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As a classical basic model for causal inference, Bayesian networks are of vital importance both in 
artificial intelligence with uncertainty and interpretability. The significant status of Bayesian networks 
in these research orientations depends on its topological structure, namely directed acyclic graphs. 
Bayesian network structure learning is a well-known NP-hard problem, and its computation accuracy 
is still worth being further studied. In this paper, we propose a new Bayesian network structure 
learning algorithm, OP-PSO-DE, which combines Particle Swarm Optimization(PSO) and Differential 
Evolution to search for the optimal structure. Since the computation complexity of BN structure 
learning increases exponentially with the number of nodes, the proposed algorithm incorporates 
opposition-based learning to narrow the search space of heuristic algorithms, which can effectively 
accelerate the searching process. Experimental results show that the proposed algorithm achieves 
better performances than other state-of-the-art structure learning algorithms when the sample size is 
500. The source code of the paper can be found at this link: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​s​u​n​b​a​o​d​a​n​-​h​r​b​e​u​/​p​a​p​e​
r​_​c​o​d​e​​​​​.​​
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Bayesian networks are widely used in application scenarios of artificial intelligence, and also the foundation 
of causal inference. A whole Bayesian network can be divided into two components: topological structure and 
parameters. The topological structure is represented by directed acyclic graphs(DAGs) to show the dependent 
relations between each two random variables directly and the parameters precisely regardless time complexity. 
Usually, there are three strategies used in structure learning algorithms: constraint-based approach, score-based 
approach and hybrid approach. Constraint-based approach employs conditional independence tests to ensure 
the dependencies and independences between each two random variables(represented by nodes in the graph). 
Score-based approach uses heuristic algorithms searching for the best structure in the solution space according 
to scoring functions, which is broadly utilized in structure learning. Hybrid approach combines both of them, 
which uses constraint-based approach to obtain the skeleton and uses score-based approach to search for the 
best structure. However, since Bayesian network structure learning is a non-convex combinatorial optimization 
problem, common numerical optimization methods are ineffective in solving it. Although branch-and-bound 
algorithms have been proposed for Bayesian network structure learning, their performance diminishes when 
handling large-scale networks with more than 100 nodes. And when we use Bayesian networks to deal with 
classification tasks, it is not necessary to ensure that the learnt networks are exactly the same as the original ones 
since classification models should have certain generalization ability. In this context, Bayesian network structure 
learning based on heuristic algorithms was proposed and developed in recent years.

In previous works, Villa-Blanco et al.1 proposed a hybrid structure learning algorithm, which used PC 
algorithm to reconstruct the skeleton of the class subgraph and hill climbing was used to search for the directed 
edge. Jose et al.2 proposed to use CI tests to construct an undirected graph, and CIGAR-based search method 
was used for evolving a high-quality network. WANG et al.3 proposed ESLH algorithm, which used dynamic 
threshold and skeleton learning method based on triangle breaking combining with hill climbing to obtain 
BN structures. In these works, the authors compare the proposed hybrid BN structure learning algorithm with 
classical constraint-based algorithm, such as PC, and score-based algorithms, such as Tabu search, hill climbing 
and so on. The experiments in these papers illustrate hybrid approach for BN structure learning achieve better 
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general performances, since the learnt skeleton or undirected graph can constrain the search space, and score-
based can search for a relatively accurate directed acyclic graph in a restricted search space.

Also, there were many researchers applying various heuristic algorithms into Bayesian network structure 
learning, where traditional heuristic algorithms include Hill Climbing4, Simulated Annealing56, Ant Colony 
Optimization7, Particle Swarm Optimization8 and so on. Also, some relatively new proposed Bayesian network 
structure learning algorithms based on heuristic algorithms are worth mentioning because of their innovations 
and original solving strategies: Wang et al.9 proposed a novel heuristic function and used A* searching algorithm 
to find the best structure of Bayesian networks. Yang et al.10 proposed to use a well-known metaheuristic method 
called scatter search to solve BN structure learning problem. He et al.11 proposed the neighboring complete 
node ordering search algorithm to find the node ordering of Bayesian networks and used hill climbing to find 
the best network structure. Haoran Liu et al.12 proposed to use an improved Harris Hawks optimization(HHO) 
for Bayesian network structure learning. Kareem et al.13 proposed to utilize Elephant Swarm Water Search 
Algorithm(ESWSA) for Bayesian network structure learning. Awla et al.14 used reversing, moving, and deleting 
to create the Falcon Optimization Algorithm(FOA) to find the best structure of DAGs. Soloviev et al.15 proposed 
to use quantum approximate optimization algorithm(QAOA) to solve Bayesian network structure learning 
problem by employing 3n(n − 1)/2 qubits, where n is the number of nodes of the learnt Bayesian network. 
Wang et al.16 proposed a novel discrete firefly algorithm to learn Bayesian networks. These research articles 
prove that using heuristic algorithms to search for the best topological structure is an effective method to solve 
structure learning problems in finite time, but they are also suffering from totally random searching and huge 
solution space. Therefore, it is necessary to conduct intensive studies on these heuristic algorithms to improve 
their performances.

In our previous work, we proposed PC-PSO algorithm8 for Bayesian network structure learning, which 
combines the well-known constraint-based approach, PC algorithm, to obtain the initial solutions and BNC-
PSO17 to search for the best network structure in the solution space. However, the convergence rate and the 
accuracy of PC-PSO are still worth further disscussed. To be specific, PC-PSO needs 78.3 iteration times out of 
10 experiments to achieve convergence and the corresponding BIC score is -9014.95(the benchmark is -9468.28) 
when the sample size is 500 on INSURANCE network. So, in this paper, we propose to improve the existing PC-
PSO algorithm with the opposition-based learning approach to narrow the search space of heuristic algorithms, 
which can effectively accelerate the searching process. Unlike recent neural-based continuous optimization 
methods (e.g., NOTEARS18, DAG-GNN19 or GraN-DAG20), our approach is situated in the heuristic score-
based family, and is particularly suitable for discrete-variable domains and black-box scoring functions. To 
increase the diversity of the population in the searching process to find more feasible solutions, we employ DE 
algorithm instead of GA algorithm in PC-PSO. DE can make full use of individuals in the population to execute 
mutation and crossover operations, while GA only changes certain elements of the individuals. Meanwhile, the 
proposed algorithm combines Particle Swarm Optimization(PSO) with Differential Evolution(DE) to search for 
more accurate network structures in the solution space.

