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This article introduces a novel deep-learning based framework, Super-resolution/Denoising network 
(SDNet), for simultaneous denoising and super-resolution of swept-source optical coherence 
tomography (SS-OCT) images. The novelty of this work lies in the hybrid integration of data-driven 
deep-learning with a model-informed noise representation, specifically designed to address the very 
low signal-to-noise ratio (SNR) and low-resolution challenges in SS-OCT imaging. SDNet introduces a 
two-step training process, leveraging noise-free OCT references to simulate low-SNR conditions. In the 
first step, the network learns to enhance noisy images by combining denoising and super-resolution 
within noise-corrupted reference domain. To refine its performance, the second step incorporates 
Principle Component Analysis (PCA) as self-supervised denoising strategy, eliminating the need for 
ground-truth noisy image data. This unique approach enhances SDNet’s adaptability and clinical 
relevance. A key advantage of SDNet is its ability to balance contrast-texture by adjusting the weights 
of the two training steps, offering clinicians flexibility for specific diagnostic needs. Experimental 
results across diverse datasets demonstrate that SDNet surpasses traditional model-based and data-
driven methods in computational efficiency, noise reduction, and structural fidelity. The framework 
excels in improving both image quality and diagnostic accuracy. Additionally, SDNet shows promising 
adaptability for analyzing low-resolution, low-SNR OCT images, such as those from patients with 
diabetic macular edema (DME). This study establishes SDNet as a robust, efficient, and clinically 
adaptable solution for OCT image enhancement addressing critical limitations in contemporary 
imaging workflows.
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Retinal optical coherence tomography (OCT) is a non-invasive imaging modality that enables high-resolution, 
cross-sectional visualization of retinal layers1. It operates by acquiring millions of depth-resolved measurements, 
or A-scans, within millimeter-scale volumes at MHz sampling rates. By arranging these A-scans into 2D images, 
or B-scans, OCT constructs a 3D volumetric view of retinal structures, facilitating in vivo screening of various 
retinal diseases, such as diabetic macular edema (DME), age-related macular degeneration (AMD), and 
choroidal neovascularization (CNV)2,3. Additionally, recent researches indicate that OCT can serve as a valuable 
tool for identifying early markers of neurodegenerative diseases like Alzheimer’s, Parkinson’s, dementia, and 
multiple sclerosis4–6.

Despite these advantages, OCT imaging is challenged by multiple sources of degradation, including sampling 
limitations, eye movement, blinking, and variability across devices. These factors frequently result in low signal-
to-noise ratio (SNR) and low-resolution images, complicating the diagnostic process. Given the large volume 
of low-quality images clinicians must interpret, effective OCT image enhancement is crucial for improving 
diagnostic accuracy, extending the field of view, and enabling disease-focused analysis of specific B-scans7.

Enhancing images is an inverse problem due to the absence of clean data and undegraded images, which 
must be reconstructed from noisy observed images. Solutions to this issue can be approached from different 
perspectives, broadly categorized into data-driven and model-driven methods. In data-driven approaches, the 
solution is derived by analyzing various data samples and learning a mapping to extract a clean image, often 
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through a deep learning network operating in either a supervised or unsupervised paradigm. In the supervised 
paradigm with paired-data, the network is trained using a clean image corresponding to a noisy image. Clean 
image can be obtained through multiple frame averaging in OCT8–11. However, these approaches have two 
main drawbacks: firstly, they require multiple registered image acquisitions from a single physical location, and 
secondly, while averaging multiple frames can mitigate additive noise, speckle noise which is multiplicative, 
remains a challenge12,13.

Generative modeling and image-to-image translation methods can address the need for paired-data by 
utilizing unpaired noisy and noise-free image sets. These models consist of a generator that translates images 
from noisy domain to the noise-free domain and a discriminator that ensures the validity of the translation. 
Nevertheless, effective generative domain translation requires large datasets from both domains to generate valid 
images, and the retinal structure varies across different domains14–17. These challenges can lead to suboptimal 
reduction of speckle noise, resulting in residual noise in the final image7.

Model-driven methods rely on physical modeling of image acquisition and degradation processes, using this 
foundation to apply noise-reduction techniques. Generally, model-driven method approaches suggest filtering 
methods, such as block-matching 3D or 4D (BM3D/BM4D) filters and sparse decomposition methods like 
KSVD18–20. Also, due to stochastic properties of degradation, statistical modeling approaches are also introduced 
for solving image restoration tasks. These methods define statistical priors for degradation or noise-free image 
and try to estimate desired image through an optimization problem. For OCT images, several priors have been 
defined, such as the symmetric α-stable model21,22, non-symmetric Laplace-Gaussian23,24, and Bessel K-form 
models13, to further refine the restoration process by encoding OCT-specific noise characteristics. While model-
driven methods have demonstrated progress, they often face limitations, such as incomplete models, restrictive 
assumptions, and the need for iterative processing, making them challenging to deploy in clinical practice.

In contrast, data-driven approaches use large datasets of paired noisy and noise-free images to train parametric 
models, notably deep learning architectures, for OCT enhancement. Although deep learning methods yield 
superior results, their reliance on vast amounts of annotated data remains a constraint, especially in medical 
imaging where ground-truth images are scarce. This need is exacerbated when low-SNR and low-resolution 
samples are coupled with ground truth requirements25.

Hybrid models combine the strengths of both approaches, incorporating prior knowledge of image 
characteristics into learnable models. Techniques such as denoising priors, deep image priors, and diffusion 
models have proven effective in inverse problems and image generation tasks. They accompanied by a plug-
and-play (PnP) method such as alternative direction of multipliers method (PnP-ADMM) to allow iterative 
refinement of the generated image, conditioned on prior constraints. This prior can models using scored based 
diffusion model and a data fidelity norm26,27.

