime combination of the 

features. Principal component analysis is performed in conjunction with ranker research method. Dimensionality 
reduction is done by choosing eigen vectors to account for some percentage of the variance in the original data. 
Five new combinations (NC) have been introduced for the optimized toxicity prediction model. Table 6 presents 
the description of new features as per the technique.

The correlation among the various combinations is shown in Table 7.
Heat map is a technique used for data visualization which represents numerical values in the dataset by using 

different color combinations. It depicts correlation coefficients by color gradients. In Fig. 2, red color depicts the 
highest value of correlation coefficient, yellow color shows the mediate values and green color shows the lowest 
value of correlation coefficient.

Through ensemble of the Random Forest and Kstar algorithms, we were able to create a better regression 
model (OEKRF). Figure 3 represents the methodology for ensembled model and Classifier − 1 and classifier- 2 are 
applying a lazy and eager algorithm for prediction. Further ensembling is performed using different algorithms.

Attributes Description of Attributes

T.P.S.A.-(Tot) Area of the topological polar surface

S.A.acc. Acceptors of surface area

H (050) Count of hydrogen atoms

M-LOG-P Moriguchi values of LOG P

RDCHI Demonstrates the topological index

GAT S1p Symbolizes the polarisability of molecules

N.Nitrogen Count of atoms of nitrogen

C (040) Count of atoms of carbon

Table 4.  Attribute description.

 

Fig. 1.  Methodology.
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Fig. 2.  Heat map.

 

NC1 NC2 NC3 NC4 NC5

NC1 1 0.02 0.03 −0.21 0.12

NC2 0.02 1 −0.06 −0.01 0.02

NC3 0.03 −0.06 1 −0.01 −0.04

NC4 −0.21 −0.01 −0.01 1 0.1

NC5 0.12 0.02 −0.04 0.1 1

Table 7.  Coefficient of correlation among different combinations.

 

NC1 −0.496SAacc-0.492 TPSA(Tot)−0.439 H-050-0.374nN + 0.282 MLOGP…

NC2 −0.658 MLOGP-0.613RDCHI + 0.411GATS1p-0.085SAacc-0.081nN…

NC3 −0.842GATS1p-0.374RDCHI + 0.302 H-050 + 0.174nN-0.163 MLOGP…

NC4 0.873nN-0.357 H-050-0.309SAacc + 0.096GATS1p-0.07RDCHI…

NC5 0.69 H-050-0.58 TPSA(Tot) + 0.278 MLOGP + 0.242GATS1p + 0.207nN…

Table 6.  New combinations by principal component analysis.

 

TPSA(Tot) SAacc H-050 MLOGP RDCHI GATS1p nN C-040

35.53 47.145 0 4.579 3.875 1.124 0 1

17.07 25.145 0 0.202 1.225 1.66 0 0

34.14 50.29 0 0.076 1.654 1.493 0 0

67.51 103.973 1 3.204 3.344 0.938 0 1

49.33 85.839 2 1.06 2.272 1.007 1 1

122.22 155.543 2 1.406 3.511 1.456 5 2

Table 5.  Tuples of dataset.
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Algorithm: Prediction and Ensembling

Results and discussions
Three different scenarios have been considered for the evaluation and comparison of seven machine-learning 
algorithms and optimized KRF as follows:

	 I)	 Evaluation and comparison with original features.
	 II)	 Evaluation and comparison with feature selection, resampling, and percentage split method.
	III)	 Evaluation and comparison with feature selection, resampling, and 10-fold cross-validation method.

Coefficient of correlation is denoted by R value. It represents how much one variable is correlated to another 
variable. The value may be positive or negative. It varies from − 1 to 1. The coefficient of determination (COD), 
also referred to as the R2 score, is used to evaluate how effective a regression model is. The degree of change 
in the output dependent characteristic can be predicted from the input independent variables. When the COD 
score is 1, the data were correctly predicted by the regression. It ranges from 0 to 1. MAE and RMSE is a statistical 
indicator used to assess the efficacy of a machine learning algorithm on a particular dataset. It contrasts the 
variations between actual data and predictions while outlining the model evaluation error. Q represents the 
accuracy of the models in percentage. State of art parameters is presented in Table 8 for a scenario I i.e. with 
original features. An optimized ensembled KRF is evaluated best with the R value as 0.9, COD value as 0.81, 
MAE value as 0.23, and RMSE value as 0.3. Accuracy is also best for an ensembled model and the observed value 
is 77% in scenario I.

State of art parameters is depicted in Table  9 for scenario II i.e. with feature selection, resampling, and 
percentage split method. Optimized ensembled KRF has performed well again in comparison to other machine 
learning algorithms with R value as 0.91, COD value as 0.83, MAE value as 0.11, and RMSE value as 0.28. It 
performed well in terms of achieving an accuracy of 89% in scenario II.

Fig. 3.  Ensembled Model.
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State of art parameters is compared in Table 10 for scenario III i.e. with feature selection, resampling, and 
10-fold cross-validation method. The optimized ensembled model in scenario III outperforms all other models 
by achieving an accuracy of 93%, R value as 0.93, COD value as 0.86, MAE value as 0.07 and RMSE value as 0.25.

