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In heavy machinery factories, accurately detecting whether workers correctly wear safety helmets 
is important to their well-being. Since manual inspection and video surveillance are prone to 
misjudgment and omission, designing a fast and intelligent algorithm essential for modern factory 
safety management. The YOLO series, a popular object location and detection method, offers an 
excellent balance between detection speed and accuracy, drawing wide attention from industry 
scholars. In light of this, this paper presents an improved model based on YOLOv10 to achieve 
safety helmet identification. Firstly, it replaces Conv convolution with distributed shift DSConv 
convolution in YOLOv10. This boosts memory efficiency in the convolutional layer and ensures small 
object identification accuracy. Secondly, the Dysample module is incorporated to cut computational 
load, enhance sampling, and improve model generalizability. Additionally, the WIoU loss function is 
introduced to accelerate convergence and increase adaptability. When compared with mainstream 
object recognition algorithms such as SSD, Faster RCNN, and various YOLO versions, the optimized 
model shows its superiority. Compared to the original YOLOv10, its average accuracy rises by 0.5%, 
while floating-point computation and model size decrease by 7.1% and 1.4% respectively. Finally, the 
optimized model is deployed on the Atlas200I DK A2 computing box to validate its usability on IoT 
edge devices.
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There are various safety risks in the heavy machinery factory. For instance, cranemen frequently need to hoist 
raw materials such as steel, semi-finished products, and other items within the workplace. Given that sling chains 
or spreaders are prone to cracking, there exists a significant safety hazard when workers are walking beneath 
the construction area. During ascend operations, construction workers face the risk of falling from heights. In 
limited space scenarios, operators may sustain collision injuries due to spatial constraints. With the continuous 
expansion of the production scale of modern smart factories, the workplace area and the number of factory 
branches have witnessed a rapid increase, accompanied by a sharp rise in the number of workers. Ensuring 
worker safety in the workplace is of utmost importance to enterprises. Thus, workers must adhere to safety 
regulations during actual operations, including wearing safety helmets during working hours. It has been proven 
that wearing safety helmets can effectively prevent most accidental risks, such as falls from heights, collisions, 
electric shocks, and other head-related injuries. However, in actual operations, some accidents still occur due to 
workers ignoring the rules and not wearing safety helmets, or for other reasons. Therefore, monitoring whether 
workers are wearing safety helmets in the workplace is crucial. Nevertheless, manual inspection of safety helmet 
wearing is challenging to achieve full coverage of the workplace due to worker mobility and the large distances 
between different branch factories. As a result, traditional manual inspection is prone to misjudgments and 
missed detection. Video surveillance, on the other hand, can cause fatigue when monitoring objects for extended 
periods in complex backgrounds. Moreover, it has drawbacks such as high labor costs, subjective monitoring, 
and slow response times. It cannot also effectively predict and judge various potential safety risks, making it 
difficult to meet the requirements for real-time detection in modern factory settings.

In contrast, deep learning algorithms, particularly the YOLO (You Only Look Once) series, are representative 
methods for achieving real-time image identification and positioning. These algorithms can predict the 
classification and locations of multiple objects in an image through a single forward propagation, significantly 
accelerating the detection speed and accuracy1. They have been widely applied in the fields of autonomous 
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driving, security monitoring, industrial quality inspection2, and medical services3,. Currently, previous YOLO 
series still struggle to accurately locate and identify safety helmets in complex environments with small targets 
and monochromatic features. This is because, during safety helmet detection, they encounter interfering objects 
like overlapping or shielding. YOLOv10 is the latest real-time and end-to-end object detection technique. Its 
overall network architecture is similar to that of YOLOv8 but with some improvements in model details. Notably, 
deep learning technology enables the learning and extraction of complex visual features, ensuring the robust 
implementation of helmet image detection tasks even in resource-constrained scenarios. However, YOLOv10 
still has limitations in detecting small objects, and its efficiency in recognizing safety helmets can be further 
enhanced. In light of this, exploring more intelligent algorithms for detecting individuals wearing safety helmets 
is highly significant for the management of modern heavy machinery factories.

To address the above mentioned issues, we propose an improved image detection algorithm named IYA, 
which is based on YOLOv10. The goal is to enhance the image detection ability in complex scenarios and 
improve the precision and accuracy of small object detection on a lightweight model. Generally, improvements 
are made in the convolution transformation, sampling model, and loss function on the convolution layer. The 
dataset is sourced from the publicly available Safety Helmet Wearing Detection (SHWD). The simulation results 
verify the effectiveness and practicality of the proposed algorithm. The main innovations are as follows:

	(1)	 This paper presents the YOLOv10-IYA model. This model integrates three key improvements: the adoption 
of distributed shift DSConv convolution instead of Conv convolution, the utilization of the Dysample mod-
ule, and the WIoU loss function. These enhancements significantly promote the detection performance and 
computational cost in complex backgrounds with small targets.

