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Land subsidence (LS) and collapsed pipes (CP) pose environmental and socio-economic threats in arid
and semi-arid regions. This study assesses the effect of climate change to address these problems in
Khorasan-Razavi province, Iran. Thus, we mapped soil landforms susceptible to LS and CP based on
climatic, geolocic, topoghraphic, hydrologic and edaphic variables using an ensemble forecasting
approach. Additionally, we predicted the future susceptibility of CP and LS based on two future
emission scenario pathways (SSP 5-8.5 and SSP 1-2.6), in 2030, 2050, 2070, and 2090. The assessment
showed that the area under the ROC curve (AUC) indicated that the ensemble model accurately
predicted the distribution of CP and LS (AUC>0.8). Slope and clay content proved to be the most
important factors affecting CP, whereas distance from faults and precipitation seasonality played more
roles in LS susceptibility. The classification results indicated varying susceptibility levels to CP and LS
in Khorasan-Razavi province, with approximately 31.58% categorized as low and 15.24% as very high
LS susceptibility, while 42.71% were in the low CP susceptibility class. Overall, 57.16% of the area is
safe from both hazards; however, 6.16% is vulnerable to both hazards, with more than 35% at risk

for at least one hazard. Future prediction models suggest that up to approximately 4% of the area

will consist susceptible to both hazards under both scenario emissions and less than 1% of the study
area will reduce susceptibility for both studied hazards in future. The majority of regions that remain
susceptible are in the southern province. These results guide for soil management to protect soil and
water from the effects of humans and climate alternation in poor areas worldwide.
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Iran, characterized by arid and semi-arid regions, faces significant climate risks that threaten its environment,
economy, and social stability. Its diverse geography, including deserts and mountains, heightens vulnerability to
various climate-related issues, impacting water resources, agriculture, public health, and biodiversity. To tackle
these challenges effectively, a coordinated and proactive approach is essential for achieving sustainability and
resilience!. Moreover, LS and CP are wide-ranging hazards that are particularly common in semi-arid regions
of Iran and exacerbated by human activities and climate change (CC). Land use changes, groundwater and
hydrocarbon exploitation, and changes in temperature, precipitation, and vegetation may alter the patterns of
natural hazards including LS and CP. Understanding the factors that make landforms and soils susceptible to
erosion and subsidence introduces another level of uncertainty in the modeling. To enhance the realism of the
algorithms, these variables should be selected based on geology, geomorphology, and landform evolution®>.
However, geologic and geomorphic datasets that bear on landform evolution are commonly unavailable; thus, in
practice, more readily available bioclimatic data that provide insights into past, present, and future conditions are
commonly utilized. Nevertheless, it is unclear whether these factors are adequate or truly optimal for accurately
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mapping soil landform patterns. Incorporating additional datasets can help reduce uncertainty and test the
performance of predictors in erosional land surface modeling.

Erosional landform spatial modeling has emerged as an effective tool for evaluating landscapes affected by
gullies, LS, and CP. Such modeling has been used to analyze and monitor the spread of plant species, plan and
initiate conservation initiatives, predict the impacts of future climate change (CC), and assess the effects of
human activities on the spatial patterns of landforms. Machine learning (ML) plays an increasingly important
role in enhancing erosional landform spatial modeling and mapping, as it reveals patterns that may not be easily
identifiable through traditional statistical methods>*. Additionally, ML enables more accurate forecasts of future
states given its ability to deal with complex nonlinear relationships among influencing variables and soil landforms.
By selecting appropriate algorithms and tuning model parameters, ML can minimize bias and variability in data
interpretation, thus ensuring the reliability and objectivity of the models. Previous studies employed different
ML and deep learning algorithems to predict geomorphological hazard including landslide®~7, LS*!!, Gully
erosion'>"14. Some other study focused on the projecting effect of climate change on hazard susceptibility
include flood'>~17, see level rize'8, drought!®, and soil erosion?’. However, some uncertainty remains in using
individual ML algorithms to predict locations susceptible to erosion, LS, CP, and other hazards*!°. To mitigate
these uncertainties, researchers can develop, implement, and assess ensemble models for the spatial mapping of
erosional landforms. These models typically employ weighted averaging, assigning weights based on predictive
accuracy measures®!. Predictions generated by ensemble models are generally regarded as more reliable than
those produced by individual algorithms. Several other published studies have utilized portions of the Khorasan
Razavi province dataset to detect LS and CP through various deep learning techniques (including CNN and
ensemble CNN-RNN) and geophysical methods (including ground penetrating radar and electrical resistivity
radar), focusing on pedological and topological variables?>~*.

