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Comparison of mediating effects of
air pollutants on urban morphology
and urban heat Island intensity at
block scale
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The urban heat island effect seriously challenges the sustainability and livability of urban development.
Air pollutants (AP) may play a mediating role in the impact of urban morphology (UM) on the canopy
layer urban heat island intensity (CLUHII) and the surface urban heat island intensity (SUHII). To

verify this hypothesis, taking Urumqi as an example, we use the ridge regression model to reveal

the differences in the impacts of UM and AP on the two types of urban heat island intensity (UHII).

A structural equation model was established to verify the mediating effect of AP. The results show
that: (1) There are differences in the optimal research units for UM and CLUHII and SUHII, which are
500 m and 300 m respectively. (2) Whether it is CLUHII or SUHII, the impact of two - dimensional urban
morphology indicators are greater than that of three - dimensional urban morphology indicators. (3)
There are similarities and differences in the impact of urban morphology indicators on the two types

of UHII. The effects of standard deviation of building height, floor area ratio, and sky view factor on

the two are opposite. (4) Air pollutants (PM,, PM, ., NO,) have significant mediating effects between
building density, impervious surface percent, green coverage ratio, mean building height, standard
deviation of building height, floor area ratio, sky view factor, and the two types of UHII. This study
provides a reliable reference for urban planning aimed at mitigating the urban heat island effect and air
pollution.
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Urbanization has propelled the continuous growth of urban land use area and urban building density, and the
urban natural environment has undergone rapid changes'. In terms of urban land use, a large amount of natural
vegetation and water bodies have been converted into construction land. The heat emitted by concrete and asphalt
roads, the low ventilation capacity of urban canyons formed by high - rise buildings, and the combined effects
of heat released by vehicles on the streets and air conditioners have led to changes in the urban climate®*. The
concentrated emissions from activities such as transportation and industry brought about by urbanization have
exacerbated the air pollution problem?. These climate and environmental issues have increased the frequency
of heatwaves and other extreme weather events, affecting the quality of the urban living environment as well as
residents’ health and safety®~”. To address the challenges associated with the evolving urban heat island effect, air
pollution, and other related issues, scientific and reasonable urban planning and governance have become urgent
tasks for planners in regulating the thermal environment and air pollution®.

In recent years, the urban heat island (UHI) effect and its impacts on public health have emerged as critical
challenges in the global urbanization process. Recent studies have focused on innovative multi-scale thermal
environment regulation strategies and evaluation systems, revealing the effectiveness of multi-dimensional
intervention pathways such as optimized vegetation layout, urban morphology control, and climate-adaptive
planning. A study in Dalian demonstrated that canopy planning in urban plazas reduced mean radiant
temperature by 3.5-7.7 °C during high-temperature periods, with high-risk areas decreasing by 27-50.4%,
and highlighted a significant correlation between aspect ratio and cooling potential®. The Burdur case, using
the ENVI-met model, showed that thermal comfort in hard-paved areas was 20% lower than in green spaces,
proposing adaptive measures like reducing asphalt materials and prioritizing greenery. In thermal vulnerability
assessment, Foshan developed a residential subjectivity framework, finding that open dense mid-high-rise
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layouts reduced thermal vulnerability by 4.97% compared to traditional patterns'®. Zou et al.!! further integrated
local climate zones (LCZs), indicating a positive correlation between building height and the Heat Vulnerability
Index, with natural LCZs (e.g., vegetated areas) significantly improving thermal environments. Addressing
the heterogeneity of diurnal heat hotspots, Wuhans research used multi-model machine learning to identify
industrial zones as persistent day-night hotspots and mid-high-rise mixed blocks as primary night-time UHI
contributors, proposing collaborative optimization of building height and density'2. Refined building thermal
climate zoning in Chongging’s mountainous areas increased zoning coverage from 10.5 to 100%, providing a
new paradigm for energy-efficient design in hilly cities'. These advancements signal a shift in urban thermal
environment research from single-factor analysis to a systematic governance paradigm integrating multi-source
data and multi-scale linkages.

UHI refers to a phenomenon where the temperature in urban centers is higher than that in rural or suburban
areas'. It can be classified into four types: boundary layer UHI (BLUHI), canopy layer UHI (CLUHI), surface
UHI (SUHI), and sub-surface UHI (SubUHI)!>'°. The first two types, BLUHI and CLUHI, pertain to the
warming of the urban air temperature (AT) at different vertical scales, which can be directly measured using
thermometers. However, the limited and scattered network of meteorological stations can only provide a partial
representation of the non-uniform urban/suburban temperature variations2’. SUHI, on the other hand, refers
to the warming of the urban land surface temperature (LST) and is derived from satellite-observed surface
temperature data. It is widely recognized that satellite-based remote sensing technology can provide spatially
continuous coverage of LST in a time- and cost-effective manner?!. As a result, in recent years, there has been
increasing attention focused on SUHI??. UHII is an indicator used to assess the strength of the UHI effect. It
is typically characterized by the temperature difference between the urban center and rural/suburban areas?’.
The most commonly used indicators are CLUHII and SUHII?*. A higher UHII value indicates a greater
temperature difference between the urban center and the suburbs/rural areas. Currently, the air pollutants (AP)
monitored in China include six major categories: fine particulate matter 2.5 (PM, ), coarse particulate matter
10 (PM,), nitrogen dioxide (NO,), ozone (O,), sulfur dioxide (SO,), and carbon monoxide (CO). In terms
of spatiotemporal distribution, areas with high UHII also tend to have higher levels of AP. For example, large
cities exhibit higher UHII compared to smaller cities, and economically developed and densely populated urban
agglomerations have higher concentrations of AP than other regions?>?°. Studies have shown that the UHI effect
and air pollution often influence each other. The UHI effect causes urban areas to have higher temperatures than
surrounding rural areas, and this temperature difference alters the stability of the atmospheric boundary layer.
The warm air rises above the city, creating a local low-pressure area that may inhibit the vertical dispersion of
pollutants, leading to their accumulation near the ground level in urban areas*”-*8. Aerosols in the air, such as
PM, ., PM,, can absorb and scatter solar radiation, reducing the amount of solar energy that reaches the ground
and thereby exerting a certain cooling effect during the day. Aerosols also absorb long-wave radiation emitted
from the ground and re-radiate heat at night, causing an increase in nighttime temperatures and exacerbating
the nighttime UHI effect®.

