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Streamflow contemplates a fundamental criterion to evaluate the impact of human activities and 
climate changes on the hydrological cycle. In this study, a novel innovative deep neural network 
(DNN) structure by integrating a double Gated Recurrent Units (GRU) neural network model with a 
multiplication layer and meta-heuristic whale optimization algorithm (WOA) (i.e., hybrid 2GRU×–WOA 
model) is developed to improve the prediction accuracy and performance of mean monthly Chehel-Chai 
River’s streamflow (CCRSFm) in Iran. The Pearson’s correlation coefficient (PCC) and Cosine Amplitude 
Sensitivity (CAS) as feature (input) selection process determine the only precipitation (Pm) as the most 
effective input variable among a list of on-site potential climate time series parameters recorded in the 
study area. Thanks to a well-proportioned layer network structural framework in the suggested hybrid 
2GRU×–WOA model, it leads to an appropriate total learnable parameter (TLP) compared to standard 
individual GRU and Bi-GRU as the benchmark models developed in the comparable meta-parameters. 
This hybrid model under the optimal meant meta-parameters tuned i.e., coupling a state activation 
functions (SAF) of tanh-softsign, dropout rate (P-rate) of 0.5, numbers of hidden neurons (NHN) of 70, 
outperforms with an R2 of 0.79, NSE of 0.76, MAE of 0.21 (m3/s), MBE of -0.11(m3/s), and RMSE of 0.36 
(m3/s). Hybridizing the 2GRU× model with WOA algorithm causes to increase in the value of R2 by 6.8% 
and reduce in the value of RMSE by 20.4%. Comparatively, standard individual GRU and Bi-GRU models 
result in an R2 of 0.59 and 0.66, NSE of 0.55 and 0.6, MAE of 0.91 and 0.53 (m3/s), MBE of 0.047 and 
− 0.06 (m3/s), RMSE of 1.29 and 0.83 (m3/s), respectively.
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Abbreviations
MLMs	� Machine learning models
ANN	� Artificial neural network
f	� Non-linear function
LSTM	� Long short-term memory
GRU	� Gated recurrent units
Bi-GRU	� Bi-directional GRU
WOA	� Whale optimization algorithm
RMSE	� Root mean square error (m3/s)
STDV	� Standard deviation
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R2	� Determination coefficient [-]
CV	� Coefficient of variation
NSE	� Nash-Sutcliffe efficiency [-]
R	� Correlation coefficient [-]
CCRSFm	� Mean monthly Chehel-Chai River’s streamflow (m3/s)
Pm	� Mean monthly precipitation (mm)
PCC	� Pearson’s correlation coefficient
CAS	� Cosine amplitude sensitivity
SAF	� State activation functions
NHN	� Numbers of hidden neurons
TLP	� Total learnable parameter
MAE	� Mean absolute error (m3/s)
MBE	� Mean bias error (m3/s)

Background and literature review
During recent eras, due to quick populace growth, industrialization, urbanization, and increasing civic water 
demands, providing water is a crucial undertaking for lawmaking1–3. It necessitates a strong evaluation of 
available and future water supplies and the influences of climate and environmental changes on socio-hydrologic 
systems4. Devotion to this anxiety has been amplified lately because of water crises.

Climate changes and anthropogenic doings have brought on a perceptible intensification in periodic surface 
hydrologic extreme occasions such as an increase in frequency and intensity of universal temperature, rainfall, 
streamflow, droughts, and floods in the world in the twenty-first century5,6.

In the prior eras, hydrologists made many investigations to reply to the next question “What occurs to 
precipitations?”. Streamflow has been regularly pondered as an inclusive response factor to evaluate watershed 
climatology, hydrology, and other catchment features. Precise spatiotemporal streamflow forecasting as a 
periodic feature of the atmospheric hydro-meteorological factors are very central matters for hydrologists in the 
water-related sectors such as regional cascade planning and managing of water resources, irrigation, municipal 
sustainable development, hydropower generation systems, optimum reservoir operation, agricultural planning, 
flooding control and risk scrutiny; social security and catastrophe hindrance7–9.

Streamflow forecasting for the long lead time is still a challenging mission as analyzing the river manners 
for operative objectives. For these purposes, hydrological modeling methods (HMMs) as the recognized 
worthy framework have been extensively utilized since the mid-1970s to scrutinize, comprehend, and forecast 
several complex natural procedures of periodic hydrology applications, for instance, streamflow10,11. In a wider 
perspective, HMMs dependent on offering solutions at diverse levels of computational intricacy are categorized 
into two chief kinds: (I) Process-Driven and (II) Data-Driven techniques3,12.

Adopting process-driven models for hydrological phases entails sophisticated intellectual mathematical 
formulas and a substantial quantity of geographical multi-source calibration data to assure a satisfactory rate 
of model exactness13,14. Accordingly, hydrologists have to exploit the data-driven models as an appropriate 
substitute to assess the intricate hydrological process. Data-driven models by applying artificial intelligence 
(AI) techniques try to attain a potential relation among various multidimensional dynamics predictors–
target dynamics variables with exceptionally complex unbalanced trends without any previous hypothesis 
or information on the fundamental physical latent features and relationships among them in estimation 
catchments15,16. These flexible and robust approaches have been developed to obviate the troubles of numerical 
tactics application, costly and timewasting process of large-scale atmospheric hydro-meteorological data records 
in monitoring and assessing various periodic hydrological parameters in different complex geo-spatiotemporal 
environments and climatic regimes17. These techniques have shown admirable competence in assessing 
multivariate spatiotemporal byzantine and nonlinear univariate time series hydrological events and hydraulic 
variables in complex environs and climate change such as modeling the periodic groundwater level variations18, 
daily air temperature19, reservoir inflows discharge20, discharge coefficient of diverse weirs21,22, dimensions of 
flow separation zone23, drought forecasting24.