To the best of our knowledge, the proposed method firstly applies opposition-based learning into Bayesian 
network structure learning. Specifically, in the whole searching process, we generate regular solutions and their 
opposite solutions at the same time, which can obtain solutions closer to the global optimum. Also, in this 
paper, we utilize a new mutation operator of DE, the binary mutation with probability difference, to deal with 
the discrete Bayesian network structure learning algorithm, compared to the linear mutation operator used in 
PC-PSO.

The remainder of this paper is organized as follows. Section 2 is the preliminaries of this paper, which 
introduces the basic knowledge of Bayesian networks. Section 3 introduces the basic idea of Particle Swarm 
Optimization and its improved algorithm, BNC-PSO. Section 4 shows the details of our proposed OP-PSO-
DE algorithm. Section 5 shows experiment settings and all the experiment results of the proposed algorithm. 
Section 6 is the conclusion of this paper.

Preliminary
Bayesian networks
As an important probabilistic graphical model, Bayesian networks originally derived from the Bayes theorem 
and are widely utilized because of its interpretability. Bayesian networks use directed acyclic graphs to represent 
the dependent relations between two nodes and use the conditional probability table to represent conditional 
probabilities of each two nodes. According to the implicit independence assumption in the structure, given its 
parent node, Xi is conditionally independent with its non-child nodes, so the joint probability distribution can 
be decomposed into the product of multiple conditional probability distributions:

	
P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|P a(Xi))� (1)

where P (Xi|P a(Xi)) represents the conditional probability of Xi given its parent node P a(Xi); there is a 
directed edge pointing from each node in P a(Xi) to Xi.

We can conclude two steps taken to represent the dependent relations and independent relations of these 
nodes in the above equation with directed graphs: firstly, each random variable in the equation is represented as 
a node in the directed graph; secondly, for each node Xi, a directed edge is drawn starting from each node in the 
parent node set P a(Xi) pointing to Xi.

In most application scenarios, we can only obtain the original dataset and want to obtain the directed 
acyclic graph according to it, which is the structure learning problem. As we mentioned above, there are three 
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strategies can be adopted: constraint-based approach, score-based approach and hybrid approach. Constraint-
based approach was firstly employed in structure learning, but it can only obtain the completed partially acyclic 
graph(CPDAG), which refers to the Markov equivalence class of the directed acyclic graph. Therefore, the score-
based approach was widely utilized, which contains two parts: scoring functions and searching algorithms. 
Searching algorithms are used to search for the best network structure that maximizes scoring functions in 
the feasible domain. Usually, heuristic algorithms are used to search for the best solutions and different scoring 
functions are introduced as below, which are also used in our proposed algorithm.

Scoring function
There are three classical scoring functions widely used in many research articles: BDe21, BIC22 and MDL23. The 
derivation process of BDe considers prior assumptions on parameters, while no such assumptions are made 
in BIC and MDL. Compared to BDe, BIC and MDL are intuitive and not easy to be impacted by the errors of 
the dataset. To be specific, BDe score assumes the parameter distribution, and then calculates the fit degree of 
current network structure and data to find out the network structure that maximizes the posterior distribution. 
If we assume parameters are subject to Dirichlet distribution, it can be written as:

	

Dir(θij |α1, α2, . . . , αr) =
Γ

(
r∑

k=1
αk

)

r∏
k=1

Γ (αk)

r∏
k=1

θ
αk−1
ijk αk > 0� (2)

We can calculate BDe score according to the equation as below:

	
P (D|G) =

n∏
i=1

qi∏
j=1

Γ(α
′
ij)

Γ(α′
ij + αij)

ri∏
k=1

Γ(α
′
ijk + αijk)
Γ(α′

ijk) � (3)

where α
′
ijk  is the hyperparameter ,α

′
ij =

ri∑
k=1

α
′
ijk  and Γ(·) is the gamma function.

BIC score is the logarithm of BDe, and it evaluates the likelihood function of current network structure and 
observation data. Thus, we can write BIC score function as:

	
log P (G|D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

mijk log mijk

mij
− 1

2

n∑
i=1

qi(ri − 1) log m� (4)

where m is data size. mijk  is the probability that Xi takes the k-th value and its parent node takes the j-th value. 
n∑

i=1
qi(ri − 1) is the amount of parameters contained in the network.

Compared to BIC, MDL score adds an additional penalty term to the fitness degree of current network and 
observation data, which calculates the sum of the description length of network structure and sample data. The 
calculation equation can be written as:

	
−DL(G, D) ≈ −m

n∑
i=1

H(Xi|P ai) − 1
2

n∑
i=1

qi(ri − 1) log m� (5)

where H(Xi|P ai) the conditional entropy of Xi relative to P ai.

Particle swarm optimization
The basic principle
Inspired by the regularity of bird flock foraging behavior, James Kennedy and Russell Eberhart proposed 
Particle Swarm Optimization24 in 1995, which searches for the optimal solution through collaboration and 
sharing information among individuals in the population. PSO firstly initializes the population of particles, 
which has two attributes: velocity and position. To be specific, the velocity of the i-th particle in d-dimensional 
searching space, Vi = (Vi1, Vi2, . . . , Vid), represents their searching speed and the position of the i-th particle, 
Xi = (Xi1, Xi2, . . . , Xid), represents the candidate solution. Each particle searches for the optimal solution in 
the search space individually and represents it as the current individual extreme value, Pbest. Meanwhile, each 
particle shares their individual best solution with other particles in the entire population, and finds out the best 
individual extreme value, Gbest, as the current global optimal solution of the population. All the particles in 
the population adjust their speed and position according to the current individual best solution and the global 
optimal solution. The velocity and position of particles can be updated according to the following equations:

	 vi(t + 1) = vi(t)+c1r1(Pbest(t) − xi(t)) + c2r2(Gbest − xi(t)) � (6)

	 xi(t + 1) = xi(t) + vi(t + 1) � (7)
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where t is the number of iterations. w is the inertia weight. c1, c2 are acceleration constants. r1, r2 are random 
numbers, usually r1, r2 ∈ [0, 1]. The original PSO algorithm was proposed to solve continuous optimization 
problems, while BN structure learning is a discrete optimization problem in general. Therefore, the modified 
PSO algorithms used to solve discrete BN structure learning problem were proposed and BNC-PSO is one of 
the state-of-the-art.

