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Cardiovascular disease (CVD) is one of the severe disorders that requires effectual solutions. CVD
mainly affects heart functionality in the human body. The impacts of heart disorders are hazardous,
which primarily spread from arrhythmia and higher hypertension to heart attack or stroke and also
death. Employing newly established data analysis techniques and inspecting a patient’s health record
might help recognize CVD promptly. In general, pervasive healthcare (PH) services have the potential
to enhance healthcare and the excellence of the lifespan of chronic disease patients over constant
monitoring. However, the conventional risk evaluation techniques are neither dynamic nor accurate
because they stick to the arithmetical data and ignore the significant time-based effects of the crucial
signs. So, recent work has utilized machine learning and deep learning methodologies for predicting
CVD on clinical datasets. These methods can decrease death rates by predicting CVD depending on
the medical data and the patient’s severity level. This manuscript presents a deep convolutional fuzzy
neural networks with stork optimization on cardiovascular disease classification (DCFNN-SOCVDC)
technique for PH services. The main goal of the DCFNN-SOCVDC method is to detect and classify
CVD in the healthcare environment. At first, the presented DCFNN-SOCVDC model performs data
preprocessing by utilizing Z-score normalization to preprocess the medical data. For the feature
selection process, the presented DCFNN-SOCVDC technique utilizes an arithmetic optimization
algorithm model. Besides, the deep convolutional fuzzy neural network (DCFNN) method is employed
to identify and classify CVD. Eventually, the presented DCFNN-SOCVDC approach employs a stork
optimization algorithm method for the hyperparameter tuning method involved in the DCFNN model.
The performance of the DCFNN-SOCVDC approach is evaluated using a CVD dataset, and the results
are assessed based on various metrics. The performance validation of the DCFNN-SOCVDC approach
portrayed a superior accuracy value of 99.05% over recent models.

Keywords Cardiovascular disease, Stork optimization algorithm, Fuzzy neural network, Feature selection,
Medical data

CVD is a significant disease that mainly affects the blood and heart vessels. The death of mortal lives can be
connected primarily to a deficiency of initial disease diagnostics, and a preventive CVD risk prediction will
significantly alleviate the disorder'. Generally, medical data can be accessible through digital health records
collected from patients. This can provide data to support healthcare experts, identify mistakes or acute
conditions, and make the medical experts subsequently aware. Related to cardiac system disease, CVD can be
affected by numerous causes such as high blood pressure, lack of exercise, diabetes, and smokingz. CVD is an
alternative term for heart disease and is the most predominant cause of mortality globally. Doctors may have
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difficulty effectively and quickly identifying some cardiac illnesses. Consequently, there is a progressive need
for cost-effective healthcare services to be delivered to everybody, everywhere, and at any time universally to
assist and observe patients and evade exclusive hospital-based treatment®. PH is a novel discipline using global
computation technology to deliver preventive and emergency healthcare services to patients”. It is a developing
field with an extensive surplus of health sensors, transmission protocols, and smart context-aware applications.
PH methods aim to recognize important patient vitals, assuring prevention care and constant monitoring
solutions, thus increasing system efficiency or reliability®.

There is increasing evidence that the importance and benefits of PH have been value the effort and are
above reason. The main advantages include its prevalent and helpful technology nature, remote monitoring,
self-management of circumstances, medical service, higher quality health evaluation, and an essential decrease
in healthcare costs®. Traditional methods are often the most important for incorrect analysis and take longer
because of human errors’. Also, it is a costly and exhaustive calculation method for disease study and ensues
time in the evaluation. To overwhelm the difficulties in classical invasive-based techniques for identifying heart
disease, many researchers have tried to develop various noninvasive intelligent healthcare methods based on
analytical machine learning (ML) methods®. Al is frequently used in prediction to solve these difficulties, among
other deep learning (DL) and ML taking the lead. This method studies an enormous number of healthcare
data to describe whether the patient has the illness and achieves more accurate prediction results than physical
diagnosing’. Among the techniques often created in clinical decision support systems is a diagnosing method
based on ML, which can predict a patient’s diseas€’s survival depending upon the risk factors!®. ML approach has
recognized a possible space and is frequently utilized in circulatory medicine.

This manuscript presents a deep convolutional fuzzy neural networks with stork optimization on
cardiovascular disease classification (DCFNN-SOCVDC) technique for PH services. The main goal of the
DCFNN-SOCVDC method is to detect and classify CVD in the healthcare environment. At first, the presented
DCFNN-SOCVDC model performs data preprocessing by utilizing Z-score normalization to preprocess the
medical data. For the feature selection (FS) process, the presented DCFENN-SOCVDC technique utilizes an
arithmetic optimization algorithm (AOA) model. Besides, the deep convolutional fuzzy neural network
(DCENN) method is employed to identify and classify CVD. Eventually, the presented DCFNN-SOCVDC
approach employs a stork optimization algorithm (SOA) method for the hyperparameter tuning method
involved in the DCFNN model. The performance of the DCFNN-SOCVDC approach is evaluated using a CVD
dataset, and the results are assessed based on various metrics. The key contribution of the DCFNN-SOCVDC
approach is listed below.

o The DCFNN-SOCVDC model employs Z-score normalization to preprocess medical data, effectually stand-
ardizing all features to a standard scale. This step improves the accuracy of subsequent ML models by ensur-
ing that each feature contributes equally during training. It also assists in mitigating the impact of outliers,
resulting in more reliable predictions.

o The DCENN-SOCVDC technique employs the AOA method for FS, efficiently detecting the most relevant
features from the medical dataset. AOA improves the models classification performance by choosing key
features, mitigating complexity and improving prediction accuracy. This approach assists in focusing on the
most influential data aspects for improved model outcomes.