	(2)	 The proposed model is verified on the SHWD dataset compared to various other methods. Extensive exper-
imental results demonstrate that it outperforms other algorithms in small object detection.

	(3)	 IYA is deployed on the Atlas200I DK A2 edge-computing box to further validate its effectiveness. The algo-
rithm also exhibits higher accuracy and precision in real-world scenarios.

Related works and background
Related works
The YOLO series4 models, R-CNN5 (Regions with Convolutional Neural Network), and SSD6 (Single Shot 
MultiBox Detector)based on single-stage detectors are typical object detection algorithms. The YOLO series 
models are one of the research hotspots of industry and academia due to the simpler frame and deployment, 
faster architecture, better training technique, better model scalability, and generalizability. It is widely used 
in production services, security management, traffic management, intelligent retail, agricultural monitoring, 
environmental research, map production7–10, etc. There is some research based on deep learning to conduct 
image detection, Chen et al.11 proposed a lightweight YOLOv4 model for helmet fit detection in construction 
sites, which solves the problems of redundant parameters, slow detection speed and insufficient target 
localization accuracy in complex scenes in the original model, enhances the generalization ability, and improves 
the detection accuracy and detection speed. Wang et al.12 designed a lightweight and improved YOLOv5s model 
for detecting safety helmets in underground mines, which solves the problems of high leakage detection rate of 
safety helmets, difficulty in recognizing small targets and model redundancy in complex scenes (low-light, dust 
interference, and target occlusion) in mines, and improves the average accuracy and detection speed. The number 
of parameters is reduced.Song et al.13 proposed a road small target detection method based on the improved 
YOLO v5 algorithm for small target detection vehicle and pedestrian detection on the road, which solves the 
problem of difficult detection of small targets on the traffic road, low accuracy, and prone to misdetection and 
leakage detection. It improves the model’s learning ability for small targets, feature expression ability, bounding 
box localization accuracy, small target detection accuracy and average recognition accuracy. Lu et al.14 proposed 
a dynamic feature point elimination method combining YOLO detection and geometric constraints to solve the 
problem of attitude estimation bias caused by dynamic objects, and to improve the localization and map building 
accuracy in dynamic scenes, in order to address the problem of SLAM accuracy being interfered by feature 
points in dynamic environments. Min et al.15 proposed a machine tool image recognition algorithm based on 
improved YOLO v5 for machine tool image recognition, which solves the problems of fewer applications of 
machine tool classification, complex preprocessing, small scope of target detection and low recognition accuracy 
in the existing methods, and improves the accuracy and speed of machine tool detection. Wang et al.16 proposed 
a lightweight remote sensing vehicle detection algorithm, AMEA-YOLO, based on the attention mechanism and 
efficient architecture for high-resolution remote sensing vehicle detection, which solves the problems of high 
computational complexity and degradation of model performance in traditional lightweight networks, enhances 
real-time performance, improves the resolution of vehicle images and mAP value, enhanced the processing 
ability of high-resolution images, greatly reduced the number of parameters, and effectively balanced the model 
lightweight and detection accuracy. Chen et al.17 designed a face detector based on the YOLOv3 framework 
for real-time face detection to improve the performance of face detection. Their innovative approach not only 
dramatically improves the accuracy of face detection, but also ensures that a relatively fast detection speed is 
maintained. This result is significant in real-world applications such as surveillance systems and biometric 
authentication, where both high accuracy and fast response time are critical. Han et al.18 proposed a helmet 
detection model based on super-resolution reconstruction-driven YOLOv5 for helmet detection in construction 
sites, which solves the problem of resolution degradation due to compression during the transmission of images 
from construction sites and improves the detection accuracy and speed. In addition, Chen et al.19 proposed an 
improved convolutional neural network model YOLOv7-WFD for helmet detection in high-risk workplaces. It 
solves the problem of insufficient feature extraction ability of the traditional model, improves the model’s ability 
to learn target features, enhances the model’s ability to reconstruct details and structural information during 
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image up-sampling, and improves the model’s generalization ability and detection accuracy.To make it more 
clearly, we listed the main innovation of the above works as shown in Table 1.