In previous studies, the effect of climate change on the sensitivity to geomorphological hazards in CP and
LS has not been examined; however, the current research aims to combine environmental assessment, climate
modeling, machine learning, and practical recommendations for soil management in the context of global
climate changes. This study examined the environmental factors influencing these issues and employed an
ensemble forecasting approach to identify areas vulnerable to CP and LS. Utilizing future climate scenarios, we
projected the spatial distributions of LS and CP through 2090, revealing critical patterns and risks. By employing
multiple individual machine learning algorithms and their ensembles, we try to improve the estimation of
landform dynamics under present and future climate conditions. The novelty of the present research lies in the
identification and forecasting of future erosional landforms using an ensemble method.

Results

Multicollinearity of predictor variables

Of the 18 factors, 14 had “multicollinearity” problems, and were excluded from further modeling (Table 1).
Linear correlation coefficients between the remaining 14 variable ranges. The minimum correlation value was
—0.0007 (TWI ~ distance from faults) and the maximum correlation value was 0.646 (PCQ - PWM) (Table 1).

Model validation and variable importaance

AUC analysis showed that the performances of the individual and ensemble models were excellent to fair (Table
2). RF and SVM were identified as the best models for LS and CP, respectively, and the final ensemble maps
achieved an AUC value of 0.84 CP and 0.87 LS. Our analysis and predictions can be valuable for identifying
regions that require immediate attention to remediate LS and CP, including targeted land use planning,
groundwater management, and infrastructure location and design. Several key factors were identified in our
comparative analysis of environmental variables using the best model (Fig. 1). For CP development, slope and
clay content were the two most important variables, suggesting that areas with steeper slopes and proximity to

Variable VIF | Tolerance | Unit
Aspect 1.00 | 0.963

Clay 1.35 | 0.648 %
Geology 1.31 | 0.644 -

Plan curvature 2.01 | 0.974 100/m
Elevation 2.85 | 0.300 meter
Fault density 1.44 | 0.529 km/km?
Distance from Faults | 1.58 | 0.556 meter
Distance from Rivers | 1.08 | 0.893 meter
Slope 1.61 | 0.549 Angel
Silt 1.56 | 0.643 %
TWI 1.00 | 0.970 -
PWM 2.27 | 0.300 mm
PS 1.43 | 0.424 mm
PCQ 2.29 | 0411 mm

Tabu. VIF results between independent variables.
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Asymptotic 95% confidence
interval
Hazard | Models | Area | Standard error | Asymptotic significant | Lower bound | Upper bound
FDA 0.76 |0.07 0.00 0.62 0.90
Ensemble | 0.84 | 0.05 0.00 0.74 0.95
GLM 0.76 |0.07 0.00 0.62 0.89
ks Mars 0.71 |0.07 0.01 0.57 0.86
RF 0.84 |0.05 0.00 0.74 0.95
SVM 0.88 |0.05 0.00 0.77 0.98
FDA 0.79 10.05 0.00 0.69 0.89
Ensemble | 0.87 | 0.04 0.00 0.79 0.95
GLM 0.77 10.05 0.00 0.66 0.88
cr MARS 0.85 |0.05 0.00 0.76 0.95
RF 0.90 |0.04 0.00 0.83 0.97
SVM 0.87 |0.04 0.00 0.79 0.95

Table 2. Area under the ROC curve.
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Fig. 1. Comparative analysis of variable importance metrics across the best model.