« The DCFNN-SOCVDC approach utilized the DCFNN method for precise identification and classification of
CVD, integrating spatial processing with fuzzy logic to improve decision-making. This approach enhances the
model’s capability to learn from complex, uncertain data. DCFNN effectively addresses the challenges of CVD
diagnosis by incorporating convolutional and fuzzy logic capabilities.

o The DCFNN-SOCVDC methodology implements the SOA model to fine-tune the hyperparameters of the
DCFNN model, ensuring optimal performance and reducing the risk of overfitting. By improving parameter
selection, SOA enhances the accuracy and robustness of the model. This technique allows the DCFNN model
to attain enhanced generalization on unseen data, optimizing its predictive capabilities.

o Integrating Z-score normalization, AOA-based FS, DCFNN for classification, and SOA for hyperparameter
optimization creates a novel hybrid approach that improves CVD prediction accuracy. This method uniquely
incorporates advanced ML techniques with optimization strategies to optimize each process step. DCFNN
allows for robust classification, while AOA and SOA contribute to improved FS and model tuning, improving
overall model performance.

Thearticleis structured as follows: “Literature works” section presents the literature review, “Proposed methodology”
section outlines the proposed method, “Experimental results and analysis” section details the results evaluation,
and “Conclusion” section concludes the study.

Literature works

Baseer et al.!! propose a new coronary artery disease prediction method, which easily unites the Internet
of Medical Things (IoMT) and AI in responding to the development of a universal cardiovascular problem.
The method utilizes innovative methods, especially TabNet in combination with catBoost, to increase heart
disease prediction precision and efficacy. The IoMT is a significant module because it allows continuous data
collection from various healthcare devices. In CVDs, the method utilizes innovative techniques, especially
TabNet in combination with catBoost, to increase heart disease prediction precision and efficacy. Husnain et
al.!2 propose an extensive accuracy health service intended for health prevention and promotion of chronic
illnesses. It contains constant real-time lifestyle monitoring and environmental features incorporating wearing
devices and internal air quality sensors. The Al-supported telehealth platform provides comprehensive visions
into patients’ environmental, clinical, and lifestyle data, enabling consistent predictions of upcoming severe
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worsening actions. ML and DL methods advance extensible chronic disease-predicting methods that endured
outside confirmation. Sheela and Krishnamurthy'® proposed a new Inception v3 with a VGG16 for predicting
cardiovascular risk rates by noninvasive fundus and freely accessible images. This technique exploits innovative
image analyzing methods containing noise reduction and contrast enhancement. The significant features of optic
disc detection and blood vessel segmentation have been detached from the fundus images. In such cases, the
Inception-v3 structure can be primarily used to capture the complicated hierarchical patterns. By incorporating
these features with medical data, the method can be trained to forecast cardiovascular risk rates. Kaur et al.'*
proposed to study the application of DL-based techniques to create an automatic method for hypertension
recognition. A database containing demographic information, lifestyle factors, blood pressure measurements,
and medical history has been used. Various DL methods were utilized to create a prediction method for detecting
hypertension with stroke and heart-illness prediction. Preprocessing can be completed on the utilized dataset
with several dissimilar characteristics for hypertension prediction, handling misplaced values, dealing with class
imbalance, and normalizing features. Methods for FS were used to regulate which variables are most beneficial
for hypertension prediction.

Rajkumar et al.!> present an improved DL-based structure for forecasting heart illness. The common freely
accessible Hungarian heart illness dataset, which contains heart illness-associated data gathered from patients
over IoT sensor devices, has been used for execution. The input dataset has been preprocessed utilizing a medium
studentized outstanding technique for solving missing values and error data. The alteration in LSTM output can
be enhanced by using an ISHO method. Zhang et al.'® propose physics-guided DL networks to effectively evaluate
CVD in an IoT-based method. The author specially initiates an attending system to identify the effectual features
by studying the significance of coronary artery dissection features and artery sections. Physical knowledge of
blood movement should be incorporated into the loss function to attain the evaluation with explainability.
Mandava!” introduced a hybrid DL smart system. Assessments and tests are performed utilizing the five
benchmark datasets for cardiac illness. Three data processing methods are initially used in the preprocessing
phase to enhance the dataset quality by averting undesirable falsifications: replacing missing values, solving
data imbalance difficulties, and outlier removals. Afterwards, DL-based MDenseNet201 extracts the illness’s
interrelated features. Least Absolute Shrinkage and Selection Operator (LASSO) and Relief methodologies have
been utilized to choose the suitable features. Lastly, a DL-based IDRSNet can be used to predict CVD. Ramesh
and Lakshmanna'® presented an Optimum Scrutiny Boosted Graph Convolutional LSTM (O-SBGC-LSTM),
SBGC-LSTM improved by Eurygaster Optimizer Algorithm (EOA) for fine-tuning the hyperparameter for
initial detection and inhibition of diabetes illness. This technique takes the discriminatory features in temporal
and spatial dynamics and explores the co-occurrence relationships among temporal and spatial areas. This
technique also proposes a temporal hierarchical structure to upsurge the topmost SBGC-LSTM layer temporal
fields, increasing the capability to study higher-level semantic representations and substantially reducing the
computational cost. Geetha et al.'® propose the HEART SAVIOUR model for real-time heart disease analysis
using DL and Transformer methods. Patient data undergo preprocessing and encryption at the edge gateway
before being sent to the cloud for analysis using the Dense Nested Four Way Transformer Network (DNFW-
Net) model. Liao et al.?? explore the use of artificial neural networks (ANNG), integrated with genetic algorithms
(GAs) and error-back propagation, to enhance predictive models, optimizing resources in smart electronic
health systems through the analysis of large-scale patient data.

