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Growing rates of chronic wound occurrence, especially in patients with diabetes, has become a recent
concerning trend. Chronic wounds are difficult and costly to treat, and have become a serious burden
on health care systems worldwide. Innovative deep learning methods for the detection and monitoring
of such wounds have the potential to reduce the impact to patients and clinicians. We present a novel
multimodal segmentation method which allows for the introduction of patient metadata into the
training workflow whereby the patient data are expressed as Gaussian random fields. Our results
indicate that the proposed method improved performance when utilising multiple models, each
trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when
compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908)
we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity
coefficient respectively. This paper presents the first study to focus on integrating patient data into a
chronic wound segmentation workflow. Our results show significant performance gains when training
individual models using specific metadata categories, followed by average merging of prediction masks
using distance transforms. All source code for this study is available at: https://github.com/mmu-derma
tology-research/multimodal-grf

Chronic wounds are a serious condition that can expose patients to infection and potentially increased mortality
risk!. The global diabetes epidemic is an important factor in the case of chronic wounds, as patients with diabetes
are both at increased risk of developing such wounds and are likely to experience significantly impaired healing
rates?.

Patients who have been diagnosed with diabetic foot ulcers (DFU) have been shown to have significantly
greater mortality risk when compared to those without?. Such patients are also more likely to suffer from additional
comorbidities such as cardiovascular disease, peripheral arterial disease, retinopathy, and neuropathy*-®.

Arterial leg ulcers (ALU), DFU, and venous leg ulcers (VLU) can lead to impaired quality of life
Occurrence of such wounds is associated with an incidence increase of amputation and subsequent mortality
risk. These factors are particularly prevalent in older patients, and those suffering from anemia and peripheral
artery disease®! 12, Prevalence of chronic wounds is linked to increased occurrence of emotional and physical
burdens on patients'>!%. Depression is also commonly associated with patients with chronic wounds!>'.

In an effort to meet these increased demands on clinics and hospitals, there has been a growing research
interest concerning non-contact automated deep learning detection and monitoring of chronic wounds'’~'°.
The utilisation of deep learning methods to provide a means of early detection and remote wound monitoring
could be a gateway to help reduce risks to patients who are vulnerable, and to ease the burdens that clinics and
hospitals are currently experiencing®’. Low cost consumer mobile devices can be used to bring such technologies
to patients living in poorer regions, where access to expert healthcare services may be limited. Such advances
could also be used to promote patient engagement with their health, a facet of patient care that has been shown
to be an effective treatment strategy®!. With these recent advances in mind, the research objective of the present
paper is to explore a novel method of integrating patient metadata into a segmentation workflow as a means
of enhancing chronic wound segmentation performance. Currently, there are no chronic wound segmentation
methods that utilise patient metadata, which highlights a gap in the current research.
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Related work

Recent years have seen researchers focusing on utilising patient metadata in convolutional neural network (CNN)
training workflows in numerous medical imaging domains. In this section, we explore the most prominent of
the most relevant studies.

Metadata

Lemay et al.?? adapted a feature-wise linear modulation conditioning method for medical image segmentation
enabling the integration of metadata into U-Net spinal cord tumour segmentation models. The metadata is used
to modulate the segmentation process using low-cost affine transformations which are then applied to feature
maps during training which can be used in any CNN architecture. They found that the application of a single
metadata item (tumour type) as an additional input into the segmentation network provided a 5.1% boost to
performance.

Anisuzzaman et al.>> used wound location data to improve performance of a multi-class wound classification
model using two publicly available chronic wound datasets (AZH and Medetec) and a private wound location
metadata dataset. For the corresponding categorical body map metadata, each wound location was converted
to an integer value and encoded using one-hot encoding. Two main models were trained, a CNN for the wound
images, and a second for the wound location metadata. The CNN utilised transfer learning with VGG-16, VGG-
19, ResNet-50 and IncpetionV3 sub-models together with an AlexNet. The wound location model utilised a
Multi-Layer Perceptron (MLP) and a Long Short-Term Memory (LSTM) model. The output of the pretrained
CNNs was concatenated with the outputs of AlexNet, the MLP, and the LSTM to form the final predictions.
Their experiments demonstrated an improvement in classification performance from 72.95% to 97.12% when
body map metadata features were introduced into the training workflow. They also completed experiments using
the one-hot vector as a direct input into the CNN dense layer. However, this resulted in inferior results when
compared to utilising the MLP or the LSTM.

