
Bayesian network structure
learning by opposition-based
learning
Baodan Sun1,2,3, Xinyi Zhang1,3, Junhui Jiang1,2,3, Jianguang Gong1,2,3 & Dan Lin1,2,3

As a classical basic model for causal inference, Bayesian networks are of vital importance both in
artificial intelligence with uncertainty and interpretability. The significant status of Bayesian networks
in these research orientations depends on its topological structure, namely directed acyclic graphs.
Bayesian network structure learning is a well-known NP-hard problem, and its computation accuracy
is still worth being further studied. In this paper, we propose a new Bayesian network structure
learning algorithm, OP-PSO-DE, which combines Particle Swarm Optimization(PSO) and Differential
Evolution to search for the optimal structure. Since the computation complexity of BN structure
learning increases exponentially with the number of nodes, the proposed algorithm incorporates
opposition-based learning to narrow the search space of heuristic algorithms, which can effectively
accelerate the searching process. Experimental results show that the proposed algorithm achieves
better performances than other state-of-the-art structure learning algorithms when the sample size is
500. The source code of the paper can be found at this link: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​s​u​n​b​a​o​d​a​n​-​h​r​b​e​u​/​p​a​p​e​
r​_​c​o​d​e​​​​​.​​

Keywords  Opposition-based learning, Differential evolution, Particle swarm optimization, Structure
learning, Bayesian networks

Bayesian networks are widely used in application scenarios of artificial intelligence, and also the foundation
of causal inference. A whole Bayesian network can be divided into two components: topological structure and
parameters. The topological structure is represented by directed acyclic graphs(DAGs) to show the dependent
relations between each two random variables directly and the parameters precisely regardless time complexity.
Usually, there are three strategies used in structure learning algorithms: constraint-based approach, score-based
approach and hybrid approach. Constraint-based approach employs conditional independence tests to ensure
the dependencies and independences between each two random variables(represented by nodes in the graph).
Score-based approach uses heuristic algorithms searching for the best structure in the solution space according
to scoring functions, which is broadly utilized in structure learning. Hybrid approach combines both of them,
which uses constraint-based approach to obtain the skeleton and uses score-based approach to search for the
best structure. However, since Bayesian network structure learning is a non-convex combinatorial optimization
problem, common numerical optimization methods are ineffective in solving it. Although branch-and-bound
algorithms have been proposed for Bayesian network structure learning, their performance diminishes when
handling large-scale networks with more than 100 nodes. And when we use Bayesian networks to deal with
classification tasks, it is not necessary to ensure that the learnt networks are exactly the same as the original ones
since classification models should have certain generalization ability. In this context, Bayesian network structure
learning based on heuristic algorithms was proposed and developed in recent years.

In previous works, Villa-Blanco et al.1 proposed a hybrid structure learning algorithm, which used PC
algorithm to reconstruct the skeleton of the class subgraph and hill climbing was used to search for the directed
edge. Jose et al.2 proposed to use CI tests to construct an undirected graph, and CIGAR-based search method
was used for evolving a high-quality network. WANG et al.3 proposed ESLH algorithm, which used dynamic
threshold and skeleton learning method based on triangle breaking combining with hill climbing to obtain
BN structures. In these works, the authors compare the proposed hybrid BN structure learning algorithm with
classical constraint-based algorithm, such as PC, and score-based algorithms, such as Tabu search, hill climbing
and so on. The experiments in these papers illustrate hybrid approach for BN structure learning achieve better

1Harbin Engineering University, College of Computer Science and Technology, Harbin 150001, China. 2National Key
Laboratory of Smart Farm Technologies and Systems, Harbin 150001, China. 3Baodan Sun, Xinyi Zhang, Junhui
Jiang, Jianguang Gong and Dan Lin contributed equally to this work. email: jhjiang@hrbeu.edu.cn

OPEN

Scientific Reports | (2025) 15:18447 1| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports

https://github.com/sunbaodan-hrbeu/paper_code
https://github.com/sunbaodan-hrbeu/paper_code
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-03267-2&domain=pdf&date_stamp=2025-5-26

general performances, since the learnt skeleton or undirected graph can constrain the search space, and score-
based can search for a relatively accurate directed acyclic graph in a restricted search space.

Also, there were many researchers applying various heuristic algorithms into Bayesian network structure
learning, where traditional heuristic algorithms include Hill Climbing4, Simulated Annealing56, Ant Colony
Optimization7, Particle Swarm Optimization8 and so on. Also, some relatively new proposed Bayesian network
structure learning algorithms based on heuristic algorithms are worth mentioning because of their innovations
and original solving strategies: Wang et al.9 proposed a novel heuristic function and used A* searching algorithm
to find the best structure of Bayesian networks. Yang et al.10 proposed to use a well-known metaheuristic method
called scatter search to solve BN structure learning problem. He et al.11 proposed the neighboring complete
node ordering search algorithm to find the node ordering of Bayesian networks and used hill climbing to find
the best network structure. Haoran Liu et al.12 proposed to use an improved Harris Hawks optimization(HHO)
for Bayesian network structure learning. Kareem et al.13 proposed to utilize Elephant Swarm Water Search
Algorithm(ESWSA) for Bayesian network structure learning. Awla et al.14 used reversing, moving, and deleting
to create the Falcon Optimization Algorithm(FOA) to find the best structure of DAGs. Soloviev et al.15 proposed
to use quantum approximate optimization algorithm(QAOA) to solve Bayesian network structure learning
problem by employing 3n(n − 1)/2 qubits, where n is the number of nodes of the learnt Bayesian network.
Wang et al.16 proposed a novel discrete firefly algorithm to learn Bayesian networks. These research articles
prove that using heuristic algorithms to search for the best topological structure is an effective method to solve
structure learning problems in finite time, but they are also suffering from totally random searching and huge
solution space. Therefore, it is necessary to conduct intensive studies on these heuristic algorithms to improve
their performances.

In our previous work, we proposed PC-PSO algorithm8 for Bayesian network structure learning, which
combines the well-known constraint-based approach, PC algorithm, to obtain the initial solutions and BNC-
PSO17 to search for the best network structure in the solution space. However, the convergence rate and the
accuracy of PC-PSO are still worth further disscussed. To be specific, PC-PSO needs 78.3 iteration times out of
10 experiments to achieve convergence and the corresponding BIC score is -9014.95(the benchmark is -9468.28)
when the sample size is 500 on INSURANCE network. So, in this paper, we propose to improve the existing PC-
PSO algorithm with the opposition-based learning approach to narrow the search space of heuristic algorithms,
which can effectively accelerate the searching process. Unlike recent neural-based continuous optimization
methods (e.g., NOTEARS18, DAG-GNN19 or GraN-DAG20), our approach is situated in the heuristic score-
based family, and is particularly suitable for discrete-variable domains and black-box scoring functions. To
increase the diversity of the population in the searching process to find more feasible solutions, we employ DE
algorithm instead of GA algorithm in PC-PSO. DE can make full use of individuals in the population to execute
mutation and crossover operations, while GA only changes certain elements of the individuals. Meanwhile, the
proposed algorithm combines Particle Swarm Optimization(PSO) with Differential Evolution(DE) to search for
more accurate network structures in the solution space.