Verma et al.?! present a framework for predicting zoonotic virus infections using Al and IoT. It integrates IoT
devices, fog-layer user authentication, and an ensemble model for user classification with cloud computing for
data analysis. Malviya et al.?? aim to improve heart disease diagnosis by optimizing a convolutional neural network
(CNN) with Galactic Swarm Optimisation (GSO) models for improved performance. Alturki et al.* explore the
IoMT, focusing on its role in healthcare for remote patient monitoring and disease detection. Alrowais et al.?*
develop reliable stroke prediction models using adaptive neuro-fuzzy inference and CNNs, addressing class
imbalance and improving accuracy through Al and fuzzy logic. Wei and Yi?® propose an ML-based approach
integrating Naive Bayes (NB) classifier, Jellyfish Search Optimizer (JSO), and Flying Foxes Optimization (FFO)
to predict the effects of yoga on Chronic Venous Insufficiency (CVI). Lu et al.? present an effective method for
the early detection of cardiorespiratory complications during pandemics using wearable ECG sensors and CNNs.
Rajeshkumar et al.”” introduce the UTO-LAB framework using a blood pressure meter and RGB-D camera. Heart
rate and blood pressure data are captured and processed to extract significant features for analyzing respiratory
patterns. Advanced techniques like UMFCC and PCA extract relevant features, which are then analyzed using
Aquila-optimized OMSVM to classify breathing activities. Yogeesh and William?® explore integrating fuzzy logic
and DL in BDSS for improved CVD prediction, enhancing accuracy and diagnosis using sensor data. Mohanty et
al.?® present an ML methodology for chronic kidney disease (CKD) risk prediction by integrating neutrosophic
logic with classification algorithms. Neutrosophic logic handles uncertainty in medical data, improving accuracy
and stability. Mani et al.*® integrate IoT with cloud and DL to enable accurate, proactive healthcare predictions
by utilizing electronic medical records and IoT data, improving early intervention and preventive care. Sahni
and Shukla’! discuss how precision medicine and Al can personalize healthcare. It emphasizes the requirement
for collaboration and robust infrastructure for effectual implementation. Mansoor and Subramaniam® propose
a Healthcare Monitoring-based IoT (HM-IoT) framework by using IoT devices, securely encrypting data, and
using an ANN model to classify data and alert healthcare professionals to abnormalities. Desai et al.** discuss
how ML models can assist in predicting diseases based on symptoms.

Despite the advancements in predictive models for CVD and chronic illnesses, various limitations remain.
Many existing methods face difficulty handling class imbalances and uncertain data, affecting prediction accuracy.
While AJ IoT, and ML methods have shown promise, challenges like data privacy, real-time processing, and
integrating heterogeneous healthcare data (e.g., IoT, clinical, and lifestyle data) remain unresolved. Furthermore,
most models lack scalability, are limited by available patient data, or fail to present explainability in predictions.
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There is also a requirement for more personalized models that account for individual patient variations and
contextual factors. Further research is required to improve model generalization, improve computational
efficiency, and address data accessibility issues in real-world applications.

Proposed methodology

This manuscript emphasizes the design and progress of the DCFNN-SOCVDC technique for PH services. The
main goal of the DCFNN-SOCVDC method is to detect and classify CVD in the healthcare environment. It
contains four processes: data normalization, AOA-based feature selection, classification, and parameter tuning.
Figure 1 defines the workflow of the DCFNN-SOCVDC technique.

Data normalization: Z-score
At first, the presented DCFNN-SOCVDC model performs data preprocessing by using Z-score normalization
to preprocess the medical data®*. This model is chosen due to its capability to standardize data effectually
by transforming it to have a mean of zero and a standard deviation of one. This confirms that all features
contribute equally to the model, preventing any specific feature from disproportionately influencing the results.
It is instrumental in medical datasets, where feature scales can vary significantly. Unlike other normalization
techniques, such as min-max scaling, Z-score normalization is less sensitive to outliers, making it more robust
for datasets with extreme values, which are usual in CVD prediction. Additionally, it improves the performance
of ML models, particularly those based on distance metrics, ensuring more accurate and reliable predictions.
Z-score normalization is an essential preprocessing method in identifying chronic CVD for PH services.
It regulates data by converting features to hold a standard deviation of one and a mean of zero, enabling
superior contrast and model performance. This normalization model aids in managing various data scales and
expanding the accuracy of predictive techniques. By moderating the effect of fluctuating feature scales, Z-score
normalization improves the model’s capability to discover patterns indicative of cardiovascular states. Finally, it
aids in more consistent and reliable classification outcomes in PH applications.

FS: AOA model

For the FS process, the presented DCFNN-SOCVDC technique employs the AOA model®®. This model
is selected for FS due to its efficiency in solving complex optimization problems by replicating arithmetic
operations. AOA has effectively chosen the most relevant features by balancing exploration and exploitation
during the search process. This is valuable in high-dimensional datasets, such as those in medical applications,
where irrelevant or redundant features can affect the model’s performance. Unlike conventional methods like
recursive feature elimination or correlation-based FS, AOA can handle continuous and discrete features and
is less prone to overfitting. Its capability to find global optima ensures that the most influential features are
chosen, ultimately improving classification accuracy. Additionally, AOA is computationally effectual and easy to
implement, making it ideal for large-scale medical datasets. Figure 2 illustrates the structure of the AOA model.

