
A multi objective collaborative
reinforcement learning algorithm
for flexible job shop scheduling
Jian Li1, Shifa Li1,2, Pengbo He1,2 & Huankun Li1,2

To improve the scheduling efficiency of flexible job shops, this paper proposes a multi-objective
collaborative intelligent agent reinforcement learning algorithm based on weight distribution. First, a
mathematical model for flexible job shop scheduling optimization is established, with the makespan
and total energy consumption of the shop as optimization objectives, and a disjunctive-graph is
introduced to represent state features. Second, two intelligent agents are designed to address the
simultaneous decision making problems of jobs and machines. Encoder-decoder components are
implemented to facilitate state recognition and action output by the agents. Reward parameters are
computed based on temporal differences at various moments, constructing a multi-objective Markov
decision-process training model. Using hypervolume, set coverage and inverted generational distance
as evaluation metrics, the algorithm is compared with those proposed in other studies on standard
instances. The results demonstrate that the proposed method significantly outperforms other
algorithms in solving the flexible job shop scheduling problem. Finally, a real-world case study further
validates the effectiveness and practicality of the proposed algorithm.

Keywords  Flexible job shop scheduling problem, Collaborative agent reinforcement learning, Markov
decision process

Scheduling plays an irreplaceable role in flexible job shop processing and production. Proper shop floor
scheduling not only improves product conversion efficiency and maximises resource utilisation, it is also a key
means of reducing pollution emissions and production costs. Flexible Job Shop Scheduling Problem (FJSP) was
thus proposed, where FJSP breaks the constraint that only one machine can be chosen for each process, allowing
multiple machines to be selected for each process, and the processing times of the machines corresponding to
each process are also different1. Compared with traditional job shops, flexible job shops can better cope with
the processing needs of multi-variety and customized products. This flexibility and automation also make the
optimization of flexible job shop one of the challenges faced by researchers.

The FJSP is a classic multi-objective optimization problem. As production processes improve, enterprises
increasingly demand higher universality and precision in multi-objective optimization solutions. Multi-
objective decision-making methods, such as TOPSIS2, COPRAS3, and RSM4,5, are used to rank and select
optimal solutions from existing sets. Meanwhile, advancements in machine learning have led to the development
of intelligent multi-objective optimization algorithms to enhance solution quality. Notable examples include the
Genetic Algorithm (GA)6, Tabu Search (TS)7, Artificial Bee Colony (ABC)8, Whale Optimization Algorithm
(WOA)9, and Ant Colony Optimization (ACO)10.

Current FJSP solution methods fall into two categories: exact and approximate. Exact solution methods
search the entire solution space in the form of mathematical models for planning to find the optimal solution;
approximate solution algorithms include heuristic algorithms, meta-heuristic algorithms, and machine
learning algorithms to find the approximate optimal solution. Although these algorithms differ in their search
mechanisms and optimization strategies, they fundamentally explore combinations of workpiece and machine
sequences to enhance solution quality. However, group intelligence algorithms often sacrifice computational
efficiency for solution quality. For different case studies, they typically require recomputation, which often
results in excessively long solving times. In order to balance solution quality and cost, FJSP research has shifted
from traditional heuristic and meta-heuristic algorithms to machine learning-based approaches, such as Deep
Learning (DL) algorithms and Reinforcement Learning (RL) algorithms. In recent years, there has been an
increase in solving combinatorial optimisation problems by employing reinforcement learning methods, which

1School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471000, China. 2Shifa
Li, Pengbo He and Huankun Li contributed equally to this work. email: li_jian@haust.edu.cn

OPEN

Scientific Reports | (2025) 15:22838 1| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-03681-6&domain=pdf&date_stamp=2025-6-10

model the combinatorial optimisation problem as a Markov decision-making model, where the optimality is
achieved by continuous updating of the strategies.