40

clay texture are prone to this hazard. Next to it, falt density and seasonal precipitation were identified as the most
important LS, implying that areas adjacent to falts that experience greater seasonal amounts of precipitation
are most susceptible to subsidence. In contrast, clay content was found to have the lowest relationship with
subsidence, indicating that soil texture has a minimal influence on LS, and proximity to rivers has little
significance in erosional processes.

Current and future susceptibility prediction of LS and CP using the ensemble model

The classification outputs show the regions that are most susceptible to LS and CP (Fig. 2). In the LS susceptibility
map, approximately 31.58%, 27.51%, 25.67%, and 15.24% of the study region had low, medium, high, and very
high susceptibility to land subsidence hazards, respectively. The CP map implied that 42.71% and 22.07% of the
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Fig. 2. Current soil landform susceptibility of LS and CP using Ensemble model.

province were in the low and medium susceptibility classes, respectively, and 17.33% and 17.89% of the region
had high and very high susceptibility to CP, respectively. The results also indicate that 57.16% of the research
sites were safe from the two studied hazards, whereas 6.16% of Khorasan-Razavi province was susceptible to
both hazards. More than 35% of the region is susceptible to hazards. The future prediction model using the
ensemble ML algorithm indicates that approximately 17% of the study area will never be LS to CP, but will be
susceptible to LS in 2030 and 2050 for both low and high emission scenarios (Fig. 3) and will increase to about
50% under SSP 585 in 2070 and 2090. In addition, approximately 4% of the region will remain susceptible to

Scientific Reports|  (2025) 15:18333 | https://doi.org/10.1038/s41598-025-03176-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

S7°0M0"E S8230M0"E G0°0°0"F G1°H0"F,
1 1 L 1

z
£ | SSP 126 (2030)
:g’- -
I
&
z
=
=1 L
e
-
z
=
= .
-
S
-
0 30 60 120 180
_:Eklﬂ
S7°0'0"E S8°30'0"E 60°0'0"E 61°30'0"'E
57"0:0"14_‘ SH°3I.|I’0"I-.'. ou°u|’o"L 61”3(‘"0"11‘
£1SSP 126 (2050 £
) (2050) c
=" —
& g
5 5
Ig 4
s B
= =
L 3
2 g
I 14
5 s
21 2
5 z
=4 =
T 30 a6 120 180
ST°H0"E 58°30"0"E 60°0"0"E 61°30'0"E
57”0:0"12 58°34I)'0"E 60°0I‘0"E 61°3q'0"E
z v
2| SSP 126 (2070) :
ES s
g g
5 &
z z
£ L=
4 g
2 2
z v
5 s
=1 re
I 5
z 3
0 30 60 120 180
km
STMOME 58°30"0"E 60°0"O"E 61°30°0"

36°0°0"N 37°30'0"N

34°30"0"N

36°0'0"N

34°30'0"N

36°0"0"N

34530'0"N

37°30'0"N
!

37°30'H'N
1

57°0I'0" E 58"3?‘0" E 60“0“0"]2 61°3l|)'0"E
z
SSP 585 (2030) £
[N
&
z
=
| =
&
“
&
- =
&
2
0 30 60 120 181
_:—:Il'(.ln
57°0"0"L 582300 60°0'0"E 61°30"0"E
S7T00"E 58°30°0"E 60°0'0"E 61°30°0"E
<
SSP 585 (2050) &
rs
&
“
z
=
4 e
%
&
4
=
g FS
g
2
@ 30 60 120 180
km
S7T00"E 58°300"E 60°0'0"E 61°300"L
57"(!:0" F. SRO300"F. 6I)"(II'0" F. 61°30"0"F.
7| @ 4 7
L | SSP 585 (2070) % 2
=1 W E |2
i A%, &
& \qg &
z 7
2 |5
2 4
2 2
7 7
® s
= 2
o S
2 2

120 180

km

ST°0"0"F.

SR°30'0"F. 60°0"0"F.