Patel et al.?* would later build on the prior work completed by?*. They proposed an improved multi-class
multi-modal network architecture utilising parallel spatial and channel-wise squeeze and excitation, axial
attention, and an adaptive gated MLP. These modifications allow the network to capture global contextual
information by focusing on channel interdependencies, learning patterns across different input channels. Spatial
information is also maintained by focusing on the spatial interdependencies of individual channels. Using the
AZH and Medetec datasets they achieved an accuracy of 73.98-100% for classification using assisting location
metadata. However, as per the previous study conducted by??, the dataset used was relatively small, with just 930
AZH and 538 Medetec images.

Gu et al.?> proposed a multimodal architecture capable of simultaneous segmentation and diagnosis of
tumours using images and patient metadata. Their architecture comprised of three parts: an image encoder, a
text encoder, and a decoder utilising an interlaced sparse self-attention mechanism. Text embedding features
are fused at several network layers with the image data between the two encoders. The text preprocessing block
embeds the metadata using a language model with bidirectional encoder representations from transforms
(BERT). Each word is converted into a two-dimensional vector, with a 2x upsample applied using deconvolution
so that the size matches that of the input images. They reported significant improvements for basal cell carcinoma
segmentation on two private datasets: +14.3% IoU and +8.5% DSC on the ZJU2 dataset, and +7.1% IoU on the
LIZHU1 dataset. They also demonstrated state of the art performance on the GlaS dataset for gland segmentation
in colon histology images (DSC +0.0018, IoU +0.0027). A major limitation of this work, however, is the limited
size of the datasets used, with each dataset comprising fewer than 200 images.

Research of this nature demonstrates the potential of the inclusion of metadata in the development of
multimodal CNNs. However, as indicated by previous research, there is a severe lack of publicly available
multimodal datasets, an issue which is even more apparent in the case of chronic wounds.

1'23

Random fields

Random fields are a generalised form of a stochastic field where randomness is determined as a function of
spatial variables. Essentially, they encompass a random variation of measurable properties®®. Gaussian random
fields (GRF) are a type of random field that provide a statistical tool to describe naturally occurring structures
exhibiting spatially varying uncertainties?’. They represent a description of uncertainties that can exert critical
impacts on the overall performance of physical processes found throughout nature?. GRFs are used to model
uncertainties such as material properties, measurement errors, and distributions of attributes associated with
living organisms. Treating such uncertainties as random fields or random variables, statistical analyses can be
utilised more consistently**°. Practical applications of GRFs include modelling of landscapes in ecology and
generation of cloud features in geoscience”. Variants of GRFs, known as Euclidean bosonic massless free fields,
are used for modelling random surfaces and functions in quantum field theory2.

GRFs have previously been used in active learning and semi-supervised training processes. Zhu et al.?
proposed a GRF text and digit classification model defined with respect to a weighted graph which represented
labelled and unlabelled data. Their framework exploited unlabelled data structures to enhance classification
accuracy. However, these experiments predate more modern deep learning methods.

In more recent works, Yang et al.** conducted classification experiments on synthetic aperture radar images
and improved performance using Markov random fields (MRF). MRF is a random field variant of GRF that
introduces a Markov property which models a prediction based only on the current state and not prior or later
states. This work proposed the generation of a probability field which describes regional relationships. They
derived the energy function using the intensity field and the probability field, allowing for superior initialisation
of the MRE
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GRFs have been used in multiple scientific disciplines, however, to the best of our knowledge they have not
been used to represent metadata in multimodal deep learning experiments.

Method

In this section we detail the training, validation, and testing workflow, the proposed method for generating GRFs
using patient metadata, and corresponding metrics used to assess our multimodal chronic wound segmentation
experiments.

Patient metadata

Our experiments utilise the following patient metadata categories: (1) patient date of birth (DOB); (2) patient
gender (male or female); (3) Health and Disability Decile (HDD). HDD values were obtained from the English
indices of deprivation 2019 public records® using patient post codes as reference. All patient metadata are
present for all associated chronic wound images, with no missing instances.