Currently, most of the research on solving the FJSP using Reinforcement Learning focuses on the design and
improvement of the Markov decision process in the algorithm. Reinforcement Learning was first applied to shop
floor scheduling by Riedmiller11, who used Q-learning to train the agent by learning the shop floor’s scheduling
strategy, thus demonstrating the good applicability of reinforcement learning algorithms in solving shop floor
scheduling. Gui et al.12 used the Deep Deterministic Policy Gradient (DDPG) algorithm to train the agent, which
makes decisions based on the distribution of policies corresponding to different scheduling rules output by the
agent. The optimal scheduling strategy is then derived by selecting the most suitable policy among these. Du et
al.13 proposed a multi-objective FJSP mathematical model incorporating crane transportation and installation
time. This model utilizes weighted values to convert the two objectives of completion time and total workshop
energy consumption into a single objective, and employs Deep Q-network (DQN) for optimization. Liu et al.14
adopted a Double Deep Q-network (DDQN) algorithm and proposed specific state and action representations
to address the variability of dynamic scheduling. Song et al.15 represented the complex relationships between
operations and machines in the workshop using a disjunctive graph and proposed a novel heterogeneous graph
neural network architecture framework. This framework captures the global state during the scheduling process,
enabling a more effective solution to the FJSP. Luo et al.16 established a multi-objective FJSP mathematical
model and introduced two types of agents for optimization. One agent is responsible for selecting the scheduling
objectives, while the other agent optimizes those objectives. Wu et al.17 combined a multi-proximal policy
optimization algorithm with a multi-pointer network and proposed a reinforcement learning algorithm based
on policy and graph neural networks for solving the FJSP with the objective of minimizing the makespan. Jiang
et al.18 proposed a multi-objective proximal policy optimization algorithm that employs two types of agents for
optimization, and converted multi-objectives into single-objectives based on weight vectors to achieve multi-
objective flexible job shop optimisation. Li et al.19 combined convolutional neural networks with the proximal
policy optimization algorithm and designed a dual-channel state representation method to achieve the selection
of jobs and machines. Zhang et al.20 proposed a D5QN algorithm for solving the FJSP by combining five types of
deep reinforcement learning with maximum completion time as the optimisation objective. Xu et al.21 proposed
a hierarchical multi-agent deep reinforcement learning approach for distributed IEMS, introducing a novel
region model to achieve multi-agent action control. Hu et al.22 summarized multi-agent optimization algorithms
that integrate RL with the Attention Mechanism (AM). Chang et al.23 integrated Q-learning into a memetic
algorithm and proposed a Reinforcement Learning-enhanced Multi-Objective Memetic Algorithm based on
Decomposition (RL-MOMA/D) to solve the Flexible Distributed Resource-Constrained Flexible Job Shop
Scheduling Problem (F-DRCFJSP-WL). Li et al.24 proposed an end-to-end method based on Graph Attention
Networks (GAT) and RL, called the Multi-Objective Graph Attention Reinforcement Learning Scheduler (MO-
GARLS), to solve the MOFJSP. Shao et al.25 proposed a hybrid search algorithm that integrates leader-following
strategy, random flight and RL. Chen et al.26 utilized a Self-Attention Neural Network to extract state information
from global and local multi-dimensional data, improving decision-making accuracy, and employed Monte Carlo
Tree Search (MCTS) to enhance the training effectiveness and sample utilization of RL. The aforementioned
methods collectively demonstrate that, compared to conventional rule-based scheduling algorithms for solving
the FJSP, RL algorithms yield more satisfactory results.

However, current RL-based scheduling methods still face limitations, including low sample efficiency,
high training costs, challenges in multi-objective trade-offs and reward design, and difficulties in multi-agent
collaboration. Effectively integrating reinforcement learning with the FJSP to enhance RL’s capability in solving
FJSP remains a critical research challenge. This paper proposes a collaborative multi-agent reinforcement
learning scheduling method. To address the constraint characteristics of job sequencing and machine allocation
in FJSP, we design a hierarchical multi-agent architecture where distinct agents separately execute action
decisions for jobs and machines. Two different RL algorithms are employed to update and learn policies for
the job-specific and machine-specific agents. The global scheduling state is modeled using a disjunctive graph
representation, with graph neural networks (GNNs) introduced to extract state features. Compared to multi-
objective optimization methods such as NSGA-II and the Multi-Objective Whale Optimization Algorithm
(MOWOA), our approach achieves online decision-making through dynamic interactions between agents and
the environment. Our method leverages graph convolutional networks to extract node and edge features and
hierarchical collaborative learning to achieve significant improvements in dynamic adaptability, scalability, and
multi-objective trade-off precision.

