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Knowledge distillation has proven to be an effective technique for enhancing object detection 
performance. However, the presence of different detector types often results in a significant 
performance gap between teacher and student models. In this paper, we propose an Instance Mask 
Alignment (IMA) knowledge distillation framework for object detection. Our framework leverages 
knowledge transformation operations to reduce the teacher-student gap, leading to notable 
performance improvements. We introduce instance mask distillation, which incorporates mask 
information to enhance the student model’s ability to identify and focus on relevant regions or objects. 
Additionally, we introduce a cascade alignment module with instance standardization, utilizing an 
adaptive scale deflation module along the instance dimension. Through the integration of these 
cascade knowledge alignment modules, our proposed framework achieves substantial performance 
gains across various detector types. Extensive experiments conducted on the MS-COCO, PASCAL 
VOC and Cityscapes benchmarks demonstrate the effectiveness of our novel method, particularly its 
adaptability to heterogeneous detectors.
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Object detection as a fundamental task in computer vision1, has been widely used in numerous applications such 
as smart factory, autonomous vehicles, surveillance systems, and medical scenarios. While deep learning has 
significantly advanced the performance of object detectors, these models often require substantial computational 
resources, limiting their deployment in resource-constrained environments2. Knowledge distillation2,3, a 
technique that transfers knowledge from a larger teacher model to a smaller student model, has emerged as 
a promising solution to address this challenge. By leveraging the knowledge of the teacher model, the student 
model can learn from the teacher’s representations and predictions, achieving comparable performance while 
being more computationally efficient.

Knowledge distillation has been extensively studied in the field of image classification4. However, applying 
knowledge distillation to the task of object detection presents unique challenges. Object detection involves not 
only the classification of objects but also their precise localization within the image. In addition, there exist 
various types of detectors, each with its own characteristics and response patterns. However, the presence 
of diverse detector architectures, such as two-stage, one-stage, and anchor-free detectors, poses significant 
challenges in the knowledge transfer process. These detectors often exhibit structural differences in their output 
representations, leading to a substantial gap between the teacher and student models, hindering the effective 
distillation of knowledge.

Existing knowledge distillation methods for object detection primarily focus on aligning the feature 
representations or output predictions between the teacher and student models5. However, these approaches 
often overlook the importance of instance-level information, such as object masks, which can provide valuable 
guidance for the student model to better identify and attend to relevant regions or objects within the input data. 
Moreover, the inherent differences between detector architectures, such as anchor-based versus anchor-free 
designs, can further exacerbate the teacher-student gap, necessitating additional alignment strategies. Effectively 
bridging this gap is crucial for achieving successful knowledge distillation and ensuring that the student model 
can learn from the teacher’s expertise while maintaining high accuracy.

To address this issue, we propose the Instance Mask Alignment (IMA) framework for object detection 
knowledge distillation. In our proposed IMA framework, we introduce instance mask distillation, which 
incorporates mask information to improve the student model’s ability to identify and attend to relevant regions 
or objects within the input data. Specifically, we distill the knowledge from the teacher’s instance masks to the 
student model, encouraging the student to learn to predict accurate object masks during training. This instance-
level guidance helps the student model better understand the spatial extent and boundaries of objects, leading 
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to improved detection performance. Furthermore, we introduce a cascade alignment module that consists 
of instance standardization and an adaptive scale deflation module in the instance dimension. The instance 
standardization step normalizes the instance-level features, thereby reducing the internal covariate shift and 
improving the training stability. The adaptive scale deflation module then adaptively scales the instance-level 
features based on their importance, allowing the student model to focus on the most relevant instances and 
mitigate the impact of irrelevant or noisy instances. By cascading these alignment modules, our framework 
effectively bridges the gap between different detector architectures, enabling successful knowledge transfer and 
performance improvements. This comprehensive approach enhances the student model’s ability to predict image 
recognition and object detection tasks accurately.

We conduct extensive experiments on popular object detection benchmarks, including MS-COCO, PASCAL 
VOC, and extend experiments on the instance segmentation dataset Cityscapes. The results demonstrate that our 
IMA approach enhances the performance of student models while maintaining computational efficiency. The 
proposed IMA method, shown as Fig. 1 represents a promising solution for deploying efficient object detection 
models in resource-constrained scenarios.

In summary, our three key contributions are:

•	 Our paper presents the Instance Mask Alignment (IMA) framework for object detection knowledge distilla-
tion, which reduces the performance gap between teacher and student detectors.

•	 Our approach leverages instance mask information to enhance object detection performance. The cascade 
alignment module aligns feature representations between the teacher and student models, thereby reducing 
the performance gap across different detector types.

•	 Through extensive experiments conducted on multiple benchmarks, we demonstrate the effectiveness and 
adaptability of our proposed IMA framework in object detection knowledge distillation, with a thorough 
analysis of its strengths and limitations.

In accordance with the provided instructions, we proceed to present the theoretical foundations and methodology 
in the subsequent section.

Methods
In this section, we provide a detailed description of our proposed Instance Mask Alignment (IMA) framework 
for object detection knowledge distillation. We begin by revisiting the conventional knowledge distillation 
approach for object detection. We then introduce our proposed IMA framework, detailing its key components: 
Instance Mask Distillation and the Cascade Alignment Module.