To the best of our knowledge, the proposed method firstly applies opposition-based learning into Bayesian
network structure learning. Specifically, in the whole searching process, we generate regular solutions and their
opposite solutions at the same time, which can obtain solutions closer to the global optimum. Also, in this
paper, we utilize a new mutation operator of DE, the binary mutation with probability difference, to deal with
the discrete Bayesian network structure learning algorithm, compared to the linear mutation operator used in
PC-PSO.

The remainder of this paper is organized as follows. Section 2 is the preliminaries of this paper, which
introduces the basic knowledge of Bayesian networks. Section 3 introduces the basic idea of Particle Swarm
Optimization and its improved algorithm, BNC-PSO. Section 4 shows the details of our proposed OP-PSO-
DE algorithm. Section 5 shows experiment settings and all the experiment results of the proposed algorithm.
Section 6 is the conclusion of this paper.

Preliminary
Bayesian networks
As an important probabilistic graphical model, Bayesian networks originally derived from the Bayes theorem
and are widely utilized because of its interpretability. Bayesian networks use directed acyclic graphs to represent
the dependent relations between two nodes and use the conditional probability table to represent conditional
probabilities of each two nodes. According to the implicit independence assumption in the structure, given its
parent node, Xi is conditionally independent with its non-child nodes, so the joint probability distribution can
be decomposed into the product of multiple conditional probability distributions:

	
P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|P a(Xi))� (1)

where P (Xi|P a(Xi)) represents the conditional probability of Xi given its parent node P a(Xi); there is a
directed edge pointing from each node in P a(Xi) to Xi.

We can conclude two steps taken to represent the dependent relations and independent relations of these
nodes in the above equation with directed graphs: firstly, each random variable in the equation is represented as
a node in the directed graph; secondly, for each node Xi, a directed edge is drawn starting from each node in the
parent node set P a(Xi) pointing to Xi.

In most application scenarios, we can only obtain the original dataset and want to obtain the directed
acyclic graph according to it, which is the structure learning problem. As we mentioned above, there are three

Scientific Reports | (2025) 15:18447 2| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

strategies can be adopted: constraint-based approach, score-based approach and hybrid approach. Constraint-
based approach was firstly employed in structure learning, but it can only obtain the completed partially acyclic
graph(CPDAG), which refers to the Markov equivalence class of the directed acyclic graph. Therefore, the score-
based approach was widely utilized, which contains two parts: scoring functions and searching algorithms.
Searching algorithms are used to search for the best network structure that maximizes scoring functions in
the feasible domain. Usually, heuristic algorithms are used to search for the best solutions and different scoring
functions are introduced as below, which are also used in our proposed algorithm.

Scoring function
There are three classical scoring functions widely used in many research articles: BDe21, BIC22 and MDL23. The
derivation process of BDe considers prior assumptions on parameters, while no such assumptions are made
in BIC and MDL. Compared to BDe, BIC and MDL are intuitive and not easy to be impacted by the errors of
the dataset. To be specific, BDe score assumes the parameter distribution, and then calculates the fit degree of
current network structure and data to find out the network structure that maximizes the posterior distribution.
If we assume parameters are subject to Dirichlet distribution, it can be written as:

	

Dir(θij |α1, α2, . . . , αr) =
Γ

(
r∑

k=1
αk

)

r∏
k=1

Γ (αk)

r∏
k=1

θ
αk−1
ijk αk > 0� (2)

We can calculate BDe score according to the equation as below:

	
P (D|G) =

n∏
i=1

qi∏
j=1

Γ(α
′
ij)

Γ(α′
ij + αij)

ri∏
k=1

Γ(α
′
ijk + αijk)
Γ(α′

ijk) � (3)

where α
′
ijk is the hyperparameter ,α

′
ij =

ri∑
k=1

α
′
ijk and Γ(·) is the gamma function.

BIC score is the logarithm of BDe, and it evaluates the likelihood function of current network structure and
observation data. Thus, we can write BIC score function as:

	
log P (G|D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

mijk log mijk

mij
− 1

2

n∑
i=1

qi(ri − 1) log m� (4)

where m is data size. mijk is the probability that Xi takes the k-th value and its parent node takes the j-th value.
n∑

i=1
qi(ri − 1) is the amount of parameters contained in the network.

Compared to BIC, MDL score adds an additional penalty term to the fitness degree of current network and
observation data, which calculates the sum of the description length of network structure and sample data. The
calculation equation can be written as:

	
−DL(G, D) ≈ −m

n∑
i=1

H(Xi|P ai) − 1
2

n∑
i=1

qi(ri − 1) log m� (5)

where H(Xi|P ai) the conditional entropy of Xi relative to P ai.

Particle swarm optimization
The basic principle
Inspired by the regularity of bird flock foraging behavior, James Kennedy and Russell Eberhart proposed
Particle Swarm Optimization24 in 1995, which searches for the optimal solution through collaboration and
sharing information among individuals in the population. PSO firstly initializes the population of particles,
which has two attributes: velocity and position. To be specific, the velocity of the i-th particle in d-dimensional
searching space, Vi = (Vi1, Vi2, . . . , Vid), represents their searching speed and the position of the i-th particle,
Xi = (Xi1, Xi2, . . . , Xid), represents the candidate solution. Each particle searches for the optimal solution in
the search space individually and represents it as the current individual extreme value, Pbest. Meanwhile, each
particle shares their individual best solution with other particles in the entire population, and finds out the best
individual extreme value, Gbest, as the current global optimal solution of the population. All the particles in
the population adjust their speed and position according to the current individual best solution and the global
optimal solution. The velocity and position of particles can be updated according to the following equations:

	 vi(t + 1) = vi(t)+c1r1(Pbest(t) − xi(t)) + c2r2(Gbest − xi(t)) � (6)

	 xi(t + 1) = xi(t) + vi(t + 1) � (7)

Scientific Reports | (2025) 15:18447 3| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where t is the number of iterations. w is the inertia weight. c1, c2 are acceleration constants. r1, r2 are random
numbers, usually r1, r2 ∈ [0, 1]. The original PSO algorithm was proposed to solve continuous optimization
problems, while BN structure learning is a discrete optimization problem in general. Therefore, the modified
PSO algorithms used to solve discrete BN structure learning problem were proposed and BNC-PSO is one of
the state-of-the-art.