The remaining sections of this paper are structured as follows. In “Flexible Job Shop Scheduling Problem
Description” section introduces FJSP and expounds its constraints. In “Mathematical Model Establishment”
section, a multi-objective mathematical model of FJSP with transport time and energy consumption is
established with maximum completion time and total energy consumption as the optimization objectives.In
“Model Solution” section, a multi-objective collaborative agent reinforcement learning (MOCARL) algorithm
is proposed in the form of weight distribution to solve the model, and two agents are designed to solve the
simultaneous decision of the jobs and machines in the FJSP. In “Case Study Analysis” section introduces the
production technology of guide roller and the application of MOCARL algorithm to solve the production
scheduling problem. In “Conclusion” section concludes the paper.

Flexible job shop scheduling problem description
The FJSP is described as follows: Consider a workshop with n jobs J = {J1, J2, .Jn}and m machines
M = {M1, M2, ., Mm}. Each job Ji consists of p processes, and there exist precedence constraints among the
processes of each job. For each processes, there are more than one machine available for selection. The processing
time and power consumption for different operations vary depending on the chosen machine, and the standby

Scientific Reports | (2025) 15:22838 2| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

power of different machines also differs27. Additionally, the transportation time between different machines for
different jobs varies as well. Therefore, constructing an accurate mathematical model for the FJSP must account
for constraints such as machine resource limitations, process sequence dependencies, and processing continuity
requirements. The mathematical model of FJSP should satisfy the following assumptions28:

	(1)	 All processing information for the jobs is known, and all jobs are available for processing at time 0.
	(2)	 The transportation time and energy consumption for the first processe of each job are considered.
	(3)	 At any given time, each machine can only perform one processe, and each processe is allowed to be pro-

cessed on only one machine.
	(4)	 All machines cannot be interrupted once processing has started.
	(5)	 There is no precedence relationship between the processes of different jobs, but there is a strict precedence

constraint for the processes of the same job, meaning each processe must begin only after the previous one
is completed.

	(6)	 There is only one final processing machine for each process for each job.
	(7)	 The end time of transportation for the previous processe of the same job is the start time of the subsequent

processe.
	(8)	 Transportation failures for jobs and machine failures during processing are not considered.

Mathematical model establishment
Based on the relevant constraints in FJSP, transportation constraints such as transportation time and energy
consumption are introduced. A mathematical model is established with the maximum completion time and
energy consumption as optimization objectives.

Maximum completion time mathematical model
The following are the constraint conditions for optimizing the maximum completion time:

There are back-and-forth constraints between processes on the same job:

	 Sij + Tijk × Dijk ⩽ Fij , i ∈ J, j ∈ p� (1)

	 Fij−1 + Ti(j−1)jmk ⩽ Sij � (2)

where Sij is the start time of the -th processe of job ; Tijk is the processing time of the -th processe of job on
machine k; Dijk is an integer variable that takes the value of 0 or 1, if the -th processe of job is processed on
machine k, it takes the value of 1; otherwise, it takes the value of 0; Fij is the completion time of the -th processe
of job ; Ti(j−1)jmk is the transportation time for moving job from machine Mm to machine Mk between the
(-1)-th and -th processes.

Each processe of every jobs can only be processed once:

	

m∑
k=1

Dijk = 1, i ∈ J, j ∈ p� (3)

When multiple processes are assigned to the same machine, the next processe can only begin after the current
processe has been completed.

	 Si′j′k ≥ Fijk, i, i′ ∈ J, j, j′ ∈ p, k ∈ M � (4)

where Si′j′k is the start time of the ’-th processe of job ’ on machine k.
All processes are non-stop once machined:

	 Fijk − Sijk = Tijk, ∀Dijk = 1� (5)

All parameter values are positive:

	 Sijk ⩾ 0 ; Fijk ⩾ 0 ; Ti(j−1)jmk ⩾ 0 ; Tijk ⩾ 0� (6)

The Gantt chart illustrating the processing time constraints is shown in Fig. 1. A mathematical model is
established with the objective of minimizing the maximum completion time.

	
f = min(max

1⩽i⩽n
(Ci))� (7)

where Ci is the completion time of processing of job .