Fig. 1.  Overview of the Instance Mask Alignment (IMA) framework for object detection knowledge 
distillation. Our distillation method follows a two-step process. Firstly, we extract instance feature maps from 
the teacher model. These feature maps are then used to generate an instance mask that aligns with the student 
features. To further enhance the alignment between the teacher and student features, we employ the Cascade 
Alignment technique, which includes Instance Standardization and Adaptive Scale Deflation. Finally, we 
calculate the total distillation loss.
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Revisiting object detection knowledge distillation
We first revisit the general formulation of conventional detection knowledge distillation methods for a better 
understanding of our approach. Current feature distillation approaches encourage the student model S to 
mimic the intermediate features of the teacher model T by explicitly optimizing the feature distillation loss. 
Let F S ∈ RN×C×H×W  and F T ∈ RN×C×H×W  denote the middle-level features of the student and teacher 
models, respectively, where N is the number of instances, C is the number of channels, and H and W are the 
spatial dimensions. The purpose of conventional feature distillation is to minimize the feature distillation loss, 
which is described as follows:

	
LKD = 1

NCHW

N∑
n=1

C∑
k=1

H∑
i=1

W∑
j=1

Df

(
F T

n,k,i,j − falign(F S
n,k,i,j)

)
� (1)

where Df (·) is the distance function measuring the difference between the intermediate features of the teacher 
and student models. The adaptation layer falign is used to align the student’s features F S  with the teacher’s 
features F T . In conventional feature distillation, the goal is to minimize the discrepancy between the student’s 
and teacher’s feature maps, thereby encouraging the student model to learn a similar intermediate representation 
as the teacher model.

Instance mask distillation
In our proposed method, we introduce an Instance Mask Distillation module to effectively transfer instance-
level spatial information from the teacher to the student model. This module leverages instance masks to guide 
the student model in identifying and attending to relevant regions or objects within the input data, thereby 
enhancing detection performance.

Specifically, our instance mask distillation module utilizes a binary mask M ∈ RH×W ×1, which is generated 
randomly with a mask ratio ζ ∈ [0, 1), as defined below:

	
Mi,j =

{ 0, Ri,j < ζ
1, Ri,j ≥ ζ � (2)

Here, Ri,j  represents a random value sampled from a uniform distribution, denoted by U(0, 1), for each spatial 
location (i, j). The operation of element-wise multiplication, applied to the function F(F S), effectively masks 
out certain frequency components.

	 F̂ S = F−1(M ⊙ F(F S))� (3)

The knowledge distillation loss term, LF Mask , is computed as the mean squared error between the masked 
student features, F̂ S , and the teacher features, F T , across all instances, spatial locations, and channels:

	
LF Mask = 1

NCHW

N∑
n=1

C∑
k=1

H∑
i=1

W∑
j=1

∥∥F̂ S
n,k,i,j − F T

n,k,i,j

∥∥
2� (4)

By minimizing this loss during training, we encourage the student model to learn to generate feature maps that 
are consistent with the teacher’s feature maps in the masked regions. The guidance provided by the teacher’s 
instance masks enables the student model to gain a more comprehensive understanding of the spatial extent and 
boundaries of objects, which in turn leads to enhanced detection performance.

The instance mask distillation module offers several advantages. Firstly, it provides a direct way to transfer 
instance-level spatial information from the teacher to the student, which is particularly beneficial for object 
detection tasks where accurate localization and segmentation are crucial. Secondly, by randomly masking 
different regions of the input during training, the student model is exposed to a diverse set of masked inputs, 
thereby promoting robustness and generalization. Finally, the instance mask distillation module can be easily 
integrated into existing knowledge distillation frameworks, in conjunction with other techniques such as feature 
mimicking or output distribution alignment.

Cascade alignment module
In addition to the Instance Mask Distillation module, we introduce a Cascade Alignment Module to further 
bridge the gap between different detector architectures and enable successful knowledge transfer. This module 
consists of two principal components: Instance Standardization and Adaptive Scale Deflation modules.

Instance standardization
The Instance Standardization step is designed to normalize the instance-level features, reducing the internal 
covariate shift and improving the training stability of the student model. This is particularly important when 
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working with different detector architectures, as the feature distributions can vary significantly, thereby hindering 
the knowledge transfer process.

Specifically, we compute the mean µn ∈ RC  and standard deviation σn ∈ RC  of the instance-level features 
across the spatial dimensions for each instance n as follows:

	
µn = 1

HW

H∑
i=1

W∑
j=1

F S
n,c,i,j � (5)

	

σn =

√√√√ 1
HW

H∑
i=1

W∑
j=1

(
F S

n,c,i,j − µn

)2� (6)

We then normalize the instance-level features by subtracting the mean and dividing by the standard deviation, 
resulting in the standardized features, denoted by F̂ S :

	
F̂ S = F S − µn

σn

� (7)

The Instance Standardization step serves to reduce the internal covariate shift, improving the training stability 
and enabling more effective knowledge transfer between different detector architectures.

Adaptive scale deflation
Following the Instance Standardization step, we introduce an Adaptive Scale Deflation module that adaptively 
scales the instance-level features based on their relative importance. This module enables the student model to 
concentrate on the most relevant instances and to mitigate the impact of irrelevant or noisy instances, thereby 
further enhancing the knowledge transfer process.