AOA is a population-based stochastic model based on a mathematical basis. The AOA typically comprises
two searching stages related to exploitation and exploration, which are patterned after mathematical operations.
The stage of exploration uses multiplication (x) and division (=-) operators, whereas the stage of exploitation
employs addition (+) and subtraction (=) operators. The AOA initially produces searching agents at random.
Everyone has a solution to a problem. The finest solution can be defined by computing every solution’s fitness
function (FF).

The Math Accelerated Function (MAF) value is further applied to define whether AOA must perform
exploitation or exploration processes. At the same time, the MAF is a tool utilized to guide decision-making in
exploitation and exploration processes. Its importance lies in its ability to offer a quantitative degree that notifies
the system of the more suitable strategies at an assumed time. Lastly, the value of MAF can be applied using the
subsequent Eq. (1):

(1)

max — min
MAF (Citr) = mi itr | —————
(Citr) = min + Clitr ( rotal Tt )

whereas total_Itr indicates the total iteration counts. The minimum-maximum values of the accelerating
function are stated as Min and Max, respectively. As is perceived in the succeeding stage of AOA’s exploration, it
mainly uses multiplication (x) and division (=).

- . o bstj+(0pt+€) X ((UBJ *LB]') X}L‘FLBJ) r < 05
P ; (Citr+1) = { bst; x Opt x (UB; — LB;) x i+ LB;) otherwise @

Here, bst; signifies reduction j of the best solution ever, r denotes randomly generated numbers between 0 and
1, the domain of search lower and upper limits is represented by U B; and LB;, now ¢ represents a smaller
integer value in the jth dimension, and y denotes the controller function. Furthermore, the Optimizer (Opt) can
be signified in

Citra

Opt (Citr)=1— —
total _Itr=

()

The a parameter controls the performance of the stage of exploitation where the addition (+) and subtraction (-)
are applied in the stage of exploitation using Eq. (4).
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Fig. 1. Workflow of DCENN-SOCVDC technique.

Scientific Reports|  (2025) 15:19008 | https://doi.org/10.1038/s41598-025-02924-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Start

Initialize the Arithmetic Optimization Algorithm Parameters

Initialize the Candidate Solutions

Calculate the Fitness Values

Determine the Best Solution

Apply the Division Operator

Apply the Multiplication Operator

Step 8 Apply the Subtraction Operator

Apply the Addition Operator

Return the Global Best Optimal Solution

Stop

Fig. 2. Structure of the AOA model.

. bst; — (Opt +¢) x (UB; — LB;) X pu+ LB; r < 05
P (Citr +1) = { bst; + (Opzz X ((I)JBJ((— LJB]') X ,u]l- L%j) ) otherwise (4) (4)
FS is a binary problem, whereas the solution lists ones and zeros, 0 for the extracted selected features, and 1 for
the chosen features. Hence, a binary model must be applied for solving the FS problem. In AOA, the transfer
function (TransFunc) is used to gain the binary solutions and later calculate the original solution. AOA was
initially offered in constant problem space; then, a TransFunc was established for AOA named an S-shaped
TransFunc to address the binary problem space as exposed in Eq. (5).
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. 1
TransFunc (P;; (Citr)) = TS oxp (— P, (Citr) (5)

Now, Citr signifies iteration counts presently being performed. J are applied to upgrade the solution in AOA
for S-shaped TransFunc to make the feature subsets.

. 0, r > TransFunc (P;; (Citr
Py (Citr +1) = { 1, r < TransFunc EP,; gCitrgg ()
The minimization of the selected feature counts and classification error rate are two opposite objectives in the
multi-objective optimizer problem. Every solution can be evaluated after the proposed FE, which depends on
the classifier to define the classifier rate of error along with the feature counts of the solution, which are precisely
selected for the solution. The new type of AOA and the upgraded AOA (AOA_NBH) models measure the
solution qualities with the FF in

SelectedFeatures
jtnessFun = 1- 7
fitnessFun =0 X et + (1 — 9) X T — (7)

Here, fitnessFun denotes FF to be minimalized, O representing a parameter among 0 and 1, which symbolizes
the weight of the error rate and the feature counts elected in the function, and et stands for the error rate provided
by the classifier. The complete AOA for FS is demonstrated in Algorithm 1.

Start the AOA parameters:
a: exploitation parameter,
m: control function,
Ng,1s: population size
total_Itr: maximal iteration counts.
Pr(ke=1,2) - » Nsops): initially the population of Ny solutions by a random feature subset.
while (Citr < total_Itr)
Calculate the fitness using every solution.
Find the best solution in the population (best).
Egs. (1) and (3) are applied to update the MAF and
Opt.
for k: 1 = Ny
for j: 1 - Dataset_Limitations
ifrl <= MOA// Stage of Exploration
Update P[kj] using
Use Eq. (6) to transfer the value
else // Stage of Exploitation
Updated P[kj] using

Use Eq. (6) to transfer the P[k, jlvalue
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Algorithm 1. AOA for FS pseudocode.