Fig. 3. Future projection of soil landforms according to the ensemble model.
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both hazards, while approximately 1% and 3% of the study area will have increased susceptibility to CP and
LS under both optimistic and pessimistic scenarios in the future, respectively. This modeling implies that the
spatial distribution of LS and CP will be considerably affected by future CC (Fig. 4). Under the SSP 126 scenario,
the values show relatively stable trends with minor fluctuations across the years. For inctance, the area where
indicating a consistent pattern of low susceptibility for both hazards remains dominant (50-53%) from 2030 to

2090. Similarly, other areas where constantly not susceptible to CP and susceptible to LS and vice versa exhibit
only slight variations, suggesting that the low emission scenario has a limited impact on altering susceptibility

patterns over time.
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Fig. 3. (continued)

In contrast, the SSP 585 scenario reveals significant changes, particularly in the later years of 2070 and 2090.
For example, the areas where consistently not susceptible to CP and susceptibility to LS experiences a dramatic
increased, reaching 50.34% in 2070 and 48.76% in 2090, indicating a substantial shift in susceptibility patterns
under high emissions. Conversely, the previously dominant areas where consistently not susceptible for both
hazards drops to near 0% in the same years, underscoring the profound impact of high emissions on this class.
Other regions, where consistent not susceptible to CP and increased susceptibility to LS, reduced susceptibility
CP and consistent not susceptible LS, also show notable fluctuations, reflecting the heightened vulnerability
and instability induced by the high emission scenario. These trends emphasize the critical need for emission
reduction strategies to mitigate the adverse effects on susceptibility and consistency, ensuring a more stable and
resilient future.

Discussion

LS and CP are challenging erosional processes in Iran with significant implications because of their profound
impacts on agriculture and other land uses. The current study found that slope is the most significant factor
affecting the distribution of CP in Khorasan-Razavi province. Additionally, precipitation is positively linked
to subsidence-prone areas; areas with heavy winter rainfall are more prone to this hazard than are other
areas. However, the historic decrease in rainfall in the province has resulted in drought conditions, higher
temperatures, and depletion of groundwater and surface water. The increased exploitation of groundwater has
exacerbated LS in many parts of the province. The findings of emission pathway modeling on the occurrence
of LS and CP highlight the potential differences in the future trajectories of both hazard and non-hazard areas.
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Fig. 4. The percentage of the multi-hazards future projection of soil landforms according to the ensemble
model.
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The results indicate that under the lowest emission pathway, a higher proportion of the study area maintained
its non-hazard status for a longer period. In contrast, under the highest emissions scenario, non-hazardous areas
are projected to decline slightly by 2090. Understanding these temporal trends can inform decision making
related to infrastructure development, land-use planning, and risk reduction strategies. This study highlights the
importance of climatic, terrain, and other factors in controlling these processes. We found that the RF model
is effective in identifying the most important factors controlling CP hazards in Khorasan-Razavi province. The
RE, which is widely used for evaluating variable importance, is a flexible machine-learning algorithm capable
of processing large datasets and capturing complex interactions between landforms and their environments.
Previous research has demonstrated the suitability of RF for predicting the spatial distribution of soil landforms?°.
As stated by Ebrahimi, et al.?%, the ongoing challenges posed by CC necessitate proactive measures that address
the complexities of ecological interactions, reinforcing the imperative for adaptive management approaches
rooted in latest scientific advancements.

In our study, the use of climate data for modeling erosional landforms using the ensemble model indicated
that global warming may increase soil erosion vulnerability. Janizadeh, et al.®> predicted flood-susceptibility
under CC scenarios using three ML algorithms, including CIRE, KKN, and RRFE. They examined the effects
of two scenarios, SSP1-2.6, and SSP5-8.5, on future flood risk during 2041-2060 and 2081-2100. Their results
showed that machine-learning models were effective in modeling flood susceptibility.