There are many factors influencing UHI and AP, such as meteorological conditions, land use/cover, urban
morphology (UM), population, and economic development!®3*3!. With the introduction of themes like “healthy
urban planning” and “sustainable development,” the influence of UM on UHI has attracted more and more
attention. Current research primarily concentrates on the impact of urban organizational form, land use, and
street networks within UM on UHI, while there is relatively less research on building characteristics®*~*%. A
large number of studies have analyzed the causes of the UHI from two - dimensional (2D) indicators such
as landscape metrics, vegetation coverage, impervious surfaces, land types, and population distribution™®.
Quantifying the urban morphology indicators (UMIs) of the above - mentioned urban landscapes has been
proven to have an impact on the urban thermal environment*®3”. However, the characteristics described above
are the (2D) features of the city. The three - dimensional (3D) height information of the city plays a crucial role
in solar radiation, heat absorption and dissipation, and ventilation. Studies by scholars on Chengdu, China, have
shown that the impact of the 3D morphology of the city seems to be more significant than the 2D morphology™.
A study taking Nanjing as an example shows that increasing building height and reducing building density can
create larger shadows under solar radiation, effectively reducing the exposed surfaces of buildings and the city,
thus reducing the local AT>*. However, some studies indicate that the impact of urban 2D morphology indicators
is more significant than that of urban 3D morphology®’. The reasons for this difference may be the different
arrangements of urban buildings, economic levels, and climatic factors in the study area, or it may also be due
to the differences in temperature types. LST mainly reflects the thermal state of the land surface and cannot
accurately reflect the thermal environment at the canopy height. Therefore, it is necessary to compare LST and
AT within the same study area.

Many cities around the world have conducted extensive research on AP. Air pollution is not only highly
correlated with pollution sources (such as traffic, air conditioning emissions, and industrial pollution),
socioeconomic factors, and climatic factors, but is also related to UM*!~**. In urban areas of the United States,
regions with higher building density can capture more air pollution compared to rural or open spaces**. Taking
Shanghai as an example, 18 UMIs were quantified to study their impact on air pollution. The distance to the main
road, the standard deviation of building floors, and the average number of building floors were proven to be the
three main UM characteristics affecting the spatial variation of pollutants**. Research on the urban center of
London shows that UM and vegetation arrangement significantly affect wind speed and direction, exacerbating
air pollution in street canyons with different aspect ratios*. Research on Seoul, South Korea, indicates that areas
with the highest PM concentration are those with high - density traffic and high - rise buildings, as well as areas
in close proximity to highways and areas with highly mixed land use?’. All of the above - mentioned studies
demonstrate that UM has a significant impact on AP.
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Currently, methods used to study the relationship between UM and climatic variables include linear
regression (multiple linear regression, ridge regression, stepwise regression)?*®, spatial regression models
(spatial error model, spatial lag model, geographically weighted regression)***°, and machine learning
methods (such as XGboost, Random Forest, Artificial Neural Network)>!->3. Traditional linear regression is
simple and fast to operate, with highly interpretable results, but its drawback is that some variables do not
conform to linear regression, leading to poor fitting performance®2. Spatial regression models can reveal the
spatial heterogeneity of the impact of urban morphological indicators on climatic variables, but they require
indicators with low multicollinearity. Machine learning methods exhibit strong learning capability and flexibility
in handling different data formats and complex data, and are widely used without the need to explicitly consider
interactions between independent variables; however, they have the disadvantage of overfitting. Although the
aforementioned methods each have their advantages, they are primarily suited for studying the relationship
between two variables. Due to the complexity of factors influencing UHI, we strive to identify more influencing
factors and explore the path relationships between variables, which can be effectively addressed by structural
equation modeling. Structural equation modeling, previously utilized mainly in humanities and social science
research, is now employed for quantitative research on mediation effects®**.

In summary, due to the ease of obtaining LST data, most studies have chosen to investigate SUHI as a variable,
neglecting CLUHI. The differences in the distribution of CLUHI and SUHI may result in distinct impacts and
mechanisms of UM on CLUHI and SUHLI. Secondly, both UMIs and AP have significant effects on UHI, and
UMIs also have a notable impact on AP. Therefore, we hypothesize that AP may exacerbate the influence of UMIs
on UHI, yet there is currently limited research in this area. We will use a ridge regression model to uncover the
differences in the impact of UMIs on the two types of heat island intensities and establish a structural equation
model to verify whether AP acts as a mediator between UMIs and UHII. Studying the effects of UMIs on both
types of UHII and quantitatively assessing the mediating role of AP will contribute to understanding the complex
mechanisms of UMIS’ influence. This provides a new perspective on how to optimize UM to maximize urban air
or thermal environmental benefits.