YOLOv10
YOLOv10 builds upon and advances the features of the overall network structure found in previous YOLO 
versions. Through a series of innovative modules, it achieves a significantly faster detection speed and enhanced 
detection accuracy. These innovative modules can be elaborated as follows20: (1) The Spatial-channel decoupled 
downsampling (SCDown) module replaces traditional standard convolution with a combination of point 
convolution and depth convolution. This operation not only effectively reduces the computational burden 
and the quantities of parameters but also boosts the efficiency of feature extraction. By pre-adjusting the 
channel dimensions before performing spatial downsampling, the SCDown module can better preserve spatial 
information. As a result, it reduces latency and enhances the overall competitiveness of the model. This unique 
approach allows for more efficient processing of input data, enabling the model to quickly and accurately capture 
relevant features while minimizing resource consumption. (2) The C2fUIB module analyzes the redundancy 
at each stage of the network through intrinsic rank analysis. It then adopts a rank-based block allocation 
strategy and an inverted block structure. This innovative approach greatly optimizes the redundancy and 
complexity within the network. In contrast to traditional block designs, the implementation of C2fUIB ensures 
more efficient model operation without sacrificing performance. By intelligently managing the allocation of 
network resources, the C2fUIB module allows the model to operate more smoothly and effectively, making 
the most of the available computational power.(3) One of the key innovations in YOLOv10 is the removal of 
the non-maximum suppression step, which is typically time-consuming and complex. This is accomplished by 
optimizing the detection strategy and enhancing the accuracy of the detection frame. By re-engineering the way 
the model makes detection decisions, YOLOv10 can streamline the detection process, eliminating a potential 
bottleneck in real-time applications. This not only speeds up the overall detection process but also simplifies 
the underlying algorithms, making the model more accessible and easier to implement in various scenarios. 

Ref. Datasets Method used Results Originality Limitations

11 SHWD Improved Yolov4

Accuracy:92.98%, 
model size 
:41.88 M, 
Detection speed: 
43 frame/second

Introducing depth-separable convolution to reduce the model parameters; embedding 
the coordinate attention mechanism module to enhance the feature information; 
Designing the PB module to fuse the target information; and using the SIoU loss 
function to replace the CIoU loss function to improve the accuracy and speed of 
helmet detection, and reduce the size of the model.

Has the situation of 
missed detection of 
small targets at long 
range.

12 CUMT-HelmeT Improved YOLOv5s Average 
Precision:87.5%

Fusing the attention mechanism CBAM and YOLOv5s to improve the accuracy; 
designing the P2 small target detection layer to increase the multi-scale sensing 
field of the model; replacing the CIoU loss function with the EIoU loss to ensure the 
accuracy of the regression frame; replacing the ordinary convolutional Conv in the 
backbone network with the ShuffleNetV2 to realize the lightweight network model.

The situations 
of missed and 
misdirected tests 
still exist

13 KITTI Improved YOLO v5
Average 
recognition 
accuracy:95.2%

A 160 × 160 small target detection head is added to improve shallow feature retention, 
a deformable convolutional network V2 (DCN V2) is introduced to improve the 
learning ability of small moving targets, a context augmentation module (CAM) is 
added to improve the detection of small targets at long distances, the loss function 
is replaced by EIoU to improve the accuracy of bounding box localization, and the 
SPPCSPC_group module is adopted to improve multi-scale feature fusion.

More hardware 
processing power 
and memory are 
required

14 TUM Improved ORB-
SLAM with YOLO

Target detection 
accuracy :99.3%

Combining the optical flow method with geometrical constraints for secondary 
judgment, and static feature points are utilized for position estimation; target tracking 
algorithm is used for inter-frame detection correction for the image blurring problem.

Weak robustness 
and insufficient 
computational 
resources in highly 
dynamic and 
complex scenarios.

15 Proprietary 
dataset Improved YOLO v5

Precision:98.88%
recall:94.82%
mAP : 98.13%

CBAM attention module is added to the convolutional neural network feature 
extraction layer to enhance important features and suppress useless features; CARAFE 
is added to the feature fusion layer to be able to dynamically generate adaptable 
kernels. Improved precision and accuracy of machine tool recognition.

Weak complex 
environment 
adaptability and 
lower computational 
resource efficiency

16 VisDrone,
VEDAI AMEA-YOLO

mAP:43.4%
Parameters size 
:10.4 M
GFLOPs:23.7
mAP :66.2%

The lightweight network Ghostone is designed as the backbone network and 
combined with FasterNet to accelerate the model training; the enhanced second-order 
channel attention module EnhancedSOCA is utilized to improve the high resolution 
of the image; the GC3 module is designed by introducing the SimAM attention 
mechanism to further lightweight the model; and the HardSwish activation function 
is used

Weak generalization 
capacity

18 Proprietary 
dataset Improved YOLOv5

PSNR: 29.420
SSIM:0.855
The average 
accuracy 
AP:79.1%

A double residual channel Super-Resolution (SR) reconstruction module was 
designed to improve the image resolution. A new CSP module of YOLOv5 is proposed 
to reduce information loss and gradient confusion. An end-to-end safety helmet 
detection model based on SR reconstruction network and YOLOv5 is constructed.