Classification: DCFNN model

Besides, the DCFNN method is utilized to identify and classify CVD?*. This method is chosen due to its ability
to effectively integrate the advantages of DL and fuzzy logic. The convolutional layers enable the model to
automatically extract hierarchical features from raw medical data. At the same time, the fuzzy logic component
assists in interpreting uncertainty and handling imprecise data, often present in medical records. Unlike
conventional ML methods, DCFNN can capture spatial patterns and non-linear relationships within complex
datasets. Additionally, its capability to provide human-readable fuzzy rules makes the model more interpretable,
which is significant in the medical field for decision-making. The DL aspect confirms high accuracy, while
the fuzzy logic improves robustness, making DCFNN a powerful tool for CVD classification. Its adaptability
to varying data types strengthens its suitability for complex medical applications. In DL, CNN is extensively
applied in computer vision tasks, image classification, speech recognition, etc. Using the human brain-inspired
structure, CNN is comprised of layers, such as pooling, batch normalization (BN), convolutional, loss layer, and
fully connected (FC) layers. The FS and extraction are very reliant on the layered framework. Figure 3 specifies
the architecture of the DCFNN model.

Backward and forward propagation

The Forward run is also named the advance run, which an input can approximate to the output layer. Assume Xk
exists as the kth layer input for CNN and wk as a parameter set for every layer. The output and input are equal to
loss error function estimation. The backward propagation (BP) transfers the output to an input layer. It utilizes
a learning model such as stochastically gradient descent Eq. (8) for adjusting the training parameters of CNN.

R\EHL okyT 0z

Here, 1 characterizes the learning speed of a model, and i for the ith training iteration, the learning rate  denotes
hyper-parameter type, the improper selection of which may offer sub-optimal results.

Convolution layer

Convolution layers are vital for principles of classification. These layers present the dot product of the dual
matrices, while one comprises parameters over the kernel, whereas the other denotes the receptacle field’s
limited part. It comprises numerous kernels, all of which are trainable and are adapted with every iteration.
Let X® € RM" XN"XD" and F € R™*"*9"*5 remain input for the kth convolutional layer and rank four
tensors for these layers with the span m xn. The result from the layer Eq. (9) represents third order tensor for
yk (m,Xk+1) c RMP—m+1xNF—ntixs

m n dF

_ k
Yik jk s = E E F, jak,s X Tikik g )

i=0 j=0 1=0

Eq;lation (9) can be solved for every 0 < s < S and for each position 0 < i*<MF—-—m+1and0<j*<
N¥ —n+1.

Pooling layer

This layer aids in saving the computation of statistics. It declines the spatial dimensions of the output by gathering
the close outputs’ summaries statistics while maintaining the significant identified patterns. Therefore, pooling
can be performed on each slice separately. There are some pooling functions; among them, the max pooling is
symbolized in Eq. (10). The function has been applied now as it yields maximal output from the neighbourhood.

k
Yik jk.d = o<i<?nl%x<j<nxik xm+i,jF xn+j,d (10)
<i<m,0,<j<

where 0 <% < M*,0 < j* < N*,0<d< D"
Let the input be characterized as X* € RM inside the m x n spatial span for the kth layer.

Previously, it can be determined that e M and ne ¥, then a single stride denotes the pooling span. The gained
outcome is the rank three tensor Y* € RM™ 7 XN"" D" hereas M*+! is considered as in Eq. (11).

x Nk x D*

M M7 NFL N7k7 DM = D, 11)
m n

FC layer

The FC layer works in combination with the first layer of CNN. This result of the fattening process represents
input for the first FC layer. The outcomes of the final FC layer were subjected to classifier functions, namely
sigmoid, tanh, and softmax. Depending on the function of loss, the real outcome (Y 5) is offered to compare with
the projected output (say ¢7). The sigmoid activation function is used.
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Fig. 3. Structure of the DCFNN model.
) e R (12)
v (1 + €% ) !

Describing the over-fitting problem and raising the learning process’s influence, they added a dropout layer
that rearranges the node-specific parameter to 0. ReLU Eq. (13) and BN are added in the final method to steady
the neural networks. BN can be obtained by recentring and rescaling the input to the layers at every iteration,
0<i<MF 0<j<NFand0o<d< D¥, to recollect one of the necessary and significant features, which
could help classification.

Yi ik = max (0,1;,5,q) (13)

Loss function layer

This layer describes the drawback of the deviance between the projected output and the real labelled data. If aloss
function displays significant deviance and makes an error, zz, BP comes into action. Fuzzy NNs inform the NNs
through the capacity to manage noise in data. This method of including a fuzzy layer is termed Fuzzification.
These layers transform an input matrix to the fuzzy area, and the demonstration gained was complicated for the
higher-dimensional extraction of features. This diffusion method was termed defuzzification; it adds a defuzzy
layer to the CNN method. When X denotes the input matrix, the fuzzy set X is formerly approximated in each
Egs. (14) and (15). These equations discover the possibility that the features lie in the fuzzy domain numbers
MEF; e

X = fuzzification (zi ;|cxi ;) (14)

whereas
x5 = possibility (z; ;|MF; ;) = maxMF; ;0 (v — x;,5) (15)

Here, § (x — x; ;) is the Kronecker delta function.
The crispy value v; can be assessed from the defuzzification process in Eq. (16). FC takes the crispy value of
output from the defuzzification method and performs as the last classifier in Eq. (17).

v; = defuzz (z;) = M (16)

o
Here, C, denotes the middle of the defuzzifcation membership function.

yi = Wyevs (17)

Now, Wy, is the weight selected for an FC layer.