Although such models offer promising outcomes, their dependence on iterative sampling remains a practical 
limitation. In medical imaging, Noise2Noise28,29, Noise2Void30,31, and Noise2Self32 have emerged as hybrid 
solutions, addressing noise elimination through self-supervised methods. However, these techniques often 
produce overly smooth outputs, which may obscure critical textures needed for clinical interpretation27. Table 1 
shows summary of literature on OCT image denoising.

This study aims to develop a hybrid deep learning model that incorporates OCT-specific noise and texture 
characteristics to enhance low-SNR, low-resolution images while preserving essential textural details. The 
proposed method uses a noise-free OCT dataset as a reference, at the first step of the training process. The 
domains of the noise-free dataset aligned on and the noisy images domain. In this step, the SDNet was trained 
on pair of noise-free and their corrupted version to learn domain transformation. While, this step focuses only 
on the noise, in second step, network will be trained to learn structure of retina texture from noisy dataset. At 

Data-driven methods

Paired data

DesPecNet 8 Network-based denoiser with knowing noise level

Gour et al. 9 Removing speckle noise using supervised trained residual network.

Devella et al. 10 Train a denoiser network on averaged frames.

Halupka et al. 11 Train a denoiser network on averaged frames.

Unpaired data

Wang et al. 14 Generative-based image-to-image translation.

Guo et al. 15 Generative network for image-to-image translation.

Ma et al. 16 Generative network for image-to-image translation.

Yu et al. 17 Generative network of image-to-image translation

Model-driven methods

Filtering
BM3D 18 Non-local patch-wise image modeling.

Wavelet-based dictionary learning 20 Wavelet based dictionary learning for image representation.

Statistical

SDE decomposition 21 Stochastic differential equation-based model to whitening OCT images.

α-stable model Symmetric α-stable distribution modeling on whitening transformation.

BKF model Modeling a patch-based Gaussian transform based.

Hybrid methods

Iterative models
Diffusion probabilistic model 26 Diffusion probabilistic model for image generator as prior inside an iterative optimization.

Score based model 27 Score-based model as denoiser model.

Single iteration model
B2U 29 Noise2Void model for OCT denoising.

N2N 25 Noise2Noise model for OCT denoising.

Table 1.  Overview of the literature on OCT image denoising.
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this step, SDNet was trained to map noisy low-resolution SS-OCT images to slightly low-noised counterpart 
providing by Principle Component Analysis (PCA). This self-supervised training on noisy dataset, enforces 
SDNet to preserve its fidelity to structural context of noisy-dataset. These two steps lead to separate training 
weights. By mixing these weights, it makes a tunable flow for trade-off between texture & contrast based on 
clinician usage and needs. The key contributions of this work can be listed as follows:

•	 A new hybrid model-aware deep-learning method for low-SNR /low resolution OCT enhancement is pre-
sented.

•	 Introduction of a novel self-supervised approach for transforming domain of noisy images into domain of 
noise-free dataset.

•	 This method is adjustable for denoising based on contrast-texture tradeoff.

•	 Introduction of a new method which is easily applicable on various OCT dataset as shown in our experiments.
•	 Producing enhanced image which are more similar to OCT image by meaning of kernel inception distance.

Additionally, we evaluate quality of the enhanced images by employing multiple-instance learning (MIL) for 
subject-level classification. This classification highlights disease-relevant B-scans, enhancing interpretability for 
clinicians and supporting the clinical utility of the enhanced images.

The structure of this paper is as follows: “Methodology” details the dataset, task definitions, and solution 
methodology. “Experiments” and “Results” present experimental results and analysis, and “Discussion” and 
“Conclusion” concludes the work with key findings and future directions.

Methodology
As illustrated in Fig. 1, training of the proposed method was performed at two phases: (1) training on images 
from Noise-Free domain when degradation is added using noise model from noisy dataset to learn increased 
contrast on noisy image, (2) training on noisy domain while coarse noise reduction is used, to enhance texture 
fidelity on noisy domain.

A. Datasets
This study utilizes two datasets: a high-quality noise-free dataset (HCIRAN)33 and a noisy, lower-quality dataset 
(Basel SS-OCT). The HCIRAN dataset, captured with a Heidelberg OCT-Spectralis imaging device, serves as 
the noise-free reference. It comprises 3,858 B-scans from 79 healthy individuals, providing high-quality, high-
resolution images for the enhancement process.

The noisy Basel SS-OCT dataset includes images from 100 patients, divided into three groups: 40 healthy 
individuals, 30 with diabetic macular edema (DME), and 30 with other retinal diseases (non-DME)21. These 
groups make up the training dataset, while an additional 18 patients form the test set. The training images have 
low SNR and a resolution of 300 × 300 pixels 34. The test dataset images are not only low SNR but also exhibit 
lower resolution (150 × 320 or 200 × 300 pixels), as some A-scans have been uniformly dropped. For training, we 
used the SS-OCT training set al.ong with the HCIRAN dataset, while the SS-OCT test dataset was reserved for 
evaluation. Table 2 summarizes the key characteristics of these datasets.

While this work focuses on low-SNR images from SS-OCT dataset, we additionally testing the proposed 
method on three additional datasets; these datasets are from different capturing device vendors and image 
qualities. These additional datasets will be introduced in Additional Datasets section.

Fig. 1.  Overview of the proposed method, in training and inference steps.
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B. Noise model in SS-OCT dataset
Different device vendors and imaging configuration results in varied OCT image quality in terms of texture, 
noise, and SNR. The literature includes numerous studies modeling OCT images or OCT noise. For instance, 
in some 3D-OCT Topcon devices, the image speckle manifests as a salt-and-pepper-like texture, which can 
be modeled using the Poisson-Gaussian model 35. Other imaging devices, such as the Heidelberg SD-OCT, 
exhibit multiplicative noise that follows a generalized scaled Gaussian mixture model, incorporating Gamma 
distribution noise and Gaussian mixture to represent the retina13,37. Using sparse representation via wavelet 
transformation and relaxing the Poisson-Gaussian model, OCT images can be modeled using combination of 
Laplace and Gaussian noise23,38.