Weak generality 
and real-time 
performance

19 SHEL5K YOLOv7-WFD mAP:92.6%
FPS:79%

The DBS composed of deformable convolution, batch normalization layer and 
SiLU activation function to enhance the feature extraction ability of the model was 
proposed. The CARAFE module was introduced for feature upsampling to improve 
the reconstruction ability of model details and structural information. The Wise-IoU 
loss function is used to calculate the localization loss to enhance the generalization 
ability.

Weak computational 
efficiency, hardware 
compatibility, 
furhter optimize 
dataset balance, 
and expand range 
of application 
scenarios

Table 1.  Summary of different methods derived from up-to date literature.
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(4) This enhancement concerning improved detection frame rate not only simplifies the post-processing 
procedures of the model but also significantly improves the performance of real-time object detection. The 
innovative structures of the PSA (presumably another key component, though not elaborated in the original 
text) and SCDown further reduce the computational load and the number of parameters. They achieve this by 
optimizing the downsampling process while maximizing the retention of information during downsampling. 
This dual-optimization approach ensures that the model can operate at a high frame rate, making it suitable 
for applications where real-time response is crucial, such as video surveillance and autonomous driving. The 
network structure of YOLOv10 is illustrated in Fig. 1.

Methods
Detection model
An improved object recognition method based on the YOLOv10 algorithm is designed in this section to 
enhance accuracy and precision. Firstly, the Distributed Shift Convolution (DSConv) is used to promote 
memory efficiency and detection accuracy in the convolution layer. Dysample is then leveraged to improve the 
efficiency and accuracy of the model and reduce the computational load. Finally, the WIoU loss function serves 
to improve the ability of small object detection, meanwhile accelerating the convergence speed and enhancing 
its adaptability. The optimized YOLOv10 network structure is provided in Fig. 2, and the enhancements have 
been marked in red dotted lines.

DSConv depth separable convolution
The Standard convolution has the advantage of parallel computing on high-performance GPUs and can 
simultaneously deal with spatial and channel information. However, it is weak in the context of limited 
computational load and memory, such as mobile devices and embedded systems. In contrast, the traditional 
convolutional kernel is divided into two modules: the Variable Kernel (VQK) and the Distribution Offset 
by DSConv. It enables to achieve higher speed and lower usage of memory by only storing integer values 
in the VQK. At the same time, the operations of the Distribution Offset based on both kernel and channels 
guarantee the same output as the original convolution. Furthermore, it splits the standard convolution into deep 
convolution and point-by-point convolution. The deep convolution only performs convolution operation on a 
single channel and adopts a distinct convolution kernel to each channel. The point-by-point convolution exploits 
a convolution kernel on all channels to combine the results of deep convolution. The advantage of DSConv is 
that it leverages a learnable convolution kernel to further improve the model performance compared to deep 
separable convolution. The overall goal of DSConv is to simulate the behavior of convolutional layers by using 
the methods of quantization and distribution shifts, and hence it is more memory efficient than the traditional 
convolution. The operations of DSConv are shown in Fig. 3.

Here, the original convolution tensor is denoted as (cho, chi, k, k), where cho and chi are the number of channels 
in the next layer and the current layer, respectively. k is the width and height of the kernel, and BLK is the size 

Fig. 1.  YOLOv10 Network Architecture.
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of the given block, The role of the CELL( ) function is to compute the distributional offset tensor based on the 
distribution of floating point weights in the pre-trained network. The Eqs. 1–2 computes the memory saved ratio 
of the generalized convolution to DSConv, respectively:

	
p =

ch0 · k2 (
bit + 2 · 32 · CELL

(
chi

BLK

))
+ 2 · 32 · ch0

32 · (ch0 · chi · k2)
� (1)

	
p = bit

32 +
2 · CELL( chi

BLK
)

chi
+ 2

chi · k2
� (2)

The above result can be approximately calculated in Eq. (3) when the deviation in the shifted value is negligible:

	
p ≈ bit

32
� (3)

Dynamic upsampler
The UpSample modules are mainly used to perform up-sampling operations on input data. It executes up-
sampling data processing with multiple channels based on one-dimensional time series, two-dimensional spatial 
images, and three-dimensional volumetric data. The critical role of this module is to achieve data enlargement 
and increase the data resolution while maintaining or transforming the features.

