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Instance mask alignment for object
detection knowledge distillation

Zhen Guo*?*, Pengzhou Zhang*“ & Peng Liang?

Knowledge distillation has proven to be an effective technique for enhancing object detection
performance. However, the presence of different detector types often results in a significant
performance gap between teacher and student models. In this paper, we propose an Instance Mask
Alignment (IMA) knowledge distillation framework for object detection. Our framework leverages
knowledge transformation operations to reduce the teacher-student gap, leading to notable
performance improvements. We introduce instance mask distillation, which incorporates mask
information to enhance the student model’s ability to identify and focus on relevant regions or objects.
Additionally, we introduce a cascade alignment module with instance standardization, utilizing an
adaptive scale deflation module along the instance dimension. Through the integration of these
cascade knowledge alignment modules, our proposed framework achieves substantial performance
gains across various detector types. Extensive experiments conducted on the MS-COCO, PASCAL
VOC and Cityscapes benchmarks demonstrate the effectiveness of our novel method, particularly its
adaptability to heterogeneous detectors.

Keywords Knowledge distillation, Object detection, Instance mask, Feature alignment

Object detection as a fundamental task in computer vision!, has been widely used in numerous applications such
as smart factory, autonomous vehicles, surveillance systems, and medical scenarios. While deep learning has
significantly advanced the performance of object detectors, these models often require substantial computational
resources, limiting their deployment in resource-constrained environments’. Knowledge distillation®?, a
technique that transfers knowledge from a larger teacher model to a smaller student model, has emerged as
a promising solution to address this challenge. By leveraging the knowledge of the teacher model, the student
model can learn from the teacher’s representations and predictions, achieving comparable performance while
being more computationally efficient.

Knowledge distillation has been extensively studied in the field of image classification?. However, applying
knowledge distillation to the task of object detection presents unique challenges. Object detection involves not
only the classification of objects but also their precise localization within the image. In addition, there exist
various types of detectors, each with its own characteristics and response patterns. However, the presence
of diverse detector architectures, such as two-stage, one-stage, and anchor-free detectors, poses significant
challenges in the knowledge transfer process. These detectors often exhibit structural differences in their output
representations, leading to a substantial gap between the teacher and student models, hindering the effective
distillation of knowledge.

Existing knowledge distillation methods for object detection primarily focus on aligning the feature
representations or output predictions between the teacher and student models®. However, these approaches
often overlook the importance of instance-level information, such as object masks, which can provide valuable
guidance for the student model to better identify and attend to relevant regions or objects within the input data.
Moreover, the inherent differences between detector architectures, such as anchor-based versus anchor-free
designs, can further exacerbate the teacher-student gap, necessitating additional alignment strategies. Effectively
bridging this gap is crucial for achieving successful knowledge distillation and ensuring that the student model
can learn from the teacher’s expertise while maintaining high accuracy.

To address this issue, we propose the Instance Mask Alignment (IMA) framework for object detection
knowledge distillation. In our proposed IMA framework, we introduce instance mask distillation, which
incorporates mask information to improve the student model’s ability to identify and attend to relevant regions
or objects within the input data. Specifically, we distill the knowledge from the teacher’s instance masks to the
student model, encouraging the student to learn to predict accurate object masks during training. This instance-
level guidance helps the student model better understand the spatial extent and boundaries of objects, leading
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to improved detection performance. Furthermore, we introduce a cascade alignment module that consists
of instance standardization and an adaptive scale deflation module in the instance dimension. The instance
standardization step normalizes the instance-level features, thereby reducing the internal covariate shift and
improving the training stability. The adaptive scale deflation module then adaptively scales the instance-level
features based on their importance, allowing the student model to focus on the most relevant instances and
mitigate the impact of irrelevant or noisy instances. By cascading these alignment modules, our framework
effectively bridges the gap between different detector architectures, enabling successful knowledge transfer and
performance improvements. This comprehensive approach enhances the student model’s ability to predict image
recognition and object detection tasks accurately.

We conduct extensive experiments on popular object detection benchmarks, including MS-COCO, PASCAL
VOC, and extend experiments on the instance segmentation dataset Cityscapes. The results demonstrate that our
IMA approach enhances the performance of student models while maintaining computational efficiency. The
proposed IMA method, shown as Fig. 1 represents a promising solution for deploying efficient object detection
models in resource-constrained scenarios.

In summary, our three key contributions are:

o Our paper presents the Instance Mask Alignment (IMA) framework for object detection knowledge distilla-
tion, which reduces the performance gap between teacher and student detectors.

o Our approach leverages instance mask information to enhance object detection performance. The cascade
alignment module aligns feature representations between the teacher and student models, thereby reducing
the performance gap across different detector types.

« Through extensive experiments conducted on multiple benchmarks, we demonstrate the effectiveness and
adaptability of our proposed IMA framework in object detection knowledge distillation, with a thorough
analysis of its strengths and limitations.

In accordance with the provided instructions, we proceed to present the theoretical foundations and methodology
in the subsequent section.

Methods

In this section, we provide a detailed description of our proposed Instance Mask Alignment (IMA) framework
for object detection knowledge distillation. We begin by revisiting the conventional knowledge distillation
approach for object detection. We then introduce our proposed IMA framework, detailing its key components:
Instance Mask Distillation and the Cascade Alignment Module.