Data normalisation

We completed a histogram analysis of the DOB and HDD patient metadata to determine how the data should be
represented in our deep learning experiments. This analysis showed that the DOB and HDD patient metadata
categories did not exhibit normal distributions (see Fig. 1). Therefore, the patient DOB and HDD metadata used
in our experiments were normalised using min max scaling as defined in Eq. 1.

X = S fmin 1
Xmaac - Xmln ( )

where X is the data point and Xoin and Xomae are the minimum and maximum values present in the group
respectively.

Patient gender was excluded from this analysis as there were only two possible values from the data provided,
which we encoded as 0 (female) and 1 (male).

Gaussian random field generation
In this section we specify how GRF images were generated to encode patient metadata as spatially structured
representations, enabling integration into deep learning-based multimodal chronic wound segmentation. This
approach transforms numerical metadata into synthetic images that capture spatial correlations, ensuring
compatibility with CNN architectures. The GRFs are constructed using a spectral synthesis approach, leveraging
the properties of the Fourier transform to generate stochastic fields with controlled smoothness and variability®.
Mathematically, a GRF is defined as a stochastic process X(s) over a spatial domain S, such that any finite
collection of values {X (s1), X (s2), ..., X(sn)} follows a multivariate normal distribution. Formally, for any
finite set of points {s1, s2, ..., Sn }, the joint distribution of X(s) is given by:

(X(81)7X(52)77X(8n)) NN(/JHK) (2)
where 1 is the mean function E[ X (s)] and K(s, ) is the covariance function that defines the dependency between
the points in the field. The covariance function must be positive semidefinite to ensure a valid Guassian process.

The spatial structure of a GRF is characterised by its power spectrum P, which governs the correlation

length and smoothness of the field. In this study, the power spectrum is dynamically determined based on the
normalised patient metadata values. The power spectrum is computed as follows:

Py, =—|i+ f| (3)
where i is an integer component that defines the global structure and smoothness of the GRE and f is the

fraction of the normalised metadata value. For binary nominal categorical variables such as gender, f is set to

Patient Date of Birth Patient Health and Disability Decile
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Fig. 1. Histogram analysis of the patient date of birth and patient health and disability decile metadata present
in the multimodal dataset used in our experiments. Non-normal distribution is demonstrated in both types of
data. Note that patient date of birth values are represented as timestamps.
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zero, ensuring that the GRFs remain distinct for each category. Lower values of Py, result in highly fragmented
structures, whereas higher values produce smoother GRFs.

The GRF generation process follows a spectral synthesis approach, which constructs a two-dimensional
Gaussian noise field in the frequency domain using the Fast Fourier Transform (FFT). This noise field is
modulated by the power spectrum Py to introduce spatial correlations, ensuring that local variations follow the
prescribed smoothness constraints. The amplitude of the Fourier components is modified using the following
equation:

A(kzaky) = Pk(km»ky) 4)

where k., ky are the frequency components in the Fourier domain. This transformation ensures that low-
frequency components are dominant within the field, generating large-scale spatial structures. High-frequency
components contribute fine-grained details, but their influence diminishes as Py, increases.

Once the spectral domain representation is obtained, the inverse FFT is applied to transform the frequency-
modulated field back into the spatial domain. The result is a two-dimensional GRE, expressed as a greyscale
image, where the pixel intensities correspond to the metadata-driven stochastic process.

All experiments used one of two types of GRE, where ¢ = 2( see Fig. 2 (a, b, and ¢)), or ¢ = 5( see Fig. 2
(d, e, and f)). The difference lies in their structural complexity and smoothness, where GRFs generated with
1 = 2 exhibit greater fragmentation with localised variations and more fine granularity, making them suitable
for capture of highly dynamic spatial dependencies. In contrast, GRFs with ¢ = 5 result in smoother and more
uniform structures, which are better suited to encode broader trends and continuous variations in the metadata.
The choice of i directly impacts the level of details within the GRF representation, with lower values producing
noisier patterns and higher values resulting in more coherent spatial structures.