The Dysample is an innovative resource-efficient dynamic upsampler. Kernel-based dynamic upsamplers 
offer large performance gains. However, they impose a large workload mainly due to time-consuming dynamic 
convolution and additional subnetworks used to generate dynamic kernels. The Dysample employs the way of 
point sampling20 to avoid the high computational load and resource consumption required by traditional kernel-
based dynamic upsamplers. Therefore, it is superior to other approaches in multiple intensive prediction tasks. 
Meanwhile, as an advanced dynamic upsampler, the Dysample can be effortlessly implemented by leveraging the 
standard built-in functions in PyTorch. Compared to kernel-based dynamic upsamplers, this resource-efficient 
sampling does not require customized CUDA packages and has fewer parameters, FLOPs, GPU memory, and 
latency.

Fig. 2.  Improved YOLOv10 network architecture.
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The schematic diagram of the Dysample structure is given in Fig. 4. To the feature map X with the size of 
C×H1×W1 and the sampling set S of size 2×H2×W2, where the first digit 2 denotes the coordinates of x and y. The 
grid_sample function resamples X, which is a hypothesized bilinearly interpolated X intoX ′of size C×H2×W2 
using the positions in S. The process is formulated in Eq. (4):

Fig. 4.  Schematic diagram of Dysample structure.

 

Fig. 3.  DSConv Operation.
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	 X ′ = grid_sample(X, S)� (4)

Based on an upsampling scale factor of s, and a feature map X size of C×H×W, an offset O of size 2s×H×W is 
generated using a linear layer, and the input and output channel numbers are C and 2s2, respectively. It can be 
reshaped into a size of 2×sH×sW by pixel transformation. The sampling set S is the sum of the offset O and the 
original sampling grid g, and this process can be denoted as follows.

	 o = linear(X)� (5)

	 S = g + O� (6)

where the shaping operation is omitted. Hence, the upsampled feature maps X with the size of C×sH×sW could 
be generated.

According to the above steps, Dysample achieves dynamic up-sampling, in which the sampling points and 
the adjustment of their positions are dynamically determined in the light of the content of input feature maps. 
Consequently, it could ensure the efficiency and effectiveness of the up-sampling process.

Loss function optimization
The original YOLOv10 model uses CIoU as the loss function, and its formulas are presented in Eqs. 7–10:

	
LCIoU = LIoU +

(x − x2
gt) + (y − y2

gt)
(W 2

g + H2
g ) + αν� (7)

	
α = ν

LIoU + ν
� (8)

	
ν = 4

π2 (arctan
w

h
− arctan

wgt

hgt
)2� (9)

	
LIoU = WiHi

wh + wgthgt − WiHi
� (10)

where α is a weight function for balancing the parameters, and v is the aspect ratio function for measuring 
the ratio consistency. The expression of IoU is shown in Fig. 5, where w, h, (x, y) denote the width and height 
dimensions of the predicted frame and the center coordinates, respectively, wgt, hgt, (xgt, ygt ) describe the width 
and height dimensions of the real frame and the center coordinates. Wi, Hi describes the width and height of the 
intersection, respectively. Wg and Hg present the minimal border size of the width and the height, respectively. 
The CIoU loss function has some disadvantages, for example, slower convergence, lack of dynamic adjustment 
mechanism, and insensitive to small object detection, although it considers the factors of overlap area, center 
distance, and aspect ratio.

Therefore, the WIoU based on a dynamic nonmonotonic focusing mechanism is used to take the place of 
CIoU, which is computed in formulas (11)-(13)

	 LW IoU = rRW IoU LIoU � (11)

	
r = β

δαβ−δ
� (12)

	
RW IoU = exp( (x − xgt) + (y − ygt)

(W 2
g + H2

g ) )� (13)

where RWIoU amplifies the LIoU of ordinary-quality anchor frames, r is a nonmonotonic focusing coefficient 
used to focus on ordinary-quality anchor frames, α and δ are hyperparameters, respectively. r can dynamically 
enhance bounding-box gradient gain by decreasing the contribution of high-quality samples to the loss value, 
and thus reduce the harmful gradients generated by low-quality anchor frames during the training process. It 
focuses on ordinary-quality anchor frames to improve the model localization ability.

There is a weighting mechanism in the WIoU loss, which pays more attention to small object detection. The 
dynamic adjustment mechanism guides the model to focus on difficult samples or samples with large errors to 
promote the convergence of the model. On this basis, the WIoU loss can better adapt to objects with different 
sizes and shapes. In the workplace, the safety helmets may be blocked by some barriers or non-standard wearing 
by workers. Due to the complex environment of the workplace, we employ the WIoU loss function to replace 
the CIoU in the original model of YOLOv10 to accelerate the convergence speed and enhance the adaptability.