Instance Mask Alignment (IMA) Framework Methodology
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Fig. 1. Overview of the Instance Mask Alignment (IMA) framework for object detection knowledge
distillation. Our distillation method follows a two-step process. Firstly, we extract instance feature maps from
the teacher model. These feature maps are then used to generate an instance mask that aligns with the student
features. To further enhance the alignment between the teacher and student features, we employ the Cascade
Alignment technique, which includes Instance Standardization and Adaptive Scale Deflation. Finally, we
calculate the total distillation loss.
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Revisiting object detection knowledge distillation

We first revisit the general formulation of conventional detection knowledge distillation methods for a better
understanding of our approach. Current feature distillation approaches encourage the student model S to
mimic the intermediate features of the teacher model T by explicitly optimizing the feature distillation loss.
Let F¥ € RVXOXHXW anq pT ¢ RNXOXHXW denote the middle-level features of the student and teacher
models, respectively, where N is the number of instances, C is the number of channels, and H and W are the
spatial dimensions. The purpose of conventional feature distillation is to minimize the feature distillation loss,
which is described as follows:

N C H W

Lkp = m ZZ ZZDf (FnTk” - fangn(Ff,k,i,j)) (1)

n=1 k=1 i=1 j=1

where Dy (-) is the distance function measuring the difference between the intermediate features of the teacher
and student models. The adaptation layer faiign is used to align the student’s features F' S with the teacher’s
features F'”. In conventional feature distillation, the goal is to minimize the discrepancy between the student’s
and teacher’s feature maps, thereby encouraging the student model to learn a similar intermediate representation
as the teacher model.

Instance mask distillation
In our proposed method, we introduce an Instance Mask Distillation module to effectively transfer instance-
level spatial information from the teacher to the student model. This module leverages instance masks to guide
the student model in identifying and attending to relevant regions or objects within the input data, thereby
enhancing detection performance.

Specifically, our instance mask distillation module utilizes a binary mask M € RZ*W > which is generated
randomly with a mask ratio ¢ € [0, 1), as defined below:

_ 07 Ri,' < C
M'L,j - { 17 le 2 C

Here, R;,; represents a random value sampled from a uniform distribution, denoted by ¢/ (0, 1), for each spatial
location (i, j). The operation of element-wise multiplication, applied to the function F(F*), effectively masks
out certain frequency components.

)

FS = F7 Y (M © F(F®)) 3)

The knowledge diAstillation loss term, Lrarask, is computed as the mean squared error between the masked
student features, %, and the teacher features, F'7, across all instances, spatial locations, and channels:

I S
FMask = NCHW - n,k,i,j n,k,i,7 || 9
j=

n=1 k=1 i=1 j

By minimizing this loss during training, we encourage the student model to learn to generate feature maps that
are consistent with the teacher’s feature maps in the masked regions. The guidance provided by the teacher’s
instance masks enables the student model to gain a more comprehensive understanding of the spatial extent and
boundaries of objects, which in turn leads to enhanced detection performance.

The instance mask distillation module offers several advantages. Firstly, it provides a direct way to transfer
instance-level spatial information from the teacher to the student, which is particularly beneficial for object
detection tasks where accurate localization and segmentation are crucial. Secondly, by randomly masking
different regions of the input during training, the student model is exposed to a diverse set of masked inputs,
thereby promoting robustness and generalization. Finally, the instance mask distillation module can be easily
integrated into existing knowledge distillation frameworks, in conjunction with other techniques such as feature
mimicking or output distribution alignment.

Cascade alignment module

In addition to the Instance Mask Distillation module, we introduce a Cascade Alignment Module to further
bridge the gap between different detector architectures and enable successful knowledge transfer. This module
consists of two principal components: Instance Standardization and Adaptive Scale Deflation modules.

Instance standardization
The Instance Standardization step is designed to normalize the instance-level features, reducing the internal
covariate shift and improving the training stability of the student model. This is particularly important when
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working with different detector architectures, as the feature distributions can vary significantly, thereby hindering
the knowledge transfer process.

Specifically, we compute the mean p.,, € R and standard deviation o, € R of the instance-level features
across the spatial dimensions for each instance # as follows:

1 H W
Hn = WZZFTiC,i,j (5)

i=1 j=1

H w
1
o = | W SN (FS ) (6)
i=1 j=1

We then normalize the instance-level features by subtracting the mean and dividing by the standard deviation,
resulting in the standardized features, denoted by £
AS F S _ Ln

P (7)

On

The Instance Standardization step serves to reduce the internal covariate shift, improving the training stability
and enabling more effective knowledge transfer between different detector architectures.

Adaptive scale deflation
Following the Instance Standardization step, we introduce an Adaptive Scale Deflation module that adaptively
scales the instance-level features based on their relative importance. This module enables the student model to
concentrate on the most relevant instances and to mitigate the impact of irrelevant or noisy instances, thereby
further enhancing the knowledge transfer process.

We compute an importance score oy, € [0, 1] for each instance n based on the similarity between the
student’s and teacher’s feature maps. Specifically, we compute the cosine similarity between the flattened student
and teacher feature maps for each instance:

FS.FT

=l ®)
IEZ | ET

Qnp

Here, F2 and F represent the flattened student and teacher feature maps for instance #, respectively. We then
apply a scaling factor 7, to the standardized instance-level features F;;, in accordance with the importance
score, represented by o,

Yn = Qn (9)

By cascading the Instance Standardization and Adaptive Scale Deflation modules, our framework effectively
aligns the instance-level features between the student and teacher models, thus bridging the gap between
different detector architectures. This cascade of alignment operations enables successful knowledge transfer and
performance improvements, as the student model can learn from the most relevant instances while mitigating
the impact of irrelevant or noisy instances.