The results from the classification of land susceptibility to LS and CP provide critical insights into the
geohazards facing Khorasan-Razavi province. The data indicate that although a significant portion of the
study region (approximately 57.16%) is currently safe from these hazards, a substantial fraction (over 35%)
is susceptible to at least one of the hazards. This susceptibility can have profound implications for landuse
planning, infrastructure development, and environmental management. The susceptibility map for LS revealed
a concerning distribution of risk: 31.58% of the area was classified as low susceptibility, while medium, high,
and very high susceptibility zones collectively accounted for a considerable portion of the region. In contrast,
the CP map shows that approximately 42.71% of the region falls into the low susceptibility category, but still
highlights that 35.22% is exposed to very high and high levels of risk. These statistics suggest an urgent need
for targeted risk-mitigation strategies, especially in regions designated as very high and high susceptibility to
either hazard. Predictive modeling employing ensemble ML algorithms indicates a worrying trend; it foresees a
significant increase in susceptibility to LS over the next few decades, particularly under high-emission scenarios.
The assertion that approximately 50% of the area could become susceptible to LS by 2070 under high emissions
illustrates that CC is likely to exacerbate existing vulnerabilities. This aligns with broader research indicating that
climate-related factors, such as increased precipitation variability and temperature changes, can affect subsurface
water movements and soil properties, thereby enhancing the risk of LS and CP. Similar to our research, Roy, et
al.!’ examined the influeence of CC and extreme rainfall on land resources in a subtropical monsoon region,
focusing on gully susceptibility using ANN, SVM, DLNN, and ensemble Global Circulation Models to project
rainfall scenarios for 2100 s. Their analysis showed that the DLNN provided the best predictive performance and
highlighted an increasing trend in rainfall and gully erosion susceptibility, offering critical insights for long-term
regional planning and decision making.

Notably, future predictions show that 4% of the region is projected to remain susceptible to both hazards,
whereas approximately 1% and 3% are expected to show increased susceptibility to CP and LS, respectively. This
indicates not only the persistence of current hazards but also an increase in risk profiles for these areas. The
identified regions, particularly the southern part of the province, which are expected to remain highly susceptible,
underscore the need for detailed risk assessments and adaptation strategies tailored to local conditions. The
analysis further revealed valuable information regarding the effectiveness of climate-change mitigation efforts.
Under low-emission scenarios, 57% of the province is expected to remain safe from LS and CP by 2070, compared
to 55% under high-emission scenarios in 2090. These figures highlight the importance of adopting aggressive
emission-reduction strategies to curb CC and safeguard against geohazards. In line with our research, Saha, et
al.* assessed future degradation-risk dynamics through the Coupled Model Intercomparison Project six down-
scale-based ensembles of nine global climate models in four SSPs scenarios. They implied that the combination of
climate modeling and deep learning should be helpful for enhancing the results more precisely. The research was
published by Heo, et al.”” employed a machine learning model to assess the geographic susceptibility of natural
hazard risks on Kalimantan Island, Indonesia. It found that mountainous and island regions are particularly
vulnerable, highlighting the importance for decision-makers to pinpoint high-risk areas. The study reported a
predicted risk of 22.6% for drought and 21.7% for forest fires, with 2.6% of locations at risk for both. Risks are
anticipated to increase under two climate scenarios (RCP-SSP2-4.5 and RCP-SSP5-8.5), with West Kalimantan
showing the highest forest fire risk (33.02%) and South Kalimantan the highest drought risk (67.3%). The worst-
case scenario projects even greater risks, mainly due to climate change and heat waves, necessitating a revision
of past risk management strategies. The Random Forest model used in the study provided reliable forecasts,
offering important insights for future hazard management efforts.

In summary, this study serves as a call to action, underscoring the imperatives for immediate research,
responsive policy frameworks, and community engagement in soil management to safeguard against threats
posed by LS and CP. By prioritizing these efforts, regions at risk can better protect their natural resources while
fostering resilient communities capable of adapting to the challenges of CC. The limitation and future research
direction is that this study examined the effect of CC on multi-geomorhphologic hazards. Although climatic
factors affect these hazards, groundwater, over-exploitation, and the subsequent decline in aquifer levels are
key contributors to these geomorphological hazards. Future researchers should assess changes in aquifer levels
and underground water usage by employing mathematical models within the context of CC scenarios. This
information should be used as a significant and influential factor in future studies. Moreover, the present study
on the impact of climate change on geomorphological hazards, specifically LS and CP, in Khorasan-Razavi