CNN decreases the higher dimension with no loss of information, whereas fuzzy logic assists in combining
the data by removing the noise. This grouping aids in taking the significant features within the data and manages
the higher difference of the present data owing to various loads, speeds, and additional aspects on the test rig by
the data acquisition time.
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Parameter optimizer: SOA technique

Finally, the presented DCFNN-SOCVDC approach employs SOA for the hyperparameter tuning process
involved in the DCFNN model®”. This model was chosen due to its effectiveness in optimizing complex objective
functions and ability to handle high-dimensional search spaces. SOA is appropriate for non-linear optimization
problems like hyperparameter tuning, where conventional gradient-based methods may face difficulty with
local minima or sparse gradients. Unlike other optimization techniques, SOA is less prone to getting stuck
in suboptimal solutions due to its exploration—-exploitation balance. Its population-based approach allows it
to explore the search space more effectually, improving the chances of finding the global optimum for model
hyperparameters. Additionally, the ability of the SOA to adapt to the dynamic nature of the data confirms that
the DCFNN method can attain optimal performance across diverse datasets. This makes SOA an ideal choice
for fine-tuning the hyperparameters in the DCFNN framework, ensuring high classification accuracy and
robustness. Figure 4 portrays the structure of the SOA model.

The presented SOA method is a meta-heuristic algorithm initiated in population dynamics, with storks
establishing its members of individuals. Every member of SOA represents specific values for decision variables,
defined by its spatial position within the searching space. Therefore, each SOA member aids as a potential
solution to the issue, and its features can be precisely signified in the mathematical form through a vector. The
initial locating of storks within the searching space is attained using a randomly generated initialization method.

X1 i1 o X1id ot Tim
X=| Xi =| g - Tid 0 Tim (18)
XN 1 nsm TN o TNd 0 INm oy
Zi.a = lbg + 7 - (ubg — Ib) (19)

Here, X signifies the matrix demonstrating the population of SOA, X; defines the ith stork, the element x; 4 in
this matrix signifies the stork’s location in the dth dimension, the parameters N and m denote the number of
storks, and the sum of decision variables, respectively. The variable r takes a generated value randomly within the
range of [0, 1], while (b4 and ubg denote the lower and upper limits of the dth decision variable. An evaluation is
led to evaluate the problem’s objective function, which depends upon the developed decision variable values for
every stork. The mathematical formulae are presented as follows:

Fi F(Xy)
F = F; = F(X;) (20)
Fn Nx1 F(XN) Nx1

In the equation above, F signifies the vector compressing the assessed objective function, and F; denotes the
exact evaluation of the objective function, depending on the ith stork. Throughout every iteration of the SOA,
the locations of the storks within the searching space are upgraded, consequently influencing the values of
the objective function. This iterative procedure needs constantly upgrading the finest-performing member by
equating the newly attained values of the objective function in every iteration. Throughout this procedure, the
technique certifies that the optimum solution is gradually superior.

The proposed SOA functions as an iterative procedure intended to upgrade the locations of population
members over dual main stages such as exploration and exploitation. In the exploration phase, the algorithm
pretends the migrant patterns of storks, supporting a wide search across the solution space to recognize various
probable solutions. In contrast, the exploitation phase simulates the hunting tactics of storks, concentrating on
enhancing and refining the present solutions to attain optimum outcomes. This dual-phase approach permits
SOA to efficiently balance exploring novel areas with exploiting recognized high-quality regions, improving its
global performance and sturdiness in discovering optimum solutions.

Phase 1: migration strategy (exploration)

One of the significant behaviours detected in storks is their yearly migration throughout the winter, where
they navigate to more auspicious habitats. This migration strategy, simulated in the SOA, creates the basis of
the algorithm’s first stage for upgrading population members in the search space. In the SOA structure, every
member recognizes latent migration objectives depending upon the higher values of the objective function. This
method permits SOA to influence the collective intellect of the population, raising effectual exploration of the
solution space and improving the algorithm’s capability to find optimum solutions.

CD; ={Xy:Fx < Fjandk #i}, i=1,2,...,N and k€{1,2,...,N} (21)

Here, C'D; denotes a set of candidate destinations of the ith stork, X, refers to a stork with a superior objective
function value than the ith stork, and F}, denotes an objective function value.

Within the structure of SOA, the technique imagines that each stork separately picks a destination of migration
in a random mode before boarding its journey near the selected destination. Drawing inspiration from the
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v
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Exploitation Phase: Storks Converge on Promising Regions for Local Search

v

Ensure all Updated Positions Remain within the Search Space

v

Recalculate the Fitness Values for the Updated Population

v

Compare the New Solutions with the Current Global Best
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v
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v

Fig. 4. Steps involved in the SOA technique.

complex movements of storks throughout the migration, the technique calculates a new location for every stork
as it improves near its elected migration target, as definite by Eq. (22). Then, depending upon reaching the novel
location, the method estimates the value of an objective function. Must this estimation develop an objective
function’s value, the novel location efficiently replaces the preceding area of the separate stork, as defined in
Eq. (23).

aly =m0+ 1 —2r)- (SCDja—1I-2;4), i=1,2,....,N, andd=1,2,...,m (22)
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P1 P1 ]
X,L:{XZ ) F <F (23)

X, else

Here, X! denotes a novel recommended location of an ith stork, mf 1 refers to dth dimension, F;*! denotes a
value of objective function, r is a randomly generated number with a usual distribution in the interval of [0, 1] ,
SCD;,q specifies dth dimension of nominated candidate destination for migration of ith stork, I is a random
value from set {1, 2}, N and m indicates storks and decision variables counts, respectively.

Phase 2: hunting strategy (exploitation)

One unique characteristic of storks is their hunting tactic, which is described as an accurate method to chase and
capture victims. Storks use a combination of pursuit, surveillance, and stealth models to shoot and grab their prey.
Leveraging the pretend dynamics of the stork’s predatory attack on the victim, the technique calculates a new
location for the stork using Eq. (24). Then, depending upon assessing the value of the objective function related
to the novel location, the algorithm establishes if a performance improvement was achieved. Development in the
value of an objective function must be separated; then, the stork is repositioned to the novel location according
to Eq. (25). This iterative procedure of upgrading stork locations depends upon pretend hunting tricks. It raises
localized alteration and exploitation of the searching space.