The Cascade Alignment Module offers several strengths. Firstly, the Instance Standardization step reduces
the internal covariate shift, improving training stability and enabling more effective knowledge transfer between
different architectures. Secondly, the Adaptive Scale Deflation module allows the student model to focus on
the most relevant instances, further enhancing the knowledge transfer process and mitigating the impact of
irrelevant or noisy instances. Finally, by cascading these two components, our framework can effectively bridge
the gap between different detector architectures, enabling successful knowledge transfer and performance
improvements.

Total optimization and inference
During training, the object detection loss and the distillation losses introduced by the proposed modules are
jointly optimized. The total loss function is defined as:

Liotat = Lioe + Lets + Lrnask (11)

where Lo and L are the localization loss and classification loss respectively for object detection, and L r prask
represents the loss from our Instance Mask Distillation module.
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The localization loss Lo measures the difference between the predicted bounding box for an object and the
ground truth bounding box, typically using a smooth L1 loss:

Npos
Lioe = Z smoothz1 (bf”id _ bft) )
i—1

pred
i

Here, Npos represents the number of positive samples, b denotes the predicted bounding box, and bft
signifies the ground truth bounding box.
The classification loss L.;s measures the difference between the predicted class probabilities for an object and

the ground truth class probabilities, typically using a cross-entropy loss:

Npos

c
Les =— Z Zyij log (psj) (13)

i=1 j=1

Here, C is the number of classes, y;; represents the ground truth label (0 or 1), indicating whether instance i
belongs to class j, and p;; denotes the predicted probability that instance i belongs to class j.

During inference, the student model generates object classification and location information using the
features extracted from the input image, without relying on the teacher model or the distillation losses.

Theoretical foundation of instance mask alignment

The theoretical underpinning of our Instance Mask Alignment (IMA) framework is based on the observation
that conventional knowledge distillation methods often struggle with the structural differences between different
detector architectures. This is particularly evident when the teacher and student models employ different
detection paradigms (e.g., two-stage vs. one-stage, or anchor-based vs. anchor-free).

From an information theory perspective, we argue that the teacher-student knowledge transfer process can
be optimized by focusing on the most informative regions within the feature maps, namely the instance regions.
By emphasizing these regions during the distillation process, we can ensure that the knowledge transferred from
the teacher to the student is most relevant for the detection task.

Moreover, we observe that the feature distributions of different detector architectures can vary significantly,
even when they are trained on the same dataset and for the same task. This distribution shift can hinder the
knowledge transfer process, as the student model may struggle to mimic the teacher’s feature representations. To
address this issue, we introduce the concept of feature distribution alignment through instance standardization
and adaptive scaling.

Formally, let pr(F) and ps(F') denote the probability distributions of the teacher’s and student’s feature
maps, respectively. The goal of feature distribution alignment is to minimize the divergence between these
distributions:

min D(pr (F)|lps (F)) (14)

where D(-||-) is a divergence measure (e.g., KL divergence). However, directly minimizing this divergence is
challenging due to the structural differences between the teacher and student models. Instead, we propose to
align the distributions after applying a transformation g(-) to the feature maps:

min D (pr(9(F))llps(9(F))) (15)

In our IMA framework, g(-) corresponds to the cascade of instance standardization and adaptive scale deflation,
which we describe in detail in the above sections.

Pseudo-code for the IMA algorithm
To provide a clear understanding of our proposed IMA framework, we present a pseudo-code description of the
main algorithm in Algorithm 1.
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Require: Teacher model 7', Student model S, Training dataset 2, Mask ratio {
Ensure° Trained student model S
: for each batch (X,Y) in & do

2:  // Forward pass through teacher and student models
3. FT « PeatureExtractor(T,X)
4. F5 « FeatureExtractor(S,X)
5:  // Instance Mask Distillation
6:  Generate random mask M with mask ratio §
7. FS« FY (Mo F(FS))
8:  Compute Ly using Equation (6)
9:  // Cascade Alignment Module
10:  for each instance n do
11: /I Instance Standardization
12: Compute U, and o, using Equations (7) and (8)
13: ES ¢ b ot
14: 1 Adaptlve Scale Deflation
15: Compute o, using Equation (10)
16: Y —
17: ES « wES
18:  end for
19:  // Compute detection losses
20:  Compute L;,. and L. using Equations (13) and (14)
21:  // Compute total loss and update student model
22: Ltotar <= Lioc + Leis + Lrmask

23:  Update student model S by minimizing Ly
24: end for
25: return Trained student model S

Algorithm 1. Instance Mask Alignment (IMA) for Object Detection Knowledge Distillation

Method mAP | APso | AP;5 | APs | APy | APL
Teacher | FCOS-Res101 40.8 |60.0 440 242 | 443 524
Student | FCOS-Res50 385 |57.7 41.0 219 | 428 48.6
GID?® 420 |60.4 455 25.6 | 458 54.2
FRS® 409 |60.3 43.6 257 | 452 51.2
FGD! 421 |- - 27.0 | 46.0 54.6
IMA (Ours) 424 | 610 |458 26.6 | 459 54.8

Teacher | Faster RCNN-Res101 | 39.8 | 60.1 43.3 22,5 43.6 52.8
Student | Faster RCNN-Res50 | 38.4 | 59.0 42.0 21.5 42.1 50.3