Scientific Reports |

(2025) 15:18333 | https://doi.org/10.1038/s41598-025-03176-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

province, Iran, has significant implications for both regional and global contexts. In the regional context, the
study highlights that LS and CP pose significant environmental and socio-economic threats, particularly in arid
and semi-arid regions like Khorasan-Razavi province. These hazards can lead to infrastructure damage, loss
of agricultural productivity, and displacement of communities, exacerbating poverty and resource scarcity in
already vulnerable areas. Moreover, the findings provide a scientific basis for local governments and policymakers
to implement targeted land management strategies. For instance, areas identified as highly susceptible to LS and
CP could be prioritized for conservation efforts, land-use restrictions, or engineering interventions to mitigate
risks. Also, since LS and CP are influenced by hydrological factors, the study underscores the need for improved
water resource management. Over-extraction of groundwater, a common issue in arid regions, can exacerbate
LS. Policies promoting sustainable water use and recharge practices are critical.

In the global contexts, the study’s methodology and findings are applicable to other arid and semi-arid
regions worldwide facing similar geomorphological hazards. Regions in Africa, the Middle East, Central Asia,
and parts of the Americas could benefit from similar assessments to adapt to climate change impacts. Also, The
ensemble forecasting approach used in this study can serve as a model for predicting and mitigating LS and CP
in other regions. By identifying key factors such as slope, clay content, distance from fults, and precipitation
seasonality, other regions can develop tailored risk mitigation strategies. In addition, addressing LS and CP
aligns with several SDGs, including SDG 13 (Climate Action), SDG 15 (Life on Land), and SDG 6 (Clean
Water and Sanitation). The study’s emphasis on protecting soil and water resources contributes to global efforts
to achieve these goals. Further, the present study not only addresses the specific challenges of LS and CP in
Khorasan-Razavi province but also offers a scalable and adaptable framework for addressing similar hazards
globally. Its interdisciplinary approach, emphasis on climate change scenarios, and focus on vulnerable regions
make it a valuable contribution to the fields of geomorphology, climate science, and sustainable development. By
integrating these findings into policy and practice, stakeholders can better prepare for and mitigate the impacts
of climate change on geomorphological hazards.

Our study underscores the critical importance of understanding the susceptibility of LS and CP in the
Khorasan-Razavi province. The patterns revealed by our ensemble modeling approach not only highlight
current vulnerabilities but also project future risks, emphasizing the urgent need for effective land management
strategies and emission reduction initiatives. Addressing these issues will be essential for ensuring the resilience
of the region against the adverse impacts of climate change and land degradation. Despite the valuable insights
provided by this study, several limitations should be acknowledged. One significant limitation is the issue of
multicollinearity among predictor variables, where 7 out of 21 variables exhibited multicollinearity problems and
were consequently excluded from further modeling. This exclusion may have led to an oversimplification of the
relationships among environmental factors influencing LS and CP, potentially omitting important interactions
that could refine model accuracy. Additionally, while the study utilized advanced machine learning models,
the performance metrics, although showing good results, may not capture the full complexity of real-world
scenarios due to the inherent uncertainties in predicting future conditions based on historical data. Moreover,
the focus on specific geographic regions limits the generalizability of the findings; variations in local geology,
climate, and land use practices may yield different susceptibility patterns elsewhere. Future research should
consider integrating a broader range of variables and models, as well as validating predictions against real-world
observations to enhance the robustness of findings. Lastly, the predictions regarding future susceptibility to
LS and CP under different emission scenarios are contingent upon the accuracy of climate models and socio-
economic projections, which can be inherently uncertain. Thus, while the study presents a comprehensive
analysis, the aforementioned limitations warrant careful consideration when interpreting results and formulating
land management strategies.

Materials and methods

The conceptual framework employed in this study is illustrated in Fig. 5. It involves several steps: (1) mapping
the locations of sites affected by LS and CP, (2) preparation of training and testing datasets, (3) choosing possible
climatic and environmental variables for modeling and performing a multicollinearity analysis, (4) spatial
modeling of current areas affected by LS and CP and their multi-hazard, followed by a validation assessment,
and (5) projecting future changes in hazard susceptibility.