Data and methods

Study area

Urumgi (located at 86°37'33"—88°58'24"E, 42°45'32" —44°08'00"N) is situated in the hinterland of the Eurasian
continent and is the inland city farthest from the sea globally. The city has a mid-temperate semi-arid continental
climate with an average annual precipitation of 277.6 mm, with the highest precipitation occurring in summer.
The northern plain, where people reside, experiences temperatures ranging from 24 to 28 °C in July and —10-
20 °C in January. As of 2024, the administrative division of Urumqi comprises 7 districts and 1 county, covering
a total area of 13,800 km? with a permanent resident population of 4.0848 million and an urbanization rate
reaching 96.56% (https://www.urumgqi.gov.cn).

The study area selected is a region within the main urban district, encompassing mixed-use land for
commercial services, culture and education, and residential purposes. It includes undeveloped land parcels
and urban built-up areas with varying degrees of development intensity, exhibiting diversified urban spatial
morphological characteristics (Fig. 1). The spatial extent of the study area stretches north from Pamier street,
south to Nanhubei road, east next to Liudaowan road, and west to Nanhudong road, forming a rectangular study
unit of approximately 16 km?. Based on the spatial distribution characteristics of communities and the principle
of full coverage, a multi-level road monitoring route with a total length of 22 km was established. Additionally,
open spaces within the built-up area that are well-ventilated and less disturbed by the thermal effects of buildings
were selected as fixed observation points. These points serve as a spatial comparison reference with the high-
density built-up area temperature data obtained through mobile monitoring and satellite image inversion.

Data collection and instruments

Data collection

This study obtained data through two channels: self-monitoring and downloading open-source data. From July
12th to 15th, 2024, we conducted a four-day monitoring period around 13:00-15:30 Beijing time each day.
Electric bicycles (Fig. 2(a)) equipped with GPS, HOBO MX2302A, and Aeroqual S500 were used for mobile
monitoring to collect data on coordinates, temperature, and air pollutants (PMzs’ PM,,, NOZ). The instrument
parameters are detailed in Table 1. To ensure a relatively uniform spatial distribution of data, the electric
bicycles maintained a speed of approximately 10 km/h throughout the monitoring process. Simultaneously with
the mobile monitoring, Kestrel 5500 and Kestrel 5400 instruments were installed at fixed stations to obtain
temperature data (Fig. 2b).

We downloaded Landsat 9 satellite images from the website of the USGS (https://earthexplorer.usgs.gov/),
with a pass time of 12:55:32 Beijing time on July 15, 2023. We used ENVI 5.6.2 software (https://www.l3harris
geospatial.com/Software-Technology/ENVI) to extract LST from Band 10. The Gaofen-6 satellite images were
obtained from the China Centre for Resources Satellite Data and Application (https://www.cresda.com/zgzywx
yyzxeng/index.html), with a pass time ranging from 13:23:14 to 13:23:27 Beijing time on August 24, 2023. The
panchromatic band has a resolution of 2 m, while the multispectral bands have a resolution of 8 m. Using ENVI
5.6.2 software, we performed radiometric calibration, atmospheric correction, orthorectification, and image
fusion on the image. The supervised classification using support vector machine was applied to classify land
cover types, primarily to obtain green space area and impervious surface area. The building data used in this
study was extracted in ArcGIS 10.8 software with Tianditu Map (https://www.tianditu.gov.cn/) as the base map.
The building height data was obtained through field surveys in the study area, assuming a floor height of 3 m
for each building, and the product of the number of floors and floor height was used to represent the building
height.
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Fig. 2. Measuring instruments.

Urban morphology indicators

We selected eight indicators from both 2D and 3D perspectives®*~>%, as shown in Table 2. There are four 2D
UMIs, including building density (BD), mean patch shape index (MPSI), impervious surface percent (ISP), and
green coverage ratio (GCR), which mainly reflect the density of buildings, the complexity of building shapes,
the size of impervious surfaces, and the level of greenery within a buffer zone. There are also four 3D UMIs,
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Monitoring scenario | Instrument Item Unit Monitoring interval | Accuracy
GARMIN Etrex 201x | Coordinates ° 5s 3m

Mobile monitoring HOBO MX 2302 A | AT °C 5s +0.5°C
Aeroqual S500 PM,, PM, ,, NO, mg/m?® | 1 min <+0.02 mg/m?

Fixed monitoring Kestrel 5500, 5400 AT °C 5s +0.5°C

Table 1. Monitoring instrument parameters.

Indicators Abbreviation | Definition Formula
a3 Bi
Building density BD T[he total number of buildings perha | BD; =
in a study area (n/ha) NB: the number of building in the ith buffer; A: the area of a buffer zone
— 1 €j
Mean patch shape MPSI The mean value of building shape MPSL = 3 X Z j=1mine;
index complexity n: number of total bulldmgs, ej: perlmeter of the jth building in the buffer zone;
2D mine;: the minimum value of the perimeter of the building in the ith buffer zone
Impervious surface ISP The ratio of total building footprint 1sp; = Mi
percent area in a buffer to a buffer area (%) M total impervious surface area in ith buffer
. G,
Green coverage ratio | GCR Ratio of2 green space area to a buffer GCR; = 3¢
area (m?) G, is the area of green space in the ith buffer zone

n

Mean building area | MBH bThuger??:l) height of buildings in a MBH; = 77 =1 ’
Hj: the helght of the jth building
Standard deviation BHSD The extent of buildings change within Z " H;—MBH)?
of building height the study area (m) BHSD; = g=t - -
_(Bjx Fj)
3D | Floor area ratio FAR The ratio of total floor area to a FAR; = 217
buffer area B;: the ﬂoor area of the jth building in ith buffer;
F the number of floors in the jth building in ith buffer
— N a;
The ratio between the radiation SVF;=1- Zsi‘i}ﬁ‘%n B ( 3600 )
Sky view f SVE received by a planar surface and Mean SV F;
¥ view factor the entire emispheric radiating N: the total number of sectors in the sky hemisphere that are obscured by obstacles;
environment (%) B, is the angle of maximum building height of each sector;

a, is the azimuthal angle of each sector

Table 2. Description of urban morphology indicators.