KD-Zero'! 384|594 41.7 227 | 41.8 459
FitNet!? 38.8 |59.6 41.8 223|422 50.7
FGFI"? 394|603 43.0 229 425 52.0
FGD'" 404 |- - 228 | 44.5 53.5
IMA (Ours) 40.6 | 60.9 43.9 23.0 | 445 54.0

Teacher | RetinaNet101-Res101 | 38.9 | 58.0 41.5 21.0 42.8 524
Student | RetinaNet50-Res50 374 |56.7 39.6 20.0 40.7 49.7

KD-Zero!! 36.8 | 56.6 39.4 21.9 40.6 48.2
FitNet!? 36.3 | 56.0 39.0 20.1 40.3 47.1
FGFI"® 373 | 571 40.0 21.0 41.5 49.7
FGD! 396 | - - 229 44.3 534
IMA (Ours) 39.7 | 58.6 414 22.7 429 51.3

Table 1. Main results on object detection. We use AP on different settings to evaluate results. Res101, Res50
represents using ResNet101 and ResNet50 as backbones. Significant values are in bold.
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Method mAP | APso | AP;5 | APs | APy | APL
Teacher | RetinaNet-ResNeXt101 41.6 | 614 44.3 23.9 45.5 54.5
Student | RetinaNet-Res50 374 |56.7 39.6 20.0 40.7 49.7

FGFI® 39.1 |59.8 428 222 429 51.1

COFD!* 389 |60.1 426 21.8 4.7 50.7

FKD'® 39.6 |58.8 421 227 433 52.5

FGD'® 404 |- - 234 | 447 54.1

IMA (Ours) 41.0 | 60.2 43.6 23.0 45.2 55.0
Teacher | Cascade Mask RCNN-ResNeXt101 | 45.6 | 64.1 49.7 26.2 49.6 60.0
Student | Faster RCNN-Res50 384 |59.0 42.0 21.5 42.1 50.3

FKD'® 415 |622 45.1 235 | 45.0 55.3

IMA (Ours) 41.6 |62.3 45.5 235 | 453 55.3
Teacher | RepPoints-ResNeXt101 442 | 65.5 47.8 26.2 48.4 58.5
Student | RepPoints-Res50 38.6 |59.6 41.6 22.5 422 50.4

FKD" 40.6 | 61.7 43.8 234 44.6 53.0

FGD! 413 | - - 245 | 452 54.0

IMA (Ours) 423 | 63.1 45.8 24.1 46.4 55.9

Table 2. More results on different backbone object detectors. Significant values are in bold.

The pseudo-code provides a step-by-step description of our IMA framework, including the Instance Mask
Distillation module and the Cascade Alignment Module. The algorithm begins by extracting features from both
the teacher and student models. It then applies the Instance Mask Distillation module, which generates a random
mask and applies it to the student’s features. Next, the Cascade Alignment Module is applied to each instance,
which involves Instance Standardization and Adaptive Scale Deflation. Finally, the detection losses and the total
loss are computed, and the student model is updated by minimizing the total loss.

Results

To evaluate the effectiveness of our proposed Instance Mask Alignment framework, we have conducted a
series of comprehensive experiments across a range of object detectors, including two-stage, one-stage, and
anchor-free architectures. We compare our method with state-of-the-art approaches and demonstrate superior
performance on multiple evaluation metrics. Furthermore, we present experiments involving teacher models
with heterogeneous backbones to demonstrate the versatility of our approach. Finally, we provide detailed
ablation studies to validate the efficacy of our proposed techniques.

Datasets and Implementation Details Our experiments are performed on two widely-adopted object detection
benchmarks: MS COCO and PASCAL VOC. The MS COCO dataset comprises 80 object categories with over
330,000 images, containing diverse object scales and challenging backgrounds. The PASCAL VOC dataset
consists of 20 object categories with approximately 11,000 images. We evaluate the performance of the object
detectors using standard metrics, such as mean Average Precision (mAP). For model optimization, we employ
techniques like stochastic gradient descent (SGD) or Adam. The hyperparameters are set to & = 10, and we use
L2-loss for the function Dy (-) across all experiments. We adopt a 2 x learning rate schedule and train for 24
epochs on the COCO dataset during the distillation process.

Main Results Table 1 presents the experimental results, comparing the baseline detectors with our distillation
approach. It is evident that student detectors achieve superior performance when distilled from stronger teacher
detectors based on more powerful backbones. IMA consistently achieves superior performance compared
to both the baseline student models and other distillation methods. On the FECOS° detector, IMA attains the
highest mAP of 42.4, outperforming GID, FRS, and FGD, and showing substantial improvements across most
AP metrics, including A Pso and A Prs. For the Faster R-CNN detector, IMA achieves an mAP of 40.6, exceeding
the best baseline (FGD) by 0.2 points, and delivering top performance on all detailed AP metrics, including
APs, APy, and APr. Similarly, on RetinaNet’, IMA yields the highest mAP of 39.7, outperforming FGD and
other baselines, while maintaining competitive results across object scales. These results validate the generality
and robustness of IMA across different detection architectures and demonstrate its effectiveness in improving
student model performance through knowledge distillation.