Model deployment
Edge computing has the advantage of quick system response and data processing, and it can provide services 
such as computing, storage, and network bandwidth near terminal users. It can better adapt to the requirements 
of modern factory management, such as real-time, accuracy and efficiency. Therefore, it is practical to carry out 
intelligent research on safety helmet detection under the edge computing architecture. The schematic diagram 
of the small object detection system is shown in Fig. 6. It is composed of the following parts: algorithm design, 
model training, algorithm deployment, and visualization display. To verify the effectiveness of the intelligent 
detection algorithm, it is deployed on the Atlas 200I DK A2 edge computing box, which is a high-performance 
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Fig. 6.  System Schematic.

 

Fig. 5.  Area of the intersection of real and predicted frames.
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AI developer kit that provides 8TOPS INT8 computing power. It can realize a variety of data analyses and 
reasoning calculations such as images and video. The Rise 310 series of AI processors is the core component with 
powerful encoding and decoding ability, which guarantees the model training smoothly.

Experiments and discussion
Datasets and experimental settings
The choice of dataset is critical to the quality of the network model in deep learning research. In the experiments, 
we select the publicly available safety helmet-wearing detection dataset (SHWD) to evaluate the performance of 
the algorithm. The dataset contains 20,588 images in total, including 9,044 images wearing safety helmets and 
11,514 normal head objects without wearing safety helmets. The SHWD dataset is partitioned into training set, 
validation set, and test set, respectively, and the ratio of them is 8:1:1.

The following metrics, Precision (P), Recall (R), Average Precision (AP), and the mean of Average Precision 
(mAP) are used to evaluate the performance of the improved model. Here, P is the proportion of correctly 
positive predictive detection in the sum of correct and incorrect positive predictions. R is the ratio of correctly 
positive predictive samples in the total predictions. The above two metrics are used to measure the accuracy of 
model detection. AP is the average of some classes, which depicts the area between the P-R curve and x axes. 
mAP describes the mean of APs for all classes. As mentioned above, IOU presents the proximity of predictive 
and real bounding boxes. In the training process, different IOU thresholds are set to measure the accuracy of 
predicted results. As a confidence level, mAP is always computed with different IOU thresholds. For example, 
mAP@0.5 stands for detection results that are correct with IOU larger than 0.5. They are expressed in Eqs. (14) 
-(17), respectively.

	
P = T P

T P + F P
� (14)

	
R = T P

T P + F N
� (15)

	
AP =

∫ 1

0
p(r)dr� (16)

	
mAP =

N∑
i=1

APi

N

� (17)

Where TP stands for true positive which represents the number of correctly positive predictions in the positive 
detection. FP is short for false positive which depicts incorrect object detection.FN is short for false negative 
which represents the number of miss detected objects. p(r) is a smooth precision-recall curve ranging from 0 to 
1. N denotes the number of detection classes. The metrics of the Floating point Calculations ( GFLOPs) and the 
model size aims to measure model complexity.

The experimental environment is configured as follows: the CPU is AMD Ryzen 77840Hw/ Radeon 780 M 
Graphics, the RAM is 16GB, and the graphics card model is NVIDIA GeForce RTX 4060 Laptop. The learning 
framework is Pytorch 2.2, Python 3.8, CUDA 12.1, and the operating system is Windows 11. The parameters 
used for model training are set in the Table 2.

The reasons for the above parameter selection are as follows. The initial learning rate is set to the classic 
benchmark value. In the YOLO series and most CNN target detection models, 0.01 is a typical initial learning 
rate of SGD optimizer, which can balance the convergence speed and stability. At the same time, due to the 
Anchor-Free design of YOLOv10 being more sensitive to the learning rate, setting a high learning rate, such 
as 0.1, will cause the bounding box regression to diverge. Conversely, using a low learning rate, like 0.001, will 
decelerate the process of feature fusion. The batchsize is set to 16, which is the limit of single-card training on an 
NVIDIA RTX4060 with 8GB memory due to GPU memory limitations. The Momentum is set to 0.937 which 
directly inherit from the default configuration of YOLOv5 and is validated by the training process. As to the 
parameter of training epoch, the model fits well when the number of training epochs reaches 100. With the 
increase of the number of training epochs, the value of mAP does not significantly increase and therefore the 
Training Epoch is selected as 100. The strategy of Cosine annealing decay can periodically enlarges the learning 

Parameter name Parameter value

Initial learning rate 0.01

Batchsize 16

Momentum 0.937

Training Epoch 100

Decay strategy Cosine annealing decay

Final learning rate 0.0001

Weight decay 0.0005

Table 2.  Experimental parameter settings.
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rate and avoid getting trapped in a local optimum compared to the strategy of linear decay.The Weight decay 
inherits from the Darknet framework’s default Settings, and it forms a regularization complementary to SGD 
momentum. Finally, the formula for the Final learning rate is as follows:

	
ηt = ηmin + 1

2(ηinitial − ηmin)
(

1 + cos
(

Tcurrent

Tmax
π

))
� (18)

Where ηinitial,ηmin,Tcurrent,Tmaxdenote the initial learning rate, the minimum learning rate, the last cycle 
and the total training period, respectively.The values of them are 0.01,0.0001, 100 and 100,respectively.According 
to the above illustration, the final result is 0.0001.