including mean building height (MBH), standard deviation of building height (BHSD), floor area ratio (FAR),
and sky view factor (SVF), which primarily reflect the average height of all buildings within a buffer zone, the
variation in building heights, the development intensity of buildings, and the openness of the sky above the
buildings. These indicators, firstly, can comprehensively and accurately characterize the architectural features of
UM. Secondly, they are commonly used parameters in urban planning and management, and urban planners
and managers need to rely on these indicators to formulate and implement effective mitigation strategies.
Thirdly, these indicators possess universality and comparability>®

Data processing

In ArcGIS 10.8 software, 500 random points were created along the monitoring route as sample points. Buffers
with diameters ranging from 100 m to 500 m were then created centered on these 500 points. Using the summary
statistics tool, the average AT and average LST were calculated for each of the five buffer sizes. Subsequently, the
corresponding UHII was computed. The difference between the temperature measured at the mobile monitoring
points and the temperature measured at the fixed monitoring points was used to represent the CLUHII (Eq. 1),
while the difference between the average LST within the mobile point buffers and the average LST within the
fixed point buffers was used to represent the SUHII (Eq. 2). If the difference is greater than 0, it indicates that the
AT/LST at the mobile monitoring points is higher than that at the fixed points; if the difference is less than 0, it
indicates that the AT/LST at the mobile monitoring points is lower than that at the fixed points; if the difference
is equal to 0, it indicates that the AT/LST at the mobile monitoring points is the same as that at the fixed points.

CLUHII = AT mobile — AT _fixed (1)
SUHII = LST mobile — LST _fixed (2)

In ArcGIS 10.8 software, using tools such as the field calculator and summary statistics, we calculated the mean
values of all UMIs and AP for buffers with diameters of 100 m, 200 m, 300 m, 400 m, and 500 m. Ultimately,
we obtained the mean values of two types of UHII, as well as the UMIs and AP, for the five buffer sizes. With
UMIs and AP as independent variables, and CLUHII and SUHII as dependent variables. Determining the buffer
zone diameter is a prerequisite for the study. We conducted a normality test on the UMIs and found that they
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did not follow a normal distribution, thus opting for the spearman correlation test. compared to subjectively
determining the buffer zone diameter, quantification through the spearman correlation coefficient is more
convincing. We calculated the spearman correlation coefficients between UHII and UHIs within buffer zones
ranging from 100 to 500 m and compared them. Based on the performance of all indicators, we selected a buffer
zone with significant correlations for all indicators as the research unit.

Statistical methods

Ridge regression model

We chose ridge regression to validate the impact of UMIs and AP on UHIIL Due to the use of common
parameters in the calculation of UMIS, there exists multicollinearity among them. Ridge regression, also known
as Tikhonov regularization, is a variant of linear regression. It is suitable for situations where features are highly
correlated (i.e., multicollinearity issues), as ordinary linear regression models may become unstable and the
model coefficients may become excessively large. By adding a regularization term, Ridge regression constrains
the size of the model parameters, making the model more robust. Ridge regression can drive the coefficients of
some unimportant features towards zero, thereby serving as a form of feature selection and helping us identify
the significant features that have a greater impact on the dependent variable®>*°. We are implementing ridge
regression in SPSS 25 (https://www.ibm.com/) software with the aim of demonstrating the linear relationship
between UMIs, AP, and UHI], so that we can establish an structural equation model.

Structural equation model

We utilized structural equation modeling (SEM) to quantify the direct causal relationship between UMIs and
UHI], as well as the indirect relationship mediated by AP!. SEM simulates multivariate relationships using two
or more structural equations and presents intuitive graphics to depict complex relational networks. Therefore,
SEM can assess the complex relationships among multiple variables, surpassing traditional multivariate linear
regression methods. SEM has the advantage of explaining the partial contributions of related variables and
distinguishing between direct and indirect effects, meaning it can differentiate various pathways through which
one entity influences another and then estimate and compare the strengths of these different pathways®2. In this
study, we developed a SEM (Fig. 3) to analyze the relationships among UMIs, AP and UHII using Amos 26.
The inter-factor path coefficients were systematically examined. @’ represents the path coefficient for the impact
of UM on AT. ‘b’ represents the path coefficient for the impact of AT on UHIL C’ represents the total effect,
which is the path coefficient for the impact of UM on UHII without the mediator variable. © represents the
direct effect, which is the path coefficient for the impact of UM on UHII with the mediator variable involved.
‘a*b’ represents the mediation effect value, and the mediation effect proportion is calculated by dividing the
mediation effect value by the total effect. Through constructing the initial model and multiple revisions, the
final model passed the tests and assessments of indices such as the chi-square to degrees of freedom ratio (X%
DF < 3), Goodness-of-Fit Index (GFI>0.90), Comparative Fit Index (CFI>0.90), Root Mean Square Error of
Approximation (RMSEA <0.08), and significance (P >0.05)*%%. The flowchart of this study is shown in Fig. 4.

UHII

Fig. 3. Mediating effect model.
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Fig. 4. Study framework.