1—-2r .

xl; = (1+ ] ) xia, 1=1,2,...,N,d=1,2,...,m, andt=1,2,...,T (24)

X FP<R

Xi= { Xi, else (25)

Here, X2 is the novel location of an ith stork, xf 2 is a dth dimension, F;F'? denotes a value of an objective
function, f represents an iteration count, and T refers to the maximum number of iterations.

The SOA derives an FF to achieve heightened classification performance. It describes many factors that

suggest improved efficiency of the candidate solution. In this paper, the reduction of the classifier rate of error

was considered as FF, as set in Eq. (26).

fitness (z;) = Classifier ErrorRate (z;)

__no. of misclassified instances < 100 (26)
- Total no. of instances

Experimental results and analysis

The DCFNN-SOCVDC techniques performance is examined using a CVD dataset®. The dataset contains
60,000 instances under dual-class labels, as denoted in Table 1. The total number of features is 12, such as height,
id, age, gender, ap_lo, weight, cholesterol, gluc, smoke, alco, ap_hi, active. Among these, only six features are
selected: age, id, height, gender, cholesterol, and weight. The suggested technique is simulated using the Python
3.6.5 tool on PC i5-8600k, 250 GB SSD, GeForce 1050Ti 4 GB, 16 GB RAM, and 1 TB HDD. The parameter
settings are provided: learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 0.5, and batch size: 5.

Figure 5 displays a set of confusion matrices produced by the DCFNN-SOCVDC technique on several
epochs. The results state that the DCFNN-SOCVDC model efficiently detects and identifies all classes precisely.

Table 2 and Fig. 6 indicate the classifier outcomes of the DCFNN-SOCVDC technique under various epochs.
The outcomes denote that the DCFNN-SOCVDC model appropriately identified and classified all the samples.
On 500 epochs, the DCFNN-SOCVDC model offers an average accu, of 99.05%, precy, of 99.05%, reca; of
99.05%, F'lscore of 99.04%, and G'areasure 0f 99.05%. Likewise, on 1000 epochs, the DCFNN-SOCVDC model
provides an average accuy of 97.40%, prec, of 97.40%, reca; of 97.40%, F'1score of 97.40%, and Gaseasure Of
97.40%. Furthermore, on 2000 epochs, the DCFNN-SOCVDC methodology offers an average accu, of 97.02%,
precy, of 97.02%, reca; of 97.02%, F'lscore of 97.02%, and Gareasure of 97.02%. Also, on 3000 epochs, the
DCFNN-SOCVDC methodology provides an average accu, of 98.04%, prec, of 98.04%, reca; of 98.04%,
Flscore of 98.04%, and G vreasure of 98.04%.

Figure 7 indicates the training (TRA) and validation (VLA) accuracy outcomes of the DCFNN-SOCVDC
methodology under various epochs. The accuracy values are computed for 0-3000 epochs. The figure emphasized
that the TRA and VLA accuracy values are increasing, indicating the DCFNN-SOCVDC method’s capability to
perform better over various iterations. In addition, the TRA and VLA accuracy rests closer over the epochs,
which shows the lowest minimum overfitting and displays improved efficiency of the DCFNN-SOCVDC
technique, guaranteeing consistent prediction on hidden samples.

Figure 8 demonstrates the TRA and VLA loss graph of the DCFNN-SOCVDC method under various
epochs. The loss values are computed for 0-3000 epochs. It is denoted that the TRA and VLA accuracy values
display a lower tendency, notifying the ability of the DCFNN-SOCVDC approach to balance a trade-off between
generalization and data fitting. The continual decrease in loss values ensures the DCFNN-SOCVDC approach’s
heightened performance and tunes the forecast outcomes over time.

In Fig. 9, the precision-recall (PR) curve study of the DCFNN-SOCVDC model under different epochs
interprets its performance by mapping Precision against Recall for the class. The outcome exhibits that the
DCFNN-SOCVDC method continuously accomplishes enhanced PR values across various class labels,
representing its capability to uphold an essential part of true positive predictions among each positive prediction
(precision) while taking many actual positives (recall). The sturdy increase in PR results among every class
depicts the efficiency of the DCFNN-SOCVDC methodology in the classification process.
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Classes No. of instances
Absence-CVD | 30,000
Presence-CVD | 30,000
Total instances | 60,000

Table 1. Details of dataset.
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Fig. 5. Confusion matrices of DCFNN-SOCVDC method (a-f) Epochs 500-3000.

In Fig. 10, the ROC curve of the DCFNN-SOCVDC model is analyzed. The outcomes indicate that the
DCFNN-SOCVDC technique obtains more excellent ROC results over each class under various epochs,
representing the vital ability to discriminate the classes. This dependable tendency of enhanced ROC values
over different classes shows the efficient performance of the DCFNN-SOCVDC approach in predicting classes,
emphasizing the robust nature of the classification process.