Study area
In northeastern Iran, Khorasan-Razavi province is between 55°E and 61°E longitude and 30°N and 38°N latitude
(Fig. 6). It is a semiarid region covering an area of 298,481 km?2. Its agricultural sector, operating on 10% of
Iran’s total cultivated area and accounting for 9% of its irrigated wheat production, is crucial to'san the national
economy. The average annual rainfall-AAR in the province ranges from approximately 300 to 400 mm; however,
the amount of rainfall in the eastern, southern, and central regions is lower (approximately 150 mm).
Geomorphological hazards are particularly prominent in Khorasan-Razavi province due to several
interrelated factors. The combination of geological, climatic, and anthropogenic factors makes Khorasan-Razavi
province particularly vulnerable to geomorphological hazards, necessitating continued research and monitoring
to mitigate their impacts?.

Documenting LS and CP in the study area

We identified 201 LS and CP sites in Khorasan-Razavi province based on scientific reports, extensive field
surveys, and data provided by the province’s natural resources and watershed management organization (ht
tps://en.frw.ir/). These sites included 82 LS and 119 CP sites. We then randomly chose an equal number of
hazard and no-hazard sites to perform spatial modeling?®?, and placed them in training (70%) and testing
(30%) datasets3:32,

Scientific Reports |

(2025) 15:18333 | https://doi.org/10.1038/s41598-025-03176-4 nature portfolio


https://en.frw.ir/
https://en.frw.ir/
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Field study Multi hazard mapping of land subsidence and collapsed pipes
Testing (30%) Training (70%) ﬁ
Future Projection Current
! [
EC-Earth3-Veg w Soil texture Elevation
EC-Earth3-Veg-LR
Multiple Adaptive Regression Spline Model Distance from Faults Aspect
2 2 AUC Flexible Discriminant Analysis Distance from rivers Slope
a~] b
% I~ Generalized Linear Model Fault density TWI
O N
Support Vector Machine Mean temperature Plan curvature

Eight precipitation
variables

@ Unsusceptible Low susceptible

Ensemble model

Random Forest Geology

Constant Increase
susceptibility susceptibility

Decrease Constant not
susceptibility susceptible

Medium susceptible High susceptible

Fig. 5. Outline of the methodology.

Independent data Preparation

Climate data

Climate data with 30-second spatial resolution for the period 1970-2000 were acquired from the “WorldClim”
data-base (“http://www.worldclim.org”)**. We used a variety of precipitation and temperature data for modeling
(Table 3).

Geo-environmental variables

According to a review of the existing literature and expert knowledge, we selected the primary factors that
impact both LS and CP. These factors were grouped into four categories: geology (lithology, distance from fults,
and fault density)*>, topography (“slope angle, slope aspect, elevation, and plan curvature”)*3, hydrology
(distance from rivers and topographic wetness index)”, and edaphic (soil texture)?®. Terrain variables were
measured using “Shutter Radar Topography Mission (SRTM)” DEM with 90 M resolution. These layers were
generated applying “SAGA-GIS” software®, and “ArcGIS” v.10.4.1 (“https://www.esri.com”).

Pre-selection and multicollinearity analysis

All quantitative variables were clipped to the study region and downscaled to a 50 m resolution using the
nearest-neighbor technique. To avoid overfitting and enhance transferability, we chose only the most significant
variables®. To this end, we used a stepwise approach (vifstep) and Tollerance (TOL) implemented in the SPSS
software (version 26). The vifstep function automatically eliminates collinear variables sequentially until the
“Variance Inflation Factor” (VIF) of all remaining quantitative variables is below a threshold value of 10 °.

Application of ML algorithms
We applied five widely used ML algorithms to establish a multi-hazard assessment in the Khorasan-Razavi
province: random forest (RF)*!, generalized linear model (GLM)*2, support vector machine (SVM)*, flexible
discriminant analysis (FDA)** and multiple adaptive regression spline (MARS)*. We effectively addressed the
potential limitations and biases inherent in specific models by applying this broad range of modeling techniques?.