Results

Determination of optimal buffer zone

Fig. 5 presents the spearman correlation coefficients of UHII, UMIs, and AP across different buffer zones. The
results indicate that the correlation between MPSI and CLUHII is unstable. The correlations of FAR and SVF
with CLUHII exhibit a trend of increasing first and then decreasing. The correlations of BD, ISP, GCR, MBH,
BHSD, PM, , and NO, with CLUHII all intensify as the buffer diameter increases, reaching their peak at a buffer
diameter of 500 m. The correlations of BD, MBH, and BHSD with SUHII increase with the expansion of the
buffer diameter. The correlation between MPSI and SUHII is unstable. The correlations of ISP, GCR, PM,,, and
PM, . with SUHII decrease as the buffer diameter increases, peaking at diameters ranging from 200 to 400 m.
The correlations of SVF and NO, with SUHII gradually diminish as the buffer diameter increases. Overall, the
correlations between SUHII and various indicators are relatively strong at a buffer diameter of 300 m. Based on
this comprehensive analysis, we will investigate the impact of UMIs and AP on CLUHII within a buffer zone of
500 m in diameter and analyze their influence on SUHII within a buffer zone of 300 m in diameter.

Spatial distribution of AT, LST and AP

Fig. 6 shows the average values of AT and LST in various regions, and their distributions exhibit spatial
heterogeneity. The lowest AT is 33.62 °C, while the highest reaches 37.12 °C. Higher Ta values are observed in
blocks 9, 14, 17, 27, 28, and 48, whereas lower values are found in blocks 1, 2, 3, 19, 22, and 31. The highest LST
is 54.15 °C, and the lowest is 44.29 °C. Higher LST values are concentrated in blocks 40, 59, and 60, while lower
values are seen in blocks 0, 45, 46, and 49. There are both similarities and differences in the high and low values
of Ta and LST within the same region. For example, in blocks 6, 8, 29, and 30, both Ta and LST show high or low
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Fig. 5. Spearman correlation coefficient between urban morphology indicators, air pollutants and CLUHII
and SUHIL.
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Fig. 6. The spatial distribution of average AT (a) and LST (b) of blocks (Generated in the ArcGIS 10.8
software, URL: http://www.esri.com/).
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Fig. 7. UHII (a) and air pollutants (b) distribution in buffer zones.

CLUHII SUHII

Non- Non-

standardized standardized

coefficient standardized coefficient coefficient standardized coefficient

B Std.err. | Beta P B Std.err. | Beta P
Constant | 35.394 | 0.431 - 0.000*** | 45.833 | 0.541 - 0.000***
BD 11.23 2.802 0.122 0.000%** | 83.891 | 7.483 0.186 0.000***
MPSI 0 0 0.034 0.183 0 0 -0.103 0.000***
ISP 0.894 0.097 0.221 0.000%** | 1.461 0.142 0.151 0.000%**
GCR —-0.867 | 0.122 -0.18 0.000%** | —4.981 | 0.16 -0.44 0.000***
MBH —0.024 | 0.003 -0.281 0.000*** | —0.027 | 0.003 -0.15 0.000***
BHSD 0.022 0.003 0.256 0.000*** | —0.024 | 0.004 -0.117 0.000***
FAR 0.013 0.038 0.01 0.743 —-0.123 | 0.05 —-0.044 0.015**
SVF —1.332 | 0.401 —-0.099 0.0017* | 7.446 0.523 0.237 0.000***
PM,, 0.012 0.008 0.043 0.141 0.036 0.009 0.065 0.000***
PM,, 0.061 0.014 0.129 0.000*** | —0.132 | 0.019 -0.117 0.000***
NO, 0.005 0.002 0.074 0.007* | 0.004 0.002 0.027 0.076*
K 0.139 0.143
R? 0.605 0.869
R?.adj |0.596 0.866
F 68.013 (0.000***) 291.511 (0.000%**)

Table 3. Ridge regression result. ***, ** and * represent the significance levels of 1%, 5% and 10% respectively.

values simultaneously. However, in blocks 7, 40, 41, and 48, the high and low values of Ta and LST are opposite.
We found that this is related to the BD, building height (BH), and GCR. In the districts with high building
density and low GCR, both AT and LST are relatively high, such as blocks 8, 27, 28, 29, and 30. In the districts
with high BD, high BH, and high GCR, AT is often lower while LST is higher, such as blocks 0, 1, 2, 3, 40, and
41. This may be because green spaces can reduce the AT, but the LST of green spaces has a relatively small effect
on reducing the high LST caused by high BD.

Fig. 7 shows the average concentrations of CLUHII, SUHII, and three types of AP within the buffer zones
along the route. CLUHII fluctuates between 0 and 3 °C, with a relatively small range of variation. SUHII fluctuates
between —1 and 12 °C, with a large range of variation, which may be due to the large temperature differences
among various types of surfaces. The average concentrations of PM,, and PM, ; are relatively low, while the
concentration of NO, is higher than that of the previous two pollutants and has a greater variation range, which
may be related to the traffic conditions and BD of each buffer zone.

Effects of UM and AP on UHII

Table 3 presents the regression results with UHII_AT and SUHII as dependent variables, respectively, and
UMIs and AP as independent variables. All models have passed the F-test (P=0.000***), indicating that
the models are statistically significant overall. UMIs and AP can explain 59.6% of the spatial variability in
CLUHIL Based on the regression coefficients of each indicator, the degree of influence of UMIs on CLUHII is:
BD >SVF>ISP>GCR>MBH >BHSD. The indicators that positively impact CLUHII are BD, ISP, BHSD, and
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Fig. 8. Linear regression between the predicted value and the actual value of the ridge regression model.

X*DF | GFI | CFI | RMSE
Model A | 1.15 0.99 | 1.00 | 0.02
Model B | 1.10 0.99 | 1.00 | 0.01

Table 4. Test results of model parameters.