The SS-OCT dataset images exhibit significant noise that predominates the image structure, particularly in 
non-retinal regions such as the Vitreous, where the absence of retinal features results in pure noise. Figure 2 
provides examples of SS-OCT training data was manually separated. As shown in Fig. 2, the histogram of the 
Vitreous region is compared with Gaussian distribution when the image is scaled to the range (0,1). The third-
row image illustrates the mean and standard deviation (std) of the Vitreous region relative to the entire image, 
with a bounding line indicated. We assumed a Gaussian distribution with a mean and std calculated within the 
range (75%, 95%) and (50%, 90%) of the mean and standard deviation of the entire image, respectively.

Since retinal region in SS-OCT images are different than HCIRAN images, for noise synthesis on the 
HCIRAN dataset, preprocessing included cropping and resizing the images to match the dimensions and size 
characteristics of retina in the SS-OCT dataset. First, the retinal region in each HCIRAN image was extracted 
through thresholding followed by morphological closing. The area around the retina was then cropped with a 
random margin between 50 and 100 pixels above and below the retinal boundary box. This cropped image was 
resized to 300 × 300 pixels. Gaussian noise, matching the characteristics modeled from the SS-OCT dataset, was 
then added to the images to simulate low-SNR conditions. Figure 3 illustrates the pre-processing workflow.

Here, we assume the operator G (x) converts image x ∈ HCIRAN  to resized version of ground-truth 
image in Fig.  3. Then the operator N (G( x )) add noise as states in Fig.  3 to the G (x). The first phase of 
training can formulate as min

Wh
Ex∈ HCIRAN ||F (N (G (x)) ; Wh) − G (x) || ; when F (., ; W h) is network 

with training parameters Wh.

C. Preprocessing for super-resolution task
In the SS-OCT test dataset, images suffer from low resolution due to a reduced A-scan sampling rate, similar to 
the training dataset. The goal of the super-resolution task is to reconstruct these dropped A-scans by interpolating 
between the observed ones, effectively restoring the full image details.

To achieve this, we initially fill the missing A-scans with noise generated according to the SS-OCT image 
noise model described in Section B. This step produces low-resolution images with the same dimensions as high-
resolution reference images, but with a portion of their A-scans containing only noise rather than retinal details. 
As shown in Fig. 4, this method converts the super-resolution task into a form of denoising. Consequently, both 
the denoising and super-resolution tasks can be addressed within a unified framework, allowing the model to 
handle noise suppression and resolution enhancement in a single step.

This integrated approach enables the proposed platform to learn and refine the underlying retinal structure 
while discarding noise and filling in missing A-scan information, ultimately yielding high-quality images suitable 
for clinical use and further analysis.

D. Principle component analysis for coarse noise reduction
the HCIRAN dataset contains high-resolution, noise-free images, enables supervised pretraining of the model. 
However, fine-tuning the network on the SS-OCT training dataset, which lacks noise-free samples, presents a 
challenge. To enable fine-tuning while preserving the original texture of the SS-OCT images, we employ a self-
supervised approach that generates a “noise-less” target image from the image itself.

The primary goal of this section is to replicate the ability of simple denoising methods to reduce a small 
amount of noise in low-SNR SS-OCT images while simultaneously allowing the network to learn the important 
retinal textures in this dataset. Technically, the denoiser, D(.; α ) with denoising rate α  can be any method, such 
as BM3D18, GT-SC-GMM 38, or wavelet denoiser 39. For simplicity and experimentation on different methods, 
we adopt PCA due to its rapid volume denoising and adjustable denoising rate α . This training stage can be 

Name Stage Classes #Subjects Size

HCIRAN Pretrain Healthy 79 (379–496)×(479–496)

SS-OCT train Train

Healthy 40

300 × 300DME 30

Non-DME 30

SS-OCT test Evaluate

Healthy 6

(120 or 150) ×300DME 8

Non-DME 4

Table 2.  Specification of each dataset used in this study.
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formulated as min
Ws

Ey∈ SS−OCT ||F (y; Ws) − D(y; α )||; where the network parameters, Ws are initialized by 
Wh. This leads to a self-supervised training method on SS-OCT dataset.

This “self-supervised noise-less” image is obtained by removing uncorrelated noise components using PCA. 
By only retaining principal components with the highest energy, PCA effectively filters out most of the noise 
while preserving the key structural elements of the image.

The steps for this process are as follows: each individual’s B-scans are aligned along one axis, resulting in an 
initial transformation into a matrix of 45,000 vectors (300 × 150 or 60,000 for 300 × 200 pixels per B-scan). Each 
vector represents a single point in a space with a dimension equal to the number of B-scans, typically ranging from 
50 to 300. PCA is then applied to this high-dimensional space, and only the top 15% of principal components 
(those with the most energy) are retained for reconstruction. This selective reconstruction significantly reduces 
noise while maintaining essential image texture.

The detailed procedure is illustrated in Algorithm 1.

Fig. 2.  Comparison between image noise and retinal context and the image. Vitreous highlighted in red color, 
indicates noise only region.
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Input: B-scans of individual images from SS-OCT dataset
Output: Coarse noise-reduced, self-supervised noise-less images
1. Input Transformation:
        • Align B-scans of each individual along a single axis.
        • Reshape the resulting 3D volume into a 2D matrix of size (45000/60000 × N), where each row is a pixel vector and N is the number of 
B-scans.
2. Apply PCA:
        • Perform PCA on the 2D matrix to identify the principal components.
        • Sort components by descending energy (variance explained).
3. Component Selection:
        • Retain only the top 15% of principal components with the highest energy.
4. Reconstruction:
        • Reconstruct the B-scans using the selected principal components.
        • Generate a noise-reduced image by projecting the original matrix onto the reduced component space.
5. Output:
        • Use the reconstructed, coarse noise-reduced image as a “noise-less” target for self-supervised fine-tuning.

Algorithm 1.  PCA-based coarse noise reduction for SS-OCT fine-tuning.