To ensure reproducibility and consistency across experiments, a fixed random seed is assigned for each
metadata category: DOB (76539635), gender (88118546), and HDD (41094303). Each GRF is stored as a
640 x 480 pixel greyscale image and merged with the RGB wound image tensors to form a four-channel input.
This approach allows CNNs to extract metadata-related features without requiring direct numerical encoding,
preserving an image-based representation paradigm within the segmentation pipeline. The generated GRFs act
as an abstract representation of metadata, allowing the model to leverage spatial dependencies while maintaining
compatibility with standard convolutional architectures.

Metrics

To evaluate the performance of our multimodal chronic wound segmentation models we utilise a range of widely
used metrics. Intersection over union (IoU) and Dice similarity coefficient (DSC) were used as the metrics for
ascertaining segmentation model accuracy. DSC was selected for its representation as the harmonic mean of
precision and recall, providing a more balanced evaluation of false positive and false negative prediction results.
The mathematical expressions for IoU and DSC are shown in Egs. (5) and (6) respectively.

XY

IoU = ——
X[+ 1Y

(5)

O

(d)

Fig. 2. Tllustration of the types of Gaussian random fields generated for use in our multimodal chronic wound
segmentation experiments. Examples (a), (b), and (c) were generated with an i value of 2, and examples (d),
(e), and (f) were generated using an i value of 5. The first column examples were generated using DOB, the
second column examples were generated using gender, and the third column examples were generated using
HDD.
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| X[+ Y]

(6)

where X and Y indicate the ground truth and predicted masks, respectively.

We also use two statistical hypothesis test metrics to provide an improved understanding of Type I and Type
II errors found in deep learning segmentation algorithm results: False Positive Error (FPE) as detailed in Eq. (7),
and False Negative Error (FNE) as detailed in Eq. (8).

FP

FPE=5pyaN @
FN
FNE = —————
FN+TP ®

where FP represents the total number of false positive predictions, TN is the total number of true negative
predictions, FN is the total number of false negative predictions, and TP is the total number of true positive
predictions.

Chronic wound datasets

For our multimodal segmentation experiments we use a new private chronic wound dataset obtained from
Lancashire Teaching Hospitals NHS Foundation Trust, UK. The use of this dataset was approved by the NHS
Research Ethics Committee and the Health Research Authority (REF: SE-281). All data acquisition methods
were performed in accordance with the guidelines and regulations set out by NHS Research Ethics Committee
and the Health Research Authority. Written informed consent was obtained from all participating patients.
This new multimodal dataset was collected between January 2023 and December 2023 during patient clinical
appointments. A total of 1142 chronic wound images were captured using three digital cameras: a Kodak
DX4530 (5 megapixel), a Nikon COOLPIX P100 (10.3 megapixel), and a Nikon D3300 (24.2 megapixel). Auto-
focus was used during capture with no zoom or macro functions active, with an aperture setting of /2.8 at a
distance of approximately 30-40 cm from the wound surface. Natural lighting in the hospital settings was used
instead of a flash. All chronic wound images were acquired by medical photographers whose specialisation
is chronic wounds, all with more than 5 years professional clinical experience. Patient data was captured by
clinicians who recorded the patient’s DOB, gender, and post code. Ground truth masks were generated using
the HarDNet-CWS segmentation model proposed by*’. Therefore, all training and validation experiments
completed in this study are to be considered weakly supervised. The new chronic wound dataset is used in
our experiments for training and validation. For testing, we use the DFUC 2022 test set which comprises 2000
DFU wound images and associated ground truth masks®®. The DFUC 2022 test set does not have any associated
metadata. A summary of the composition of characteristics of the training set is summarised in Table 1. Note
that multiple wound images may have been collected for a single patient during a hospital appointment. Such
cases may include images of a single wound or multiple wounds, and may include images of the same wound
captured at different angles and distances.