Different Backbone Distillation Our approach is adaptable to distillation between heterogeneous backbones,
enabling knowledge transfer from teachers with different architectures. we conduct experiments on various
teacher-student detector pairs with different backbone architectures and leverage teacher detectors based on
stronger backbones.Table 2 compares our results with other effective distillation techniques. IMA consistently
outperforms existing state-of-the-art knowledge distillation methods, including FGFI, COFD, FKD, and FGD,
across multiple detection frameworks. On the RetinaNet detector, where the teacher uses ResNeXt-101 and the
student uses ResNet-50, IMA achieves the highest mAP of 41.0, significantly surpassing the baseline student
model (37.4) and outperforming strong methods such as FGD (40.4) and FKD (39.6). IMA also delivers the best
results across most sub-metrics, including A Pso, APrs, AP, and APr, demonstrating its ability to effectively
transfer both coarse and fine-grained knowledge from a stronger backbone. In the case of Cascade Mask
R-CNN (teacher) to Faster R-CNN (student), IMA achieves an mAP of 41.6, slightly exceeding FKD (41.5) and
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Method mAP | APso | AP;5 | APs | APy | APL
GFL-Res101 (T) |44.9 |63.1 49.0 28.0 49.1 57.2
GFL-Res50 (S) 40.2 | 58.4 43.3 233 44.0 52.2

FitNets'2 407 |58.6 44.0 237 |44.4 53.2
Inside GT Box'7 |40.7 |58.6 44.2 231 445 53.5
Defeat'® 408 |58.6 44.2 243 | 44.6 53.7
LDV 41.0 |[58.6 44.2 234 | 45.0 53.1

Main Region'” | 41.1 |58.7 444 241 |446 53.6
Fine-Grained® | 41.1 |58.8 448 233|454 53.1

GID® 415 |59.6 452 243  |457 53.6
SKDY 423 | 60.2 45.9 244 | 46.7 55.6
ScaleKD? 25 |- - 259 | 462 54.6
BCKD?! 432 |61.6 46.9 257 |47.3 55.9
FGD! 434 | 617 47.0 262 | 474 56.4
CrossKD? 43.7 |62.1 47.4 269 |48.0 56.2
IMA (Ours) 44.0 | 622 47.7 268 |484 57.0

Table 3. Comparison results in GFL framework on MS COCO. Significant values are in bold.

Method Backbone | mAP@0.5
Faster R-CNN (Teacher) | ResNet-101 | 78.5
Faster R-CNN (Student) | ResNet-50 | 76.2
FitNet'? ResNet-50 | 77.1
FGFI'? ResNet-50 | 77.4
FGD!® ResNet-50 | 77.8
IMA (Ours) ResNet-50 | 78.5
RetinaNet (Teacher) ResNet-101 | 77.0
RetinaNet (Student) ResNet-50 | 74.8
FitNet!? ResNet-50 | 75.2
FGFI'? ResNet-50 | 75.5
FGD!® ResNet-50 | 76.1
IMA (Ours) ResNet-50 | 76.7

Table 4. Experimental results on the PASCAL VOC dataset. We report mAP at IoU threshold of 0.5.
Significant values are in bold.

outperforming the student baseline by 3.2 mAP points. IMA also provides the best performance on all detailed
AP metrics, including A P75 and large object detection (A Pr), confirming its robustness in two-stage detectors
with high-capacity teachers. Similarly, for the RepPoints detector, IMA obtains the highest mAP of 42.3,
outperforming FKD (40.6) and FGD (41.3). Notably, IMA achieves significant improvements in APr5 (45.8)
and large object detection APz, (55.9), indicating enhanced localization precision and better adaptation to scale
variation. These results collectively demonstrate that IMA not only generalizes well across different detection
architectures but also maintains strong performance under the challenging heterogeneous backbone setting,
highlighting the effectiveness of the IMA method in bridging the architectural gap between teacher and student
models. These results demonstrate the superior ability of our distillation models to capture and represent salient
features, which consequently leads to enhanced detection performance.

GFL Framework Results Table 3 provides a detailed comparison of various knowledge distillation methods
within the GFL!® framework on the MS COCO dataset. The baseline student model (GFL-Res50) achieved an
mARP of 40.2, while the teacher model (GFL-Res101) attained an mAP of 44.9. Among the existing methods,
SKD and ScaleKD demonstrated significant improvements, achieving mAPs of 42.3 and 42.5, respectively.
However, the proposed method achieved the best overall mAP of 44.0, closely aligning with the teacher model’s
performance. The results also highlight the superiority of the proposed method in terms of AP across different
IoU thresholds (APso and APrs5) and object sizes (APs, APy, and APL). For instance, the proposed method
achieved an AP5o of 62.2 and an APr5 of 47.7, surpassing all other methods. The gains in APs (+3.5) and
APrp, (+4.8) further underscore the method’s effectiveness in handling both small and large objects. Interestingly,
the performance of the proposed method is particularly notable in the context of small object detection, where
it achieved an APs of 26.8, second only to CrossKD. This indicates that the method addresses the challenges
associated with detecting small objects, a common limitation of many KD techniques. Similarly, consistent
improvements in APxs and APL suggest that the method effectively balances performance across object scales.
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Method mAP | APso | AP;5 | APs | APy | APL
Teacher | RetinaNet-ResNeXt101 | 41.6 |61.4 44.3 23.9 45.5 54.5
Student | RetinaNet-Res50 374 |56.7 39.6 20.0 40.7 49.7
+KD 40.2 | 59.5 43.0 226 443 53.4
+ Instance Mask 40.7 |60.2 43.4 23.8 44.6 53.9
+ Standardization 409 |60.7 434 23.5 449 53.9
+ Adaptive Scale 41.0 |60.2 43.6 23.0 452 55.0

Table 5. Ablation studies on our proposed IMA using ResNet50-based RetinaNet with ResNeXt101-based
RetinaNeXt serving as the teacher.