This approach ensures that the fine-tuning stage is guided by images that have reduced noise but still retain 
essential retinal texture. By leveraging PCA for targeted noise removal, the model is better equipped to learn 
meaningful features and preserve critical structural details of the SS-OCT dataset during denoising. Figure 5 
shows two sets image before and after PCA noise reduction. As seen in this figure, PCA may lead to shadowy 
blurred image.

E. Proposed method for super-resolution and denoising task
In this study, we propose the Super-resolution/Denoising Network (SDNet), a modified U-Net-based 40 
architecture specifically designed for the dual tasks of super-resolution and denoising in OCT images. The 
primary reason for selecting U-Net as the backbone of SDNet is its ability to achieve perfect reconstruction. 
However, the forward path of U-Net consists of pooling and unpooling layers, which capture primarily low-
frequency components. While the skip connections pass both low and high-frequency components to the 

Fig. 4.  Pre-processing for super-resolution task, make size of low-resolution image same as the size of high-
resolution image with missed A-scans filled by noise.

 

Fig. 3.  Preparation of HCIRAN Dataset for pretraining.
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decoder, this leads to a limitation in achieving perfect reconstruction 41. Additionally, since OCT images have 
high-frequency texture, we have added new components to U-Net to correct the weighting between low and 
high-frequency components. SDNet incorporates several key enhancements over traditional U-Net models to 
ensure effective noise reduction and preservation of fine retinal texture during resolution enhancement.

As illustrated in Fig. 6, SDNet consists of an encoder-decoder architecture with four levels of depth in both the 
encoder and decoder paths. Each level in the encoder comprises three residual blocks 42, designed to capture and 
retain essential image features while allowing effective gradient flow through skip connections. These residual 
blocks help mitigate vanishing gradients and facilitate the extraction of detailed, multi-scale features critical for 
both denoising and resolution recovery. Through trial-and-error, we determined that three residual blocks at 
each stage provided the best performance for both reconstruction error and visually preserving OCT texture.

Fig. 6.  The structure of SDNet and its parts.

 

Fig. 5.  PCA can be used in as coarse denoiser and PCA-noise-reduced images are used as ground-truth for 
second phase of training,
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To better retain spatial and textural information, SDNet includes three skip connections, after each residual 
block, that directly transfer feature maps from each encoder stage to its corresponding decoder stage. These 
connections enable the network to reuse fine-grained spatial details lost during down-sampling.

Furthermore, to enhance the network’s ability to focus on relevant regions and maintain the texture fidelity 
of the reconstructed OCT images, each stage in the decoder incorporates a self-attention layer. Self-attention 
helps the network selectively emphasize high-frequency details from the texture of retinal layers in the image 
by observing different images from the dataset during training, which is particularly beneficial in the training 
process 43.

For conclusion, Algorithm 2 shows the training phases and inferencing procedure of the proposed method.

TRAINING: Phase 1:
• Inputs: B-scans of noise-free dataset corrupted by noise model
• Preprocess:
        o Corrupt noise-free image by noise model as in Fig. 3.
        o Fill missed A-scans with noise as in Fig. 4.
• Output: Train SDNet to learn map from preprocessed corrupted noise-free image to original noise-free images.
• Update network parameters: Leads to weights Wh.
TRAINING: Phase 2:
• Input: Low resolution Volume
• Output: Coarse denoising version of input B-scan with PCA based on Algorithm 1.
• Update network parameters: leads to weights Ws.
Mixing weights: Weighted average between network’s parameters of two phases.
INFERENCE:
• Input: Low-resolution and noisy B-scan
        o Preprocess: Fill missed A-scans with noise as in Fig. 4.
• Output: Denoised and super-resolution of input noisy B-scan

Algorithm 2.  Training and inference procedure of SDNet.

Experiments
All experiments in this study were conducted using Python 3.12 with TensorFlow 2.18 as the deep learning 
framework on a computer with Ubuntu 24.04 as operating system, two installed NVIDIA GTX 1080ti on, with 
Intel® Core™ i7 7800 × 12 CPU, and 48 GB RAM. The training procedures utilized the HCIRAN and SS-OCT 
training datasets, with results evaluated on the SS-OCT test dataset. The method was trained using Adam 
optimizer with learning rate between 10− 4 decayed to 10− 5 after 100 epochs of training 45.

A. Evaluation metrics
The evaluation process for this study comprises two approaches tailored to specific tasks. For the image 
enhancement component, we define three metrics to quantitatively assess the quality of enhancement: (1) 
Contrast-to-Noise Ratio (CNR), (2) Mean-to-Standard-Deviation Ratio (MSR), (3) Texture Preservation (TP), 
and (4) peak-signal-to-noise ratio. The formulations for each metric are detailed in (1) through (3), defined as 
follows:

Contrast-to-Noise Ratio (CNR): The CNR is defined as

	
CNR = 10log

∣∣µ f − µ b

∣∣
√

0.5(σ 2
f + σ 2

b)
,� (1)

where, µ b and σ b represent the mean and standard deviation of the background region of interest (ROI), 
respectively, while µ f  and σ f  are the corresponding values for the foreground ROI. This metric is critical for 
assessing contrast improvements between different regions.

Mean-to-Standard-Deviation Ratio (MSR): The MSR, formulated in (2), is specifically calculated for the 
foreground ROI within relevant retinal layers:

	
MSR = log

(
µ f

σ f

)
.� (2)

This metric provides an understanding of the balance between signal mean and variability in key areas of the 
retina.

Texture preservation (TP): The TP shown in Eq. 3, measures the retention of image texture after denoising:

	
T P = 1

M

∑
M
m=1

σ 2
m

σ ′ 2
m

√
µ m

µ ′
m

,� (3)

where, M denotes the number of selected ROIs within retinal layers. Two parameters σ m and σ ′
m represent the 

standard deviations of the denoised and noisy ROIs, respectively, while µ m and µ ′
m stand for the mean of the 

denoised and noisy ROIs, respectively. TP quantifies the model’s capability to maintain texture fidelity, ensuring 
that the enhanced image remains true to the original in fine details.