FAR (although the impact of FAR is not significant). The indicators that negatively impact CLUHII are GCR,
MBH, SVE and MPSI. Among AP, all have a positive impact on CLUHIL, with PM, , having the greatest impact,
followed by NO, and then PM, .

UMIs and AP can explain 86.6% of the spatial variability in SUHII. According to the regression coefficients
of each indicator, the degree of influence of UMIs on SUHII is: BD>SVF>GCR>ISP>FAR>MBH >BHSD.
The indicators that positively impact SUHII are BD, ISP, and SVE The indicators that negatively impact SUHII
are GCR, MBH, BHSD, and FAR (the impact of MPSI is not significant). Among air pollutants (AP), all have a
positive impact on SUHIIL, with PM, , having the greatest impact, followed by PM, ; and then NO,.

When comparing the two models, the fit between UMIs, AP, and SUHII is better, meaning that UMIs and
AP can explain more of the spatial variability in SUHII and have a stronger predictive power for SUHII (Fig. 8).
Among the UMIs, BD and ISP both positively impact both CLUHII and SUHII, while GCR, MBH, and BHSD
all negatively impact both. The impact of MPSI is insignificant for both. The impacts of FAR and SVF on CLUHII
and SUHII are opposite.

Model fitting and parameter test

Based on the results of the ridge regression model, although most UMIs and AP have significant impacts on both
CLUHII and SUHI], the pathways of their influences need further exploration. Based on empirical assumptions,
it is hypothesized that AP plays a mediating role in the impact of UMIs on UHIIL By removing the insignificant
paths calculated and re-computing the model, the obtained parameters were compared with standard values
(Table 4). Both Model A and Model B have X*/DF values less than 3, GFI values greater than 0.90, CFI values
greater than 0.90, and RMSE values less than 0.08, indicating a good fit of the model results. This suggests that
AP indeed plays a mediating role in the impact of UMIs on UHIIL The model diagram is shown in Fig. 9.

Mediating effect of air pollutants

Table 5 presents the total effect, mediation effect value, indirect effect, and proportion of mediation effect for
the significant paths. PM, ;, PM, ., and NO, each play a mediating role in the impact of different UMIs on UHIL
Specifically, PM, ; partially mediates the impact of BD on CLUHII, with a mediation effect proportion of 4.214%,
indicating that 4.214% of the increase in UHII caused by BD is due to the accumulation of PM, . PM,  partially
mediates the impacts of BD, GCR, BHSD, and FAR on CLUHI], and fully mediates the impact of ISP on CLUHII.
NO, partially mediates the impacts of BD, BHSD, and FAR on CLUHII, with mediation effect proportions of
7.253%, 10.081%, and 10.171%, respectively.
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Fig. 9. SEM model, (a) CLUHII is the dependent variable, (b) SUHII is the dependent variable.

Item c a*b c Proportion of mediating effect (%) | Conclusion
BD=>PM, ,=>CLUHII 57.136 2.407 45.382 4214 Partial mediation
ISP=>PM, =>CLUHII -0.058 |0.314 |-0.063 | 100 Complete mediation
SVF=>PM, =>CLUHII -0.623 | 0.206 -0.735 | 100 Complete mediation
BD=>PM, ;=>CLUHII 57.136 5.203 45.382 9.106 Partial mediation
ISP=>PM, ,=>CLUHII -0.058 | -0.393 | —0.063 | 100 Complete mediation
GCR=>PM, ,=>CLUHII |-1.265 |-0.297 | -1.298 |23.491 Partial mediation
BHSD=>PM, .=>CLUHII | 0.051 0.005 0.044 10.815 Partial mediation
FAR=>PM, ;=>CLUHII -0.789 | -0.094 | -0.662 |11.912 Partial mediation
BD=>NO,=>CLUHII 57.136 | 4.144 | 45382 7.253 Partial mediation
BHSD=>NO,=>CLUHII | 0.051 0.005 0.044 10.081 Partial mediation
FAR=>NO,=>CLUHII -0.789 | -0.08 |-0.662 |10.171 Partial mediation
BD=>PM, =>SUHIL 135.187 | 4.593 112.209 | 3.40 Partial mediation
BHSD =>PM,,=>SUHII —-0.033 | —0.006 | —0.034 |17.04 Partial mediation
FAR=>PM, =>SUHII -0.275 |0.049 |-0.066 | 100 Complete mediation
BD=>PM, ,=>SUHII 135.187 | 15.735 | 112.209 | 11.64 Partial mediation
ISP=>PM, .=>SUHII -4.946 | —0.845 | —4.449 |17.08 Partial mediation
GCR=>PM, ;=>SUHII —13.126 | —0.978 | — 12.467 | 7.45 Partial mediation
MBH=>PM, ,=>SUHII 0.002 0.011 -0.011 | 100 Complete mediation
FAR=>PM, ;=>SUHII -0.275 | -0.198 | —0.066 | 100 Complete mediation
BD=>NO,=>SUHII 135.187 | 2.65 112.209 | 1.96 Partial mediation
MBH=>NO,=>SUHII 0.002 0.002 | -0.011 | 100 Complete mediation
FAR=>NO,=>SUHII -0275 | -0.06 |-0.066 | 100 Complete mediation

Table 5. The proportion of mediating effect results.