BNC-PSO
BNC-PSO17 was proposed by Gheisari and Meybodi in 2016 and achieves good performances while solving BN
structure learning problems. BNC-PSO combines the original PSO algorithm with Genetic Algorithm(GA),
which utilizes PSO algorithm to search in the candidate solution space and utilizes GA to generate more discrete
solutions. To improve the accuracy, BNC-PSO executes two crossover operations compared to the original
GA: the first crossover operation is executed with individual best solutions; the second crossover operation is
executed with the global optimal solution. According to BNC-PSO, the updated equations of particles can be
written as:

	

Xi(t) = N3(N2(N1(Xi(t − 1), w), c1), c2)

Vi(t) = Wi(t) = N1(Xi(t − 1), w) =
{

M(Xi(t − 1)), r1 < w
Xi(t − 1), others

Si(t) = N2(Wi(t), c1) =
{

Cp(Wi(t)), r2 < c1
Wi(t), others

Xi(t) = N3(Si(t), c2) =
{

Cg(Si(t)), r3 < c2
Si(t), others

� (8)

where M denotes the mutation operation. Cp denotes the crossover of each individual and its personal best
solution. Cg denotes the crossover of each individual and global best solution. N1, N2 and N3 represent the results
of these three operators. w is the mutation probability and c1, c2 are crossover probabilities. r1, r2, r3 ∈ [0, 1]
are random numbers.

OP-PSO-DE: BN structure learning based on opposition-based learning
Opposition-based learning
Opposition-based learning was proposed by Hamid R. Tizhoosh25, which is an effective scheme that can improve
the convergence speedup of machine intelligence algorithms. The basic principle of opposition-based learning
is to generate opposite solutions of feasible solutions and evaluate both of them to choose better solutions as
the next generation. To explain the theoretical reasoning behind why opposition-based learning enhances the
convergence of Bayesian network (BN) structure learning, we must first recognize that BN structure learning is
a combinatorial optimization problem, which can be addressed through heuristic algorithms, as demonstrated
in previous researches. BN structure learning based on heuristic algorithms often begin with a random initial
guess, which is typically far from the optimal solution. In the worst case, the initial guess may be at the opposite
end of the solution space, causing the search algorithm to spend significantly more time finding the correct
answer. Without sufficient prior knowledge, it is difficult to make a perfect initial solution. Logically, one should
explore in all directions at once, or more specifically, in the opposite direction. By comparing the estimate and
its counter-estimate, the search space can be progressively halved, and the algorithm will continue to narrow
the search until one of these estimates is sufficiently close to the optimal solution. In this way, the searching
efficiency and global optimization capability of searching algorithms can be improved.

Let X = (x1, x2, . . . , xd) be a feasible solution in d-dimensional space, where xi ∈ [ai, bi] are real numbers.
T﻿hen, its corresponding opposite solution can be written as:

	

X̃ = (x̃1, x̃2, . . . , x̃d)
x̃i = ai + bi − xi

� (9)

where i = 1, 2, . . . , d.
The original opposition-based learning was used to improve the searching process of continuous optimization

problem, but it can also be applied into solving binary domain. In this paper, we focus on the discrete Bayesian
network structure learning problem, where its solution space is binary. Thus, we apply the binary opposition-
based learning into the searching space of our proposed algorithm. For the opposition solutions in binary
domain, (9) can be written as:

	 x̃i = 1 − xi� (10)

The binary opposite-learning26 was proven mathematically, where also proved that opposite solutions can find
candidate solutions more closer to the global optimum. In this paper, we choose certain particles according to
their fitness values as elite solutions to execute opposition-based learning, which can increase the diversity of
the population. Also, selecting elite solutions from the current candidate solutions and the opposite solutions
as offspring individuals can improve the convergence speedup of the algorithm. The executing process of
opposition-based learning is shown in Fig.1.

Scientific Reports | (2025) 15:18447 4| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Differential evolution
As we mentioned above, PSO is designed to solve continuous optimization problem and we focus on discrete
BN structure learning problem in this paper because discrete BNs are more common in practical applications.
To discretize the original PSO algorithm, we vary candidate solutions with the mutation operator and crossover
operator of Differential Evolution(DE) algorithm27.

DE algorithm is an evolutionary algorithm that simulates the process of cooperation and competition among
individuals in the population. In DE algorithm, each candidate solution is represented by each individual in the
population. In the initialization phase, the initial population consisting of N individuals is generated and each
individual, Xi(t), is a d-dimensional vector, where i = 1, 2, . . . , N and t is the number of iterations. Xi(t) is
randomly initialized within the searching space defined by the optimization problem. Then, new individuals are
obtained by mutation operator and crossover operator, and individuals with higher fitness values are selected to
generate the next population in this paper. The details of these operations are introduced below.

The binary mutation with probability difference
In the mutation operation, the standard mutation operation first randomly selects three different individuals
in the population, then multiplies the difference of these three individuals by a factor (difference weight) and
adds it to another target individual to generate a new individual. Mutation operator used in DE algorithm is to
randomly select three individuals, Xr1, Xr2, Xr3 in the population and the new offspring can be obtained:

	 Vi(t) = Xr1(t) + F · (Xr2(t) − Xr3(t))� (11)

where Xr2(t) − Xr3(t) is the differential variation.
To tackle discrete BN strucure learning problem, we adopt the binary mutation with probability difference28

to improve the convergence of the algorithm and ensure its global searching capability. The mutation operator
selects the best vector among three randomly chosen vectors as the base vector, and employs the difference
between the remaining two vectors as a mutation probability to be used on the base vector to generate a mutation
vector for the next crossover operator. For the i-th vector in the population Xi(t), the offspring generated by the
binary mutation with probability difference can be calculated as below28:

	




Vi(t) = (vi,1(t), vi,2(t), . . . , vi,d(t))
vi,j(t) =

{
xbest,j(t), ci,j < rand
1 − xbest,j(t), otherwise

Ci =
{

σ, if Xbest(t) ≺ Xi(t)
min{1, F · (Xr1(t) ⊕ Xr2(t)) + σ}, otherwise

� (12)

where Vi(t) denotes the target vector generated by the mutation operation, and Xbest(t) is the best vector among
the three randomly chosen vectors and Xr1(t), Xr2(t) are the remaining two vectors. If Xbest(t) is superior to
Xi(t)(denoted by Xbest(t) ≺ Xi(t) in the equation), the probability vector Ci = (ci,1, ci,2, . . . , ci,d) equals
to σ; otherwise, the probability difference min{1, F · (Xr1(t) ⊕ Xr2(t)) + σ} is taken and ⊕ represents XOR
operation. σ is a turbulence coefficient, and experiments in 28 show that its value should be taken in [0.001, 0.01].
F ∈ [0, 1] is a scale parameter to control the learning rate. In this paper, we set rand in the equation equals to
the mutation probability w.