BNC-PSO
BNC-PSO17 was proposed by Gheisari and Meybodi in 2016 and achieves good performances while solving BN 
structure learning problems. BNC-PSO combines the original PSO algorithm with Genetic Algorithm(GA), 
which utilizes PSO algorithm to search in the candidate solution space and utilizes GA to generate more discrete 
solutions. To improve the accuracy, BNC-PSO executes two crossover operations compared to the original 
GA: the first crossover operation is executed with individual best solutions; the second crossover operation is 
executed with the global optimal solution. According to BNC-PSO, the updated equations of particles can be 
written as:

	

Xi(t) = N3(N2(N1(Xi(t − 1), w), c1), c2)

Vi(t) = Wi(t) = N1(Xi(t − 1), w) =
{

M(Xi(t − 1)), r1 < w
Xi(t − 1), others

Si(t) = N2(Wi(t), c1) =
{

Cp(Wi(t)), r2 < c1
Wi(t), others

Xi(t) = N3(Si(t), c2) =
{

Cg(Si(t)), r3 < c2
Si(t), others

� (8)

where M denotes the mutation operation. Cp denotes the crossover of each individual and its personal best 
solution. Cg  denotes the crossover of each individual and global best solution. N1, N2 and N3 represent the results 
of these three operators. w is the mutation probability and c1, c2 are crossover probabilities. r1, r2, r3 ∈ [0, 1] 
are random numbers.

OP-PSO-DE: BN structure learning based on opposition-based learning
Opposition-based learning
Opposition-based learning was proposed by Hamid R. Tizhoosh25, which is an effective scheme that can improve 
the convergence speedup of machine intelligence algorithms. The basic principle of opposition-based learning 
is to generate opposite solutions of feasible solutions and evaluate both of them to choose better solutions as 
the next generation. To explain the theoretical reasoning behind why opposition-based learning enhances the 
convergence of Bayesian network (BN) structure learning, we must first recognize that BN structure learning is 
a combinatorial optimization problem, which can be addressed through heuristic algorithms, as demonstrated 
in previous researches. BN structure learning based on heuristic algorithms often begin with a random initial 
guess, which is typically far from the optimal solution. In the worst case, the initial guess may be at the opposite 
end of the solution space, causing the search algorithm to spend significantly more time finding the correct 
answer. Without sufficient prior knowledge, it is difficult to make a perfect initial solution. Logically, one should 
explore in all directions at once, or more specifically, in the opposite direction. By comparing the estimate and 
its counter-estimate, the search space can be progressively halved, and the algorithm will continue to narrow 
the search until one of these estimates is sufficiently close to the optimal solution. In this way, the searching 
efficiency and global optimization capability of searching algorithms can be improved.

Let X = (x1, x2, . . . , xd) be a feasible solution in d-dimensional space, where xi ∈ [ai, bi] are real numbers. 
T﻿hen, its corresponding opposite solution can be written as:

	

X̃ = (x̃1, x̃2, . . . , x̃d)
x̃i = ai + bi − xi

� (9)

where i = 1, 2, . . . , d.
The original opposition-based learning was used to improve the searching process of continuous optimization 

problem, but it can also be applied into solving binary domain. In this paper, we focus on the discrete Bayesian 
network structure learning problem, where its solution space is binary. Thus, we apply the binary opposition-
based learning into the searching space of our proposed algorithm. For the opposition solutions in binary 
domain, (9) can be written as:

	 x̃i = 1 − xi� (10)

The binary opposite-learning26 was proven mathematically, where also proved that opposite solutions can find 
candidate solutions more closer to the global optimum. In this paper, we choose certain particles according to 
their fitness values as elite solutions to execute opposition-based learning, which can increase the diversity of 
the population. Also, selecting elite solutions from the current candidate solutions and the opposite solutions 
as offspring individuals can improve the convergence speedup of the algorithm. The executing process of 
opposition-based learning is shown in Fig.1.
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Differential evolution
As we mentioned above, PSO is designed to solve continuous optimization problem and we focus on discrete 
BN structure learning problem in this paper because discrete BNs are more common in practical applications. 
To discretize the original PSO algorithm, we vary candidate solutions with the mutation operator and crossover 
operator of Differential Evolution(DE) algorithm27.

DE algorithm is an evolutionary algorithm that simulates the process of cooperation and competition among 
individuals in the population. In DE algorithm, each candidate solution is represented by each individual in the 
population. In the initialization phase, the initial population consisting of N individuals is generated and each 
individual, Xi(t), is a d-dimensional vector, where i = 1, 2, . . . , N  and t is the number of iterations. Xi(t) is 
randomly initialized within the searching space defined by the optimization problem. Then, new individuals are 
obtained by mutation operator and crossover operator, and individuals with higher fitness values are selected to 
generate the next population in this paper. The details of these operations are introduced below.

The binary mutation with probability difference
In the mutation operation, the standard mutation operation first randomly selects three different individuals 
in the population, then multiplies the difference of these three individuals by a factor (difference weight) and 
adds it to another target individual to generate a new individual. Mutation operator used in DE algorithm is to 
randomly select three individuals, Xr1, Xr2, Xr3 in the population and the new offspring can be obtained:

	 Vi(t) = Xr1(t) + F · (Xr2(t) − Xr3(t))� (11)

where Xr2(t) − Xr3(t) is the differential variation.
To tackle discrete BN strucure learning problem, we adopt the binary mutation with probability difference28 

to improve the convergence of the algorithm and ensure its global searching capability. The mutation operator 
selects the best vector among three randomly chosen vectors as the base vector, and employs the difference 
between the remaining two vectors as a mutation probability to be used on the base vector to generate a mutation 
vector for the next crossover operator. For the i-th vector in the population Xi(t), the offspring generated by the 
binary mutation with probability difference can be calculated as below28:

	




Vi(t) = (vi,1(t), vi,2(t), . . . , vi,d(t))
vi,j(t) =

{
xbest,j(t), ci,j < rand
1 − xbest,j(t), otherwise

Ci =
{

σ, if Xbest(t) ≺ Xi(t)
min{1, F · (Xr1(t) ⊕ Xr2(t)) + σ}, otherwise

� (12)

where Vi(t) denotes the target vector generated by the mutation operation, and Xbest(t) is the best vector among 
the three randomly chosen vectors and Xr1(t), Xr2(t) are the remaining two vectors. If Xbest(t) is superior to 
Xi(t)(denoted by Xbest(t) ≺ Xi(t) in the equation), the probability vector Ci = (ci,1, ci,2, . . . , ci,d) equals 
to σ; otherwise, the probability difference min{1, F · (Xr1(t) ⊕ Xr2(t)) + σ} is taken and ⊕ represents XOR 
operation. σ is a turbulence coefficient, and experiments in 28 show that its value should be taken in [0.001, 0.01]. 
F ∈ [0, 1] is a scale parameter to control the learning rate. In this paper, we set rand in the equation equals to 
the mutation probability w.