We compute an importance score αn ∈ [0, 1] for each instance n based on the similarity between the 
student’s and teacher’s feature maps. Specifically, we compute the cosine similarity between the flattened student 
and teacher feature maps for each instance:

	
αn = F S

n · F T
n

∥F S
n ∥ ∥F T

n ∥
� (8)

Here, F S
n  and F T

n  represent the flattened student and teacher feature maps for instance n, respectively. We then 
apply a scaling factor γn to the standardized instance-level features F̂ S

n , in accordance with the importance 
score, represented by αn:

	 γn = αn� (9)

	 F̃ S
n = γnF̂ S

n � (10)

By cascading the Instance Standardization and Adaptive Scale Deflation modules, our framework effectively 
aligns the instance-level features between the student and teacher models, thus bridging the gap between 
different detector architectures. This cascade of alignment operations enables successful knowledge transfer and 
performance improvements, as the student model can learn from the most relevant instances while mitigating 
the impact of irrelevant or noisy instances.

The Cascade Alignment Module offers several strengths. Firstly, the Instance Standardization step reduces 
the internal covariate shift, improving training stability and enabling more effective knowledge transfer between 
different architectures. Secondly, the Adaptive Scale Deflation module allows the student model to focus on 
the most relevant instances, further enhancing the knowledge transfer process and mitigating the impact of 
irrelevant or noisy instances. Finally, by cascading these two components, our framework can effectively bridge 
the gap between different detector architectures, enabling successful knowledge transfer and performance 
improvements.

Total optimization and inference
During training, the object detection loss and the distillation losses introduced by the proposed modules are 
jointly optimized. The total loss function is defined as:

	 Ltotal = Lloc + Lcls + LF Mask � (11)

where Lloc and Lcls are the localization loss and classification loss respectively for object detection, and LF Mask  
represents the loss from our Instance Mask Distillation module.
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The localization loss Lloc measures the difference between the predicted bounding box for an object and the 
ground truth bounding box, typically using a smooth L1 loss:

	
Lloc =

Npos∑
i=1

smoothL1
(
bpred

i − bgt
i

)
� (12)

Here, Npos represents the number of positive samples, bpred
i  denotes the predicted bounding box, and bgt

i  
signifies the ground truth bounding box.

The classification loss Lcls measures the difference between the predicted class probabilities for an object and 
the ground truth class probabilities, typically using a cross-entropy loss:

	
Lcls = −

Npos∑
i=1

C∑
j=1

yij log (pij)� (13)

Here, C is the number of classes, yij  represents the ground truth label (0 or 1), indicating whether instance i 
belongs to class j, and pij  denotes the predicted probability that instance i belongs to class j.

During inference, the student model generates object classification and location information using the 
features extracted from the input image, without relying on the teacher model or the distillation losses.

Theoretical foundation of instance mask alignment
The theoretical underpinning of our Instance Mask Alignment (IMA) framework is based on the observation 
that conventional knowledge distillation methods often struggle with the structural differences between different 
detector architectures. This is particularly evident when the teacher and student models employ different 
detection paradigms (e.g., two-stage vs. one-stage, or anchor-based vs. anchor-free).

From an information theory perspective, we argue that the teacher-student knowledge transfer process can 
be optimized by focusing on the most informative regions within the feature maps, namely the instance regions. 
By emphasizing these regions during the distillation process, we can ensure that the knowledge transferred from 
the teacher to the student is most relevant for the detection task.

Moreover, we observe that the feature distributions of different detector architectures can vary significantly, 
even when they are trained on the same dataset and for the same task. This distribution shift can hinder the 
knowledge transfer process, as the student model may struggle to mimic the teacher’s feature representations. To 
address this issue, we introduce the concept of feature distribution alignment through instance standardization 
and adaptive scaling.

Formally, let pT (F ) and pS(F ) denote the probability distributions of the teacher’s and student’s feature 
maps, respectively. The goal of feature distribution alignment is to minimize the divergence between these 
distributions:

	
min

S
D(pT (F )||pS(F ))� (14)

where D(·||·) is a divergence measure (e.g., KL divergence). However, directly minimizing this divergence is 
challenging due to the structural differences between the teacher and student models. Instead, we propose to 
align the distributions after applying a transformation g(·) to the feature maps:

	
min

S
D(pT (g(F ))||pS(g(F )))� (15)

In our IMA framework, g(·) corresponds to the cascade of instance standardization and adaptive scale deflation, 
which we describe in detail in the above sections.

Pseudo-code for the IMA algorithm
To provide a clear understanding of our proposed IMA framework, we present a pseudo-code description of the 
main algorithm in Algorithm 1.
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Algorithm 1.  Instance Mask Alignment (IMA) for Object Detection Knowledge Distillation