Crossover operator
Crossover operator in DE algorithm is designed to be a discrete method to obtain new offspring with recombining
the elements of vectors. To search for optimal solutions in discrete space, the current candidate solutions should
vary in different iterations, thus the crossover operator is necessary in the algorithm. In crossover operation, the
algorithm exchanges parts of the elements of the solution vectors with a certain probability to produce a new
individual. It is a little bit different from crossover operator in Genetic Algorithms(GA) and the trial vectors
Si(t) are obtained by recombining Vi(t) with Xi(t):

	

Si(t) = (si,1(t), si,2(t), . . . , si,d(t))

si,j(t) =
{

vi,j(t), rand < CR or j = h
xi,j(t), otherwise

� (13)

where rand ∈ [0, 1] is a random number and CR is the crossover probability. h is a random number in [1, d] to
ensure that there is at least one element chosen from Vi(t).

For our proposed algorithm, we combine PSO with DE and adopt the crossover strategy of BNC-PSO, which
executes two crossover operations: the crossover with particle best solution and the crossover with global best
solution. In this way, we reserve the effective elements in the vectors to speed up the convergence of our proposed
algorithm. As we mentioned above, BN structure learning is a NP-hard combinatorial optimization problem,
which means that the searching process is quite complex. So we adopt two times crossover operations to reserve
effective information contained in these particles.

OP-PSO-DE
To illustrate our proposed algorithm, we list all the necessary details of critical process in this section. In this
paper, we use the adjacent matrix of DAGs to represent the dependent and independent relations between nodes.

Scientific Reports | (2025) 15:18447 5| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

To be specific, if there is one directed edge from node X1 pointing to node X2, the corresponding element in the
adjacent matrix is set to 1, namely aX1X2 = 1; if there are no edges between these two nodes, aX1X2 is set to 0.

In the initialization stage, the proposed algorithm randomly generates initial feasible solutions of BN structure
learning problem, which means that OP-PSO-DE randomly generates directed acyclic graphs and represents
them as their adjacent matrices. In our previous work, the PC-PSO algorithm achieves good performances be-
cause it introduces PC algorithm to obtain structure priors to improve the initial solutions. Therefore, we still
adopt this strategy in this paper to obtain initial solutions of OP-PSO-DE algorithm. PC algorithm selects an
empty graph as the initial network and adds edges to the network structure through conditional independence
tests. The details of PC algorithm29 can be seen in Algorithm 1:

Algorithm 1.  PC algorithm

 Where, AGab represents the node set (except a and b) adjacent to a or b. UGab represents the node set(except
a and b) consisting of nodes on the acyclic undirected path between a and b.

After that, as Fig.1 shows, the proposed algorithm sorts these solutions according to their BIC scores and
obtain the elite individuals. The opposite solutions of elite individuals are generated and we merge the original
initial solutions with opposite solutions to evaluate them together. We determine the top N individuals in the
merged population to be our final initial solutions.

In the iteration process, the algorithm should determine the mutation probability and crossover probabilities
first to vary the initial solutions and generate offsprings. In this paper, we utilize the SSRDIWPSO

30 inertia
weight strategies to update the corresponding mutation rate of our proposed algorithm. SSRDIWPSO defines
the swarm success rate(ssr) to measure the evolution extent of the population. For the i-th particle in the
population in the t-th iteration, its success rate can be defined as:

	
succi(t) =

{ 1, if BIC(Pbest,i(t)) > BIC(Pbest,i(t − 1))
0, otherwise � (14)

where Pbest,i(t) is the individual best solution of particle i in the t-th iteration. Thus, for the t-th iteration, the
success rate of the whole population can be calculated by:

	
ssr(t) =

∑N

i
succi(t)
N

� (15)

where N is the population size. Next, the inertia weight w of PSO in the t-th iteration, which is also referred to
the mutation probability of our proposed algorithm, can be updated according to SSRDIWPSO:

	
w = (wstart − wend)MaxIt − t

MaxIt
+ wend × ssr(t − 1)� (16)

SSRDIWPSO considers the feedback parameter ssr(t − 1) to reserve the population information during
the iteration process and adjust the inertia weight according to it.

For acceleration coefficients of PSO, which is also referred to our crossover probabilities of our proposed
algorithm, we utilize the same Self-Tuned (ST) method31 as BNC-PSO to update:

Scientific Reports | (2025) 15:18447 6| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	

c1 = c10 − c10 − c11

MaxIt
∗ t

c2 = c20 − c20 − c21

MaxIt
∗ t

� (17)

where c10, c20 are starting values of c1 and c2 in the iteration process; c11, c21 are ending values of c1 and c2.
After determining the values of these parameters, the proposed algorithm executes the mutation operation

and two crossover operations and generates the new generation of particles. Then, we obtain the new generated
population and the elite opposite solutions. Next, the proposed algorithm merges the new generation with
opposite solutions and selects top N particles as the next generation. Finally, the proposed algorithm updates
the individual best solutions, positions and velocities of these particles. If the algorithm does not achieve the
maximum of iterations, it continues to execute; otherwise, the algorithm ends and outputs the final result. All
the steps and important details of the proposed algorithm mentioned above can be seen in Algorithm 3 ∼ 5 in
the Appendix.

It should be noticed that the mutation operation and two crossover operations might introduce cycles into
the DAGs, thus we adopt the property of DAGs to check cycles and remove them. In graph theory, there is an
important proposerty of adjacent matrix: the elements of q-th power of adjacent matrix, A

q
ij , represent the

Start

End

Initialize the population of

particles including velocity

and position

Evaluate the fitness values

of the particles and obtain

elite individuals

Generate opposite solutions

of elite individuals and

evaluate them

Merge the current candidate

solutions with opposite

solutions and sort them to

generate the next population

No
Stop?

Yes

Fig. 1.  The executing process of opposition-based learning in our proposed algorithm. It should be noticed
that we only list steps containing opposition-based learning and the whole details of our proposed algorithm
can be seen below.

Scientific Reports | (2025) 15:18447 7| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

number of paths of length n from vertex i to vertex j. In order to ensure the acyclicity of the directed acyclic
graph, the trace of the q-th power of the adjacency matrix must be equal to 0. The details of this method can
also be seen in Algorithm 2:

Algorithm 2.  Cycle removal procedure

The sparsity of DAGs
Opposition-based learning is an effective method to achieve fast convergence of heuristic algorithms. However,
it also consumes a lot of computing resources, especially for structure learning problems in BNs. So in this paper,
we reduce the computation complexity of OP-PSO-DE algorithm by restricting the in-degree and out-degree of
DAGs. Also, it can be found that DAGs in practical applications are sparse and BIC score is tended to choose
DAGs with lower structure complexity. By this way, we can guarantee the sparsity of DAGs returned by our
proposed algorithm. For different structure learning problems in BNs, the options of in-degree and out-degree
can be determined according to specific application scenarios.