Crossover operator
Crossover operator in DE algorithm is designed to be a discrete method to obtain new offspring with recombining 
the elements of vectors. To search for optimal solutions in discrete space, the current candidate solutions should 
vary in different iterations, thus the crossover operator is necessary in the algorithm. In crossover operation, the 
algorithm exchanges parts of the elements of the solution vectors with a certain probability to produce a new 
individual. It is a little bit different from crossover operator in Genetic Algorithms(GA) and the trial vectors 
Si(t) are obtained by recombining Vi(t) with Xi(t):

	

Si(t) = (si,1(t), si,2(t), . . . , si,d(t))

si,j(t) =
{

vi,j(t), rand < CR or j = h
xi,j(t), otherwise

� (13)

where rand ∈ [0, 1] is a random number and CR is the crossover probability. h is a random number in [1, d] to 
ensure that there is at least one element chosen from Vi(t).

For our proposed algorithm, we combine PSO with DE and adopt the crossover strategy of BNC-PSO, which 
executes two crossover operations: the crossover with particle best solution and the crossover with global best 
solution. In this way, we reserve the effective elements in the vectors to speed up the convergence of our proposed 
algorithm. As we mentioned above, BN structure learning is a NP-hard combinatorial optimization problem, 
which means that the searching process is quite complex. So we adopt two times crossover operations to reserve 
effective information contained in these particles.

OP-PSO-DE
To illustrate our proposed algorithm, we list all the necessary details of critical process in this section. In this 
paper, we use the adjacent matrix of DAGs to represent the dependent and independent relations between nodes. 
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To be specific, if there is one directed edge from node X1 pointing to node X2, the corresponding element in the 
adjacent matrix is set to 1, namely aX1X2 = 1; if there are no edges between these two nodes, aX1X2  is set to 0.

In the initialization stage, the proposed algorithm randomly generates initial feasible solutions of BN structure 
learning problem, which means that OP-PSO-DE randomly generates directed acyclic graphs and represents 
them as their adjacent matrices. In our previous work, the PC-PSO algorithm achieves good performances be-
cause it introduces PC algorithm to obtain structure priors to improve the initial solutions. Therefore, we still 
adopt this strategy in this paper to obtain initial solutions of OP-PSO-DE algorithm. PC algorithm selects an 
empty graph as the initial network and adds edges to the network structure through conditional independence 
tests. The details of PC algorithm29 can be seen in Algorithm 1: 

Algorithm 1.  PC algorithm

 Where, AGab represents the node set (except a and b) adjacent to a or b. UGab represents the node set(except 
a and b) consisting of nodes on the acyclic undirected path between a and b.

After that, as Fig.1 shows, the proposed algorithm sorts these solutions according to their BIC scores and 
obtain the elite individuals. The opposite solutions of elite individuals are generated and we merge the original 
initial solutions with opposite solutions to evaluate them together. We determine the top N individuals in the 
merged population to be our final initial solutions.

In the iteration process, the algorithm should determine the mutation probability and crossover probabilities 
first to vary the initial solutions and generate offsprings. In this paper, we utilize the SSRDIWPSO

30 inertia 
weight strategies to update the corresponding mutation rate of our proposed algorithm. SSRDIWPSO defines 
the swarm success rate(ssr) to measure the evolution extent of the population. For the i-th particle in the 
population in the t-th iteration, its success rate can be defined as:

	
succi(t) =

{ 1, if BIC(Pbest,i(t)) > BIC(Pbest,i(t − 1))
0, otherwise � (14)

where Pbest,i(t) is the individual best solution of particle i in the t-th iteration. Thus, for the t-th iteration, the 
success rate of the whole population can be calculated by:

	
ssr(t) =

∑N

i
succi(t)
N

� (15)

where N is the population size. Next, the inertia weight w of PSO in the t-th iteration, which is also referred to 
the mutation probability of our proposed algorithm, can be updated according to SSRDIWPSO:

	
w = (wstart − wend)MaxIt − t

MaxIt
+ wend × ssr(t − 1)� (16)

SSRDIWPSO considers the feedback parameter ssr(t − 1) to reserve the population information during 
the iteration process and adjust the inertia weight according to it.

For acceleration coefficients of PSO, which is also referred to our crossover probabilities of our proposed 
algorithm, we utilize the same Self-Tuned (ST) method31 as BNC-PSO to update:
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c1 = c10 − c10 − c11

MaxIt
∗ t

c2 = c20 − c20 − c21

MaxIt
∗ t

� (17)

where c10, c20 are starting values of c1 and c2 in the iteration process; c11, c21 are ending values of c1 and c2.
After determining the values of these parameters, the proposed algorithm executes the mutation operation 

and two crossover operations and generates the new generation of particles. Then, we obtain the new generated 
population and the elite opposite solutions. Next, the proposed algorithm merges the new generation with 
opposite solutions and selects top N particles as the next generation. Finally, the proposed algorithm updates 
the individual best solutions, positions and velocities of these particles. If the algorithm does not achieve the 
maximum of iterations, it continues to execute; otherwise, the algorithm ends and outputs the final result. All 
the steps and important details of the proposed algorithm mentioned above can be seen in Algorithm 3 ∼ 5 in 
the Appendix.

It should be noticed that the mutation operation and two crossover operations might introduce cycles into 
the DAGs, thus we adopt the property of DAGs to check cycles and remove them. In graph theory, there is an 
important proposerty of adjacent matrix: the elements of q-th power of adjacent matrix, A

q
ij , represent the 

Start

End

Initialize the population of

particles including velocity

and position 

Evaluate the fitness values

of the particles and obtain

elite individuals

Generate opposite solutions

of elite individuals and

evaluate them

Merge the current candidate

solutions with opposite

solutions and sort them to

generate the next population

No
Stop?

Yes

Fig. 1.  The executing process of opposition-based learning in our proposed algorithm. It should be noticed 
that we only list steps containing opposition-based learning and the whole details of our proposed algorithm 
can be seen below.
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number of paths of length n from vertex i to vertex j. In order to ensure the acyclicity of the directed acyclic 
graph, the trace of the q-th power of the adjacency matrix must be equal to 0. The details of this method can 
also be seen in Algorithm 2: 

Algorithm 2.  Cycle removal procedure

The sparsity of DAGs
Opposition-based learning is an effective method to achieve fast convergence of heuristic algorithms. However, 
it also consumes a lot of computing resources, especially for structure learning problems in BNs. So in this paper, 
we reduce the computation complexity of OP-PSO-DE algorithm by restricting the in-degree and out-degree of 
DAGs. Also, it can be found that DAGs in practical applications are sparse and BIC score is tended to choose 
DAGs with lower structure complexity. By this way, we can guarantee the sparsity of DAGs returned by our 
proposed algorithm. For different structure learning problems in BNs, the options of in-degree and out-degree 
can be determined according to specific application scenarios.