Baselines

We use a selection of commonly used segmentation architectures to generate a set of baseline results to ascertain
which architecture will be used in our multimodal experiments. Included in the baseline experiments is the
HarDNet-CWS network architecture, which was proposed in our prior chronic wound segmentation works®’.
HarDNet-CWS is a hybrid transformer segmentation architecture that uses traditional convolutional techniques
in the encoder, and a vision transformer in the decoder. This model is based on HarDNet-DFUS which was
the winning entry for the DFUC 2022. No augmentation or post-processing methods were used in any of the

Category Total | Category Total
No. of wound images 1142 | No. of venous or pressure wound images | 1

No. of DFU wound images 1111 | No. of patients 308
No. of venous wound images 13 No. of appointments 94
No. of arterial wound images 12 No. of male patients 229
No. of pressure wound images 1 No. of female patients 79
No. of dermatoliposclerosis wound images 1 Median patient age 70
No. of bacterial infection wound images™ 1 Median male patient age 69
No. of ulcer on necrobiosis lipoidica wound images | 1 Median female patient age 70
No. of arterial or venous wound images 1

Table 1. Baseline characteristics for the multimodal training dataset comprising chronic wound images with
corresponding patient metadata and weakly supervised ground truth masks. Note that in two cases it was not
possible to exactly identify the wound type - “arterial or venous” and “venous or pressure”. * - with fungal
component.
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baseline experiments. Pretrained weights were also not used. For the baseline experiments, only wound images
were used for training, validation, and testing.

Model parameters

The non-HarDNet-CWS baseline experiments were trained for 100 epochs at a batch size of 8 using the
AdamW optimiser with a learning rate of 0.001 and a weight decay of 0.0001. The HarDNet-CWS baseline
and subsequent experiments were trained for 60 epochs at a batch size of 5 using the AdamW optimiser with a
learning rate of 0.00001, an epsilon of 0.0000001, and a weight decay of 0.01. The AdamW optimiser was selected
as it enables the decoupling of weight decay from gradient updates, allowing for improved generalisation,
enhanced regularisation and more stable convergence®. We initially experimented using the same parameters
for all baseline models, however, due to significantly differing architecture designs, we found the non-HarDNet
models to perform better using the parameters described here.

Hardware and software configuration

The following hardware and software configuration was used in all our experiments: Debian GNU/Linux 10
(buster) operating system, AMD Ryzen 9 3900X 12-Core CPU, 128GB RAM, NVIDIA GeForce RTX 3090 24GB
GPU. Models were trained with Pytorch 1.13.1 using Python 3.7.13.

Training with gaussian random fields using tensor merging

Inspired by recent multi-colour space tensor merging experiments conducted by*, we experiment by introducing
the GRF images into the training workflow by merging single channel GRFs with the RGB tensors representing
the actual wound images. The tensor merging process was completed by merging the GRF single channel tensor
onto the end of the RGB tensor which forms a new 4D tensor. This process is detailed in Algorithm 1 which
shows a pseudo code summary of the RGB and GRF tensor merging process. Early fusion was selected to
ensure that inter-modal interactions occur throughout the network during training, allowing for richer feature
representations to be learnt. For experiments where GRFs were introduced into the training and validation
workflow, inference on the test set used a zeroed tensor channel in place of the metadata features not present in
the test set. The zeroed tensor channel was set to the same dimensions as the input images during testing.

1: procedure TENSOR_MERGE(rgb_image, grf_image)
2 rgb_tensor < to_tensor(rgb_image)

3 grf_image <+ to_greyscale(grf_image)

4: grf_tensor < to_tensor(grf_image)

5 4d_tensor < merge([rgb_tensor,grf_tensor])

6 4d_tensor < normalise(4d_tensor)

7 Return 4d_tensor

Algorithm 1. RGB+GREF tensor merging algorithm.

Average merging of prediction masks

To further enhance prediction results, we complete a series of experiments whereby prediction masks are
merged, using average merging, from predictions generated for the test set for the models trained using 7 = 2
and ¢ = 5. Three sets of results are produced: (1) average merging of prediction results for the models trained
using GRFs generated from DOB, gender, and HDD metadata where ¢ = 2; (2) average merging of prediction
results for the models trained using GRFs generated from DOB, gender, and HDD metadata where ¢ = 5; and
(3) average merging of prediction results for the models trained using GRFs generated from DOB, gender, and
HDD metadata where 4 = 2 and ¢ = 5. Prediction masks were averaged using the OpenCV distance transform