The time complexity of OP-PSO-DE
Since the calculation in our proposed algorithm is based on matrix, the complexity of our algorithm
is O(MaxIt ∗ nP op ∗ nV ar4) where MaxIt is the iteration time, nPop is the population size,
and nVar is the number of random variables. In the following works, we will try our best to reduce
algorithm complexity to apply our algorithm into more application scenarios. To be specific, the time
complexity of cycle checks is O(nV ar4), thus the time complexity of generating opposite solutions is
O(nV ar2 + L(nV ar)) = O(nV ar2 + nV ar4) = O(nV ar4), where L(nVar) is the complexity of cycle checks.
Also, the time complexity of elite selection is O(eli_num · (nV ar4 + nV ar · n)) = O(eli_num · nV ar4),
where eli_num is the number of elite individuals and n is the number of samples.

Experimental results and analysis
Experimental parameters
To verify the performances of our proposed OP-PSO-DE algorithm, we conduct experiments on different discrete
networks, including CANCER32, ASIA33 and INSURANCE34. To be specific, CANCER network contains 5 nodes
and 4 arcs, which describes a lung cancer diagnosis application. There are two nodes, “Pollution” and “Smoker”,
representing the factors that affect the chance of a patient having cancer. ASIA network contains 8nodes, 8 arcs
and 18 parameters, which describes the factors affect the chances of a patient getting diseases. There are two
input nodes, “Asia” and “Smoke” representing the patient whether visited to Asia and smokes. And there are two
output nodes representing the result of getting diseases, “Xray” and “Dyspnoea”, which means that it will result in
a positive X-ray and dyspnoea. The INSURANCE network contains 27 nodes, 52 arcs and 984 parameters, which
describes car insurance risk estimation. It is a network for estimating the expected claim costs for a car insurance
policyholder. There is one input node in this network, “Age” and three output nodes, “MedCost”, “ILiCost” and
“PropCost”. Since Bayesian network structure learning algorithms have high requirements for data quality, this
study uses benchmark networks commonly used in other papers within this research field for the experiments.
This also allows for a comparison of our proposed algorithm with those in other papers.

Scientific Reports | (2025) 15:18447 8| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

All the algorithms in this section are implemented in R and our datasets are randomly sampled from these
networks downloaded from Bayesian Network Repository(https://www.bnlearn.com/bnrepository/) of R
package bnlearn. the sample sizes of these networks are 500, 1000, 1500, 2000. The swarm population of all the
heuristic algorithms nPop are set to 50 and the iteration MaxIt is set to 100. The size of elite individuals in OP-
PSO-DE algorithm is set to 25. Other parameters are set to wstart = 0.9, wend = 0.35, c10 = 0.84, c11 = 0.52,
c20 = 0.38 and c21 = 0.81. The specific calculation of these parameters are shown in equation (16) and (17).
The sensitivity analysis of c1, c2 and w was conducted in the previous works35,36 and it can also be seen in the
following section. We also list the hyperparameters and their rationale in Table 1:

Experimental results
In this section, we show the experimental results of our proposed OP-PSO-DE algorithm with other state-of-
the-art algorithms, including PC-PSO8, BNC-PSO17, Hybrid HPC37, and Max-Min Hill-Climbing(MMHC)38.
PC-PSO uses PC algorithm to generate initial solutions and improves PSO to search for the best global DAG.
BNC-PSO combines PSO with Genetic Algorithm to discretize PSO to search for the best network structure.
Hybrid HPC firstly reconstructs the skeleton of the network and then uses greedy hill-climbing to search for the
best sturcture. MMHC firstly identifies all the potential parent nodes or child nodes of the nodes as the candidate
node set, and then uses score-based algorithm to find the network structure with the highest score.

The sample sizes of these algorithms are 500, 1000, 1500 and 2000, respectively. All the results are averages
of 10 times experiments. The crossover probabilities and mutation probability of PC-PSO and BNC-PSO are the
same as our proposed algorithm to compare their performances. BIC score is utilized to evaluate the searching
ability of these algorithms. Table 2 shows the final convergence experimental results of OP-PSO-DE on and the
bold BIC scores in brackets are benchmarks. Fig. 2, Fig. 3, and Fig. 4 show the iteration process of OP-PSO-DE
on CANCER, ASIA and INSURANCE networks.

To verify the convergence capacity of OP-PSO-DE algorithm, we count the iteration time required to converge
and compare it with PC-PSO and BNC-PSO. Since the principles of Hybrid HPC and MMHC are different from
the other three algorithms, the implementation process can not count iteration time. Therefore, Table 3 does not
contain the corresponding results.

Sensitivity analysis
In this section, we conduct experiments to show the sensitivity analysis of key parameters of our proposed
algorithm. We change the value of mutation probability wstart from 0.9 to 0.5 with the interval 0.2 and wend
from 0.75 to 0.35 with the interval 0.2. We change the value of crossover probability c10 from 1.0 to 0.68 with the
interval 0.16 and c11 from 0.68 to 0.36 with the interval 0.16. We change the value of crossover probability c20
from 0.57 to 0.19 with the interval 0.19 and c21 from 1.0 to 0.62 with the interval 0.19.

As Tables 7, 8 and 9 show, on the CANCER network, the impacts of the mutation probability and crossover
probabilities on BIC scores are very limited. In small-sample regimes, its approximation accuracy deteriorates,
which can result in under-penalizing complex models and the risk of overfitting. The size of the CANCER
network is very small, only containing 5 nodes and 4 edges. The algorithm is more likely to converge to a good
BIC score, and it is difficult to further explore the solution space by changing the current solutions through
crossover operators and the mutation operator. On the ASIA network and INSURANCE network, with the
increases of wstart and the decreases of wend, OP-PSO-DE is tended to converge to a better BIC score. Also, a
lager crossover probability can usually achieve a better BIC score than the small ones.

Dataset 500 1000 1500 2000

CANCER -1052.90 ± 0 − 2129.68 ± 0 − 3173.84 ± 0.11 − 4233.08 ± 0.43

(− 1059.01) (− 2131.10) (-3178.94) (-4233.38)

ASIA -1126.89 ± 3.21 -2369.95 ± 4.27 -3400.48±6.82 − 4527.01 ± 5.01

(-1126.75) (-2366.21) (-3396.32) (− 4522.48)

INSURANCE − 9461.35 ± 43.49 − 16747.60 ± 107.04 − 24715.27 ± 186.70 − 32370.27 ± 375.99

(-9468.28) (− 16340.47) (− 23155.05) (− 30024.96)

Table 2.  Experimental results of OP-PSO-DE algorithm.