Peak-signal-to-noise ratio (PSNR): The PSNR, formulated in (4), compares maximum of denoised image 
value to noise standard deviation.
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P SNR = 20log

(
Imax

σ n

)
,� (4)

when Imax indicates maximum value of the denoised image, and σ n denotes standard deviation of noisy ROI 
in original image. For those metrics that need noise properties, the vitreous region can be considered as pure 
noise on the OCT images as shown in Fig. 2.

These metrics allow for a comprehensive assessment of enhancement effectiveness across contrast, clarity, 
and texture preservation, essential for evaluating improvements in SS-OCT image quality.

Structural similarity index measure (SSIM): SSIM is a measurement to evaluate how each method preserve 
texture of denoised image to the original image 46.

Kernel inception distance (KID): unlike previous metrics, this measurement evaluates how likely the output 
of each method can be similar to noise-less OCT images 47.

B. Additional datasets
To have better understanding of the model performance on diverse dataset, three additional datasets are also 
evaluated in this paper. The dataset 3D-OCT-1000 48 contains 3D-OCT volumes from normal subjects or 
diagnosed to have retinal Pigment Epithelial Detachment. Bioptigen (Durham, NC, USA) is the second dataset 
captured OCT images using SD-OCT Bioptigen device 49. The third dataset is a part of A2A SD-OCT dataset 
contains images in size 512 × 1000 pixels3.

C. Noise model on additional datasets and training
Since the image texture, noise model, and retina appearance in additional datasets differ from those in the SS-
OCT dataset, the noise augmentation and denoising procedures used for SS-OCT are not generalizable to other 
datasets. For this experiment, we focused on part of the training images from the 3D-OCT-1000 dataset, as it 
contains more images than the other two datasets. Additionally, the signal-to-noise ratio (SNR) for all these 
additional datasets is higher than that of SS-OCT, resulting in clearer retina structures compared to the low-SNR 
SS-OCT images.

The primary differences between the HCIRAN and 3D-OCT-1000 datasets lie in image size and lamination. 
To ensure consistency, we first adjusted the histogram of the HCIRAN dataset to match that of the 3D-OCT-1000 
dataset by randomly selecting images from the latter. Next, we generated noise based on the histogram of 
3D-OCT-1000 and added it to the resized, histogram-matched HCIRAN images to create noisy samples similar 
to those in the 3D-OCT-1000 dataset.

The first stage of training was performed on pairs of noisy and augmented HCIRAN images, while the second 
phase involved training on pairs of 3D-OCT-1000 images and their denoised PCA versions. Since the SNR of 
3D-OCT-1000 data is higher than that of SS-OCT and has fewer B-scans per volume, we preserved 70% of the 
PCA components. The Bioptigen and A2A datasets were used solely for evaluation purposes. 3D-OCT-1000 
dataset consists of 33,314 image B-scans from 984 OCT volumes. From this dataset, 100 subjects are randomly 
selected for training, and this selection remain similar for all comparative methods.

D. Hyperparameter tuning
As described earlier, the pretraining phase for SDNet was conducted on the HCIRAN dataset, producing the 
pretrained weight set Wh. In parallel, training the network on the SS-OCT dataset resulted in a separate set 
of trained weights Ws. Given that the first stage of training has access to noise-free images, it enhances image 
contrast, while the second stage, focused on SS-OCT, emphasizes fidelity to the specific texture of SS-OCT data.

To balance smoothness with texture preservation, we apply a weighted average of these two sets of weights, 
allowing SDNet to achieve an optimal blend of noise reduction and texture retention. In the current setup, SDNet 
uses a final weight setting defined as Wfinal = 0.9Ws + 0.1Wh. Figure 7 visualizes the impact of adjusting this 
weight mix on the denoising outcomes, illustrating the trade-off between smoothing and texture detail.

E. Comparison methods
To evaluate the denoising performance of the proposed method, it is compared with several established 
approaches. These methods include both model-driven and data-driven approaches, chosen to represent 
different strategies and techniques in image denoising.The model-driven methods include:

•	 Total generalized variation decomposition (TGVD): A variational denoising technique using second-order 
total generalized variation for structured noise reduction.

•	  BM3D: A widely used general-purpose denoising algorithm based on block matching18.
•	  BM4D: Newly modified version of BM3D19.
•	  Weighted nuclear norm minimization (WNNM): A convex relaxation of low-rankness constrained optimi-

zation of OCT image denoising 50.
•	  Domain-aware recurrent neural network with generative adversarial network (DARG): A patch-based RNN-

GAN framework designed for few-shot supervised OCT noise reduction, leveraging domain adaptation prin-
ciples to improve speckle suppression while maintaining structural integrity 51.

•	 • GT-SC-GMM: OCT specific modeling for Gaussian transformation of data 38.

For data-driven approaches, we included:

•	  Noise2Self: A general-purpose neural network for self-supervised denoising, adapted here for OCT images32.
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•	  MIMIC-Net: An OCT-specific data-driven deep learning model that mimics the GT-SC-GMM 38 mod-
el-driven approach to enhance the denoising performance 52.

•	  Noise2Noise (N2N): A general method for self-supervised denoising28 used in 53.
•	  Blind2UnBlind (B2U): Modified N2N method for OCT image denoising29.

By comparing SDNet with these established methods, we aim to provide a thorough evaluation of its performance 
across both general and OCT-specific denoising techniques.

F. Evaluation: enhancing clinical classification with multiple instance learning
To demonstrate how the proposed denoising and super-resolution methods enhance clinical utility, we used a 
classification framework based on multiple instance learning (MIL) 54. As shown in Fig. 8, this approach uses a 
pre-trained classifier for image vectorization and label aggregation among input vectors. Due to large number of 
B-scans for each individual, it needs to pre-tokenization for each B-scan.