Method mAP AP50 AP75 APS APM APL

Teacher FCOS-Res101 40.8 60.0 44.0 24.2 44.3 52.4

Student FCOS-Res50 38.5 57.7 41.0 21.9 42.8 48.6

GID8 42.0 60.4 45.5 25.6 45.8 54.2

FRS9 40.9 60.3 43.6 25.7 45.2 51.2

FGD10 42.1 – – 27.0 46.0 54.6

IMA (Ours) 42.4  61.0 45.8 26.6 45.9 54.8

Teacher Faster RCNN-Res101 39.8 60.1 43.3 22.5 43.6 52.8

Student Faster RCNN-Res50 38.4 59.0 42.0 21.5 42.1 50.3

KD-Zero11 38.4 59.4 41.7 22.7 41.8 45.9

FitNet12 38.8 59.6 41.8 22.3 42.2 50.7

FGFI13 39.4 60.3 43.0 22.9 42.5 52.0

FGD10 40.4 – – 22.8 44.5 53.5

IMA (Ours) 40.6 60.9 43.9 23.0 44.5 54.0

Teacher RetinaNet101-Res101 38.9 58.0 41.5 21.0 42.8 52.4

Student RetinaNet50-Res50 37.4 56.7 39.6 20.0 40.7 49.7

KD-Zero11 36.8 56.6 39.4 21.9 40.6 48.2

FitNet12 36.3 56.0 39.0 20.1 40.3 47.1

FGFI13 37.3 57.1 40.0 21.0 41.5 49.7

FGD10 39.6 – – 22.9 44.3 53.4

IMA (Ours) 39.7 58.6 41.4 22.7 42.9 51.3

Table 1.  Main results on object detection. We use AP on different settings to evaluate results. Res101, Res50 
represents using ResNet101 and ResNet50 as backbones. Significant values are in bold.
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The pseudo-code provides a step-by-step description of our IMA framework, including the Instance Mask 
Distillation module and the Cascade Alignment Module. The algorithm begins by extracting features from both 
the teacher and student models. It then applies the Instance Mask Distillation module, which generates a random 
mask and applies it to the student’s features. Next, the Cascade Alignment Module is applied to each instance, 
which involves Instance Standardization and Adaptive Scale Deflation. Finally, the detection losses and the total 
loss are computed, and the student model is updated by minimizing the total loss.

Results
To evaluate the effectiveness of our proposed Instance Mask Alignment framework, we have conducted a 
series of comprehensive experiments across a range of object detectors, including two-stage, one-stage, and 
anchor-free architectures. We compare our method with state-of-the-art approaches and demonstrate superior 
performance on multiple evaluation metrics. Furthermore, we present experiments involving teacher models 
with heterogeneous backbones to demonstrate the versatility of our approach. Finally, we provide detailed 
ablation studies to validate the efficacy of our proposed techniques.

Datasets and Implementation Details Our experiments are performed on two widely-adopted object detection 
benchmarks: MS COCO and PASCAL VOC. The MS COCO dataset comprises 80 object categories with over 
330,000 images, containing diverse object scales and challenging backgrounds. The PASCAL VOC dataset 
consists of 20 object categories with approximately 11,000 images. We evaluate the performance of the object 
detectors using standard metrics, such as mean Average Precision (mAP). For model optimization, we employ 
techniques like stochastic gradient descent (SGD) or Adam. The hyperparameters are set to α = 10, and we use 
L2-loss for the function Df (·) across all experiments. We adopt a 2 x learning rate schedule and train for 24 
epochs on the COCO dataset during the distillation process.

Main Results Table 1 presents the experimental results, comparing the baseline detectors with our distillation 
approach. It is evident that student detectors achieve superior performance when distilled from stronger teacher 
detectors based on more powerful backbones. IMA consistently achieves superior performance compared 
to both the baseline student models and other distillation methods. On the FCOS6 detector, IMA attains the 
highest mAP of 42.4, outperforming GID, FRS, and FGD, and showing substantial improvements across most 
AP metrics, including AP50 and AP75. For the Faster R-CNN detector, IMA achieves an mAP of 40.6, exceeding 
the best baseline (FGD) by 0.2 points, and delivering top performance on all detailed AP metrics, including 
APS , APM , and APL. Similarly, on RetinaNet7, IMA yields the highest mAP of 39.7, outperforming FGD and 
other baselines, while maintaining competitive results across object scales. These results validate the generality 
and robustness of IMA across different detection architectures and demonstrate its effectiveness in improving 
student model performance through knowledge distillation.

Different Backbone Distillation Our approach is adaptable to distillation between heterogeneous backbones, 
enabling knowledge transfer from teachers with different architectures. we conduct experiments on various 
teacher-student detector pairs with different backbone architectures and leverage teacher detectors based on 
stronger backbones.Table 2 compares our results with other effective distillation techniques. IMA consistently 
outperforms existing state-of-the-art knowledge distillation methods, including FGFI, COFD, FKD, and FGD, 
across multiple detection frameworks. On the RetinaNet detector, where the teacher uses ResNeXt-101 and the 
student uses ResNet-50, IMA achieves the highest mAP of 41.0, significantly surpassing the baseline student 
model (37.4) and outperforming strong methods such as FGD (40.4) and FKD (39.6). IMA also delivers the best 
results across most sub-metrics, including AP50, AP75, APM , and APL, demonstrating its ability to effectively 
transfer both coarse and fine-grained knowledge from a stronger backbone. In the case of Cascade Mask 
R-CNN (teacher) to Faster R-CNN (student), IMA achieves an mAP of 41.6, slightly exceeding FKD (41.5) and 