The time complexity of OP-PSO-DE
Since the calculation in our proposed algorithm is based on matrix, the complexity of our algorithm 
is O(MaxIt ∗ nP op ∗ nV ar4) where MaxIt is the iteration time, nPop is the population size, 
and nVar is the number of random variables. In the following works, we will try our best to reduce 
algorithm complexity to apply our algorithm into more application scenarios. To be specific, the time 
complexity of cycle checks is O(nV ar4), thus the time complexity of generating opposite solutions is 
O(nV ar2 + L(nV ar)) = O(nV ar2 + nV ar4) = O(nV ar4), where L(nVar) is the complexity of cycle checks. 
Also, the time complexity of elite selection is O(eli_num · (nV ar4 + nV ar · n)) = O(eli_num · nV ar4), 
where eli_num is the number of elite individuals and n is the number of samples.

Experimental results and analysis
Experimental parameters
To verify the performances of our proposed OP-PSO-DE algorithm, we conduct experiments on different discrete 
networks, including CANCER32, ASIA33 and INSURANCE34. To be specific, CANCER network contains 5 nodes 
and 4 arcs, which describes a lung cancer diagnosis application. There are two nodes, “Pollution” and “Smoker”, 
representing the factors that affect the chance of a patient having cancer. ASIA network contains 8nodes, 8 arcs 
and 18 parameters, which describes the factors affect the chances of a patient getting diseases. There are two 
input nodes, “Asia” and “Smoke” representing the patient whether visited to Asia and smokes. And there are two 
output nodes representing the result of getting diseases, “Xray” and “Dyspnoea”, which means that it will result in 
a positive X-ray and dyspnoea. The INSURANCE network contains 27 nodes, 52 arcs and 984 parameters, which 
describes car insurance risk estimation. It is a network for estimating the expected claim costs for a car insurance 
policyholder. There is one input node in this network, “Age” and three output nodes, “MedCost”, “ILiCost” and 
“PropCost”. Since Bayesian network structure learning algorithms have high requirements for data quality, this 
study uses benchmark networks commonly used in other papers within this research field for the experiments. 
This also allows for a comparison of our proposed algorithm with those in other papers.
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All the algorithms in this section are implemented in R and our datasets are randomly sampled from these 
networks downloaded from Bayesian Network Repository(https://www.bnlearn.com/bnrepository/) of R 
package bnlearn. the sample sizes of these networks are 500, 1000, 1500, 2000. The swarm population of all the 
heuristic algorithms nPop are set to 50 and the iteration MaxIt is set to 100. The size of elite individuals in OP-
PSO-DE algorithm is set to 25. Other parameters are set to wstart = 0.9, wend = 0.35, c10 = 0.84, c11 = 0.52, 
c20 = 0.38 and c21 = 0.81. The specific calculation of these parameters are shown in equation (16) and (17). 
The sensitivity analysis of c1, c2 and w was conducted in the previous works35,36 and it can also be seen in the 
following section. We also list the hyperparameters and their rationale in Table 1:

Experimental results
In this section, we show the experimental results of our proposed OP-PSO-DE algorithm with other state-of-
the-art algorithms, including PC-PSO8, BNC-PSO17, Hybrid HPC37, and Max-Min Hill-Climbing(MMHC)38. 
PC-PSO uses PC algorithm to generate initial solutions and improves PSO to search for the best global DAG. 
BNC-PSO combines PSO with Genetic Algorithm to discretize PSO to search for the best network structure. 
Hybrid HPC firstly reconstructs the skeleton of the network and then uses greedy hill-climbing to search for the 
best sturcture. MMHC firstly identifies all the potential parent nodes or child nodes of the nodes as the candidate 
node set, and then uses score-based algorithm to find the network structure with the highest score.

The sample sizes of these algorithms are 500, 1000, 1500 and 2000, respectively. All the results are averages 
of 10 times experiments. The crossover probabilities and mutation probability of PC-PSO and BNC-PSO are the 
same as our proposed algorithm to compare their performances. BIC score is utilized to evaluate the searching 
ability of these algorithms. Table 2 shows the final convergence experimental results of OP-PSO-DE on and the 
bold BIC scores in brackets are benchmarks. Fig. 2, Fig. 3, and Fig. 4 show the iteration process of OP-PSO-DE 
on CANCER, ASIA and INSURANCE networks.

To verify the convergence capacity of OP-PSO-DE algorithm, we count the iteration time required to converge 
and compare it with PC-PSO and BNC-PSO. Since the principles of Hybrid HPC and MMHC are different from 
the other three algorithms, the implementation process can not count iteration time. Therefore, Table 3 does not 
contain the corresponding results.

Sensitivity analysis
In this section, we conduct experiments to show the sensitivity analysis of key parameters of our proposed 
algorithm. We change the value of mutation probability wstart from 0.9 to 0.5 with the interval 0.2 and wend 
from 0.75 to 0.35 with the interval 0.2. We change the value of crossover probability c10 from 1.0 to 0.68 with the 
interval 0.16 and c11 from 0.68 to 0.36 with the interval 0.16. We change the value of crossover probability c20 
from 0.57 to 0.19 with the interval 0.19 and c21 from 1.0 to 0.62 with the interval 0.19.

As Tables 7, 8 and 9 show, on the CANCER network, the impacts of the mutation probability and crossover 
probabilities on BIC scores are very limited. In small-sample regimes, its approximation accuracy deteriorates, 
which can result in under-penalizing complex models and the risk of overfitting. The size of the CANCER 
network is very small, only containing 5 nodes and 4 edges. The algorithm is more likely to converge to a good 
BIC score, and it is difficult to further explore the solution space by changing the current solutions through 
crossover operators and the mutation operator. On the ASIA network and INSURANCE network, with the 
increases of wstart and the decreases of wend, OP-PSO-DE is tended to converge to a better BIC score. Also, a 
lager crossover probability can usually achieve a better BIC score than the small ones.