Image tokenization using pre-trained InceptionV3: To address computational constraints and efficiently 
process patient-level data, a pre-trained on ImageNet data of InceptionV3 network was used for image 
tokenization. Each B-scan was turned into 2048-dimensional latent vector, preserving critical spatial and textural 
features. These vectors, shaped a 2D matrix, served as compact tokens for subsequent classification tasks, with N 
rows indicating number of B-scans.

Multiple instance learning for disease classification: Given the dataset’s individual-level labeling, an MIL 
strategy was employed: Healthy/DME/Non-DME Classification: tokenized B-scan were aggregated into a “bag 
of vectors” for each patient and processed using weighted attention mechanism (WAM). This approach linked 
diseased-specific labels to individual scans, emphasizing those most indicative of disease features, as shown in 
Fig. 8.

Results
Figure  9; Table  3 present a quantitative comparison of the proposed SDNet’s performance on the denoising 
task, as measured by the evaluation metrics, against other baseline methods. Notably, SDNet simultaneously 
addresses both denoising and super-resolution tasks, whereas the comparative methods only perform denoising 
on the full-resolution test datasets.

This added functionality highlights SDNet’s efficiency in enhancing image quality while preserving structural 
details. Figure 10 provides a visual comparison, illustrating the qualitative differences in output across methods, 
more samples are provided in Supplementary Table S1.

Table 4 summarizes the confusion matrix for the classification task, detailing the accuracy across the three 
classes: Healthy, DME, and Non-DME, in two scenarios: with or without image enhancement. Figure 11 shows 
receiver operating characteristic curve (ROC) and corresponding area under the curve (AUC) for comparison 
between two scenarios. Additionally, Table 5 presents the specific B-scans that were highlighted as relevant to 
the diseased condition through the weighted attention mechanism (WAM), further illustrating SDNet’s capacity 
to identify critical scans associated with disease indicators. According to the confusion matrix, the F1-score for 
binary classification (healthy/diseased) was 84.61% before denoising and 92.30% after denoising by SD-Net. For 
three-class classification, the F1-scores were 50% before denoising and 72.22% after denoising.

Fig. 7.  Trade-off between different mixing weights on SDNet.
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A. Inference time and processing
To evaluate the comparison methods, the N2N, N2S, and B2U networks adopt the same architecture as SDNet, 
but their training paradigms follow the protocols stated in their respective literature. All networks—SDNet, 
N2N, N2S, and B2U—are trained on the same fraction of training sets, with the exception of SDNet, which 
incorporates HCIRAN as part of its training strategy.

The comparison of denoising time depends on several factors, including image size, processor type, and 
implementation method. For BM3D and BM4D, we utilized their officially released code in Python. MimicNet, 
GT-SC-GMM, and TGVD were implemented using the authors’ provided code. Network models were evaluated 
on an Nvidia 1080 Ti graphics card, while model-based methods were implemented on a CPU. Figure  12 
compares the inference times of™ the different methods.

Discussion
A. Analyzing evaluation metrics
The evaluation metrics for image enhancement in the literature of OCT denoising are divided into two categories: 
quantitative and qualitative measurements. The quantitative methods used in this study—CNR, MSR, TP, and 
PSNR—are all related to region of interest (ROI) selection. In these measurements, contrast is calculated as the 
difference between the mean intensities of two retinal layer regions, such as RNFL, GCL/IPL, or RPE. Noise 
parameters are determined using the Vitreous region. TP requires measurements before and after denoising. 
Despite these statements and their formulations in (1)-(4), these metrics alone cannot fully evaluate the denoising 
results. Figure 13 illustrates a case of a noisy SS-OCT sample, its denoised version by BM3D and SDNet, and a 
less noisy version. The right column shows the corresponding ROIs. As seen in this figure, the BM3D-denoised 
image loses most of the retinal texture, resulting in smooth regions for each layer and the Vitreous, leading to 
higher contrast but minimal texture preservation. Conversely, the less noisy version preserves texture better than 
other methods but remains noisy. This case demonstrates that these metrics, without visual investigation, cannot 
infer distinguishable results.

Visual results are valuable for comparison but require expert interpretation and are not feasible for the entire 
test dataset, only useful for a small fraction of data. In this study, we mimic expert evaluation using a trained 
classifier on SS-OCT data before and after denoising, to demonstrate how denoising can be useful and beneficial 
for machine evaluation in place of an expert.

It is crucial for a denoising method to produce images that remain realistic and similar to the OCT image 
domain. While this criterion traditionally requires human raters, it can be simulated using a large trained classifier 
such as the InceptionV3 55 model, as discussed in the literature model 56. This in-distribution distance can be 
evaluated using the kernel inception distance (KID), which calculates the kernel maximum mean discrepancy 
distance on the K (x, y) =

(
1

2048 xT y + 1
)3

. Here, the feature vector of InceptionV3 is 2048, and x, y are 
feature vectors related to denoised OCT images and real OCT images, respectively. This metric evaluates how 

Fig. 8.  Exploring Low-SNR image enhancement over disease classification, and multiple instance learning 
method for propagating individual level labels to B-scan level.
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realistic and similar the denoised images are to the usual noise-free OCT dataset such as HCIRAN. For better 
evaluation, we used two KID metrics: one on InceptionV3 pretrained on the ImageNet dataset, commonly used 
in the literature to simulate human raters, and another using an autoencoder trained on HCIRAN, calculating 
KID on feature vectors from this autoencoder separately.

CNR PSNR MSR TP SSIM

SS-OCT Dataset

B2U 4.341 21.853 18.631 0.998 0.523

N2S 4.627 22.249 15.242 0.795 0.953

N2N 5.043 23.037 27.231 0.985 0.985

MimicNet 18.104 32.079 57.864 0.494 0.274

BM3D 20.447 35.985 75.496 0.362 0.376

BM4D 20.429 35.87 65.965 0.348 0.327

TGVD 20.289 34.317 43.791 0.441 0.315

GT-SGMM 8.167 24.109 6.076 0.455 0.741

WNNM 13.245 32.581 104.7 0.490 0.661

DARG 22.239 37.212 75.971 0.422 0.194

SDNet 28.139 36.942 40.971 0.513 0.631

Original 4.622 23.993 40.676 1.0 1.0

Table 3.  Numeric comparison between different methods on SS-OCT.