Ablation experiments
To evaluate the effectiveness of the improved algorithm, ablation experiments are designed under the same 
training environment. The DSConv convolution, Dysample sampling mode, and WIoU loss function are mixed 
with the original YOLOv10 algorithm which is also the baseline. The results of the ablation experiments with 
IYA are represented in Table 3. Here, “√” stands for that the corresponding module is leveraged in the training 
process, and “×” otherwise.

It can be found the use of DSConv convolution improves the accuracy and the mAP value by 1%,, and 
0.1%, respectively, and the floating-point computation is reduced by 7.1%, however. Likewise, the model size 
is increased by 4% compared to the baseline algorithm. In comparison with the original Upsample sampling 
method, the accuracy by leveraging the Dysample upsampling method and mAP increased by 0.2%, and 0.2%, 
respectively. The floating-point computation load is not reduced, and the model size is increased by 0.5%. The 
WIoU loss function makes the mAP increase by 0.2%, and the floating-point computation load and the model 
size remain unchanged. At the same time, with the DSConv convolution and Dysample sampling, the accuracy 
is increased by 1%. Furthermore, through the combined use of DSConv convolution, Dysample sampling, 
and WIoU replacing the corresponding modules, the precision and the mAP value are increased by 5.7%, and 
0.5%, respectively. The floating-point computation load, and the model size are reduced by 7.1%, and 1.4%, 
respectively. Ablation experiments demonstrate that there are obvious enhancements with the simultaneous 
applications of the three improved modules, and validate the efficiency and effectiveness of IYA.

In order to validate the generalization ability of the model more reliably and to reduce the evaluation bias due 
to the different ways of data segmentation, we adopted the k-fold cross-validation method to evaluate the IYA 
model, and the evaluation results are shown in Table 4.

After five cross-validations, the mAP values of the IYA are all stable above 87%, which indicates that the IYA 
algorithm has a strong model generalization ability.

Algorithm performance comparison
To further assess the proposed algorithm, we carry out a series of experiments. The batch size and the learning rate 
are 16, and 0.01, respectively. A Stochastic Gradient Descent (SGD ) optimizer is utilized. The model is trained 
on the validation set 100 times iteratively, and the results are shown in Table 5. We can find that the precision 
of IYA is enhanced and the metric of mAP is increased by 0.5%. Meanwhile, the floating-point computation 
load and the model size are reduced by 7.1%, and 1.4%, respectively. The precision of IYA is reduced by 0.1% 
in the scenario of wearing helmets for workers. On the contrary, the precision is improved by 0.2%. It is also 
noticed that IYA not only enhances the detection accuracy but also reduces GFLOPs and model size, meanwhile 
improving efficiency.

Algorithm K mAP(%)

IYA

1 87.9

2 88.8

3 91.2

4 91.8

5 88.6

Table 4.  Results of k-fold cross-validation.

 

DSConv Dysample WIoU P/(%) R/(%) mAP/(%) Floating point Calculations / GFLOPs Model size/MB

× × × 90.6 87.7 93.4 8.4 5.61

√ × × 91.6 87.6 93.5 7.8 5.85

× √ × 90.8 87.7 93.6 8.4 5.64

× × √ 96.2 97.0 93.6 8.4 5.61

√ √ √ 96.3 97.0 93.9 7.8 5.53

Table 3.  Results of ablation with IYA.
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There are two kinds of classes in the training model: one is a “hat” signified correctly wearing a safety helmet, 
and the other one is a “person” represented incorrectly or without wearing a safety helmet. The comparison of 
P-R curves with the original YOLOv10 algorithm and the IYA on the validation set are present in Fig. 7(a) and 
Fig. 7(b), respectively. It describes the variation of the pair of precision and recall. The area enclosed by this curve 
and the X-axis denotes higher accuracy and lower incorrect precision. We can find that the area located between 
the P-R curve of IYA and the X-axis is significantly larger than that of the original YOLOv10. It demonstrates 
that the precision of IYA is superior to the YOLOv10. This visual and quantitative comparison demonstrates 
the enhanced performance of IYA in terms of achieving more accurate detection and reducing the rate of false 
positives.