As far as this, to predict streamflow in different environs and hydro-climatic conditions, abundant water 
science engineers have developed diverse kinds of traditional single data-mining models e.g. Artificial Neural 
Networks (ANN), Genetic Programming, and Adaptive Neuro-Fuzzy Inference Systems (ANFIS)25–27, Non-
Linear Autoregressive Moving Average with Exogenous Input Polynomial model28, Autoregressive-Moving 
Average, Autoregressive (AR) Moving, and Multivariate Adaptive Regression Splines (MARS) models29–31, 
Gaussian Process Regression model32,33, Functional Linear models34, Regression Tree models35, Online 
Sequential Extreme Learning Machine models36–38, and ensemble and stochastic conceptual data-driven 
methods39, Empirical Random Forest Family’s model40, Bayesian Model Averaging41, Support Vector Regression 
(SVR) model42–44. Soo et al. compared the ability of five machine learning models (MLMs), including K-Nearest 
Neighbors, Support Vector Machine (SVM), Random Forest (RF), ANN, and Long Short-Term Memory (LSTM) 
in forecasting in Klang River Basin, Malaysia45. They announced that within the methods used, RF − III presented 
superior performance with Symmetric Mean Absolute Percentage Error and Median absolute percentage error 
amounts of 0.36 and 0.37, respectively.

Of data-driven models, Gated Recurrent Units (GRU) neural network was presented by Cho et al. as a 
reformed kind of LSTM, the most popular version of deep neural networks (DDNs)46. It can effectively satisfy 
the innate gradient vanishing problem in the usual neural networks and the temporal data using pertinent 
interior gates47,48. GRU is contemplated as the leading approach with noteworthy advancement in real-time 
forecasting of the geological nonlinear rainfall-runoff time series process more effectively with delay times of 
more than a few months of the watershed. Generally, DDNs can accomplish higher forecasting precision than 
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physical process-based approaches in most situations as they are able to analyze deeper structures and mine 
high-dimensional data. They have been utilized to assess streamflow process in different watersheds by the 
majority of researchers49–51.

The multivariate complex time series hydrological variables particularly streamflow, consist of naturally both 
perpetual stochastic and deterministic elements. Hence, an unimpeachable real-time appraisal contemplates a 
strenuous and time-consuming concern as a consequence of their extreme long-term non-stationarities and 
uncertainties latent in the spatiotemporal input-target data, randomization, human interventions, and highly 
indeterminate nonlinear characteristic accompanied by multipart interactions/forms within atmospheric 
elements52,53. For these reasons, the applicability of the traditionally used individual regression-based and data-
mining tools is almost ineffectual and has generally bumped into serious predicaments such as high spatial-
temporal fluctuations depending on severe uncertainties, nature resolutions, weights fit-tuning, etc54–56.

Taking all the together, to impede the all above-mentioned difficulties and interludes, different strong and 
leading-edge hybrid signal pre-processing (mode decomposition) and bio-inspired optimization-based data-
mining models for large-scale data analytical as an appropriate alternative are being developed to improve 
noticeably predictions’ talent and efficiency of ordinary models. The hybrid strategies employ the incorporation 
of two or further data integration and modelling modus operandi prompting feasible to prominently increase 
the exactness of forecasted streamflow data.

The nature-inspired metaheuristic optimization-based algorithms bring forth improve the ability of 
standalone predictive models by incorporating different optimization algorithms by realizing close-optimum 
results within a rational timeframe for the estimation parameter, while concurrently could diminish the 
computational convergence time period57. Outdated customary optimization algorithms have limitations 
including single-based solutions, complications in indefinite search spaces, and converging to local optima15,16,58. 
To date, numerous investigators have designed metaheuristic algorithms to address these limitations. On 
this point, the whale optimization algorithm (WOA) presented by Mirjalili & Lewis is a robust and reliable 
bio-inspired metaheuristic optimization algorithm motivated by the intelligence and social life manners of 
humpback whales59. This algorithm is characterized by the bubble-net hunting tactic and is applicable in global 
optimization machine learning and data mining problems by imitating physical or biological phenomena.

Hitherto, different hybrid algorithms have been developed by adjusting and optimizing the simulation 
factors and broader choice of the membership function to enhance the accuracy of predicting streamflow in 
different regions and hydro-climatic conditions. For example, different hybrid meta-heuristic optimization-
based algorithms including the Shuffled Frog Leaping, Particle Swarm Optimization (PSO), Ant Colony 
Optimization, Gray Wolf Optimization (GWO) algorithms60, hybrid Genetic Algorithm with SVR and Bayesian 
Additive Regression Tree models61, hybrid Improved Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise algorithm and GRU model with improved GWO algorithm62, hybrid Gravitational Search, 
PSO and GWO optimization algorithms with the extreme learning machine (ELM) model63, hybrid optimally 
pruned ELM (OP-ELM), least square support vector machine, seasonal auto regressive moving average, MARS, 
and M5 model tree64, hybrid SVR and generalized regression neural network models with seasonal and trend 
decomposition algorithms65, hybrid fuzzy information granulation with SVR model66. A summary of the 
different hybrid models developed for predicting streamflow in different areas is presented in Table 1.