Parameters Connotation Value range

F scale number [0,1]

σ turbulence coefficient [0.001,0.01]

rand random number [0,1]

h random number [1,d]

Table 1.  Hyperparameters of OP-PSO-DE algorithm.

Scientific Reports | (2025) 15:18447 9| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

https://www.bnlearn.com/bnrepository/
http://www.nature.com/scientificreports

Comparison of OP-PSO-DE with other structure learning algorithms
According to Table 2, we can see that our proposed algorithm can achieve BIC scores very close to the benchmarks
in the brackets. BIC score of our proposed algorithm on CANCER network is higher than the standard score,
because BIC is derived under asymptotic assumptions and performs reliably when the sample size is large. With

20 40 60 80 100

−
1

1
5

5
−

1
1

4
5

−
1

1
3

5
−

1
1

2
5

(a) sample size=500

sc
o

re
s

20 40 60 80 100

−
2

4
8

0
−

2
4

4
0

−
2

4
0

0

(b) sample size=1000

sc
o

re
s

20 40 60 80 100

−
3

4
5

0
−

3
4

3
0

−
3

4
1

0

(c) sample size=1500

sc
o

re
s

20 40 60 80 100

−
4

6
0

0
−

4
5

6
0

−
4

5
2

0

(d) sample size=2000

sc
o

re
s

Fig. 3.  The iteration process of OP-PSO-DE algorithm executes on ASIA network.

20 40 60 80 100

−
1

0
6

0
−

1
0

5
6

−
1

0
5

2
(a) sample size=500

sc
o

re
s

20 40 60 80 100

−
2

1
3

1
.5

−
2

1
3

0
.5

−
2

1
2

9
.5

(b) sample size=1000

sc
o

re
s

20 40 60 80 100

−
3

1
7

4
.0

−
3

1
7

3
.8

−
3

1
7

3
.6

−
3

1
7

3
.4

(c) sample size=1500

sc
o

re
s

20 40 60 80 100

−
4

2
3

3
.3

−
4

2
3

3
.1

−
4

2
3

2
.9

(d) sample size=2000

sc
o

re
s

Fig. 2.  The iteration process of OP-PSO-DE algorithm executes on CANCER network.

Scientific Reports | (2025) 15:18447 10| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

the increases of sample sizes, the standard deviations of our proposed algorithm present the trend of growth.
As Table 3 shows that our proposed algorithm can converge rapidly than the other heuristic algorithms on
CANCER, ASIA and INSURANCE networks, which verifies the effectiveness of opposition-based learning used
in OP-PSO-DE algorithm. Fig. 2, Fig. 3, and Fig. 4 indicate that the iterations of our proposed algorithm increase
with the network sizes. With the increase of the sample size on INSURANCE network, the performance of our
proposed algorithm decreases. Although opposition-based learning can effectively reduce the iteration times of
heuristic algorithms, premature convergence arises when sample sizes become larger.

Compared to other state-of-the-art structure learning algorithms, OP-PSO-DE algorithm achieves best BIC
scores on CANCER network when sample sizes are 500 and 1500, which can be seen in Table 4. When the
sample size of CANCER network is 2000, our proposed algorithm achieves BIC scores better than PC-PSO and
BNC-PSO.As we can see in Table 5, our proposed algorithm achieves better BIC scores than PC-PSO, BNC-

Algorithm

CANCER

500 1000 1500 2000

OP-PSO-DE − 1052.90 − 2129.68 − 3173.84 − 4233.08

PC-PSO − 1052.90 − 2129.68 − 3173.52 − 4232.79

BNC-PSO − 1053.01 − 2130.13 − 3173.74 − 4232.63

Hybrid HPC − 1052.90 − 2129.68 − 3173.52 − 4233.22

MMHC − 1053.45 − 2129.68 − 3173.52 − 4233.22

Table 4.  Experimental results of different algorithms on CANCER network.

CANCER ASIA INSURANCE

Algorithm 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

OP-PSO-DE 2.1 1.8 2.7 3.9 5.3 5.8 5.6 5.7 9.7 28.4 25.5 20.1

PC-PSO 5.7 3.6 11.2 12.3 22.6 29.3 33.1 33.1 78.3 86.3 89.8 93.3

BNC-PSO 3.3 3.3 3.0 4.9 17.4 16.9 23.4 18.5 94.9 96.7 97.9 97.5

Table 3.  The number of iterations required for heuristic algorithms to converge.

20 40 60 80 100

−
1

0
1

0
0

−
9

9
0

0
−

9
7

0
0

−
9

5
0

0
(a) sample size=500

sc
o

re
s

20 40 60 80 100

−
1

9
5

0
0

−
1

8
5

0
0

−
1

7
5

0
0

−
1

6
5

0
0

(b) sample size=1000

sc
o

re
s

20 40 60 80 100

−
2

8
0

0
0

−
2

7
0

0
0

−
2

6
0

0
0

−
2

5
0

0
0

(c) sample size=1500

sc
o

re
s

20 40 60 80 100

−
3

7
0

0
0

−
3

5
0

0
0

−
3

3
0

0
0

−
3

1
0

0
0

(d) sample size=2000

sc
o

re
s

Fig. 4.  The iteration process of OP-PSO-DE algorithm executes on INSURANCE network.

Scientific Reports | (2025) 15:18447 11| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Parameter CANCER ASIA INSURANCE

c20

0.57 − 1052.90 ± 0 − 1133.39 ± 8.33 − 9268.55 ± 271.76

0.38 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.19 − 1052.90 ± 0 − 1136.62 ± 7.35 − 9813.12 ± 233.23

c21

1.00 − 1052.90 ± 0 − 1132.17 ± 9.07 − 9424.01 ± 191.43

0.81 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.62 − 1052.90 ± 0 − 1135.12 ± 7.90 − 9514.82 ± 343.88

Table 9.  BIC scores of OP-PSO-DE for different values of c20 and c21 when sample size is 500.

Parameter CANCER ASIA INSURANCE

c10

1.00 − 1052.90 ± 0 − 1133.23 ± 7.15 − 9555.52 ± 276.63

0.84 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.68 − 1052.90 ± 0 − 1134.41 ± 7.01 − 9341.43 ± 227.24

c11

0.68 − 1052.90 ± 0 − 1134.24 ± 10.70 − 9426.60 ± 203.74

0.52 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.36 − 1052.90 ± 0 − 1133.95 ± 9.14 − 9607.03 ± 288.22

Table 8.  BIC scores of OP-PSO-DE for different values of c10 and c11 when sample size is 500.