PM,, partially mediates the impacts of BD and BHSD on SUHII, with mediation effect proportions of 3.4%
and 17.04%, respectively, and fully mediates the impact of FAR on SUHIIL PM, , partially mediates the impacts
of BD, ISP, and GCR on SUHII, with mediation effect proportions of 11.64%, 17.08%, and 7.45%, respectively,
and fully mediates the impact of MBH_FAR on SUHIL NO, partially mediates the impact of BD on SUHII, with
a mediation effect proportion of 1.96%, and fully mediates the impacts of MBH and FAR on SUHIL

Discussion

The influence mechanism of UMIs on CLUHII and SUHII

The spatial heterogeneity of CLUHII and SUHII is caused by the interaction of various factors in urban areas,
such as building clusters, underlying surfaces, vegetation, and human activities. Since CLUHII reflects the
temperature difference in AT, while SUHII reflects the temperature difference in LST, the mechanisms through
which UMIs affect them are different.

In this study, BD has a positive impact on both CLUHI and SUHIIL An increase in BD may affect the
building’s wind environment, hindering air circulation and thus increasing AT. For SUHII, a higher BD implies
a greater number of buildings and a larger proportion of impervious surfaces. The materials of the buildings
absorb solar radiation, resulting in higher LST on the building surfaces®. MPSI has an insignificant impact on
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both CLUHII and SUHII in this study. ISP has a significant positive effect on both CLUHII and SUHII. The
reason is that impervious surfaces, often made of cement or asphalt, cannot cool down by evaporating water like
soil or vegetation. The AT is absorbed by the impervious surface and continuously releases heat, exacerbating
the rise in AT. For SUHII, impervious surfaces absorb a large amount of solar radiation and convert it into
heat energy, leading to an increase in LST. GCR has a significant negative effect on both CLUHII and SUHIIL
During transpiration, GCR consumes a large amount of heat, thereby reducing the ambient AT. For SUHII, the
transpiration of green spaces can lower their own surface temperature. Additionally, tree canopies and shade
reduce solar radiation and LST®.MBH has a negative effect on both CLUHII and SUHIL. Taller buildings create
larger building shadows, which have a cooling effect on both AT and LST®. The impact of BHSD on CLUHII
and SUHII is opposite. BHSD has a significant positive effect on CLUHII. A higher BHSD indicates greater
variation in building heights within the buffer zone. Large variations in building heights (such as staggered
building clusters) can disrupt wind flow, hinder natural ventilation, lead to the retention of hot air, and result
in localized temperature increases, thus elevating CLUHIL. In contrast, BHSD has a negative effect on SUHIL
Staggered buildings cast shadows at different times of the day, reducing the time the surface is directly exposed
to sunlight and thus lowering LST.

Our research results show that the impacts of FAR and SVF on CLUHII and SUHII are opposite, which is
closely related to the urban building layout. FAR has a positive impact on CLUHII and a significant negative
impact on SUHIL A high FAR means that there are massive and densely distributed buildings in the city. A
large number of building entities occupy space. These building materials (such as concrete, bricks, etc.) absorb
a large amount of solar radiation during the day and become a continuous heat source, directly increasing the
temperature in the canopy layer. Therefore, it shows a positive impact on CLUHIIL. The communities in the
study area are mostly commercial - residential mixed land. The human activities and equipment operation in
commercial buildings generate a large amount of heat, and the dense buildings make it difficult for the heat to
dissipate, promoting the increase of CLUHII®. However, at the urban surface, although the buildings are dense,
the tall buildings can block the direct sunlight on the ground to a certain extent, reducing the absorption of solar
radiation by the surface. Moreover, the shaded areas of the buildings are relatively cool, resulting in a decrease
in SUHIL. Thus, it shows a negative impact on SUHII*’. SVF has a negative impact on CLUHII and a significant
positive impact on SUHII. A high SVF indicates that there are more open spaces in the city. At the canopy level,
there is less obstruction of the sky by buildings, and the air circulation in the canopy is relatively smooth, which
is not conducive to the accumulation of heat island intensity. Therefore, it shows a negative impact on CLUHII.
In the canopy, the transpiration of plants consumes heat, and the open space is conducive to the dissipation of
heat to the sky, which is beneficial for reducing CLUHII®. At the urban surface, the open space allows more solar
radiation to directly reach the ground. Most of the surfaces in the study area are cement buildings and asphalt
pavements. These surfaces absorb a large amount of heat and then the temperature rises, showing a positive
impact on SUHII®.

AP form a complex intermediary network between UM and UHII by regulating the radiation budget, heat
exchange processes, and photochemical reactions”. UMIs leads to the accumulation of PM, , and PM, by
obstructing air circulation. Aerosol particles scatter short-wave solar radiation, reducing the solar radiation
received by the surface, which in turn lowers the LST during the day and alters the surface albedo’". Secondly,
pollutants (such as particulate matter) settle on building surfaces or vegetation, decreasing the surface albedo
and increasing the absorption of solar radiation, which will increase the UHII’2. Although we have explained the
mechanisms influencing UHII in terms of UM and air pollution, the real situation is much more complex. The
increase in UHII is the result of the combined effects of multiple indicators.