Fig. 3. Illustration of the prediction mask average merging process completed using distance transforms: (a)
shows the original wound image, (b) is a mask generated by the model trained using DOB GREFs, (c) is a mask
generated by the model trained using gender GRFs, (d) is a mask generated by the model trained using HDD
GRFs, and (e) is the average merged mask. Note that images have been cropped for illustrative purposes.
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Model Ep | Tr-IoU | Tr-Loss | Tr-DSC | V-IoU | V-Loss | V-DSC | Te-IoU | Te-DSC | FPE ENE

VGG16 UN 84 | 0.7866 |0.1499 |0.8722 |0.4602 | 0.4939 |0.6032 |0.3482 |0.4652 |0.0625 |0.4171
ResNet50 UN 60 |0.8324 |0.1184 |0.9039 |0.4745 | 0.4745 | 0.6304 | 0.4007 |0.5213 |0.0525 |0.3884
EfficientNetBO UN | 64 | 0.8741 |0.0920 |[0.9301 |0.5344 | 0.3833 | 0.6745 | 0.4603 |0.5835 |0.0169 |0.3482
ConvNeXt UN 40 | 0.5510 |0.3163 |0.6967 |0.3964 | 0.5456 | 0.5531 |0.3288 |0.4519 |0.0425 |0.4422
HarDNet-CWS 44 | 0.9346 | 0.0972 | 0.9658 0.5887 | 0.5246 | 0.7018 | 0.4670 | 0.5908 | 0.0169 | 0.3637

Table 2. Results for the baseline models trained and validated using only wound images from the new
multimodal dataset, and tested on the DFUC 2022 test set, which also comprises only wound images. All
wound images are 640 x 480 pixels. Ep - epoch; Tr - train; V - validation; Te- test; UN - U-Net; IoU -
intersection over union; DSC - Dice similarity coefficient; FPE - false positive error; FNE - false negative error.
Note that no pretraining and no pre- or post-processing was used in these experiments.

Metadata |i | Epoch | Train IoU | Train Loss | Train DSC | ValIoU | Val Loss | Val DSC | Test IoU | Test DSC | FPE FNE

DOB 2 | 44 0.9323 0.1012 0.9647 0.5615 0.5539 0.6760 0.4699 0.5944 0.0169 | 0.3562
DOB 5|54 0.9566 0.0670 0.9778 0.5654 | 0.5866 0.6842 0.4652 0.5894 0.0169 | 0.3475
Gender 2|34 0.8810 0.1659 0.9359 0.5554 | 0.5277 0.6708 0.4703 0.5942 0.0169 | 0.3575
Gender 5|36 0.8843 0.1635 0.9376 0.5832 0.5038 0.6976 0.4641 0.5889 0.0169 | 0.3621
HDD 2 |47 0.9454 0.0834 0.9718 0.5825 0.5657 0.6962 0.4706 0.5946 0.0169 | 0.3424
HDD 5 |48 0.9394 0.0893 0.9685 0.5672 | 0.5652 0.6819 0.4626 0.5873 0.0169 | 0.3465

Table 3. Results for the HarDNet-CWS model trained and validated using the new multimodal dataset, and
tested on the DFUC 2022 test set (image size = 640 x 480 pixels) using GRFs. i - default value of GRF power
spectrum integer component; IoU - intersection over union; DSC - Dice similarity coeflicient; FPE - false
positive error; FNE - false negative error; DOB - date of birth; HDD - health and disability decile. Note that no
pretraining, augmentation, or post-processing was used in these experiments.

method*!. The distance transform calculation is shown in Eq. 9. An example of prediction mask average merging
using distance transforms is shown in Fig. 3.

Dy(p) = {Irgg(d(n q) +1(q))

: 9)
[0 ifgeP (
Hq) = { oo otherwise

where P is a set of points on grid G (P C @), and associates to each grid location ¢ € G the distance to the
nearest pointp € P.

Results
In this section we report on the results of inference for the baseline model, which was trained using only wound
images, and the models trained using wound images with the patient metadata expressed as GRFs.

Baseline results

The training, validation, and test results for the baseline models are summarised in Table 2. The HarDNet-CWS
model was shown to be the highest performing model in these experiments, and was therefore selected as the
basis for all subsequent experiments.