Table 3 and Fig. 11 demonstrate the comparative study of the DCFNN-SOCVDC technique with current
approaches*~*2. The simulation result indicated that the DCFNN-SOCVDC technique outperformed superior
outcomes. Based on accuy, the DCFNN-SOCVDC technique has a higher accuy of 99.05% while the SMO,
SVM, RE K-Nearest, EDLACNN, Bagging, and ACVD-HBOMDL models have lower accu, of 84.16%, 96.72%,
94.25%, 80.65%, 94.10%, 97.47%, and 98.81%, correspondingly. Likewise, based on prec,, the DCFNN-
SOCVDC methodology has greater prec, of 99.05% while the SMO, SVM, RE, K-Nearest, EDLACNN, Bagging,
and ACVD-HBOMDL methods have lowest prec, of 81.95%, 97.22%, 96.39%, 94.28%, 89.30%, 94.20%, and
97.32%, respectively. Eventually, based on F'l,core, the DCFNN-SOCVDC model has a superior F'lscore of
99.04% while the SMO, SVM, RE K-Nearest, EDLACNN, Bagging, and ACVD-HBOMDL techniques have
reduced the F'1;core 0f 87.06%, 89.74%, 92.29%, 93.98%, 93.28%, 89.57%, and 97.70%, respectively.

Table 4 and Fig. 12 compare the DCFNN-SOCVDC methods for execution time (ET). The outcomes suggest
that the DCFNN-SOCVDC model gets improved results compared to other recent methods. Based on ET, the
SMO, SVM, RE K-Nearest, EDLACNN, Bagging, and ACVD-HBOMDL models have attained greater ET values

0f5.875,8.275,7.985,7.48s,7.345,6.97 5, and 5.88 s, correspondingly, where the DCFNN-SOCVDC technique
has gotten least ET of 2.13 s.
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Classes ‘ Accuy ‘ Prec,, ‘ Recay ‘ Fl.core | GMeasure
Epoch—500

Absence-CVD | 99.11 98.98 99.11 99.05 99.05
Presence-CVD | 98.98 99.11 98.98 99.04 99.04
Average 99.05 99.05 99.05 99.04 99.05
Epoch—1000

Absence-CVD | 97.17 97.63 97.17 97.40 97.40
Presence-CVD | 97.64 97.18 97.64 97.41 97.41
Average 97.40 97.40 97.40 97.40 97.40
Epoch—1500

Absence-CVD | 98.05 98.82 98.05 98.44 98.44
Presence-CVD | 98.83 98.07 98.83 98.45 98.45
Average 98.44 98.45 98.44 98.44 98.44
Epoch—2000

Absence-CVD | 96.90 97.14 96.90 97.02 97.02
Presence-CVD | 97.15 96.91 97.15 97.03 97.03
Average 97.02 97.02 97.02 97.02 97.02
Epoch—2500

Absence-CVD | 96.85 96.92 96.85 96.88 96.88
Presence-CVD | 96.92 96.85 96.92 96.89 96.89
Average 96.88 96.89 96.88 96.88 96.89
Epoch—3000

Absence-CVD | 97.73 98.35 97.73 98.04 98.04
Presence-CVD | 98.36 97.74 98.36 98.05 98.05
Average 98.04 98.04 98.04 98.04 98.04

Table 2. Classifier outcome of DCFNN-SOCVDC model under dissimilar epochs.

Conclusion

This manuscript concentrates on designing and expanding the DCFNN-SOCVDC method for PH services.
The main goal of the DCFNN-SOCVDC method is to detect and classify CVD in the healthcare environment.
It contains four processes involving data normalization, AOA-based selection of features, classification process,
and parameter tuning. At first, the presented DCFNN-SOCVDC technique applies data preprocessing using
Z-score normalization to preprocess the medical data. For the FS process, the presented DCFNN-SOCVDC
technique performs AOA can be exploited. Besides, the DCFNN method can be deployed to identify and classify
CVD. Eventually, the presented DCFNN-SOCVDC approach employs SOA for the hyperparameter tuning
method involved in the DCFNN model. The performance of the DCFNN-SOCVDC approach is evaluated
using a CVD dataset, and the results are assessed based on various metrics. The performance validation of the
DCFNN-SOCVDC approach portrayed a superior accuracy value of 99.05% over recent models.
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Fig. 6. Average outcome of DCFNN-SOCVDC model (a-f) Epochs 500-3000.
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Fig. 7. Accuy curve of DCENN-SOCVDC model (a-f) Epochs 500-3000.
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Fig. 8. Loss curve of DCENN-SOCVDC technique (a—f) Epochs 500-3000.
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Fig. 9. PR curve of DCFNN-SOCVDC method (a-f) Epochs 500-3000.
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Fig. 10. ROC curve of DCENN-SOCVDC technique (a-f) Epochs 500-3000.
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Models Accuy | Prec,, | Reca; | Flscore
SMO classifier 84.16 81.95 83.19 87.06
SVM 96.72 97.22 94.65 89.74
Random forest 94.25 96.39 96.30 92.29
K-nearest 80.65 94.28 89.19 93.98
EDLACNN 94.10 89.30 90.28 93.28

Bagging algorithm | 97.47 94.20 96.64 89.57
ACVD-HBOMDL | 98.81 97.32 95.56 97.70
AOA method 98.90 98.85 98.95 98.80
DCFENN model 95.50 93.40 94.00 92.60
DCFNN-SOCVDC | 99.05 99.05 99.05 99.04

Table 3. Comparative analysis of DCFNN-SOCVDC approach with existing methods>**2.
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Fig. 11. Comparative analysis of DCFNN-SOCVDC technique with existing models.
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Model ET (s)
SMO classifier 5.87
SVM 8.27
Random forest 7.98
K-Nearest 7.48
EDLACNN 7.34
Bagging algorithm | 6.97
ACVD-HBOMDL | 5.88
AOA method 5.25
DCENN model 4.50
DCENN-SOCVDC | 2.13

Table 4. ET outcome of DCFNN-SOCVDC technique with recent models.
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Fig. 12. ET outcome of DCFNN-SOCVDC technique with recent models.

Data availability
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