Motivation for this study
This research intends to estimate a long-term time series of mean monthly Chehel-Chai River’s streamflow 
(CCRSFm) using climatic datasets from Sep 1990 to Aug 2020 by GRU deep learning, MLMs. To do so, first of all, 
the general single GRU layer network as the benchmark model, the general single Bi-directional GRU (Bi-GRU) 
layer network, and the double GRU coupled with a multiplication layer (i.e., 2GRU× model) network models 
are developed. Then, the ideal one of these initially designed meant models (based on performance evaluation 
metrics calculated) is intentionally hybridized with meta-heuristic whale optimization algorithm (WOA) (i.e., 
hybrid 2GRU×–WOA model) to further improve the prediction accuracy of CCRSFm. Therefore, we do not limit 
our investigation only to the conventional deep learning (DL) network structure. Since the WOA algorithm 
mostly presents a steady and fast convergence rate and can identify optimum solutions in lower populations with 
the lesser opportunity of local trapping modes, it is used as nature-inspired optimization algorithm.

As the aptitude of these models relies on the kind and rate of some meta-parameters, realizing a fitting 
optimum pattern is a demanding and bewildering undertaking. Hence, various scenarios are adopted by tuning 
diverse meta-parameters in the construction of suggested models and the WOA algorithm.

The literature review shows that there has been little research operating different layer structures of the 
GRU model for time series streamflow forecasting. As far as authors know, amongst the current computational 
intelligence-system literature centering on streamflow prediction, only commonplace and wide-ranging simple 
DNN architectural structures have been focused on. The novelty of this research is the development of a leading-
edge and robust, unique hybrid 2GRU×–WOA model with different analytical layer network structures, for the 
first time to predict more complex natural phenomena such as time series CCRSFm oscillations patterns.

Study area and data description
Chehel-Chai River is one of the main branches of Gorganrood River and is located in Golestan Province, 
northern Iran. The Chehel-Chai watershed is situated inside the city border of Minoodasht with an area of 
256,830 (m2), a mean slope of 46%, a maximum and minimum elevation of 2570 and 190 m above sea level, and 
a moist environment. The mean yearly precipitation and temperature were reported as 750 mm and 15.4 (°C), 
respectively. Forest (60%) and rain-fed lands (39%) shape the chief surrounding ground cover in this area76,77. 
Figure 1 shows Golestan Province and the location of the observation station generated using QGIS 3.40.
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In the current study, to forecast time series mean monthly Chehel-Chai River’s streamflow (CCRSFm) (m3/s), 
360 monthly atmospheric datasets documented from Sep 1990 to Aug 2020 by Lazoreh climatic observation 
station are exploited. The historic climatic parameters operated include monthly mean, maximum, minimum, 
absolute minimum, and absolute maximum air temperature (Tave, Tmax,Tmin,Tmina,Tmaxa), precipitation (Pm), 
evapotranspiration (ETm) gotten from the IMO (Iran Meteorological Organization). Table  2 provides some 
descriptive statistics indices of the variables used in the study area and period.

Research objectives
The main contributions of the present work are as follows:

	1.	 Identify the most effective variables on CCRSFm, among a list of on-site potential climate parameters record-
ed through feature selection techniques.

	2.	 Development of standalone and hybrid GRU-based neuro-evolution time series paradigms optimized by 
WOA nature-inspired metaheuristic algorithm for precise forecasting of CCRSFm vacillations rhythm.

	3.	 Determine the optimal spectrum of aimed meta-parameters in GRU-based models developed and WOA op-
timization algorithm for better configuration and lessening the impact of overfitting/underfitting problems.

	4.	 Assess and compare the accuracy of modeling with counterparts in the validation stage to differentiate the 
attributes of the best-developed model in offering better reliable and consistent performance using some 
comparison plots and statistical metrics.

Feature selection process
Because the performance of any modeling is influenced mainly by an apt selection of input variables for the 
precise prediction of target, unfit selections could adversely affect the effectiveness of any methodology. So, in 
this section, existing large-dimensional potential hydro-climatic data sets recorded in the studied region are 
evaluated to recognize the most effective input variables for predicting CCRSFm as the model target variable. In 
this context, the variables of extreme importance are selected using Pearson’s correlation coefficient (PCC) and 
Cosine Amplitude Sensitivity (CAS) as linear and nonlinear representative data analysis methods.