The synergistic effect of UMIs and influence mechanism

By calculating the spearman correlation coefficients among the UMIs metrics, it has been found that there are
interaction effects among the UMI metrics (Fig. 10). When the UMIs have an impact on the UHII, different
metrics do not act in isolation. Instead, they jointly shape the heat island effect through complex interactions!2.
For instance, BD, GCR, and ISP exhibit spatial competition-type interaction effects, and they have a synergistic
enhancement effect on UHII. An increase in BD directly leads to a decrease in the GCR (as it occupies green
space) and an increase in the ISP (due to the increase in building bases and hard surfaces), forming a “double-
driven heat island effect”. The reduction of green space weakens the transpiration cooling of vegetation and the
reflection of solar radiation. The increase in ISP enhances the absorption of short-wave radiation by the surface
(such as the high heat absorption of asphalt and concrete) and the retention of long-wave radiation, causing the
surface and the atmosphere to warm up, thus increasing both the CLUHII and the SUHII. FAR, MBH, BHSD,
and SVF show 3D spatial form interaction effects. A high FAR is often accompanied by an increase in MBH and
a decrease in SVF (with dense and tall buildings blocking the sky), giving rise to the “canyon effect”. After the
solar radiation absorbed by the building surface is converted into long-wave radiation, it is difficult to dissipate
into the upper air due to the low SVE, resulting in heat accumulation near the ground. At the same time, in
areas with a high FAR, there is a dense population and a large number of facilities, releasing a great deal of
anthropogenic heat, which, when combined with the surface heat storage, exacerbates the SUHII. A high BHSD
(such as a mixed layout of high and low buildings) may alleviate the heat island effect by forming “ventilation
corridors” (promoting air flow in areas of low-rise buildings), while a low BHSD (high-density building clusters
with uniform heights) may suppress air convection and enhance heat retention. Exploring the interaction effects
among these indicators can provide a reliable reference for urban planning and drive the transformation from
single-metric control to systematic morphological optimization.
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Fig. 10. The spearman correlation coefficient among urban morphological indicators.

Implications of urban planning and management

Understanding the relationship among UM, AP, and the UHII is of great significance for improving the UHI
effect and urban planning management’®~7>. Studies have shown that AP play a significant mediating role in
the impact of UMIs on the CLUHII and the SUHIIL. UMIs can affect the diffusion and accumulation of AP. The
change in the concentration of AP, in turn, affects the energy balance and heat exchange process of the city,
ultimately acting on the UHII. We can mitigate the UHII through two approaches. One is to optimize UM to
prevent the accumulation of air pollutants. For the already developed downtown areas, it is unrealistic to reduce
building density and the proportion of impervious surfaces. We can increase parks, green spaces, and street
trees to provide shade and lower the temperature’®. Promoting green roofs can reduce the heat absorption of
building rooftops’”. Encouraging residents to plant vegetation on balconies and in courtyards can increase the
local GCR. Using light - colored, high - reflectivity building materials and paints can increase the reflection of
solar radiation and reduce heat absorption. Painting rooftops and walls white or in light colors can effectively
lower the LST of buildings, further reducing indoor temperatures and alleviating the UHI effect’-%. The second
is to mitigate UHII by reducing air pollutant emissions. We recommend giving priority to the development of
high - capacity public transportation systems such as subways, light rail, and bus rapid transit, encouraging
residents to commute in a green way, reducing the use of private cars, and decreasing the heat generated by
vehicle emissions and traffic congestion.

Limitations and prospects

Firstly, this study only focused on the impact of UMIs on CLUHII and SUHII during midday in summer.
Urumgi has a long and cold winter. During the heating period, the combustion of coal releases a large amount of
pollutants such as PM, ., PM, , and SO,, resulting in poor air quality. The presence of a large number of pollutants
may enhance the absorption of long - wave radiation from the ground by the atmosphere, and the proportion of
the mediating effect of AP may increase. At night in summer, without direct sunlight, the heat stored in buildings
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begins to be slowly released. Although the traffic flow at night decreases, and the heat and exhaust emissions
from motor vehicles are significantly reduced, and the heat and pollution generated by humans also decrease,
the heat and pollutants accumulated during the day may accumulate in buildings due to poor ventilation, and
the UHII may be stronger compared to that during the day. Therefore, it is necessary to conduct a comparative
study of summer and winter, as well as day and night in the future. Secondly, this study was conducted at a
micro-scale and only one sample area was selected. With a limited number of urban meteorological stations, it is
challenging to represent AT and AP in small areas. By adopting a mobile monitoring approach, we were able to
obtain higher-resolution AT and AP data. However, obtaining high-resolution AT and AP data at a larger scale
remains a challenge, and this is one of our future research endeavors.

Summary and conclusions
In this work, we visualized the collected AT and LST data and observed spatial heterogeneity between them. By
comparing the Spearman correlation coefficients between UMIs, AP, and the two types of UHII, we identified
the optimal research units. The best research units for studying the relationships between UMIs, AP, CLUHII,
and SUHII were found to be buffer zones with diameters of 500 m and 300 m, respectively. Subsequently, we
established ridge regression models with the two types of UHII as dependent variables and UMIs and AP as
independent variables. These models revealed the differential impacts of UMIs on CLUHII and SUHII and
explored the mechanisms through which UMIs influence these two types of UHII. Compared to CLUHIIL, UMIs
and AP could explain more of the spatial variability in SUHIL. MPSI had an insignificant impact on both, while
BHSD, FAR, and SVF had opposite effects on them. Finally, we constructed a structural equation model to verify
that all three types of AP had significant mediating effects between some UMIs and UHIL

Currently, global cities are generally facing unprecedented urbanization processes, aggravated UHI effects,
and air pollution problems. This study breaks through the limitations of previous research in understanding
the mechanism by which UMIs affect UHI, systematically analyzing the action paths and differences of UMIs
on different types of UHIL Secondly, it quantitatively evaluates the mediating effect of AP in the association
between UMIs and UHI], filling the gap in the field of quantitative analysis. The research findings not only
deepen the understanding of the relationship among UM, the UHI effect, and air pollution but also provide a
new theoretical basis and practical direction for optimizing the planning and design of UMIs in global cities and
jointly alleviating the UHI effect and air pollution. It also supplements crucial empirical support for subsequent
research on urban sustainable development and policy formulation.
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