Parameter CANCER ASIA INSURANCE

wstart

0.90 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.70 − 1052.90 ± 0 − 1131.05 ± 3.71 − 9426.30 ± 255.72

0.50 − 1052.90 ± 0 − 1132.21± 6.25 − 9266.34 ± 435.33

wend

0.75 − 1052.90 ± 0 − 1135.27 ± 8.11 − 9391.06 ± 378.04

0.55 − 1052.90± 0 − 1134.77± 9.20 − 9597.34± 252.32

0.35 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

Table 7.  BIC scores of OP-PSO-DE for different values of wstart and wend when sample size is 500.

Algorithm

INSURANCE

500 1000 1500 2000

OP-PSO-DE − 9461.35 − 16747.60 − 24715.27 − 32370.27

PC-PSO − 9014.95 − 16823.61 − 24563.79 − 33194.194

BNC-PSO − 8383.71 − 16093.07 − 23667.46 − 31127.48

Hybrid HPC − 8324.36 − 15388.29 − 22418.60 − 29676.46

MMHC − 8747.69 − 16006.97 − 23248.39 − 30789.33

Table 6.  Experimental results of different algorithms on INSURANCE network.

Algorithm

ASIA

500 1000 1500 2000

OP-PSO-DE − 1126.89 − 2369.95 − 3400.48 − 4527.01

PC-PSO − 1125.24 − 2370.53 − 3401.96 − 4527.45

BNC-PSO − 1128.86 − 2378.81 − 3409.90 − 4541.84

Hybrid HPC − 1219.64 − 2574.37 − 3702.83 − 4901.70

MMHC − 1208.89 − 2549.88 − 3676.24 − 4864.38

Table 5.  Experimental results of different algorithms on ASIA network.

Scientific Reports | (2025) 15:18447 12| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

PSO, Hybrid HPC and MMHC when sample sizes are 500, 1000, 1500 and 2000. Also, in Table 6, OP-PSO-DE
achieves the best BIC scores when sample size is 500 on INSURANCE network and the difference between OP-
PSO-DE and the standard value is much smaller than the other four algorithms.

To verify the effect opposition-based learning, we tried to remove the module from OP-PSO-DE. On the
INSURANCE network, the proposed algorithm achieved -17926.70 (true score is -16340.47) when the sample
size is 1000 after 8 iterations. Although the iteration time is much smaller than OP-PSO-DE, the resulting
solutions are significantly worse in terms of final score and network quality compared to other state-of-the-art
algorithms. This suggests that opposition-based learning plays a crucial role in maintaining population diversity
and avoiding poor local optima, especially in the early search stages.

It is worth noting that wall-clock time is not reported in this study due to variability across implementations,
which may render direct comparisons unreliable. Instead, we focus on the number of iterations and score
function evaluations, which typically dominate the computational cost in structure learning tasks. Our method
demonstrates substantial improvements in both metrics, suggesting that the observed convergence speed is not
only theoretical but also likely translates to practical time efficiency.

As experimental results show, our proposed OP-PSO-DE algorithm can achieve good performances with a
rapid convergence rate. Also, since our proposed algorithm is based on heuristic algorithms, it is very easy to
implement and understand.

Conclusion
In this paper, we propose a hybrid structure learning algorithm, OP-PSO-DE, which utilizes opposition-based
learning to accelerate its convergence rate and combines PSO with Differential Evolution algorithm searching
for the best BIC scores. For the mutation operator, we utilize the binary mutation with probability difference
and SSRDIWP SO method to update the crossover probability. We introduce the execution process of our
proposed algorithm specifically in the above sections and conduct experiments based on different networks.
Experimental results show that our proposed algorithm can achieve better results compared to other state-of-
the-art structure learning algorithms.

The contribution of this paper is that we introduce opposition-based learning method into the structure
learning algorithm in Bayesian networks, which is verified to be an effective way to accelerate convergence process
in our experiments. While tackling the structure learning problem of large networks, our proposed algorithm
arises premature convergence. In particular, its performance degrades as the network scale increases, which
becomes especially evident in the case of large networks. In the following researches, we plan to improve the
current algorithm to avoid premature convergence and conduct our experiments on more practical application
scenarios to measure the performances of OP-PSO-DE.

Data availibility
The datasets generated and analyzed during the current study are available in the Bayesian Network Repository,
https://www.bnlearn.com/bnrepository/.

Received: 21 January 2025; Accepted: 19 May 2025

References
	 1.	 Villa-Blanco, C., Bregoli, A., Bielza, C., Larrañaga, P. & Stella, F. Constraint-based and hybrid structure learning of multidimensional

continuous-time Bayesian network classifiers. Int. J. Approx. Reason. 159, 108945. https://doi.org/10.1016/j.ijar.2023.108945
(2023).

	 2.	 Jose, S., Louis, S., Dascalu, S. & Liu, S. Transfer learning-based hybrid approach for Bayesian network structure learning. Int. J.
Artif. Intell. Tools 31, 2260003. https://doi.org/10.1142/S021821302260003X (2022).

	 3.	 Wang, N., Liu, H., Zhang, L., Cai, Y. & Shi, Q. An efficient skeleton learning approach-based hybrid algorithm for identifying
Bayesian network structure. Eng. Appl. Artif. Intell. 133, 108105. https://doi.org/10.1016/j.engappai.2024.108105 (2024).

	 4.	 Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice-Hall Inc, 1995).
	 5.	 Lee, S. & Kim, S. B. Parallel simulated annealing with a greedy algorithm for Bayesian network structure learning. IEEE Trans.

Knowl. Data Eng. 32, 1157–1166 (2020).
	 6.	 Ye, Q., Amini, A. A. & Zhou, Q. Optimizing regularized Cholesky score for order-based learning of Bayesian networks. IEEE Trans.

Pattern Anal. Mach. Intell. 43, 3555–3572 (2021).
	 7.	 Alonso-Barba, J. I. et al. Ant colony and surrogate tree-structured models for orderings-based bayesian network learning. In

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15 543–550 (Association for
Computing Machinery, 2015).

	 8.	 Sun, B., Zhou, Y., Wang, J. & Zhang, W. A new pc-pso algorithm for Bayesian network structure learning with structure priors.
Expert Syst. Appl. 184, 5237. https://doi.org/10.1016/j.eswa.2021.115237 (2021).

	 9.	 Wang, C. et al. Finding community structure in Bayesian networks by heuristic k-standard deviation method. Future Gener.
Comput. Syst. 158, 556–568 (2024).

	10.	 Yang, W.-T., Tamssaouet, K. & Dauzere-Peres, S. Bayesian network structure learning using scatter search. Knowl.-Based Syst. 300,
112149 (2024).

	11.	 He, C. et al. A novel structure learning method of Bayesian networks based on the neighboring complete node ordering search.
Neurocomputing 585, 127620 (2024).