The CAS data inquiry for the variables presented in Table 3 is done by altering each input variable at a fix ratio 
and holding the other input variables constant as follows78:

Location aModels used (Best) Modelling results References

Three diverse watersheds
in Germany AR-RBF, MLP-RF-PR R2 = 0.7–0.84 Granata et al.67

Ten watersheds’ data set
gathered from CAMELS, US EFS-KESVR-EMA, EFS-LSTM-EMA NSE = 0.73–0.94 Xu et al.68

Two USGS stations, US hybrid EMD-RFR, EMD-Bagging, 
EMD-AdaBoost, EMD-ANN

R = 0.97, RMSE = 0.33, MAE = 0.17, 
NSE = 0.94 Heddam et al.69

Dez River, Iran SVMD-MLP-PSO R2 = 0.89, RMSE = 13.91, NSE = 0.88 Parsaie et al.70

Nile River at the High
Aswan Dam, Egypt MLP-EO, MLP-HGSO, MLP-NRO MAE = 1.35, RMSE = 2.35, R = 0.92 Ahmed et al.71

Gaula barrage site in
Uttarakhand state of India ANFIS, ANN, WANN R = 0.99, RMSE = 5.51 (ft3/sec), WI = 0.96, 

COE = 0.99 Shukla et al.72

Yuelai New City, China LightGBM-SSA NSE more than 0.9, peak flow forecasting 
error within 18% Cui et al.73

Han River, China VMD-DBN-IPSO NSE more than 0.8, peak flow forecasting 
error within 20% Xie et al.74

Pahang River, Malaysia ANFIS-FFA, ANFIS R = 1, RMSE = 0.98, MAE = 0.36, NSE = 1 Yaseen et al.75

Table 1.  Hybrid models for forecasting streamflow over different time scales. aBest model is highlighted in 
bold. AR-RBF: Additive Regression of Radial Basis Function Neural Networks. MLP-RF-PR: stacking with 
the Pace Regression of the Multilayer Perceptron with Random Forest. EFS-KESVR-EMA: Hybrid Embedded 
Feature Selection (EFS), Kernel Extreme Support Vector Regression (KESVR), and Evolutionary Mating 
Algorithm (EMA). EO: Equilibrium Optimization algorithm. HGSO: Henry Gases Solubility Optimization 
algorithm. NRO: Nuclear Reaction Optimization algorithm. ANFIS-FFA: hybrid ANFIS with the Firefly 
Optimizer algorithm (FFA). SVMD: successive variational mode decomposition. SWAT-MLP/MWOA: hybrid 
SWAT (soil and water assessment tool) and MLP neural network optimized by mutated whale optimization 
algorithm (MWOA). VMD-DBN-IPSO: hybrid VMD and deep belief network (DBN) model integrated 
with improved PSO (IPSO) algorithm. LightGBM-SSA: singular spectrum analysis (SSA) and light gradient 
boosting machine (LightGBM). WGEP: hybrid wavelet-gene expression programming. WSVM: wavelet-
support vector machine. WANN: Wavelet-based artificial neural system. PCC: Pearson correlation coefficient. 
WI: Willmott index. COE: coefficient of efficiency. RFR: random forest regression. Bagging: bootstrap 
aggregating. AdaBoost: adaptive boosting, EMD: empirical mode decomposition.
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Analysis Method Tmin Tmax Tave Tmina Tmaxa Pm ETm

PCC -0.41 -0.39 -0.41 -0.39 -0.37 0.32 -0.29

CAS -0.36 -0.42 -0.31 -0.28 -0.22 0.41 -0.38

Table 3.  PCC and CAS values versus CCRSFm.

 

Variables Max Min Mean STDV Skewness CV

Tmin (°C) 22.6 -1.1 11.5 6.51 0.057 0.56

Tave (°C) 29.7 4.2 17.9 7.04 -0.00087 0.39

Tmax (°C) 38.5 9.3 24.2 7.71 -0.031 0.31

ETm (mm) 264.1 25 122.5 56.3 0.51 0.45

Pm (mm) 324 0 71.4 51.1 1.31 0.71

Tmaxa (°C) 46 7 33.21 6.61 -0.56 0.19

Tmina (°C) 20 -10.6 7.11 7.19 0.13 1.01

CCRSFm (m3/s) 18.7 0.02 1.91 2.06 3.41 1.08

Table 2.  Statistical indices of variables recorded in the study area. *CV and STDV illustrate the coefficient of 
variation and standard deviation, respectively.

 

Fig. 1.  Location map of Chehel-Chai basin in Golestan Province, Iran.

 

Scientific Reports |        (2025) 15:19436 5| https://doi.org/10.1038/s41598-025-03185-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

Rij =
∑n

k=1 IikOjk√∑n

k=1 I2
ik .

√∑n

k=1 O2
jk

� (1)

where, Ii and Oj are input and output parameters, respectively, and n is total number of datasets. The Rij value 
[0,1] shows the strength of the relationship within the input and target parameters. The values of PCC and CAS 
methods are presented in Table 3.

According to Table 3, as a result of the insignificant amount of PCC and CAS data analysis methods for Tmin, 
Tmax, Tave, Tmina, Tmaxa, ETm, their effects on predicting CCRSFm by suggested models can be disregarded. Hence, 
merely Pm can be considered as the most influential and important input parameter. To conclude, the equation 
for the prediction of CCRSFm can be formulated as follows:

	 CCRSFm = f (Pm)� (2)

Figure 2 (A and B) shows the time series plots of CCRSFm and Pm recorded by Lazoreh climatic observation 
station for the studied time that show the seasonality of data. Since the parameters have a temporal pattern, the 
monthly scale is used as a parameter.