Gaussian random field results

The results for the chronic wound segmentation experiments, where the patient metadata expressed as single
channel greyscale GRF images was included into the training workflow, are summarised in Table 3. Train and
validation loss curves for the highest performing model (HDD, ¢ = 2) are shown in Fig. 4.

Gaussian random field experiment predictions with average merging
The results of the GRF experiments where predictions from different models, each trained and validated on a
single GRF type and combined using average merging, are summarised in Table 4.

Discussion

The results of models trained using RGB wound images and patient metadata expressed as GRFs (see Table
3) indicate that for all models trained where ; — 2, improvements in terms DSC were demonstrated when
compared to the baseline results. The best overall performing GRF model was the HDD model (¢ = 2) which
demonstrated improvements of 0.0036, 0.0038, and 0.0213 for IoU, DSC, and FNE respectively when compared
to the baseline results. We also observe that in terms of FPE, the baseline and subsequent experiment results are
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Fig. 4. Tllustration of the training (a) and validation (b) loss curves for the HarDNet-CWS model trained and
validated using HDD GRFs with an i value of 2.

Metadata i IoU DSC FPE ENE

DOB+Gen+HDD | 2 0.4899 | 0.6128 | 0.0199 | 0.3209
DOB+Gen+HDD | 5 0.4841 | 0.6079 | 0.0199 | 0.3192
DOB+Gen+HDD |2 &5 | 0.4897 | 0.6122 | 0.0254 | 0.3171

Table 4. Test results for the HarDNet-CWS models with averaged prediction masks. i - default value of GRF
power spectrum integer component; IoU - intersection over union; DSC - Dice similarity coefficient; FPE -
false positive error; FNE - false negative error; DOB - date of birth; Gen - gender, HDD - health and disability
decile. Note that no pretraining, augmentation, or post-processing was used in these experiments.

unchanged, with a reported value of 0.0169. The IoU and DSC improvements for these experiments are marginal
(< 1%), whereas we would consider the improvement of FNE to be significant (> 2%).

For the experiments using averaged prediction masks from all model types (DOB, gender, and HDD - see
Table 4), we observe that the models trained with ¢ = 2 provided the highest performance improvements. The
averaged model predictions trained with ¢ = 2 demonstrated improvements in terms of IoU (+0.0229) and
DSC (+0.0220) when compared to the baseline results. When compared to the results for models trained on
individual metadata categories (DOB, gender, and HDD - see Table 3), improvements are observed in terms of
ToU (+0.0193) and DSC (+0.0182) for the 7 = 2 models, and FNE (-0.0253) for the combined ¢ = 2 and i = 5
models. When compared to the models trained on individual metadata categories (see Table 3), these results
indicate that increasing the number of patient metadata categories improves overall network performance in
terms of IoU, DSC, and FNE. We suggest that these results are promising, considering that our experiments were
conducted using metadata only for the training and validation sets.

When comparing the training loss and validation loss curves (see Fig. 4) the validation curve is clearly less
stable than the training loss curve. We suggest that this may be due to the weakly supervised nature of the
training and validation sets, whereby label noise affects the training process to varying degrees. This effect may
also be exacerbated by the limited size of the training and validation sets.

When comparing our highest test results (IoU = 0.4899, DSC = 0.6128) with the winning entry for the
DFUC 2022 (IoU = 0.6252, DSC = 0.7287) we observe a difference of 0.1353 for IoU and 0.1159 for DSC. These
differences are significant, however, it should be taken into account that the experiments in the present paper
use a substantially smaller training set with weakly supervised training and validation masks. Therefore, a direct
comparison of these results does not compare like for like due to the substantial differences in experimental
setups.

A selection of baseline and averaged merged predictions from the ¢ = 2 models are shown in Fig. 5. The
first row shows a case where the baseline result has incorrectly predicted parts of the dried skin surrounding the
wound, whereas the averaged merged prediction is significantly closer to the ground truth mask. The second
row shows a case where the wound region has been correctly predicted by both baseline and averaged merged
predictions, however, the baseline has also incorrectly predicted a toenail as a wound region. The third row
shows a case where the baseline and averaged merged predictions have correctly predicted the wound located
on the plantar aspect, however, the baseline model has also incorrectly predicted on a region of dried skin. The
fourth row shows a case where the baseline has predicted less of the wound region compared to the averaged
merged predictions.