	12.	 Liu, H. et al. An improved Harris hawks optimization for Bayesian network structure learning via genetic operators. Soft Comput.
27, 14659–14672 (2023).

	13.	 Kareem, S. W. & Okur, M. C. Structure learning of Bayesian networks using elephant swarm water search algorithm. Int. J. Swarm
Intell. Res. 11, 19–30 (2020).

	14.	 Awla, H. Q., Kareem, S. W. & Mohammed, A. S. A comparative evaluation of Bayesian networks structure learning using falcon
optimization algorithm. Int. J. Interact. Multimed. Artif. Intell. 8, 81–87 (2023).

	15.	 Soloviev, V. P., Bielza, C. & Larranaga, P. Quantum approximate optimization algorithm for Bayesian network structure learning.
Quantum Inf. Process. https://doi.org/10.1007/s11128-022-03769-2 (2022).

Scientific Reports | (2025) 15:18447 13| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

https://www.bnlearn.com/bnrepository/
https://doi.org/10.1016/j.ijar.2023.108945
https://doi.org/10.1142/S021821302260003X
https://doi.org/10.1016/j.engappai.2024.108105
https://doi.org/10.1016/j.eswa.2021.115237
https://doi.org/10.1007/s11128-022-03769-2
http://www.nature.com/scientificreports

	16.	 Wang, X., Ren, H. & Guo, X. A novel discrete firefly algorithm for Bayesian network structure learning. Knowl.-Based Syst. 242,
108426. https://doi.org/10.1016/j.knosys.2022.108426 (2022).

	17.	 Gheisari, S. & Meybodi, M. Bnc-pso: structure learning of Bayesian networks by particle swarm optimization. Inf. Sci. 348, 272–
289 (2016).

	18.	 Zheng, X., Aragam, B., Ravikumar, P. K. & Xing, E. P. Dags with no tears: Continuous optimization for structure learning. In (eds.
Bengio, S. et al.) Advances in Neural Information Processing Systems Vol. 31 (2018).

	19.	 Yu, Y., Chen, J., Gao, T. & Yu, M. Dag-gnn: Dag structure learning with graph neural networks. In Proceedings of the 36th
International Conference on Machine Learning (2019).

	20.	 Lachapelle, S., Brouillard, P., Deleu, T. & Lacoste-Julien, S. Gradient-based neural dag learning. In Proceedings of the Eighth
International Conference on Learning Representations (ICLR 2020) (2020).

	21.	 Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian networks: The combination of knowledge and statistical data.
Mach. Learn. 20, 197–243 (1995).

	22.	 Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
	23.	 Lam, W. & Bacchus, F. Learning Bayesian belief networks: An approach based on the mdl principle. Comput. Intell. 10, 269–293

(1994).
	24.	 Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks

Vol. 4, 1942–1948 (IEEE, 1995).
	25.	 Tizhoosh, H. R. Opposition-based learning: a new scheme for machine intelligence. In International conference on computational

intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet
commerce (CIMCA-IAWTIC’06) vol. 1, 695–701 (IEEE, 2005).

	26.	 Seif, Z. & Ahmadi, M. B. Opposition versus randomness in binary spaces. Appl. Soft Comput. 27, 28–37 (2015).
	27.	 Storn, R. & Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 11, 341–359 (1997).
	28.	 Zhang, Y., Gong, D.-W., Gao, X.-Z., Tian, T. & Sun, X.-Y. Binary differential evolution with self-learning for multi-objective feature

selection. Inf. Sci. 507, 67–85 (2020).
	29.	 Spirtes, P. & Glymour, C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991).
	30.	 Adewumi, A. O. & Arasomwan, A. M. An improved particle swarm optimiser based on swarm success rate for global optimisation

problems. J. Exp. Theor. Artif. Intell. 28, 441–483 (2016).
	31.	 Ghosh, S., Nath, S. & Sarkar, S. Pso algorithm with self tuned parameter for efficient routing in vlsi design. In International

Conference on Futuristic Trends in Computing and Communication 60–63 (International Journal of Electronics and Communication
Engineering, 2015).

	32.	 Korb, K. B. & Nicholson, A. E. Bayesian Artificial Intelligence (CRC Press, 2010).
	33.	 Lauritzen, S. L. & Spiegelhalter, D. J. Local computations with probabilities on graphical structures and their application to expert

systems. J. R. Stat. Soc. Ser. B 50, 157–194 (2018).
	34.	 Binder, J., Koller, D., Russell, S. & Kanazawa, K. Adaptive probabilistic networks with hidden variables. Mach. Learn. 29, 213–244

(1997).
	35.	 Ratnaweera, A., Halgamuge, S. K. & Watson, H. C. Self-organizing hierarchical particle swarm optimizer with time-varying

acceleration coefficients. IEEE Trans. Evol. Comput. 8, 240–255 (2004).
	36.	 Shi, Y. & Eberhart, R. A modified particle swarm optimizer. In 1998 IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360) 69–73 (IEEE, 1998).
	37.	 Gasse, M., Aussem, A. & Elghazel, H. A hybrid algorithm for Bayesian network structure learning with application to multi-label

learning. Expert Syst. Appl. 41, 6755–6772 (2014).
	38.	 Tsamardinos, I., Brown, L. E. & Aliferis, C. F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach.

Learn. 65, 31–78 (2006).

Acknowledgements
This work was supported by the Key R&D Program of Heilongjiang Province under Grant No.2022ZX01A23.

Author contributions
B.S. wrote the first draft of the manuscript and conducted the experiments. X.Z. and J.G. edited and revised the
manuscript. J.J. and D.L. analyzed the results. All authors reviewed the manuscript.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​3​2​6​7​-​2​​​​​.​​

Correspondence and requests for materials should be addressed to J.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:18447 14| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

https://doi.org/10.1016/j.knosys.2022.108426
https://doi.org/10.1038/s41598-025-03267-2
https://doi.org/10.1038/s41598-025-03267-2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Bayesian network structure learning by opposition-based learning
	﻿Preliminary
	﻿Bayesian networks
	﻿Scoring function

	﻿Particle swarm optimization
	﻿The basic principle
	﻿BNC-PSO

	﻿OP-PSO-DE: BN structure learning based on opposition-based learning
	﻿Opposition-based learning
	﻿Differential evolution
	﻿The binary mutation with probability difference
	﻿Crossover operator

	﻿OP-PSO-DE
	﻿The sparsity of DAGs
	﻿The time complexity of OP-PSO-DE
	﻿Experimental results and analysis
	﻿Experimental parameters
	﻿Experimental results
	﻿Sensitivity analysis
	﻿Comparison of OP-PSO-DE with other structure learning algorithms

	﻿Conclusion
	﻿References