Method mAP AP50 AP75 APS APM APL

Teacher RetinaNet-ResNeXt101 41.6 61.4 44.3 23.9 45.5 54.5

Student RetinaNet-Res50 37.4 56.7 39.6 20.0 40.7 49.7

FGFI13 39.1 59.8 42.8 22.2 42.9 51.1

COFD14 38.9 60.1 42.6 21.8 42.7 50.7

FKD15 39.6 58.8 42.1 22.7 43.3 52.5

FGD10 40.4 – – 23.4 44.7 54.1

IMA (Ours) 41.0 60.2 43.6 23.0 45.2 55.0

Teacher Cascade Mask RCNN-ResNeXt101 45.6 64.1 49.7 26.2 49.6 60.0

Student Faster RCNN-Res50 38.4 59.0 42.0 21.5 42.1 50.3

FKD15 41.5 62.2 45.1 23.5 45.0 55.3

IMA (Ours) 41.6 62.3 45.5 23.5 45.3 55.3

Teacher RepPoints-ResNeXt101 44.2 65.5 47.8 26.2 48.4 58.5

Student RepPoints-Res50 38.6 59.6 41.6 22.5 42.2 50.4

FKD15 40.6 61.7 43.8 23.4 44.6 53.0

FGD10 41.3 – – 24.5 45.2 54.0

IMA (Ours) 42.3 63.1 45.8 24.1 46.4 55.9

Table 2.  More results on different backbone object detectors. Significant values are in bold.
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outperforming the student baseline by 3.2 mAP points. IMA also provides the best performance on all detailed 
AP metrics, including AP75 and large object detection (APL), confirming its robustness in two-stage detectors 
with high-capacity teachers. Similarly, for the RepPoints detector, IMA obtains the highest mAP of 42.3, 
outperforming FKD (40.6) and FGD (41.3). Notably, IMA achieves significant improvements in AP75 (45.8) 
and large object detection APL (55.9), indicating enhanced localization precision and better adaptation to scale 
variation. These results collectively demonstrate that IMA not only generalizes well across different detection 
architectures but also maintains strong performance under the challenging heterogeneous backbone setting, 
highlighting the effectiveness of the IMA method in bridging the architectural gap between teacher and student 
models. These results demonstrate the superior ability of our distillation models to capture and represent salient 
features, which consequently leads to enhanced detection performance.

GFL Framework Results Table 3 provides a detailed comparison of various knowledge distillation methods 
within the GFL16 framework on the MS COCO dataset. The baseline student model (GFL-Res50) achieved an 
mAP of 40.2, while the teacher model (GFL-Res101) attained an mAP of 44.9. Among the existing methods, 
SKD and ScaleKD demonstrated significant improvements, achieving mAPs of 42.3 and 42.5, respectively. 
However, the proposed method achieved the best overall mAP of 44.0, closely aligning with the teacher model’s 
performance. The results also highlight the superiority of the proposed method in terms of AP across different 
IoU thresholds (AP50 and AP75) and object sizes (APS , APM , and APL). For instance, the proposed method 
achieved an AP50 of 62.2 and an AP75 of 47.7, surpassing all other methods. The gains in APS  (+3.5) and 
APL (+4.8) further underscore the method’s effectiveness in handling both small and large objects. Interestingly, 
the performance of the proposed method is particularly notable in the context of small object detection, where 
it achieved an APS  of 26.8, second only to CrossKD. This indicates that the method addresses the challenges 
associated with detecting small objects, a common limitation of many KD techniques. Similarly, consistent 
improvements in APM  and APL suggest that the method effectively balances performance across object scales.

Method Backbone mAP@0.5

Faster R-CNN (Teacher) ResNet-101 78.5

Faster R-CNN (Student) ResNet-50 76.2

FitNet12 ResNet-50 77.1

FGFI13 ResNet-50 77.4

FGD10 ResNet-50 77.8

IMA (Ours) ResNet-50 78.5

RetinaNet (Teacher) ResNet-101 77.0

RetinaNet (Student) ResNet-50 74.8

FitNet12 ResNet-50 75.2

FGFI13 ResNet-50 75.5

FGD10 ResNet-50 76.1

IMA (Ours) ResNet-50 76.7

Table 4.  Experimental results on the PASCAL VOC dataset. We report mAP at IoU threshold of 0.5. 
Significant values are in bold.

 

Method mAP AP50 AP75 APS APM APL

GFL-Res101 (T) 44.9 63.1 49.0 28.0 49.1 57.2

GFL-Res50 (S) 40.2 58.4 43.3 23.3 44.0 52.2

FitNets12 40.7 58.6 44.0 23.7 44.4 53.2

Inside GT Box17 40.7 58.6 44.2 23.1 44.5 53.5

Defeat18 40.8 58.6 44.2 24.3 44.6 53.7

LD17 41.0 58.6 44.2 23.4 45.0 53.1

Main Region17 41.1 58.7 44.4 24.1 44.6 53.6

Fine-Grained13 41.1 58.8 44.8 23.3 45.4 53.1

GID8 41.5 59.6 45.2 24.3 45.7 53.6

SKD19 42.3 60.2 45.9 24.4 46.7 55.6

ScaleKD20 42.5 – – 25.9 46.2 54.6

BCKD21 43.2 61.6 46.9 25.7 47.3 55.9

FGD10 43.4 61.7 47.0 26.2 47.4 56.4

CrossKD22 43.7 62.1 47.4 26.9 48.0 56.2

IMA (Ours) 44.0 62.2 47.7 26.8 48.4 57.0

Table 3.  Comparison results in GFL framework on MS COCO. Significant values are in bold.
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PASCAL VOC Results To further validate the generalizability of our proposed IMA framework, we conduct 
experiments on the PASCAL VOC dataset. Table  4 presents the experimental results on the PASCAL VOC 
dataset, comparing our method with baseline and other distillation approaches. Similar to the results on the 
MS COCO dataset, our method achieves consistent improvements across different detector architectures. For 
the Faster R-CNN with ResNet-50 backbone, our method improves the mAP by 2.3% compared to the baseline. 
These results further demonstrate the effectiveness and generalizability of our proposed IMA framework across 
different datasets and detector architectures.