Figures 4 and 5 present comparison of coefficient of correlation (R) and coefficient of determination (COD) 
in all the three scenarios respectively. Figures  6 and 7 depict the MAE and RMSE in all the three scenarios 
respectively.

The optimized ensembled toxicity prediction model KRF performs well in all the scenarios in comparison to 
seven machine learning algorithms. When the optimized model is compared in all three scenarios, it performed 
best in scenario III. Accuracy comparison is shown separately in Table 11; Fig. 8 to present the performance of 
all models together. The highest accuracy is achieved by optimized KRF in scenario III as 93%. For scenario I and 
scenario II, the accuracy achieved by the optimized model is 77% and 89% respectively.

Further, the concept of W-saw and L-saw scores are introduced to strengthen the optimized toxicity prediction 
model. The operational research terms W-saw and L-saw are the composite score of multiple performance 
factors into a single score. W-saw score of the model should be high and L-saw score should be the lowest. Both 
scores show that the performance of the model is not dependent on the single factor. By pursue these scores 
leads to monitor changes to the model performance. Tables 12 and 13 represent the W-saw score and L-saw score 
respectively for different machine learning algorithms. W-saw and L-saw scores comparison is shown separately 
in Figs. 9 and 10 to present the performance of all models together. The W-saw score for an optimized model in 
scenario I is 0.83, for scenario II is 0.88, and is best for scenario III by achieving a 0.91 score.

The L-saw score for an optimized model in the scenario I is 0.27, in scenario II is 0.20, and is best for scenario 
III by achieving the lowest value of 0.16.

Sr. No. Classifier R III COD III MAE III RMSE III Q III

1 GP 0.63 0.40 0.43 0.48 57%

2 LR 0.68 0.46 0.35 0.44 65%

3 SMO 0.63 0.40 0.33 0.42 67%

4 Kstar 0.82 0.67 0.15 0.34 85%

5 Bagging 0.73 0.53 0.32 0.39 68%

6 DT 0.79 0.62 0.42 0.43 58%

7 RF 0.87 0.76 0.19 0.37 81%

8 OEKRF 0.93 0.86 0.07 0.25 93%

Table 10.  State of art parameters in scenario III.

 

Sr. No. Classifier R II COD II MAE II RMSE II Q II

1 GP 0.58 0.34 0.45 0.48 55%

2 LR 0.62 0.38 0.4 0.47 60%

3 SMO 0.61 0.37 0.36 0.43 64%

4 Kstar 0.73 0.53 0.19 0.36 81%

5 Bagging 0.69 0.48 0.36 0.42 64%

6 DT 0.77 0.59 0.46 0.46 54%

7 RF 0.82 0.67 0.24 0.42 76%

8 OEKRF 0.91 0.83 0.11 0.28 89%

Table 9.  State of art parameters in scenario II.

 

Sr. No. Classifier R I COD I MAE I RMSE I Q I

1 GP 0.54 0.29 0.47 0.5 53%

2 LR 0.59 0.35 0.42 0.5 58%

3 SMO 0.59 0.35 0.43 0.5 57%

4 Kstar 0.58 0.34 0.36 0.5 64%

5 Bagging 0.61 0.37 0.4 0.5 60%

6 DT 0.37 0.14 0.46 0.6 54%

7 RF 0.63 0.4 0.37 0.5 63%

8 OEKRF 0.90 0.81 0.23 0.3 77%

Table 8.  State of art parameters in scenario I.
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Recent deep learning based models have been introduced and compared with proposed OEKRF model. 
AIPs-DeepEnC-GA is a deep learning model which combines the strength of deep EnC and genetic algorithm 
to find the nonlinear relation between molecular structure and toxicity, DeepAIPs-Pred model learns the toxic 
patterns by monitoring the sequence activities of features and Deepstacked-AVPs model embeds the features 
and finds all the possible patterns to extend the model generalization for unknown data42–43. Table 14 depicts the 
performance of deep learning models. AIPs-DeepEnC-GA model performs better with R value as 0.82, COD 
value as 0.807, MAE as 0.24, RMSE as 0.30 and accuracy of 72%.

So our results evaluate that optimized ensembled KRF is best in comparison to seven machine learning 
algorithms and three deep learning algorithms in all aspects. Table 15 depicts the performance of optimized 
ensembled KRF in all the three scenarios. The OEKRF model achieved 93% accuracy in Scenario III that 
shows the strong ability of prediction for assessment of toxicity. Higher values of coefficient of correlation and 
coefficient of determination makes the model reliable for assessing toxic and non-toxic compounds. Low values 
of MAE and RMSE make the model compatible for real world applications where prediction of toxicity plays an 
important role for drug development and predictions at early stage reduces the requirement of extensive testing 
and saves resources and time.

Fig. 5.  Coefficient of determination comparison in all three scenarios.