Methodology
Due to the unstable, intricate, and nonlinear relationship in Eq. 2, only precise and robust approaches are enabled 
to analyze CCRSFm. In this context, a sequential dataset of 360 monthly hydro-climatic observations covering 
the period from September 1990 to August 2020 is used in modeling process. The datasets are normalized to 
zero mean and unit variance as advised by Lawrence et al.79. The normalized datasets are divided into two 
subclasses. One limited 70% of the data (252 monthly observations) are consecutively applied in calibrating the 
predictive models. And, the lasting 30% (108 samples) are set aside to be applied serially in validation, without 
randomization. This process warranted that the data be on a uniform scale, so discrete variable sensitivity did 
not complicate the results.

GRU and Bi-GRU neural networks
Recurrent Neural Networks (RNNs) assimilate previous info to cross for forecasting the future state of a variable 
using input data with certain dependencies by enforcing a memory cell containing an unfolded loop cell. 
However, for large-scale data, its learning process meets with disappearing gradients in the backpropagation 
training algorithm over time80. To overcome this problem, LSTM adds intentionally hidden units to the memory 
cell of RNNs, so that it maintains information over long periods thanks to its unparalleled progressive structure 
named, Credit Assignment Paths (CAPs)80–83.

Fig. 2.  Time series graphs of variables used in Eq. 2 between Sep 1990-Aug 2020 (360 months) in the Chehel-
Chai River watershed: (A) CCRSFm, (B) Precipitation (Pm).
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GRU neural network is capable of learning long-term relationships and assessing highly nonlinear historical 
information if the data scale is not too vast. Both GRU and LSTM neural network models act in an alike way with 
an analogous central framework. GRU is an adaptive neural network since it is quicker in computing, simpler 
in learning, less condensed in construction, and has fewer learnable factors with a distinguished inherent 
proficiency84,85. Figure 3 illustrates the working order of the system and the interior memory cell of GRU, where 
rt, xt, and ht are the reset gate of GRU, input variable, and hidden state at time t, respectively. Wr and Ur denote 
weight matrices for the input data and hidden state, respectively.

Against LSTM, GRU does not include isolated memory cells, as a substitute, it employs a separate ht to 
dispense data over time steps. Furthermore, the input and forget gates are incorporated with an update gate 
(z), and rt is straightly applied to ht−1 to obtain ht (the candidate state). In this system, the memory cell learns at 
time t by the input at time t and the output at the prior time step (t-1). The instruction of GRU is defined by the 
subsequent computations46:

	 zt = σ(Wzxt + Uzht−1 + bz)� (3)

	 rt = σ(Wrxt + Urht−1 + br)� (4)

	 h̃t = tanh(W h̃xt + Uh̃(rt × h̃t−1) + bh̃)� (5)

	 ht = (1 − zt) × ht−1 + zt × h̃t� (6)

In these equations, tanh and σ are the hyperbolic tangent and logistic sigmoid functions, respectively. The sign 
“×” and b denotes the element-wise multiplication and bias vector, respectively. These factors are learnable sets. 
Attributable to the impact of σ, whole gates are a vector within (0, 1). When the rt is locked, GRU is influenced 
just by xt and zt controls the information dimension of ht−1 can be passed into ht

46.
The GRU model only considers the effect of the prior information on the succeeding information without 

regarding the correlation sides in time series predicting86. The Bi-GRU network model with several gates in 
the memory cells is based on different forms of the general one-directional GRU; nonetheless, reiterating 
elements within the hidden layer are more intricate. It includes forward and backward GRU to manage the 
input-output current inside the network and extract features in-depth by forward and reverse historic sequence 
computations87,88. The model construction is displayed in Fig.  4. Last of all, the output is calculated by the 
following formulation86:

	 ht =
−→
ht ⊙

←−
ht � (7)

where, 
−→
ht and 

←−
ht  are the outputs of the forward and backward GRU, respectively.

Fig. 3.  Internal structure and mechanism of GRU memory cell.
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Whale optimization algorithm (WOA)
Whales are considered the largest mammals with strong intellectual and emotional abilities, like humans, in the 
world. The whales lived habitually in groups, and the humpback whales have an exceptional hunting technique 
known as the bubble-net feeding technique. It enforces functional twisting movements to make a bubble-
net raiding mechanism called bubble-net feeding. These bubbles are called double-loops and upward spirals. 
Humpback whales wish to forage for small fish or krill schools near the sea’s surface. It has been perceived 
that this hunting mode is done by forming typical bubbles sideways a loop or ‘9’-shaped track as exposed in 
Fig. 559,89,90.

The WOA was presented by Mirjalili & Lewis59 and is considered a well-known swarm intelligence algorithm 
inspired by the real special chasing tactics of humpback whales in nature, done by the unsystematic or finest 
search agent to hunt the prey. It is executed in three stages: (i) Siege chasing; (ii) Operation stage: The process 
of raiding the net bubble; (iii) Exploration stage: Chasing search. Some unsystematic solutions initiated WOA. 
In each reiteration, the search agents bring their situation up to date by the three operators. The WOA supposes 
that the optimum solution at the moment (the optimum response) is prey; so, it identifies prey and then encircles 
prey. When the agent of the optimum search is recognized, other search agents inform their place to the optimum 
search agent59. The following formulas can describe this process:

	 D⃗ =
∣∣C⃗. X⃗∗ (t) − X⃗ (t)

∣∣� (8)

	 X⃗ (t + 1) = X⃗∗ (t) − −→
A.D⃗� (9)

Fig. 5.  Bubble-net nourishing method of humpback whales59.