Ablation Studies Table  5 presents ablation studies to analyze the impact of our proposed IMA approach 
and its components on the performance of a ResNet50-based RetinaNet student model. The teacher model, 
RetinaNet-ResNeXt101, achieves an mAP of 41.6, while the student model, RetinaNet-Res50, has a lower mAP 
of 37.4, indicating a significant performance gap compared to the teacher. Applying conventional Knowledge 
Distillation (KD) improves the student’s mAP from 37.4 to 40.2. The introduction of our proposed Instance Mask 
Distillation module further boosts the student’s mAP to 40.7, highlighting the benefit of transferring instance-
level spatial information from the teacher. In addition, combining the Instance Standardisation component of 
our Cascade Alignment module increases the mAP to 40.9 by reducing internal covariate shift and improving 
training stability. Finally, the incorporation of the Adaptive Scale Deflation component, which adaptively scales 
instance-level features based on their importance, yields the highest mAP of 41.0. This step allows the student to 
focus on the most relevant instances during training, further enhancing knowledge transfer and mitigating the 
impact of irrelevant or noisy instances. Overall, the ablation studies demonstrate the effectiveness of our IMA 
approach and its components in bridging the performance gap between student and teacher models, even when 
their architectures differ significantly.

Computational Efficiency Analysis While the primary goal of knowledge distillation is to improve the 
performance of compact models, it is equally important to analyze the computational efficiency of the distilled 
models. Table 6 provides a comprehensive comparison of the computational efficiency of different object detectors 
used in our experiments. The results clearly demonstrate the computational advantages of the student models 
compared to their teacher counterparts. For instance, the RetinaNet with ResNet-50 backbone (student model) 
has approximately 60% fewer parameters and 49% lower FLOPs compared to the ResNeXt-101 backbone (teacher 
model), while achieving a 42% higher inference speed. Similar trends are observed for the two-stage and anchor-
free detectors, where the student models consistently show significant reductions in computational requirements 
while maintaining competitive performance after distillation. This efficiency analysis underscores the practical 
value of our proposed IMA framework. By effectively transferring knowledge from computationally intensive 

Model Params (M) FLOPs (G) Mem (MB) FPS

Single-Stage Detectors (RetinaNet)

 T: X101 95.86 424 367 29.4

 T: R101 56.96 283 220 30.7

 S: R50 37.97 215 148 41.9

Two-Stage Detectors (Faster R-CNN)

 T: X101 135.0 2014 528 20.6

 T: R101 60.75 255 244 31.1

 S: R50 41.75 187 171 42.1

Anchor-Free Detectors (RepPoints)

 T: X101 94.74 380 230 16.6

 T: R101 55.84 239 224 24.5

 S: R50 36.85 171 151 31.4

Table 6.  Efficiency comparison of different object detectors. In addition to the number of parameters (Params) 
and FLOPs, we report CUDA memory usage (Mem) and inference speed (FPS), measured on an NVIDIA 
A100 GPU (80GB). All models are evaluated with an input resolution of 1088×800. T: teacher model, S: 
student model.

 

Method mAP AP50 AP75 APS APM APL

Teacher RetinaNet-ResNeXt101 41.6 61.4 44.3 23.9 45.5 54.5

Student RetinaNet-Res50 37.4 56.7 39.6 20.0 40.7 49.7

+ KD 40.2 59.5 43.0 22.6 44.3 53.4

+ Instance Mask 40.7 60.2 43.4 23.8 44.6 53.9

+ Standardization 40.9 60.7 43.4 23.5 44.9 53.9

+ Adaptive Scale 41.0 60.2 43.6 23.0 45.2 55.0

Table 5.  Ablation studies on our proposed IMA using ResNet50-based RetinaNet with ResNeXt101-based 
RetinaNeXt serving as the teacher.
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teacher models to more efficient student models, our approach enables the deployment of high-performance 
object detectors in resource-constrained environments, such as edge devices or real-time applications.

Extension to semantic segmentation
To demonstrate the versatility of our proposed IMA framework beyond object detection, we extend it to the 
task of semantic segmentation. Semantic segmentation, which aims to assign a semantic label to each pixel in an 
image, shares similar challenges with object detection in terms of the need for fine-grained spatial understanding. 
We adapt our IMA framework to semantic segmentation by applying the Instance Mask Distillation and Cascade 
Alignment modules to the feature maps of semantic segmentation models. In this context, the ”instances” 
correspond to regions of pixels belonging to the same semantic class. We evaluate our adapted approach on 
the Cityscapes dataset, using a PSPNet with ResNet-18 backbone as the student model and a DeepLabV3 with 
ResNet-101 backbone as the teacher model.

Table 7 presents the results of our semantic segmentation experiments, comparing our adapted IMA framework 
with several state-of-the-art knowledge distillation methods specifically designed for semantic segmentation. 
The results show that our adapted IMA framework outperforms all other knowledge distillation methods for 
semantic segmentation, achieving an mIoU of 75.99%, which is a 3.44% improvement over the baseline student 
model. This represents a significant step toward closing the gap with the teacher model (78.07% mIoU), all while 
maintaining the computational efficiency of the student model (12.61M parameters vs. 84.74M for the teacher, 
and 109G FLOPs vs. 695G for the teacher). Notably, our approach surpasses recent specialized methods such 
as MasKD (ICLR’23) and CIRKD (CVPR’22) by 0.65% and 1.26%, respectively. This is particularly impressive 
given that these methods were specifically designed for semantic segmentation, whereas our IMA framework 
was originally developed for object detection and adapted to semantic segmentation. These results demonstrate 
that the core principles underlying our IMA framework-namely, the use of instance-level mask information and 
feature alignment through standardization and adaptive scaling-are applicable beyond object detection and can 
effectively improve performance in other dense prediction tasks such as semantic segmentation.