 

Fig. 4.  Coefficient of correlation comparison in all three scenarios.
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Accuracy

Sr. No. Classifier Q I Q II Q III

1 GP 53% 55% 57%

2 LR 58% 60% 65%

3 SMO 57% 64% 67%

4 Kstar 64% 81% 85%

5 Bagging 60% 64% 68%

6 DT 54% 54% 58%

7 RF 63% 76% 81%

8 OEKRF 77% 89% 93%

Table 11.  Accuracy comparison for three scenarios.

 

Fig. 7.  Root mean squared error comparison in all three scenarios.

 

Fig. 6.  Mean absolute error comparison in all three scenarios.
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State of art parameters for all the three scenarios is presented. Figure 11 presents the comparison of R and 
COD values; Fig. 12 presents comparison of MAE and RMSE values; Fig. 13 is representing accuracy; and Fig. 14 
is presenting saw scores with highest and lowest scores.

When the optimized ensembled model KRF itself is compared in three different scenarios, it performs 
exceptionally well in scenario III with feature selection, resampling, and 10 F-CV.

Conclusion
Prediction of toxicity has been quite a challenging and crucial task from the start of the medical era. But now AI 
and ML brought a revolution in the healthcare industry. It is possible to optimize this challenging task now. We 
developed an optimized ensembled toxicity prediction model KRF in the research. We evaluated and compared 

Sr. No. Classifier L-I L-II L-III

1 GP 0.49 0.47 0.46

2 LR 0.46 0.44 0.40

3 SMO 0.47 0.40 0.38

4 Kstar 0.43 0.28 0.25

5 Bagging 0.45 0.39 0.36

6 DT 0.53 0.46 0.43

7 RF 0.44 0.33 0.28

8 OEKRF 0.27 0.20 0.16

Table 13.  L-saw score comparison for three scenarios.

 

Sr. No. Classifier W-I W-II W-III

1 GP 0.45 0.49 0.53

2 LR 0.51 0.53 0.60

3 SMO 0.50 0.54 0.57

4 Kstar 0.52 0.69 0.78

5 Bagging 0.53 0.60 0.65

6 DT 0.35 0.63 0.66

7 RF 0.55 0.75 0.81

8 OEKRF 0.83 0.88 0.91

Table 12.  W-saw score comparison for three scenarios.

 

Fig. 8.  Accuracy comparison in all three scenarios.
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Classifier R COD MAE RMSE Accuracy W-Saw L-Saw

OEKRF-I 0.90 0.81 0.23 0.3 77% 0.83 0.27

OEKRF-II 0.91 0.83 0.11 0.28 89% 0.88 0.20

OEKRF-III 0.93 0.86 0.07 0.25 93% 0.91 0.16

Table 15.  OEKRF comparison for three scenarios.

 

Classifier R COD MAE RMSE Q

AIPs-DeepEnC-GA Model 0.82 0.807 0.24 0.30 72%

DeepAIPs-Pred 0.71 0.5 0.34 0.351 66%

Deepstacked-AVPs 0.62 0.296 0.415 0.419 59%

Table 14.  Evaluation parameters for deep learning models.

 

Fig. 10.  L-saw comparison in all three scenarios.

 

Fig. 9.  W-saw comparison in all three scenarios.
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Fig. 13.  Accuracy comparison in all three scenarios for OEKRF.

 

Fig. 12.  MAE and RMSE comparison in all three scenarios for OEKRF.

 

Fig. 11.  R and COD values comparison in all three scenarios for OEKRF.
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state of art parameters for seven machine learning algorithms along with the optimized model. The optimized 
ensembled model performs well in all three scenarios mentioned in the presented work. Scenario-wise results are 
shown in the paper with evaluated values of state of art parameters. An optimized model performs exceptionally 
well in all the scenarios, But when compared to the model itself in all three scenarios, scenario III performs 
best in all the aspects. Deep learning algorithms are also introduced to compare with the optimized model. The 
optimized ensembled KRF achieves the highest accuracy of 93% in scenario III which was best in comparison 
to scenario I and scenario II with values of 77% and 89% respectively. The R value, COD value, MAE value, and 
RMSE values are 0.93, 0.86, 0.07, and 0.25 respectively for scenario III. Further W-saw and L-saw values for 
scenario III are 0.91 and 0.16 respectively. So the results are established and validated for all the scenarios but on 
applying feature selection, resampling, and 10 F-CV technique results are best and optimized. The future prospect 
of the proposed model (OEKRF) is to easily adopt the sudden changes and works in the dynamic environment 
and learn from large historical data to identify the patterns which helps to extend the model generalization for 
unseen data. In the coming era, results can be optimized by using new machine learning algorithms. Optimized 
combinations of features can be introduced by using new feature selection methods. Ensembling of more 
algorithms can be performed and results can be analyzed by using new parameters. Although the performance 
of the model is quite satisfactory but further there is a scope of improvement that leads to use computational 
science such as automata theory to reduce the computational overhead, recommendation at every level and 
explore all the possibilities with corresponding solutions.

Data availability
Data is available within the manuscript and further can be requested from the corresponding author on reason-
able request.
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