Dataset 500 1000 1500 2000

CANCER -1052.90 ± 0 − 2129.68 ± 0 − 3173.84 ± 0.11 − 4233.08 ± 0.43

(− 1059.01) (− 2131.10) (-3178.94) (-4233.38)

ASIA -1126.89 ± 3.21 -2369.95 ± 4.27 -3400.48±6.82 − 4527.01 ± 5.01

(-1126.75) (-2366.21) (-3396.32) (− 4522.48)

INSURANCE − 9461.35 ± 43.49 − 16747.60 ± 107.04 − 24715.27 ± 186.70 − 32370.27 ± 375.99

(-9468.28) (− 16340.47) (− 23155.05) (− 30024.96)

Table 2.  Experimental results of OP-PSO-DE algorithm.

 

Parameters Connotation Value range

F scale number [0,1]

σ turbulence coefficient [0.001,0.01]

rand random number [0,1]

h random number [1,d]

Table 1.  Hyperparameters of OP-PSO-DE algorithm.
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Comparison of OP-PSO-DE with other structure learning algorithms
According to Table 2, we can see that our proposed algorithm can achieve BIC scores very close to the benchmarks 
in the brackets. BIC score of our proposed algorithm on CANCER network is higher than the standard score, 
because BIC is derived under asymptotic assumptions and performs reliably when the sample size is large. With 
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Fig. 3.  The iteration process of OP-PSO-DE algorithm executes on ASIA network.
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Fig. 2.  The iteration process of OP-PSO-DE algorithm executes on CANCER network.
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the increases of sample sizes, the standard deviations of our proposed algorithm present the trend of growth. 
As Table 3 shows that our proposed algorithm can converge rapidly than the other heuristic algorithms on 
CANCER, ASIA and INSURANCE networks, which verifies the effectiveness of opposition-based learning used 
in OP-PSO-DE algorithm. Fig. 2, Fig. 3, and Fig. 4 indicate that the iterations of our proposed algorithm increase 
with the network sizes. With the increase of the sample size on INSURANCE network, the performance of our 
proposed algorithm decreases. Although opposition-based learning can effectively reduce the iteration times of 
heuristic algorithms, premature convergence arises when sample sizes become larger.

Compared to other state-of-the-art structure learning algorithms, OP-PSO-DE algorithm achieves best BIC 
scores on CANCER network when sample sizes are 500 and 1500, which can be seen in Table 4. When the 
sample size of CANCER network is 2000, our proposed algorithm achieves BIC scores better than PC-PSO and 
BNC-PSO.As we can see in Table 5, our proposed algorithm achieves better BIC scores than PC-PSO, BNC-

Algorithm

CANCER

500 1000 1500 2000

OP-PSO-DE − 1052.90 − 2129.68 − 3173.84 − 4233.08

PC-PSO − 1052.90 − 2129.68 − 3173.52 − 4232.79

BNC-PSO − 1053.01 − 2130.13 − 3173.74 − 4232.63

Hybrid HPC − 1052.90 − 2129.68 − 3173.52 − 4233.22

MMHC − 1053.45 − 2129.68 − 3173.52 − 4233.22

Table 4.  Experimental results of different algorithms on CANCER network.

 

CANCER ASIA INSURANCE

Algorithm 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

OP-PSO-DE 2.1 1.8 2.7 3.9 5.3 5.8 5.6 5.7 9.7 28.4 25.5 20.1

PC-PSO 5.7 3.6 11.2 12.3 22.6 29.3 33.1 33.1 78.3 86.3 89.8 93.3

BNC-PSO 3.3 3.3 3.0 4.9 17.4 16.9 23.4 18.5 94.9 96.7 97.9 97.5

Table 3.  The number of iterations required for heuristic algorithms to converge.

 

20 40 60 80 100

−
1

0
1

0
0

−
9

9
0

0
−

9
7

0
0

−
9

5
0

0
(a) sample size=500

sc
o

re
s

20 40 60 80 100

−
1

9
5

0
0

−
1

8
5

0
0

−
1

7
5

0
0

−
1

6
5

0
0

(b) sample size=1000

sc
o

re
s

20 40 60 80 100

−
2

8
0

0
0

−
2

7
0

0
0

−
2

6
0

0
0

−
2

5
0

0
0

(c) sample size=1500

sc
o

re
s

20 40 60 80 100

−
3

7
0

0
0

−
3

5
0

0
0

−
3

3
0

0
0

−
3

1
0

0
0

(d) sample size=2000

sc
o

re
s

Fig. 4.  The iteration process of OP-PSO-DE algorithm executes on INSURANCE network.

 

Scientific Reports |        (2025) 15:18447 11| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Parameter CANCER ASIA INSURANCE

c20

0.57 − 1052.90 ± 0 − 1133.39 ± 8.33 − 9268.55 ± 271.76

0.38 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.19 − 1052.90 ± 0 − 1136.62 ± 7.35 − 9813.12 ± 233.23

c21

1.00 − 1052.90 ± 0 − 1132.17 ± 9.07 − 9424.01 ± 191.43

0.81 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.62 − 1052.90 ± 0 − 1135.12 ± 7.90 − 9514.82 ± 343.88

Table 9.  BIC scores of OP-PSO-DE for different values of c20 and c21 when sample size is 500.

 

Parameter CANCER ASIA INSURANCE

c10

1.00 − 1052.90 ± 0 − 1133.23 ± 7.15 − 9555.52 ± 276.63

0.84 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.68 − 1052.90 ± 0 − 1134.41 ± 7.01 − 9341.43 ± 227.24

c11

0.68 − 1052.90 ± 0 − 1134.24 ± 10.70 − 9426.60 ± 203.74

0.52 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.36 − 1052.90 ± 0 − 1133.95 ± 9.14 − 9607.03 ± 288.22

Table 8.  BIC scores of OP-PSO-DE for different values of c10 and c11 when sample size is 500.

 

Parameter CANCER ASIA INSURANCE

wstart

0.90 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

0.70 − 1052.90 ± 0 − 1131.05 ± 3.71 − 9426.30 ± 255.72

0.50 − 1052.90 ± 0 − 1132.21± 6.25 − 9266.34 ± 435.33

wend

0.75 − 1052.90 ± 0 − 1135.27 ± 8.11 − 9391.06 ± 378.04

0.55 − 1052.90± 0 − 1134.77± 9.20 − 9597.34± 252.32

0.35 − 1052.90 ± 0 − 1126.89 ± 3.21 − 9461.35 ± 43.49

Table 7.  BIC scores of OP-PSO-DE for different values of wstart and wend when sample size is 500.