Hyperparameter Analysis We experimentally analyze the impact of the hyperparameter of loss weight of 
LF Mask  on detection results. Table 8 presents the findings obtained by varying the hyperparameter from 0.1 to 
10.0. We observe that the best mAP result is achieved when using the hyperparameter value of 1.0 for knowledge 
distillation, providing insights into the optimal hyperparameter setting for our approach.

Precision-Recall Analysis The precision-recall curves illustrated in Fig. 2 provide insightful analysis into the 
effectiveness of our distillation method in enhancing the localization and classification capabilities of the student 
baseline detector. As illustrated in Fig. 2, using the dog class as an example, the student models trained with 
our distillation technique consistently outperform their baseline counterparts without distillation. We observe 
significant improvements in both mAP and inference time, indicating enhanced performance and computational 
efficiency of the distilled student models. Furthermore, we compare our method with other knowledge distillation 
approaches, such as attention transfer and feature map distillation. Our IMA method achieves superior mAP 
and inference time performance, highlighting its effectiveness in distilling knowledge for object detection 
tasks. The results clearly demonstrate that our approach significantly reduces various types of errors, effectively 
minimizing false detections, background errors, and missed ground truth instances. By distilling knowledge 

Method mAP AP50 AP75 APS APM APL

Baseline 37.4 56.7 39.6 20.0 40.7 49.7

0.1 40.7 60.2 43.4 23.8 44.6 53.9

0.5 40.9 60.7 43.4 23.5 44.9 53.9

1 41.0 60.2 43.6 23.0 45.2 55.0

5 39.2 58.1 42.2 22.4 43.2 51.0

10 38.5 57.8 41.0 21.8 42.5 50.8

Table 8.  Ablation study of loss weight of LF Mask  with RetinaNet-R50 as student, RetinaNet-X101 as teacher.

 

Method Params (M) FLOPs (G) mIoU (%)

T: DeepLabV3-R101 84.74 695 78.07

S: PSPNet-R18

12.61 109

72.55

SKD19 73.29

IFVD23 73.71

CWD24 74.36

CIRKD25 74.73

MasKD26 75.34

IMA (Ours) 75.99

Table 7.  Comparison of knowledge distillation methods for semantic segmentation on Cityscapes with the 
PSPNet-R18 student model. T: teacher model, S: student baseline model. Significant values are in bold.
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from the teacher model, the student detector exhibits improved specificity, accurately distinguishing between 
objects and background regions, thereby reducing false positive detections. Moreover, our method enhances the 
sensitivity of the student model, enabling it to detect and classify objects more effectively, addressing the issue of 
missed ground truth instances that baseline detectors often struggle with. Collectively, these findings underscore 
the ability of our distillation technique to significantly improve the localization and classification performance 
of the student detector, rendering it more reliable, robust, and accurate for object detection tasks across diverse 
scenarios.

Qualitative Analysis Figure  3 provides a qualitative visualization of the detection outputs from different 
detectors, allowing for a comprehensive comparison between our IMA distillation detector and the baseline 
student detector. The visual analysis highlights several critical advantages exhibited by our approach. Notably, 
our IMA distillation detector demonstrates superior performance in detecting small targets. This highlights 
the effectiveness of our distillation technique in transferring knowledge related to detecting and recognizing 
small-scale objects, a challenging task in object detection. Additionally, our method significantly reduces the 
occurrence of false positive detections, minimizing the identification of non-existent objects, which is crucial 
for reliable and interpretable detection systems. Furthermore, our approach effectively addresses false negatives, 

Fig. 3.  Qualitative analysis of baseline Faster RCNN and Faster RCNN distilled by Baseline, Our IMA and GT 
on COCO benchmarks.

 

Fig. 2.  Error analyses of baseline students (First Row) and students distilled by our approach (Second Row) on 
COCO benchmarks. C50 and C75: performance at specific IoU thresholds; Loc: localization errors; Sim and 
Oth: class confusion; BG: background discrimination; FN: detection completeness.
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where baseline detectors fail to detect objects present in the scene, thereby enhancing the comprehensiveness 
and completeness of the detection process. It is of great importance to note that our IMA distillation technique 
mitigates performance degradation, ensuring robust and consistent detection accuracy across diverse scenarios. 
The qualitative analysis of the detection visualization results substantiates the superior accuracy in detecting 
small targets by our IMA distillation detector.

Discussion
Related work
Object Detection Object detection algorithms can be categorized as two-stage or one-stage. Two-stage methods, 
such as Faster R-CNN27 and Cascade R-CNN28 maintain high accuracy through the use of RPN and the 
refinement of classification and location. One-stage detectors including SSD29 and YOLO30 have lower latency 
by direct prediction from feature maps. Recent methods also distinguish between anchor-based and anchor-
free detectors. Anchor-based detectors, such as SSD29 and Faster R-CNN31, rely on predefined anchor boxes. 
However, many anchors pose challenges. Anchor-free methods, including CenterNet32 and CornerNet33, predict 
key points like center, achieving better performance with fewer costs. Addressing the foreground-background 
imbalance is crucial. Two-stage detectors employ sampling and OHEM34 to reduce the background. One-
stage approaches, such as RetinaNet7, introduce focal loss. Anchor-free detectors like FCOS6 and FoveaBox35 
eliminate anchors, reducing operations and tuning. Recent work also proposes dynamic label assignment36,37 to 
better define samples. Additionally, the DETR family of detectors38 has gained popularity due to the powerful 
feature encoding capabilities of transformer blocks. These detectors are capable of encoding highly expressive 
features and have emerged as a significant trend in the object detection community.