Model | Params (M) ‘FLOPs (G) ‘Mem (MB) | FPS
Single-Stage Detectors (RetinaNet)

T: X101 | 95.86 424 367 29.4
T:R101 | 56.96 283 220 30.7
S: R50 37.97 215 148 419
Two-Stage Detectors (Faster R-CNN)

T: X101 | 135.0 2014 528 20.6
T:R101 | 60.75 255 244 31.1
S:R50 | 41.75 187 171 42.1
Anchor-Free Detectors (RepPoints)

T: X101 | 94.74 380 230 16.6
T:R101 | 55.84 239 224 24.5
S: R50 36.85 171 151 31.4

Table 6. Efficiency comparison of different object detectors. In addition to the number of parameters (Params)
and FLOPs, we report CUDA memory usage (Mem) and inference speed (FPS), measured on an NVIDIA
A100 GPU (80GB). All models are evaluated with an input resolution of 1088 x800. T: teacher model, S:
student model.

PASCAL VOC Results To further validate the generalizability of our proposed IMA framework, we conduct
experiments on the PASCAL VOC dataset. Table 4 presents the experimental results on the PASCAL VOC
dataset, comparing our method with baseline and other distillation approaches. Similar to the results on the
MS COCO dataset, our method achieves consistent improvements across different detector architectures. For
the Faster R-CNN with ResNet-50 backbone, our method improves the mAP by 2.3% compared to the baseline.
These results further demonstrate the effectiveness and generalizability of our proposed IMA framework across
different datasets and detector architectures.

Ablation Studies Table 5 presents ablation studies to analyze the impact of our proposed IMA approach
and its components on the performance of a ResNet50-based RetinaNet student model. The teacher model,
RetinaNet-ResNeXt101, achieves an mAP of 41.6, while the student model, RetinaNet-Res50, has a lower mAP
of 37.4, indicating a significant performance gap compared to the teacher. Applying conventional Knowledge
Distillation (KD) improves the student’s mAP from 37.4 to 40.2. The introduction of our proposed Instance Mask
Distillation module further boosts the student’s mAP to 40.7, highlighting the benefit of transferring instance-
level spatial information from the teacher. In addition, combining the Instance Standardisation component of
our Cascade Alignment module increases the mAP to 40.9 by reducing internal covariate shift and improving
training stability. Finally, the incorporation of the Adaptive Scale Deflation component, which adaptively scales
instance-level features based on their importance, yields the highest mAP of 41.0. This step allows the student to
focus on the most relevant instances during training, further enhancing knowledge transfer and mitigating the
impact of irrelevant or noisy instances. Overall, the ablation studies demonstrate the effectiveness of our IMA
approach and its components in bridging the performance gap between student and teacher models, even when
their architectures differ significantly.

Computational Efficiency Analysis While the primary goal of knowledge distillation is to improve the
performance of compact models, it is equally important to analyze the computational efficiency of the distilled
models. Table 6 provides a comprehensive comparison of the computational efficiency of different object detectors
used in our experiments. The results clearly demonstrate the computational advantages of the student models
compared to their teacher counterparts. For instance, the RetinaNet with ResNet-50 backbone (student model)
has approximately 60% fewer parameters and 49% lower FLOPs compared to the ResNeXt-101 backbone (teacher
model), while achieving a 42% higher inference speed. Similar trends are observed for the two-stage and anchor-
free detectors, where the student models consistently show significant reductions in computational requirements
while maintaining competitive performance after distillation. This efficiency analysis underscores the practical
value of our proposed IMA framework. By effectively transferring knowledge from computationally intensive
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Method Params (M) | FLOPs (G) | mIoU (%)
T: DeepLabV3-R101 | 84.74 695 78.07
S: PSPNet-R18 72.55
SKD' 73.29
IFVD? 73.71
CwWD?* 12.61 109 74.36
CIRKD* 74.73
MasKD? 75.34
IMA (Ours) 75.99

Table 7. Comparison of knowledge distillation methods for semantic segmentation on Cityscapes with the
PSPNet-R18 student model. T: teacher model, S: student baseline model. Significant values are in bold.

Method | mAP | APso | AP;5 | APs | APy | AP
Baseline | 37.4 56.7 39.6 20.0 40.7 49.7
0.1 40.7 |60.2 43.4 23.8 44.6 53.9
0.5 40.9 |60.7 43.4 23.5 449 53.9
1 41.0 |60.2 43.6 23.0 45.2 55.0
5 39.2 58.1 42.2 224 432 51.0
10 38.5 57.8 41.0 21.8 42.5 50.8

Table 8. Ablation study of loss weight of L 7 arask with RetinaNet-R50 as student, RetinaNet-X101 as teacher.

teacher models to more efficient student models, our approach enables the deployment of high-performance
object detectors in resource-constrained environments, such as edge devices or real-time applications.