 

Algorithm

INSURANCE

500 1000 1500 2000

OP-PSO-DE − 9461.35 − 16747.60 − 24715.27 − 32370.27

PC-PSO − 9014.95 − 16823.61 − 24563.79 − 33194.194

BNC-PSO − 8383.71 − 16093.07 − 23667.46 − 31127.48

Hybrid HPC − 8324.36 − 15388.29 − 22418.60 − 29676.46

MMHC − 8747.69 − 16006.97 − 23248.39 − 30789.33

Table 6.  Experimental results of different algorithms on INSURANCE network.

 

Algorithm

ASIA

500 1000 1500 2000

OP-PSO-DE − 1126.89 − 2369.95 − 3400.48 − 4527.01

PC-PSO − 1125.24 − 2370.53 − 3401.96 − 4527.45

BNC-PSO − 1128.86 − 2378.81 − 3409.90 − 4541.84

Hybrid HPC − 1219.64 − 2574.37 − 3702.83 − 4901.70

MMHC − 1208.89 − 2549.88 − 3676.24 − 4864.38

Table 5.  Experimental results of different algorithms on ASIA network.
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PSO, Hybrid HPC and MMHC when sample sizes are 500, 1000, 1500 and 2000. Also, in Table 6, OP-PSO-DE 
achieves the best BIC scores when sample size is 500 on INSURANCE network and the difference between OP-
PSO-DE and the standard value is much smaller than the other four algorithms.

To verify the effect opposition-based learning, we tried to remove the module from OP-PSO-DE. On the 
INSURANCE network, the proposed algorithm achieved -17926.70 (true score is -16340.47) when the sample 
size is 1000 after 8 iterations. Although the iteration time is much smaller than OP-PSO-DE, the resulting 
solutions are significantly worse in terms of final score and network quality compared to other state-of-the-art 
algorithms. This suggests that opposition-based learning plays a crucial role in maintaining population diversity 
and avoiding poor local optima, especially in the early search stages.

It is worth noting that wall-clock time is not reported in this study due to variability across implementations, 
which may render direct comparisons unreliable. Instead, we focus on the number of iterations and score 
function evaluations, which typically dominate the computational cost in structure learning tasks. Our method 
demonstrates substantial improvements in both metrics, suggesting that the observed convergence speed is not 
only theoretical but also likely translates to practical time efficiency.

As experimental results show, our proposed OP-PSO-DE algorithm can achieve good performances with a 
rapid convergence rate. Also, since our proposed algorithm is based on heuristic algorithms, it is very easy to 
implement and understand.

Conclusion
In this paper, we propose a hybrid structure learning algorithm, OP-PSO-DE, which utilizes opposition-based 
learning to accelerate its convergence rate and combines PSO with Differential Evolution algorithm searching 
for the best BIC scores. For the mutation operator, we utilize the binary mutation with probability difference 
and SSRDIWP SO  method to update the crossover probability. We introduce the execution process of our 
proposed algorithm specifically in the above sections and conduct experiments based on different networks. 
Experimental results show that our proposed algorithm can achieve better results compared to other state-of-
the-art structure learning algorithms.

The contribution of this paper is that we introduce opposition-based learning method into the structure 
learning algorithm in Bayesian networks, which is verified to be an effective way to accelerate convergence process 
in our experiments. While tackling the structure learning problem of large networks, our proposed algorithm 
arises premature convergence. In particular, its performance degrades as the network scale increases, which 
becomes especially evident in the case of large networks. In the following researches, we plan to improve the 
current algorithm to avoid premature convergence and conduct our experiments on more practical application 
scenarios to measure the performances of OP-PSO-DE.

Data availibility
The datasets generated and analyzed during the current study are available in the Bayesian Network Repository, 
https://www.bnlearn.com/bnrepository/.

Received: 21 January 2025; Accepted: 19 May 2025

References
	 1.	 Villa-Blanco, C., Bregoli, A., Bielza, C., Larrañaga, P. & Stella, F. Constraint-based and hybrid structure learning of multidimensional 

continuous-time Bayesian network classifiers. Int. J. Approx. Reason. 159, 108945. https://doi.org/10.1016/j.ijar.2023.108945 
(2023).

	 2.	 Jose, S., Louis, S., Dascalu, S. & Liu, S. Transfer learning-based hybrid approach for Bayesian network structure learning. Int. J. 
Artif. Intell. Tools 31, 2260003. https://doi.org/10.1142/S021821302260003X (2022).

	 3.	 Wang, N., Liu, H., Zhang, L., Cai, Y. & Shi, Q. An efficient skeleton learning approach-based hybrid algorithm for identifying 
Bayesian network structure. Eng. Appl. Artif. Intell. 133, 108105. https://doi.org/10.1016/j.engappai.2024.108105 (2024).

	 4.	 Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice-Hall Inc, 1995).
	 5.	 Lee, S. & Kim, S. B. Parallel simulated annealing with a greedy algorithm for Bayesian network structure learning. IEEE Trans. 

Knowl. Data Eng. 32, 1157–1166 (2020).
	 6.	 Ye, Q., Amini, A. A. & Zhou, Q. Optimizing regularized Cholesky score for order-based learning of Bayesian networks. IEEE Trans. 

Pattern Anal. Mach. Intell. 43, 3555–3572 (2021).
	 7.	 Alonso-Barba, J.  I. et al. Ant colony and surrogate tree-structured models for orderings-based bayesian network learning. In 

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15 543–550 (Association for 
Computing Machinery, 2015).

	 8.	 Sun, B., Zhou, Y., Wang, J. & Zhang, W. A new pc-pso algorithm for Bayesian network structure learning with structure priors. 
Expert Syst. Appl. 184, 5237. https://doi.org/10.1016/j.eswa.2021.115237 (2021).

	 9.	 Wang, C. et al. Finding community structure in Bayesian networks by heuristic k-standard deviation method. Future Gener. 
Comput. Syst. 158, 556–568 (2024).

	10.	 Yang, W.-T., Tamssaouet, K. & Dauzere-Peres, S. Bayesian network structure learning using scatter search. Knowl.-Based Syst. 300, 
112149 (2024).

	11.	 He, C. et al. A novel structure learning method of Bayesian networks based on the neighboring complete node ordering search. 
Neurocomputing 585, 127620 (2024).

	12.	 Liu, H. et al. An improved Harris hawks optimization for Bayesian network structure learning via genetic operators. Soft Comput. 
27, 14659–14672 (2023).

	13.	 Kareem, S. W. & Okur, M. C. Structure learning of Bayesian networks using elephant swarm water search algorithm. Int. J. Swarm 
Intell. Res. 11, 19–30 (2020).