 

Fig. 4.  Structure of Bi-GRU neural network model.

 

Scientific Reports |        (2025) 15:19436 8| https://doi.org/10.1038/s41598-025-03185-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where, t signifies the present repetition, A⃗ and C⃗  are the coefficient vectors, X* is the position vector of the 
optimum solution attained at present, and X⃗  is the position vector. D⃗ also displays the space amid the hunt and 
ith whale. The vectors A⃗ and C⃗  are computed as follows:

	 A⃗ = 2a⃗ · r⃗ − a⃗� (10)

	 C⃗ = 2. r⃗� (11)

where, a⃗ is linearly reduced from 2 to 0 over the progress of repetitions (in both exploration and exploitation 
stages) and r⃗ is a random vector in [0,1].

The bubble-net invading method contains two chief stages: (i) the encirclement process which whales drive 
to the water surface) denotes shrinking and includes decreasing ⃗a in the Eq. (10). The quantity of A⃗ reduces as ⃗a 
declines; and (ii) spiral updating of the whales’ locations is utilized to mimic the spiral activities of whales in the 
hunt boundary by computing the distance amid the hunt (X*, Y*) and the hunter (X, Y)59:

	 X⃗ (t + 1) =
−→
D′. ebl. cos (2πl) + X⃗∗ (t)� (12)

−→
D′= |X⃗∗ (t) − X⃗ (t) | describes the distance amid the ith whale and the hunt; b shows a coefficient defining the 
form of the logarithmic helix-formed movements; l shows a random quantity in [− 1,1]. The movement of the 
whales near the prey happens alongside the spiral-formed routes by wincing the loops. The following equation 
is presented to describe this process59:

	
X⃗ (t + 1) =

{
X⃗∗ (t) − −→

A.D⃗ if p < 0.5−→
D′. ebl. cos (2πl) + X⃗∗ (t) if p ⩾ 0.5

� (13)

where, p ∈ [0,1]; this permits one to catch the likelihood of retaining the spin mode so as to bring up-to-date 
the positions of the whales. In the exploration (searching) stage, the humpback whales’ quest for the prey is 
arbitrarily consistent with their position as matched to other whales59. Thus, the whales bring their situations 
up-to-date, compliant with randomly chosen search factors instead of the premium search factor59:

	
D⃗ =

∣∣∣C⃗.
−−−→
Xrand − X⃗

∣∣∣� (14)

	 X⃗ (t + 1) = −−−→
Xrand − −→

A.D⃗� (15)

where, 
−−−→
Xrand is a random site detected by the present population. Figure 6 offers pseudo-code of the WOA 

algorithm.

Model development
As mentioned above, in this study, first, the general single GRU and Bi-GRU neural networks are used as 
benchmark models for performance comparison, and then a 2GRU× neural network model with sequence 
output mode is developed to estimate CCRSFm in the study area. Figure 7A–C portrays the GRU-based layer 
network structure of models.

Finally, due to the smallest RMSE and highest R2 values in Model 3 compared to Models 1 and 2, it is preferred 
to hybridize with the WOA algorithm (i.e., hybrid 2GRU×–WOA model (4)) to improve the prediction accuracy 
of CCRSFm further. In this model, WOA trained the bias and weights within layers of the 2GRU× model so that 
they could be updated in keeping with a proportion recognized by the premium WOA. Then, the training set is 
applied to the renovated bias and weights of the 2GRU× model, and the WOA optimizes them in each repetition 
by randomly dispensing mode. This hybrid model terminates as a maximum number of iterations are gotten or 
as the best solution is obtained for a certain number of iterations; if not, it proceeds with the next generation 
operation.

The capability and computation complexity of the hybrid 2GRU×–WOA model generally relies on using the 
suitable main deterministic factors of the WOA algorithm, including population size (PS), maximum number 
of iterations, total load demand, up-coefficient vector, and down-coefficient vector. Selecting the optimal factors 
of bio-inspired WOA algorithm is very imperative so that the optimal key deterministic parameters and pattern 
for 2GRU× model be achieved using the optimization process. Figure 8 defines the forecasting process of the 
hybrid 2GRU×–WOA model.

In these models, the amount of P-rate and the kind of SAF as meta-parameters are exactly tuned to realize 
a proper pattern and augment the skill of the models designed. Nonetheless, since there is no formal pre-
instruction to identify suitable meta-parameters for DDN models with a given dataset, this process is pondered 
as a time-wasting and demanding task18. For the sake of this aim, several scenarios are adopted to realize valid 
values.

In all models, the Input layer feeds the time series Pm into the layers’ network structure. For a useful 
configuration and modification in the big dataset, the Dropout layer is operated to deter overfitting by passing 
over some hidden neurons with a prearranged option rate of P91. To tune the amount of P-rate as a meta-
parameter, various values are tested. To strengthen fitting ability in learning long-term sequential datasets, the 
Fully Connected layer is utilized with input and output sizes of “auto” and 1, respectively. The Multiplication 
layer multiplies the inputs from various layers’ neural network element-wise. As the ending layer, the Regression 
Output layer is utilized to compute the “half-mean-squared-error loss” for regression objectives. To tune SAF, a 
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diverse combination of tanh and softsign are distinctly utilized, and for NHU, numerous amounts are tested. In 
order to preclude the gradients disappearing and lessen the negative influence of padding drawbacks, a training 
process with 1000 maximum repetitions is set as recommended by Lin et al.18. More details about the function 
of layers in the all models developed were provided by92.