Next, we employed an ensemble technique to merge the susceptibility maps created with the individual
models applying the weighted average method. Individual ML methods typically generate noise along with the
signals®®. The purpose of ensembles is to combine models to improve the separation of signals from noise?’*8 and
reduce the uncertainty resulting from the use of single models*. To enrich the hazard susceptibility map in the
study, we applied training data, selected variables, and created an ensemble model in the SDM package® using
“R statistical software 4.0.3” (R Development Core Team, 2021). To facilitate understanding of the outcomes,
hazard levels were binned into four groups based on the natural break classification method. To enhance the
interpretation of the results, we categorize the predicted map into four classes using the Jenks natural breaks
classification method>!.

To determine the accuracy of the final model, we used AUC, which is a threshold-independent analysis®. The
AUC is a widely used metric to determine the ability of a model to correctly classify hazards (ranging from 0
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Fig. 6. Location and details of the study area: a) Iran, b) Khorasan Razavi province, c) Sample erosional
landforms (Photo by Narges Kariminejad, 2022).
AMT Annual Mean Temperature °C
AP Annual Precipitation mm
PWM Precipitation of Wettest Month mm
PDM Precipitation of Driest Month mm
PS Precipitation Seasonality -
PWQ Precipitation of Wettest Quarter | mm
PDQ Precipitation of Driest Quarter mm
PWQ Precipitation of Warmest Quarter | mm
PCQ Precipitation of Coldest Quarter | mm
Table 3. Climate variables used in the present study.
to 1). Values of 1 and 0.5 indicate, respectively, perfect and random discrimination, respectively®%. We assigned
AUC values as follows: “fail (0.5-0.6), poor (0.6-0.7), fair (0.7-0.8), good (0.8-0.9), and excellent (0.9-1.0)">%4,
Future multi-hazard projection
Estimates of areas of future LS and CP in the study area were based on climate forecasts of the “Coupled Model
Intercomparison Project Phase 6 (CMIP6)”. We chose two climate pathways (low emissions: “SSP 1-2.6” and
High emissions: “SSP 5-8.5”) and based on two global circulation models (GCMs, Table 4) for the years 2030
(2021-2040), 2050 (2041-2060), 2070 (2061-2080), and 2090 (2081-2100).
A binary map (hazard and non-hazard) was created by converting the continuous potential susceptibility
map using a threshold determined through a threshold optimization technique that maximizes the “sensitivity”
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GCM Institution, country Resolution
EC-Earth3-Veg EC-Earth-Consortium, Europe | 0.70°x0.70°
EC-Earth3-Veg-LR | EC-Earth-Consortium, Europe | 0.70°x0.70°

Table 4. Detailed description of the selected GCMs.

and “specificity statistics”>’. Considering the binary maps for the current and future periods resulted in the
classification of pixels into four categories: (1) consistent susceptibility, (2) reduced susceptibility, (3) increased
susceptibility, and (4) consistent susceptibility>>.

Conclusion

This study provides crucial insights into the interplay between climate change and geomorphological hazards,
specifically LS and CP, in Khorasan-Razavi province, Iran. By implementing an ensemble forecasting approach,
we have successfully pinpointed areas vulnerable to these hazards under both current and projected future
climate scenarios. Our findings reveal that key factors influencing susceptibility include slope and clay content
for CP, and distance from faults, and precipitation seasonality for LS. Notably, while 57.16% of the region
currently remains safe from both hazards, a concerning 6.16% faces dual risks, with over 35% exposed to at
least one type of hazard. Projections for the future indicate a dramatic rise in susceptibility, especially under
high-emission scenarios (SSP 5-8.5), suggesting that by 2070, nearly half of the region may be at risk for LS,
particularly in southern hotspots.

The novelty of this study lies in its application of ensemble machine learning models to enhance CP and LS
prediction, providing a framework that can inform effective land-use planning and sustainable groundwater
management strategies. These insights are vital for policymakers and stakeholders as they develop proactive
responses to mitigate the impacts of climate change. Future research should build on these findings by integrating
groundwater dynamics and trends in aquifer depletion to deepen our understanding of geomorphological
hazards and their drivers in a changing climate.
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