 

Fig. 9.  Comparison results among different methods and data sets. For datasets SS-OCT, 3D-OCT1000 and 
Bioptigen, we used 60 reference images and for A2A using 18 images for ROI selection. First 2 rows show value 
of metrics over each dataset. KID metric to show how much output of each method can be realistzic.
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B. Discussion of results
This study introduces a hybrid model- and data-driven approach for denoising and super-resolution in low-
SNR OCT imaging, leveraging both noise modeling and contextual image information. As illustrated in Fig. 7, 
the dual-training framework on separate datasets, combined with learned noise modeling, equips the network 
with adaptability and tunability. This flexibility empowers clinicians to adjust the contrast-texture balance to 

Fig. 10.  Visualization of denoising results over different datasets. Images from left to right and up to bottom 
are related to original image, B2U, N2N, N2S, MimicNet, BM3D, BM4D, TGVD, GT-SC-GMM, WNNM, 
DARG, and SDNet (proposed method), respectively.
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meet specific diagnostic needs, enhancing the model’s practical utility in diverse clinical scenarios. By increasing 
impact of the first phase of training in inference stage, the model results images with more contrast, while 
increasing impact of second phase of training leads to more texture preservation results.

In the second stage of training, we employed PCA as a coarse denoising method, followed by fine-tuning 
SDNet on the denoised images. The rationale for selecting PCA is multifaceted. Firstly, PCA’s fast implementation 
makes it suitable for use during the training process. Secondly, PCA does not require prior information for 
denoising. Thirdly, despite potential issues with blurring or shadowing effects, PCA effectively preserves image 
texture, unlike other denoising methods such as BM3D.

In our initial experiments, SDNet was trained solely using PCA denoising, without the initial training stage 
on the HCIRAN dataset. Under this setup, the network processes two inputs: the noisy image and the denoising 
rates. Figure 14 illustrates three samples from the SS-OCT dataset, demonstrating SDNet’s capability to denoise 
images at any desired rate within the range (0, 1). Denoising rates between 0.70 and 0.80 produced results 
comparable to those reported in Table 3.

The primary motivation for incorporating the first stage of training on the HCIRAN dataset is PCA’s 
limitation in generalizing denoising results across different datasets. While the SS-OCT dataset consists of 50–
300 B-scans per volume, other datasets typically have fewer than 50 B-scans per volume. Consequently, in dense 
OCT volumes, PCA leads to increased blurring and shadowing effects. To address this issue, we augmented the 
dataset with initial noise-augmented training data (HCIRAN).

The comparative results presented in Figs. 9 and 10 highlight the advantages of integrating domain-specific 
knowledge into data-driven tasks. Our findings reveal that methods incorporating OCT-specific noise and 
structural features significantly outperform general-purpose model-driven methods. For example, while 
BM3D—a widely used general-purpose approach—delivers robust baseline results, GT-SC-GMM achieves 
superior performance by capitalizing on OCT-specific characteristics. Deep-learning-based models such as 

Fig. 11.  Receiver operating characteristic curve comparing between SS-OCT classification with denoising by 
SDNet and without it.

 

Predicted

True Class

Healthy
Diseased

DME Non-DME

Healthy 4 (3) 1 (0) 1 (3)

Diseased
DME 0 (0) 7 (5) 1 (3)

Non-DME 0 (1) 2 (2) 2 (1)

Table 4.  Confusion matrix related to the classification of model between three classes. Results provided inside 
parenthesis achieved without denoising, while results without parenthesis are after denoising and Super-
resolution.
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Fig. 12.  Denoising time comparison between different methods. Left side, CPU-based methods and right side 
shows GPU-based models.

 

Table 5.  Highlighted B-scans related to predicted class via WAM (After denoising and Super-Resolution.
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B2U and SDNet further distinguish themselves by producing noise-free images in a single prediction cycle, 
an essential feature for real-time applications in clinical workflows. In contrast, iterative methods like GT-SC-
GMM and TGVD, while effective, lack the efficiency necessary for fast-paced diagnostic environments.

Metrics reported in Fig. 9 demonstrate SDNet’s capability to effectively suppress noise while maintaining 
consistent performance across evaluation criteria. Notably, methods like BM3D exhibit a “cartoonization” 
effect, where layer textures are overly smoothed, leading to reduced standard deviation but inflated MSR values. 
Conversely, approaches like N2N and N2S exhibit lower MSR values, indicative of residual noise within the 
retinal layers. SDNet strikes an optimal balance, preserving fine texture details without introduction artifacts, 
which is critical for retaining diagnostically relevant information.

Additionally, the results based on KID metric underscore SDNet’s ability to generate noise-free OCT images 
that are perceptually realistic. This metric, computed across all image outputs, further validates SDNet’s superiority 
in both denoising and super-resolution task in producing realistic images compared to other methods.

The classification outcomes in Table 4 further validate SDNet’s role as a robust tool for data cleaning and 
enhancement, especially for low-SNR SS-OCT devices. Remarkably, SDNet’s denoising and super-resolution 
capabilities effectively emphasize disease-specific features, as evidenced by its performance in identifying 
conditions such as diabetic macular edema (DME). Clinically, DME is characterized by fluid accumulation 
and macular swelling, often presenting as convex bulges rather than typical concave structure 58,59. Similarly, 
features associated with age-related macular degeneration (AMD), such as large confluent drusen and abnormal 
choroidal neovascularization, are effectively highlighted by SDNet. These pathological changes, including 
retinal edema and caviation in the Bruch’s membrane, align with the model’s capacity to detect subtle yet critical 
diseased-related pattern 60.