Performance evaluation metrics
In this modelling, the following statistical metrics are applied to liken the capability and performance of all 
models used in predicting the time series CCRSFm:

	

Coefficient of Determination
(
R2)

;

R2 =
∑N

i=1 (Oi − µo)2 −
∑N

i=1 (Oi − Pi)2

∑N

i=1 (Oi − µo)2

� (16)

	
Root Mean Square Error (RMSE) ; RMSE =

√∑N

i=1 (Oi − Pi)2

N
� (17)

	
Mean Bias Error (MBE) ; MBE =

∑N

i=1 (Pi − Oi)
N

� (18)

	

Nash − −Sutcliffe Efficiency (NSE) ; NSE = 1 −

N∑
i=1

(Oi − Pi)2

N∑
i=1

(Oi − µo)2
� (19)

Fig. 6.  Pseudo-code of the WOA algorithm (Mirjalili and Lewis, 2016).
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Mean Absolute Error (MAE) ; MAE =

∑N

i=1 |Oi − Pi|
N

� (20)

where N is the number of datasets, Pi and Oi are the predicted and observed CCRSFm at time i, σo and σP  are 
standard deviations of the observed and predicted the CCRSFm. The µp and µo are the mean predicted and 
observed CCRSFm. The best amount for Eqs. (16–20) are 1, 0, 0, 1, and 0, respectively.

Results and discussion
Validation of the models
In this simulation, numerous experiments are conducted to determine the optimal value of the main deterministic 
factors in the models developed. The characteristics and statistical results of all models used under the optimal 
scenario in the validation phase in forecasting CCRSFm are shown in Tables 4 and 5, respectively. The models in 
their training stages are more precise than in their testing stages. The tanh-softsign pairing in the hidden layers of 
the 2GRU× and hybrid 2GRU×–WOA models brings forth learning more complicated nonlinear functions, and 
accordingly, it causes the models not to be as much open to the overfitting dilemma. Besides, the ideal amount 
of main deterministic factors for WOA algorithm in the hybrid 2GRU×–WOA model for the best solution in 
forecasting CCRSFm is achieved as an up-coefficient vector of 0.25, a down-coefficient vector of 0.1, a total load 
demand of 0.05, a maximum number of iterations of 500 and a population size of 30.

According to Table 5, it can be concluded that hybridizing with the WOA algorithm advances noticeably 
the performance and ability of the 2GRU× model. This optimization algorithm augments the 2GRU× model 
training phase and achieves better efficiency in the predicting CCRSFm. Additionally, the value of MBE shows 
that all models except the model 1 underestimated the corresponding measured values at the validation phase.

RMSE variations in the model 4 over the range of NHN used under the optimal hyper-parameter in the 
testing phase is displayed (Fig. 9). High NHN causes RMSE to grow as a result of overfitting, nevertheless, small 
NHN reduces network learning skill because of underfitting.

Performance comparison
In this modelling, to compare the skill and efficiency of models used in capturing the time series CCRSFm, a 
substantial factor called TLP (Total Learnable Parameters) is exploited, as suggested by Lin et al.18 (Table 4). The 

Fig. 7.  Designed layer network structure of GRU-based models: (A) General single GRU model (1), (B) 
General single Bi-GRU model (2), (C) and 2GRU× model (3).
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TLP is considered a crucial criterion for the discriminating forecasting performances and practical capacities of 
DL-based models. Moreover, it can also assess tendencies toward under-/over-fitting effects.

Based on Tables 4 and 5, though Model 1 has the extreme TLP value, Model 4 results in the best performance 
and surpasses other models by capturing the time series CCRSFm. The dominant reason for this is explainable 
by the high quantity of TLP in the model, 1 which led to an extremely unnecessary network capacity and 
accordingly, it prompts overfitting and hinders the optimization process. On the contrary, due to the lesser 
amount of TLP in model 2, it has a lesser network capacity, accordingly, leading to underfit. Generally, models 
1 and 2 are not capable of monitoring and predicting time series CCRSFm in the study region due to poor 

Fig. 8.  Flowchart of integrated 2GRU× with whale optimization algorithm (WOA) (i.e., hybrid 2GRU×–WOA 
model (4)).
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performance. The model 4, thanks to the well-adjusted layer network structure and consequently TLP value, 
excelled over other models. It is owing to the well-proportioned TLP amount that it could hastily get the ideal 
weight sets − 1000 iterations in 33 s, while the model 1, for the uppermost TLP number, entails extra time to 
converge – 1000 iterations in 48 s.

Figure 10 matches pictographically the hydrograph plot for the measured and predicted temporal CCRSFm 
by model 4 under the ideal meta-parameters in the validation phase. Along with this figure, model 4 owing to 
its inventive advanced layer’s network structure can agreeably estimate the distribution of measured sequential 
CCRSFm and fit relatively the vacillations trend mostly in the peak and deepest values of CCRSFm that prove an 
acceptable unanimity.