Knowledge Distillation for Object Detection As one of the popular model compression and performance 
optimization strategies, knowledge distillation4,39 has been widely explored in various domains, including 
object detection, image classification, and natural language processing. In the context of object detection, 
existing methods primarily focus on aligning the feature representations or output predictions between the 
teacher and student models. For example, some approaches employ feature mimicking techniques, where the 
student model’s feature maps are guided to mimic the teacher’s feature maps through additional loss terms 
or attention mechanisms. For instance, Zheng et al.40 emphasize a valuable localization region to leverage 
classification and localization information. Yang et al.41 propose a multi-scale imitation function of the core 
features for the distillation of the adaptive reinforcement control. Dai et al.8 go a step further by distilling 
discriminative patches between students and teachers. Zhang et al.42 propose a method for structured knowledge 
distillation using an attention mechanism for guided distillation. However, these previous works only employ a 
fixed teacher for experiments, without exploring the relationship between teacher and student performance in 
object detection tasks. Some recent studies have introduced new approaches for knowledge distillation in object 
detection. FGD10 aligns the attention between teacher and student models, while PKD43 maximizes the Pearson 
Correlation Coefficient between their feature representations. Huang et al.44 propose a DISK method, which 
uses correlation-based loss to better capture interclass relationships. Liu et al.45 propose a cross-architecture 
distillation method. Prediction mimicking, commonly used in classification distillation, has also been adapted 
for object detection. For example, Tu et al.5 propose a dynamic distillation method in which teacher and student 
networks can learn from each other. Lv et al.46 propose a gap-free feature imitation method to decouple the 
encode and decode distillation process. Zhang et al.47 propose an explainable distillation method that uses the 
class activation map to exploit information about both the structure and the label. Song et al.48 propose a closed-
loop method combining hierarchical re-weighted attention distillation and detection head classification for 
dense object detection. In contrast to these methods, our approach focuses on aligning feature knowledge to 
reduce gaps in teacher-student detectors.

Limitations and future work
While our proposed IMA framework demonstrates superior performance in bridging the gap between teacher 
and student models, several limitations and areas for future improvement can be identified:

Computational Overhead The Instance Mask Distillation module and Cascade Alignment Module introduce 
additional computational overhead during training. Although this overhead is only present during the training 
phase and does not affect inference, it may still impact the training efficiency, especially for large-scale datasets. 
Future work could explore more efficient implementations of these modules, potentially leveraging techniques 
such as pruning or quantization to reduce the computational cost.

Hyperparameter Sensitivity As shown in our hyperparameter analysis, the performance of our IMA framework 
is sensitive to the choice of the loss weight of LF Mask . This sensitivity may require extensive hyperparameter 
tuning for optimal performance, which can be time-consuming and resource-intensive. Future research could 
investigate more robust methods for automatically determining the optimal hyperparameter values or develop 
adaptive schemes that adjust the hyperparameters during training.

Teacher Model Selection Our results show that the performance of the student model is influenced by 
the choice of the teacher model. However, we have not systematically explored the relationship between the 
teacher and student model architectures and the resulting performance. Future research could investigate this 
relationship more thoroughly, potentially providing guidelines for selecting the most suitable teacher model for 
a given student model.

Conclusion
In this paper, we propose a novel Instance Mask Alignment Knowledge Distillation (IMA) framework for object 
detection. Our framework effectively bridges the gap between different detector architectures through a cascade 
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of knowledge transformation operations. The introduction of instance mask distillation enables the student 
model to learn from the teacher’s instance-level mask information, improving its ability to identify and attend 
to relevant objects. Furthermore, the cascade alignment module, consisting of instance standardization and 
adaptive scale deflation, enhances the training stability and guides the student model towards the most crucial 
instances. Extensive experiments on various detectors and multiple benchmarks demonstrate the significant 
performance improvements achieved by our IMA framework.

Our work provides several valuable insights into the knowledge distillation process for object detection. 
First, we identify the importance of instance-level information in the distillation process, demonstrating that 
this information can significantly enhance the student model’s performance. Second, we show that addressing 
the feature distribution gap between teacher and student models through instance standardization and adaptive 
scaling is crucial for effective knowledge transfer. Finally, we empirically validate the effectiveness of our 
approach across a range of detector architectures and datasets, highlighting its generalizability and robustness.

Despite these strengths, our approach does have limitations, particularly in terms of computational overhead 
during training and sensitivity to hyperparameters. These limitations suggest promising directions for future 
research, including exploring more efficient implementations, investigating automatic hyperparameter tuning 
methods, and extending the approach to other computer vision tasks. Furthermore, future work could explore 
more efficient ways to incorporate instance-level information, such as using lightweight attention mechanisms 
or sparse representations, and extend the proposed approach to other computer vision tasks, such as instance 
segmentation or panoptic segmentation.

Data availability
The datasets used and analyzed during the current study are available in the COCO (https://cocodataset.org/), 
PASCAL VOC (http://host.robots.ox.ac.uk/pascal/VOC/) and Cityscapes ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​c​i​t​y​s​c​a​p​e​s​-​d​a​t​a​s​e​t​.​c​o​m​
/​​​​​)​.​​
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