Extension to semantic segmentation

To demonstrate the versatility of our proposed IMA framework beyond object detection, we extend it to the
task of semantic segmentation. Semantic segmentation, which aims to assign a semantic label to each pixel in an
image, shares similar challenges with object detection in terms of the need for fine-grained spatial understanding.
We adapt our IMA framework to semantic segmentation by applying the Instance Mask Distillation and Cascade
Alignment modules to the feature maps of semantic segmentation models. In this context, the “instances”
correspond to regions of pixels belonging to the same semantic class. We evaluate our adapted approach on
the Cityscapes dataset, using a PSPNet with ResNet-18 backbone as the student model and a DeepLabV3 with
ResNet-101 backbone as the teacher model.

Table 7 presents the results of our semantic segmentation experiments, comparing our adapted IMA framework
with several state-of-the-art knowledge distillation methods specifically designed for semantic segmentation.
The results show that our adapted IMA framework outperforms all other knowledge distillation methods for
semantic segmentation, achieving an mIoU of 75.99%, which is a 3.44% improvement over the baseline student
model. This represents a significant step toward closing the gap with the teacher model (78.07% mIoU), all while
maintaining the computational efficiency of the student model (12.61M parameters vs. 84.74M for the teacher,
and 109G FLOPs vs. 695G for the teacher). Notably, our approach surpasses recent specialized methods such
as MasKD (ICLR’23) and CIRKD (CVPR22) by 0.65% and 1.26%, respectively. This is particularly impressive
given that these methods were specifically designed for semantic segmentation, whereas our IMA framework
was originally developed for object detection and adapted to semantic segmentation. These results demonstrate
that the core principles underlying our IMA framework-namely, the use of instance-level mask information and
feature alignment through standardization and adaptive scaling-are applicable beyond object detection and can
effectively improve performance in other dense prediction tasks such as semantic segmentation.

Hyperparameter Analysis We experimentally analyze the impact of the hyperparameter of loss weight of
LFask on detection results. Table 8 presents the findings obtained by varying the hyperparameter from 0.1 to
10.0. We observe that the best mAP result is achieved when using the hyperparameter value of 1.0 for knowledge
distillation, providing insights into the optimal hyperparameter setting for our approach.

Precision-Recall Analysis The precision-recall curves illustrated in Fig. 2 provide insightful analysis into the
effectiveness of our distillation method in enhancing the localization and classification capabilities of the student
baseline detector. As illustrated in Fig. 2, using the dog class as an example, the student models trained with
our distillation technique consistently outperform their baseline counterparts without distillation. We observe
significant improvements in both mAP and inference time, indicating enhanced performance and computational
efficiency of the distilled student models. Furthermore, we compare our method with other knowledge distillation
approaches, such as attention transfer and feature map distillation. Our IMA method achieves superior mAP
and inference time performance, highlighting its effectiveness in distilling knowledge for object detection
tasks. The results clearly demonstrate that our approach significantly reduces various types of errors, effectively
minimizing false detections, background errors, and missed ground truth instances. By distilling knowledge
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Fig. 2. Error analyses of baseline students (First Row) and students distilled by our approach (Second Row) on
COCO benchmarks. C50 and C75: performance at specific IoU thresholds; Loc: localization errors; Sim and
Oth: class confusion; BG: background discrimination; FN: detection completeness.
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Fig. 3. Qualitative analysis of baseline Faster RCNN and Faster RCNN distilled by Baseline, Our IMA and GT
on COCO benchmarks.

from the teacher model, the student detector exhibits improved specificity, accurately distinguishing between
objects and background regions, thereby reducing false positive detections. Moreover, our method enhances the
sensitivity of the student model, enabling it to detect and classify objects more effectively, addressing the issue of
missed ground truth instances that baseline detectors often struggle with. Collectively, these findings underscore
the ability of our distillation technique to significantly improve the localization and classification performance
of the student detector, rendering it more reliable, robust, and accurate for object detection tasks across diverse
scenarios.

Qualitative Analysis Figure 3 provides a qualitative visualization of the detection outputs from different
detectors, allowing for a comprehensive comparison between our IMA distillation detector and the baseline
student detector. The visual analysis highlights several critical advantages exhibited by our approach. Notably,
our IMA distillation detector demonstrates superior performance in detecting small targets. This highlights
the effectiveness of our distillation technique in transferring knowledge related to detecting and recognizing
small-scale objects, a challenging task in object detection. Additionally, our method significantly reduces the
occurrence of false positive detections, minimizing the identification of non-existent objects, which is crucial
for reliable and interpretable detection systems. Furthermore, our approach effectively addresses false negatives,
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where baseline detectors fail to detect objects present in the scene, thereby enhancing the comprehensiveness
and completeness of the detection process. It is of great importance to note that our IMA distillation technique
mitigates performance degradation, ensuring robust and consistent detection accuracy across diverse scenarios.
The qualitative analysis of the detection visualization results substantiates the superior accuracy in detecting
small targets by our IMA distillation detector.

Discussion

Related work

Object Detection Object detection algorithms can be categorized as two-stage or one-stage. Two-stage methods,
such as Faster R-CNN% and Cascade R-CNN?® maintain high accuracy through the use of RPN and the
refinement of classification and location. One-stage detectors including SSD?° and YOLO?? have lower latency
by direct prediction from feature maps. Recent methods also distinguish between anchor-based and anchor-
free detectors. Anchor-based detectors, such as SSD? and Faster R-CNN?3!, rely on predefined anchor boxes.
However, many anchors pose challenges. Anchor-free methods, including CenterNet*? and CornerNet**, predict
key points like center, achieving better performance with fewer costs. Addressing the foreground-background
imbalance is crucial. Two-stage detectors employ sampling and OHEM?* to reduce the background. One-
stage approaches, such as RetinaNet’, introduce focal loss. Anchor-free detectors like FCOS® and FoveaBox™*
eliminate anchors, reducing operations and tuning. Recent work also proposes dynamic label assignment**” to
better define samples. Additionally, the DETR family of detectors®® has gained popularity due to the powerful
feature encoding capabilities of transformer blocks. These detectors are capable of encoding highly expressive
features and have emerged as a significant trend in the object detection community.