Figures 8 and 9 show the results of the original YOLOv10 model and the IYA model, respectively. The two 
models are trained in the same training environment with a batch size of 16, a learning rate of 0.01, and 100 
iterations on the validation set using the Stochastic Gradient Descent (SGD) optimizer. The comparison results 
demonstrate that the IYA model significantly outperforms the original YOLOv10 model on all metrics both in 
the training and validation phases, that is, achieving significant improvements in recall, precision, mAP50, and 
mAP50-95.

In order to better demonstrate the performance of the IYA algorithm, we validate it using a custom-collected 
factory image dataset, and the validation results are shown in Fig. 10:

As can be seen from Fig. 10, the mAP value of IYA algorithm in the factory image dataset of the customized 
cell phone is 91.2%, which indicates that IYA algorithm performs well.

Finally, we compare the model performance of the IYA and YOLOv10 algorithms shown in Fig. 11, including 
precision, recall, mAP@0.5, and mAP@0.5:0.95. Here, the yellow curve denotes the IYA variation tendency, 
and the blue curve represents the original YOLOv10 algorithm. We observe that the precision of IYA generally 
approximates to YOLOv10 algorithm shown in Fig. 11(a). It is known that the higher the precision, the greater 
the number of correctly detected small positive targets. Meanwhile, the higher the recall is, the fewer the missed 
detection. It also can be seen that the recall of IYA is larger than that of the YOLOv10 algorithm shown in 
Fig. 11(b). Similar to the trend of recall, the metric of mAP@0.5 with IYA on the SHWD dataset is superior to 
the YOLOv10 algorithm shown in Fig. 11(c). The larger mAP@0.5:0.95 is, the more accurate the prediction box. 
Figure 11(d) shows that the mAP@0.5 curve of IYA approximates the original YOLOv10.

Fig. 7.  P-R curve.

 

Algorithm

P (%)

mAP/(%) Floating point calculations / GFLOPs Model Size/MBWith safety Helmet Without safety helmet

YOLOv10 89.5 91.7 93.4 8.4 5.61

IYA 89.4 91.9 93.9 7.8 5.53

Table 5.  Algorithm comparison.
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To assess the efficacy of the optimized model, we compared it with the typical object recognition algorithm, 
including SSD, Faster RCNN, YOLOv3, YOLOv8, YOLOv9-tiny, YOLOv10, YOLOv10-DSConv, YOLOv10-
DynamicConv22, YOLOv10-Dysample, YOLOv10-CARAFE23, YOLOv10-SIoU, YOLOv10-EIoU and 
YOLOv10-WIoU.They are trained under the same conditions and dataset partitioning methods. The relevant 
results are presented in Table 6. The mAP@0.5 of IYA is up to 93.9%, which is superior to other algorithms. 
The model size of IYA is the smallest, however. In general, IYA demonstrates better performance in contrast 
with other YOLOv10-based algorithms. As to the metrics of the GFLOPs and the model size, IYA is notably the 
smallest of all of the algorithms, which shows the effectiveness of the combined model.

Case analysis
The detection effect of the YOLOv10 algorithm and IYA on the dataset of SHWD is illustrated in Fig. 12. It 
is noticed that both the YOLOv10 algorithm and IYA have the phenomenon of loss detection. The latter has 

Fig. 9.  The models were performed during training using the IYA.

 

Fig. 8.  The models were performed during training using the original YOLOv10.
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a lower loss-detecting rate, however. There is missed detection with the YOLOv10 algorithm while IYA can 
correctly detect all images. At the same time, the small object detection rate of the IYA algorithm is higher 
compared with YOLOv10.

Additionally, the improve algorithm has been deployed on the edge devices to further test its effectiveness.
The results demonstrated that the YOLOv10 algorithm has an FLOPs of 0.7 on Atlas 200I DK A2, and the IYA 
algorithm has an FPS of 0.9. The inference speedup of about 28.6%.

Conclusions
A safety helmet detection algorithm, IYA based on YOLOv10 is proposed in this research. Comprehensive 
experiments demonstrated that it has the advantages of higher accuracy, faster detection speed, and less 
computational resources. At the same time, IYA has higher accuracy, lower computation complexity of floating-
point, and a smaller model size compared with SSD, Faster RCNN, and YOLOv9-tiny. Since we focus on 
the improvement of detection accuracy and the reduction of computational load, we expect the continuous 
improvement can reach the optimal performance in the field of small object detection in the future. Additionally, 
we will adopt the strategies of image reprocessing and image enhancement to further enhance the detection 
accuracy, and take a lightweight approach to enhance the model and reduce the model size without affecting 

Fig. 10.  Real factory dataset validation results.
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accuracy, so that it facilitates work on embedded devices in the scenario of limited memory to improve its 
universality.

Fig. 11.  Comparison curves of accuracy, recall, mAP@0.5, mAP@0.5:0.95.
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