In terms of distribution criteria, scatter diagrams for the measured and predicted time series CCRSFm by 
the models used during the validation stage are presented in Fig. 11A–D. By a visual judgment, it is noticeable 

Fig. 9.  RMSE variations in the model 4 over the range of NHN used under the optimal hyper-parameter in 
forecasting CCRSFm in the testing phase.

 

Model RMSE (m3/s) R2 NSE MBE (m3/s) MAE (m3/s)

General single GRU model (1) 1.29 0.59 0.55 0.047 0.91

General single Bi-GRU model (2) 0.83 0.66 0.6 -0.06 0.53

2GRU× model (3) 0.49 0.74 0.71 -0.078 0.33

Hybrid 2GRU×–WOA model (4) 0.36 0.79 0.76 -0.01 0.21

Table 5.  The statistical results of models developed under the ideal meta-parameters in forecasting CCRSFm. 
*Quantities that are shown in bold are the results of optimal model.

 

Main Deterministic Factors GRU Model (1) Bi-GRU Model (2) 2GRU× Model (3) Hybrid 2GRU×–WOA Model (4)

NHN 60 50 60 70

SAF tanh tanh tanh-softsign tanh-softsign

P-rate 0.4 0.6 0.6 0.5

Optimization Algorithm Adam Adam Adam WOA

Learning Rate 4E-8 4E-8 3E-8 2E-8

Mini Batch Size 20 20 20 20

Initial Batch Size 128 128 64 32

Convergence Time (s) 48 24 28 33

TLP 11,160 4101 5791 7806

Table 4.  The characteristics and ideal meta-parameters of all models developed in forecasting CCRSFm.
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that the predicted CCRSFm by the hybrid 2GRU×–WOA model is generally near to the exact line (i.e., 1:1) for 
abundant data points with minor scattering compared to the GRU model. It validates a high steadiness and best-
performing approach with a satisfactory R2 of 0.79.

A violin plot is presented to concomitantly match the performance and skill of all models and single out the 
best model used in the validation phase (Fig. 12). By a visual evaluation, it can be concluded that the hybrid 
2GRU×–WOA model relatively better fits the distribution of the observed temporal CCRSFm and could estimate 
to some extent exacter the peak and lowest values in comparison with the other models developed.

Summary and conclusion
In this study, different layer structures of GRU-based deep learning framework were developed to estimate 
the forecasting CCRSFm from Sep 1990 to Aug 2020 (360 months). In all models, to satisfy the long-period 
nonlinearity and non-stationary dilemmas, the seq2seq regression forecasting module is applied. The most 
worth mentioning outcomes of the modelling process are:

	1.	 The PCC and CAS data analysis methods approved that the Pm was the most influential predictor variable on 
CCRSFm to feed the models developed.

	2.	 The training-stage forms of all models were more precise than their validation counterparts.
	3.	 After several trials, the suggested hybrid 2GRU×–WOA model was accepted as the best-performing model 

by performance evaluation criteria to forecast CCRSFm. The optimal P-rate, NHN, and SAF tuned for this 
model were obtained to be 0.5, 70, and tanh-softsign, respectively. Integrating the 2GRU× model with WOA 
algorithm caused to increase in the value of R2 by 6.8% and reduced in the value of RMSE by 20.4%.

	4.	 By comparing the model structures developed and relevant TLP values, it can be concluded that inserting the 
Multiplication layer led to a more suitable layer network structure and well-adjusted TLP. So, for achieving 
effective DL-based models, an apt network structural, NHN, and well-balanced TLP value should be applied.

	5.	 In all models, growing P-rate value lessens convergence time. The model 1 for the high TLP quantity, neces-
sitated more time to train – 1000 repetitions in 48 s.

The hybrid 2GRU×–WOA structure is a cutting-edge method as verified by its commendable accuracy and 
performance (verified statistically). It can therefore be employed as an intelligent smart model for monitoring 
and predicting time series river streamflow under different climatic conditions. This hybrid model is an easy-
to-implement, cost-effective, dependable, and time-saving process. Its well-formed layer network structure 
prompted an apt response to TLP and engendered more precision than the standard GRU and Bi-GRU as 
the benchmark models in the same meta-parameters. Despite the advantages of a hybrid model, it has some 
constraints: it entails an extremely long period of detailed (i.e., regular measurements) precipitation data to 
predict CCRSFm in a study area, as the seq2seq regression module of forecasting was employed.

Even though this study evaluated the effects of different GRU-based model and WOA algorithm structures 
on forecasting CCRSFm, upcoming studies could examine other methods. For instance, modeling could 
integrate DNN models with the most up-to-date optimization algorithms, such as the Puma Optimizer (PO) 
and Mountain-Gazelle Optimizer (MGO). The results should be equated to the outcomes of the current study to 
obtain the most effective technique.

Fig. 10.  Hydrograph plot of the measured and predicted time series CCRSFm by models 1 and 4 under the 
ideal meta-parameters during the validation phase (108 months between September 2011– August 2020).
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Fig. 11.  Scatter plot for the measured and predicted CCRSFm (m3/s) by the (A) GRU model (1), (B) Bi-GRU 
model (2), (C) 2GRU× model (3), and (D) hybrid 2GRU×–WOA model (4) in the validation stage.
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Fig. 11.  (continued)
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Data availability
Data used in this study are provided from the IMO (Iran Meteorological Organization) and will be available 
upon reasonable request.
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