Fig. 14.  Our primary experiments on PCA. In this setting, SDNet has denoising rate as second input.

 

Fig. 13.  Quantitative metric analysis on sample data. The red, green and blue region in ROI relates to Vitreous, 
RNFL, and RPE Layers.
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As shown in Table  5, SDNet frequently identifies subtle of macular disruptions, further underscoring its 
potential as a screening tool. Additionally, other marked B-sans often exhibit deformation below the RPE, 
drusen, detachments, or cavities above the RPE, providing clinicians with valuable insights for focused diagnostic 
evaluation.

In summary, SDNet, demonstrates exceptional adaptability and efficiency, balancing denoising and resolution 
enhancement while addressing clinically relevant features. This adaptability positions it as a promising tool 
for real-world applications, offering flexibility that benefits both current SS-OCT devices and other imaging 
vendors. By bridging model-driven and data-driven approaches, SDNet contributes to advancing OCT imaging 
and diagnostic capabilities.

C. Further discussion of denoising and super-resolution
Training SDNet for the dual tasks of denoising and super-resolution, by selectively omitting some columns of the 
image, enables the network to adapt to variations in OCT image structure. As an extended study, we evaluated 
SDNet’s performance solely on denoising and compared its results with those of super-resolution. In terms of 
qualitative measurements, SDNet performs similarly on both denoising and the combined tasks of denoising 
and super-resolution. This comparison is supported by the data presented in Table 6. Consequently, comparing 
SDNet’s results with other denoising methods is fair, given that SDNet demonstrates comparable performance 
in both tasks.

D. Further analysis on contrast-texture trade off and detection rates
As previously discussed, the two-stage training procedure of SDNet enables a contrast-texture trade-off. This 
is achieved by adjusting the training weights using a parameter µ ∈ [0,1] as Ws ∗ µ + Wh ∗ (1 − µ ). The 
plot at the top of Fig. 15 illustrates the F1-score for two-class (Healthy vs. Diseased) and three-class (Healthy 
vs. DME vs. non-DME) classifications. The figure demonstrates that for binary classification, the maximum F1-
score (96%) corresponds to a mixing parameter µ = 0.4 or µ = 0.5. In contrast, for three-class classification, 
the maximum F1-score is achieved with a mixing parameter µ ≥ 0.9. Using a middle value for the mixing 
parameter can improve the detection of Healthy and Diseased cases, while a higher mixing parameter is more 
effective in distinguishing diseased cases.

The bottom of Fig. 15 presents a sample B-scan identified by SDNet as a DME case. As shown, when SDNet 
preserves the image texture, a clinician can clearly observe a hole in the retina around the Macula region, 
indicating the possibility of DME in this subject. Additionally, with a mixing rate higher than 0.7, layers such as 
GCL and IPL become distinguishable. In contrast, with a mixing rate between 0.5 and 0.4, the middle layers are 
not distinguishable, and only the macular hole is visible. At lower mixing rates, only cavitation and edema in the 
Macula region are apparent.

Conclusion
This study focused on enhancing very low-SNR, low-resolution images captured by a custom-built swept-source 
OCT (SS-OCT) device developed at the Biomedical Engineering Department of Basel University.

We introduced a model-informed-data-driven approach, SDNet, designed for denoising and super-resolution 
tailored to the low-SNR dataset. Our results demonstrate that incorporating OCT-specific noise modeling with 
a deep-learning architecture yields substantial improvements in image quality, enhancing both contrast and 
texture preservation. However, while these results are promising, certain limitations remain that warrant further 
investigation.

The current model relies on PCA as a self-supervised denoising baseline, but PCA can introduce blurring 
effects, and selecting the optimal number of components for consistent denoising across all scans is challenging. 
Also, noise modeling and retina shape structure can be varied in different datasets, so the proposed method 
hardly adaptable on new datasets. As it can be seen the results of SDNet on SS-OCT dataset is better than SDNet 
results on other datasets, but still comparable by other methods. This limitation highlights the need for more 
sophisticated priors tailored to OCT images. Future work could explore alternative OCT-specific priors—such as 
Bessel K-form (BKF) or symmetric α-stable models, which have shown potential in existing literature13,22,37—to 
create a fully self-supervised framework with improved fidelity and adaptability. While the classification results 
gain more specificity on Healthy detection, but this work didn’t focus on classification. Then, more exploration 
on robust classifications can be beneficial. Another view for future work, we may plan to extend our study 
by incorporating OCT angiography (OCTA) data, which is currently unavailable in our datasets. While our 
comparison with methods such as N2N, N2S, and B2U have provided valuable insights using OCT data alone, 
a self-supervised approach like SSN2V that leverages both OCT and OCTA has the potential to further enhance 

CNR PSNR TP MSR

SR + DN DN SR + DN DN SR + DN DN SR + DN DN

SS-OCT 28.14 29.54 36.94 37.32 0.51 0.51 40.97 41.35

3D-OCT1000 31.75 31.77 40.20 41.31 1.03 1.00 20.58 20.64

Bioptigen 21.34 21.50 30.04 31.07 0.61 0.65 18.60 18.61

A2A 27.91 27.73 28.01 28.13 0.64 0.66 17.94 17.88

Table 6.  Comparison SDNet on only denoising and both denoising and super-resolution on different datasets, 
SR for super-resolution, and DN is for denoising.
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denoising performance. Integrating OCTA could open new avenues for improving image quality and diagnostic 
accuracy in fast 4D-OCT, and will be an important direction for subsequent studies7.

In conclusion, while SDNet presents a compelling solution for SS-OCT image enhancement, further 
refinement with OCT-specific priors could make this method more robust, adaptable, and ultimately beneficial 
for clinical applications.

Data availability
All four datasets, used for examination in this study, are publicly available from their original references. The SS-
OCT dataset can be downloaded from21, 3D-OCT1000 dataset from48, the dataset of Bioptigen49, A2A dataset 
from3, and HCIRAN from33.
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