The rationale for using GRF images in our multimodal chronic wound segmentation experiments was to
ensure that all input data, and therefore learnable features, remained strictly within the confines of the computer
vision domain. That is, all learnable features could be derived from imaging domains, regardless of the nature of
the data (image or numerical data). Generation of synthetic images to represent non-image data was previously
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Fig. 5. Illustration showing four examples of where the averaged merged predictions from the ¢ = 2 models
show improved performance over the baseline results. Column (a) shows the original wound image, column
(b) shows the ground truth mask, column (c) shows the baseline HarDNet-CWS prediction, and column (d)
shows the averaged merged prediction for the ¢ = 2 models.

proposed by*2, named Deeplnsight, for classification tasks. They converted feature vectors derived from text
values to a feature matrix which is used to generate an image. However, their approach generated sparse
pixel patterns in images that CNNs may find difficult to learn features from and may not scale well to higher
resolutions. Their method was also not used in terms of multimodality. Our approach is capable of generating
dense features at any resolution regardless of the complexity of the input value, and has been demonstrated in a
multimodal segmentation architecture. Additionally, GRF images comprise complex texture features, of which
CNNs naturally exhibit a learning bias towards*?, which provides a further potential advantage over the method
proposed by*2.

Obtaining patient metadata is both time consuming and challenging, entailing numerous ethical hurdles.
Making such datasets public also brings numerous risks regarding patient anonymity. Distribution of patient
metadata as abstract representations, as proposed in the present paper, may be a way to circumvent many of the
challenges associated with the distribution of patient data and may encourage other research groups to share
much needed data with the research community.

Another limitation of the present study involves the limited size of the training set. The data used in our study
represents both chronic wound images and associated patient metadata. With just 1142 chronic wound images,
collected from 308 patients, this data is limited in size and may also exhibit bias due to the limited number of
patients. However, despite these limitations, factors such as images obtained at different appointments and at
different angles and orientations may to some extent circumvent the apparent biases. We also observe other
imbalances in the training set, particularly in terms of male and female distribution, and to a lesser extent,
median male and female patient age. Our research group is currently in the process of collecting additional
multimodal data from hospitals both in the UK and internationally with a future focus on utilising such datasets
in upcoming research which will build on the methods presented in the current study.

Preprocessing methods have been shown to be valuable techniques when training deep learning models
in medical imaging domains*-*’. However, we do not report on such methods in the present paper, as those
methods did not provide performance benefits over the current state-of-the-art for the test set used in our
experiments.
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The multimodal segmentation experiments conducted in the present paper were weakly supervised.
Therefore, we present these findings as preliminary research which may be used as a basis of comparison in
future studies when more patient data becomes available, allowing for more extensive multimodal segmentation
studies. We encourage other research groups working in multimodal medical imaging deep learning tasks to
further explore the concepts presented in the present paper.

Conclusion

In this work we propose the use of GRFs generated using patient metadata for use in a chronic wound
segmentation workflow. Our results demonstrate that via an ensemble of models, each trained on different GRFs
generated from different patient metadata categories, we were able to outperform the baseline experiment results
(without GRFs) in terms of IoU (+0.0229) and DSC (+0.0220). These experimental results were achieved using
weak supervision for the training data, in addition to the use of a training set that was significantly smaller
when compared to the test set (train set = 1142; test set = 2000). Our approach allows for the introduction of
patient data into multimodal CNN models with minimal adjustments to the architecture design. Additionally,
we demonstrate that the test results can be improved with the use of GRFs where only the training data has
associated metadata. Our findings indicate that the use of GRFs as an abstract representation of patient metadata
is a viable option in deep learning training workflows for segmentation, with potential utility in classification
and localisation tasks.

Data availability

The multimodal training and validation sets used in the present study are private and not yet publicly available.
For testing, we used the publicly available DFUC 2024 segmentation test set, which is available upon request by
emailing Prof. Moi Hoon Yap: m.yap@mmu.ac.uk
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