Knowledge Distillation for Object Detection As one of the popular model compression and performance
optimization strategies, knowledge distillation®* has been widely explored in various domains, including
object detection, image classification, and natural language processing. In the context of object detection,
existing methods primarily focus on aligning the feature representations or output predictions between the
teacher and student models. For example, some approaches employ feature mimicking techniques, where the
student model’s feature maps are guided to mimic the teacher’s feature maps through additional loss terms
or attention mechanisms. For instance, Zheng et al.** emphasize a valuable localization region to leverage
classification and localization information. Yang et al.*! propose a multi-scale imitation function of the core
features for the distillation of the adaptive reinforcement control. Dai et al.® go a step further by distilling
discriminative patches between students and teachers. Zhang et al.*? propose a method for structured knowledge
distillation using an attention mechanism for guided distillation. However, these previous works only employ a
fixed teacher for experiments, without exploring the relationship between teacher and student performance in
object detection tasks. Some recent studies have introduced new approaches for knowledge distillation in object
detection. FGD!? aligns the attention between teacher and student models, while PKD* maximizes the Pearson
Correlation Coefficient between their feature representations. Huang et al.** propose a DISK method, which
uses correlation-based loss to better capture interclass relationships. Liu et al.*> propose a cross-architecture
distillation method. Prediction mimicking, commonly used in classification distillation, has also been adapted
for object detection. For example, Tu et al.” propose a dynamic distillation method in which teacher and student
networks can learn from each other. Lv et al.*® propose a gap-free feature imitation method to decouple the
encode and decode distillation process. Zhang et al.*’ propose an explainable distillation method that uses the
class activation map to exploit information about both the structure and the label. Song et al.* propose a closed-
loop method combining hierarchical re-weighted attention distillation and detection head classification for
dense object detection. In contrast to these methods, our approach focuses on aligning feature knowledge to
reduce gaps in teacher-student detectors.

Limitations and future work
While our proposed IMA framework demonstrates superior performance in bridging the gap between teacher
and student models, several limitations and areas for future improvement can be identified:

Computational Overhead The Instance Mask Distillation module and Cascade Alignment Module introduce
additional computational overhead during training. Although this overhead is only present during the training
phase and does not affect inference, it may still impact the training efficiency, especially for large-scale datasets.
Future work could explore more efficient implementations of these modules, potentially leveraging techniques
such as pruning or quantization to reduce the computational cost.

Hyperparameter Sensitivity As shown in our hyperparameter analysis, the performance of our IMA framework
is sensitive to the choice of the loss weight of I /4. This sensitivity may require extensive hyperparameter
tuning for optimal performance, which can be time-consuming and resource-intensive. Future research could
investigate more robust methods for automatically determining the optimal hyperparameter values or develop
adaptive schemes that adjust the hyperparameters during training.

Teacher Model Selection Our results show that the performance of the student model is influenced by
the choice of the teacher model. However, we have not systematically explored the relationship between the
teacher and student model architectures and the resulting performance. Future research could investigate this
relationship more thoroughly, potentially providing guidelines for selecting the most suitable teacher model for
a given student model.

Conclusion
In this paper, we propose a novel Instance Mask Alignment Knowledge Distillation (IMA) framework for object
detection. Our framework effectively bridges the gap between different detector architectures through a cascade
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of knowledge transformation operations. The introduction of instance mask distillation enables the student
model to learn from the teacher’s instance-level mask information, improving its ability to identify and attend
to relevant objects. Furthermore, the cascade alignment module, consisting of instance standardization and
adaptive scale deflation, enhances the training stability and guides the student model towards the most crucial
instances. Extensive experiments on various detectors and multiple benchmarks demonstrate the significant
performance improvements achieved by our IMA framework.

Our work provides several valuable insights into the knowledge distillation process for object detection.
First, we identify the importance of instance-level information in the distillation process, demonstrating that
this information can significantly enhance the student model’s performance. Second, we show that addressing
the feature distribution gap between teacher and student models through instance standardization and adaptive
scaling is crucial for effective knowledge transfer. Finally, we empirically validate the effectiveness of our
approach across a range of detector architectures and datasets, highlighting its generalizability and robustness.

Despite these strengths, our approach does have limitations, particularly in terms of computational overhead
during training and sensitivity to hyperparameters. These limitations suggest promising directions for future
research, including exploring more efficient implementations, investigating automatic hyperparameter tuning
methods, and extending the approach to other computer vision tasks. Furthermore, future work could explore
more efficient ways to incorporate instance-level information, such as using lightweight attention mechanisms
or sparse representations, and extend the proposed approach to other computer vision tasks, such as instance
segmentation or panoptic segmentation.

Data availability

The datasets used and analyzed during the current study are available in the COCO (https://cocodataset.org/),
PASCAL VOC (http://host.robots.ox.ac.uk/pascal/VOC/) and Cityscapes (https://www.cityscapes-dataset.com
D).
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