	14.	 Awla, H. Q., Kareem, S. W. & Mohammed, A. S. A comparative evaluation of Bayesian networks structure learning using falcon 
optimization algorithm. Int. J. Interact. Multimed. Artif. Intell. 8, 81–87 (2023).

	15.	 Soloviev, V. P., Bielza, C. & Larranaga, P. Quantum approximate optimization algorithm for Bayesian network structure learning. 
Quantum Inf. Process. https://doi.org/10.1007/s11128-022-03769-2 (2022).

Scientific Reports |        (2025) 15:18447 13| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

https://www.bnlearn.com/bnrepository/
https://doi.org/10.1016/j.ijar.2023.108945
https://doi.org/10.1142/S021821302260003X
https://doi.org/10.1016/j.engappai.2024.108105
https://doi.org/10.1016/j.eswa.2021.115237
https://doi.org/10.1007/s11128-022-03769-2
http://www.nature.com/scientificreports


	16.	 Wang, X., Ren, H. & Guo, X. A novel discrete firefly algorithm for Bayesian network structure learning. Knowl.-Based Syst. 242, 
108426. https://doi.org/10.1016/j.knosys.2022.108426 (2022).

	17.	 Gheisari, S. & Meybodi, M. Bnc-pso: structure learning of Bayesian networks by particle swarm optimization. Inf. Sci. 348, 272–
289 (2016).

	18.	 Zheng, X., Aragam, B., Ravikumar, P. K. & Xing, E. P. Dags with no tears: Continuous optimization for structure learning. In (eds. 
Bengio, S. et al.) Advances in Neural Information Processing Systems Vol. 31 (2018).

	19.	 Yu, Y., Chen, J., Gao, T. & Yu, M. Dag-gnn: Dag structure learning with graph neural networks. In Proceedings of the 36th 
International Conference on Machine Learning (2019).

	20.	 Lachapelle, S., Brouillard, P., Deleu, T. & Lacoste-Julien, S. Gradient-based neural dag learning. In Proceedings of the Eighth 
International Conference on Learning Representations (ICLR 2020) (2020).

	21.	 Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian networks: The combination of knowledge and statistical data. 
Mach. Learn. 20, 197–243 (1995).

	22.	 Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
	23.	 Lam, W. & Bacchus, F. Learning Bayesian belief networks: An approach based on the mdl principle. Comput. Intell. 10, 269–293 

(1994).
	24.	 Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks 

Vol. 4, 1942–1948 (IEEE, 1995).
	25.	 Tizhoosh, H. R. Opposition-based learning: a new scheme for machine intelligence. In International conference on computational 

intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet 
commerce (CIMCA-IAWTIC’06) vol. 1, 695–701 (IEEE, 2005).

	26.	 Seif, Z. & Ahmadi, M. B. Opposition versus randomness in binary spaces. Appl. Soft Comput. 27, 28–37 (2015).
	27.	 Storn, R. & Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. 

Optim. 11, 341–359 (1997).
	28.	 Zhang, Y., Gong, D.-W., Gao, X.-Z., Tian, T. & Sun, X.-Y. Binary differential evolution with self-learning for multi-objective feature 

selection. Inf. Sci. 507, 67–85 (2020).
	29.	 Spirtes, P. & Glymour, C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991).
	30.	 Adewumi, A. O. & Arasomwan, A. M. An improved particle swarm optimiser based on swarm success rate for global optimisation 

problems. J. Exp. Theor. Artif. Intell. 28, 441–483 (2016).
	31.	 Ghosh, S., Nath, S. & Sarkar, S. Pso algorithm with self tuned parameter for efficient routing in vlsi design. In International 

Conference on Futuristic Trends in Computing and Communication 60–63 (International Journal of Electronics and Communication 
Engineering, 2015).

	32.	 Korb, K. B. & Nicholson, A. E. Bayesian Artificial Intelligence (CRC Press, 2010).
	33.	 Lauritzen, S. L. & Spiegelhalter, D. J. Local computations with probabilities on graphical structures and their application to expert 

systems. J. R. Stat. Soc. Ser. B 50, 157–194 (2018).
	34.	 Binder, J., Koller, D., Russell, S. & Kanazawa, K. Adaptive probabilistic networks with hidden variables. Mach. Learn. 29, 213–244 

(1997).
	35.	 Ratnaweera, A., Halgamuge, S. K. & Watson, H. C. Self-organizing hierarchical particle swarm optimizer with time-varying 

acceleration coefficients. IEEE Trans. Evol. Comput. 8, 240–255 (2004).
	36.	 Shi, Y. & Eberhart, R. A modified particle swarm optimizer. In 1998 IEEE International Conference on Evolutionary Computation 

Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360) 69–73 (IEEE, 1998).
	37.	 Gasse, M., Aussem, A. & Elghazel, H. A hybrid algorithm for Bayesian network structure learning with application to multi-label 

learning. Expert Syst. Appl. 41, 6755–6772 (2014).
	38.	 Tsamardinos, I., Brown, L. E. & Aliferis, C. F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. 

Learn. 65, 31–78 (2006).

Acknowledgements
This work was supported by the Key R&D Program of Heilongjiang Province under Grant No.2022ZX01A23.

Author contributions
B.S. wrote the first draft of the manuscript and conducted the experiments. X.Z. and J.G. edited and revised the 
manuscript. J.J. and D.L. analyzed the results. All authors reviewed the manuscript.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​3​2​6​7​-​2​​​​​.​​

Correspondence and requests for materials should be addressed to J.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:18447 14| https://doi.org/10.1038/s41598-025-03267-2

www.nature.com/scientificreports/

https://doi.org/10.1016/j.knosys.2022.108426
https://doi.org/10.1038/s41598-025-03267-2
https://doi.org/10.1038/s41598-025-03267-2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Bayesian network structure learning by opposition-based learning
	﻿Preliminary
	﻿Bayesian networks
	﻿Scoring function

	﻿Particle swarm optimization
	﻿The basic principle
	﻿BNC-PSO

	﻿OP-PSO-DE: BN structure learning based on opposition-based learning
	﻿Opposition-based learning
	﻿Differential evolution
	﻿The binary mutation with probability difference
	﻿Crossover operator


	﻿OP-PSO-DE
	﻿The sparsity of DAGs
	﻿The time complexity of OP-PSO-DE
	﻿Experimental results and analysis
	﻿Experimental parameters
	﻿Experimental results
	﻿Sensitivity analysis
	﻿Comparison of OP-PSO-DE with other structure learning algorithms

	﻿Conclusion
	﻿References