Mathematical model of total energy consumption for shopfloor machining
During the flexible job shop machining process, the total energy consumption of the workshop can be divided
into three aspects: machine tool energy consumption, transportation energy consumption, and other auxiliary
energy consumption29. Among these, the optimization potential for other auxiliary energy consumption is
limited and difficult to achieve. Therefore, this paper analyzes the sources of energy consumption in workshop
production from the perspectives of machine tool machining and transportation.

Machine tool machining energy consumption:

Scientific Reports | (2025) 15:22838 3| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
Ec =

m∑
k=1

Ek
c =

m∑
k=1

P k
c × T k

c � (8)

where Ecis the total energy consumption of machine Mc; Ek
c is the energy consumption of workpieces processed

by machine Mc; P k
c is the processing power of workpieces by machine Mc; T k

c is the total processing time for
workpieces by machine Mc.

Machine tool standby energy consumption:

	
Eidle =

m∑
k=1

Ek
idle =

m∑
k=1

P k
idle × T k

idle� (9)

where Eidleis the total standby energy consumption; Ek
idleis the standby energy consumption of machine Mk ;

P k
idleis the standby power of machine Mk ; T k

idleis the total standby time of machine Mk .
Transportation energy consumption:

	
Etrans =

n∑
i=1

q∑
j=1

Ti(j−1)jmk
× Pi(j−1)jmk � (10)

where Etransis the total transportation energy consumption; Pi(j−1)jmkis the power for moving job from
machine Mm to machine Mk between the (-1)-th and -th processes.

The total energy consumption of the workshop is the sum of machining energy consumption, standby energy
consumption, and transportation energy consumption:

	

E = Ec + Eidle + Etrans

=
m∑
k

P k
c × T k

c +
m∑
k

P k
idle × T k

idle +
n∑

i=1

q∑
j=1

Ti(j−1)jmk
× Pi(j−1)jmk

� (11)

The processing constraints Gantt chart is shown in Fig. 2. A mathematical model is established with the makespan
and total workshop energy consumption as optimization objectives, as shown in formulas (12).

	

fmin =




T = min(max
1⩽i⩽n

(Ci))
E = Ec + Eidle + Etrans

=
m∑
k

P k
c × T k

c +
m∑
k

P k
idle × T k

idle +
n∑

i=1

q∑
j=1

Ti(j−1)jmk
× Pi(j−1)jmk

� (12)

The multi-objective problem is transformed into a single-objective problem by introducing the weight ω, which
is the proportion of the objective to maximise completion time.

	 fmin = Tmin × ω + Emin × (1 − ω)� (13)

Fig. 1.  Gantt chart for scheduling constraints on processing time.

Scientific Reports | (2025) 15:22838 4| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The disjunctive graph model for flexible job shop scheduling problem
The FJSP can be expressed using a disjunctive graphG = (O, C, D). Where Orepresents the set of vertices
corresponding to all operations, O = {Oij |∀i, j} ∪ {S, E}, S and E denote the start and end times of these
operations; Crepresents directed arcs, indicating precedence constraints between consecutive operations of
the same workpiece; Drepresents disjunctive arcs, connecting operations that can be processed on the same
machine. In Fig. 3, diagrams (a) and (b) represent the disjunctive graphs for a 3 × 3 FJSP instance before and
after scheduling. Figure 3a illustrates the static situation of the FJSP instance before scheduling, solid black
lines represent directed arcs, indicating the precedence constraints between different operations of the same
workpiece, while the colored dashed lines represent disjunctive arcs, with different colors corresponding to
different processing machines. In Fig. 3b, all operations have been assigned to machines and a processing order
has been established between the machines, presenting a complete FJSP scheduling solution.

Model solution
This paper focuses on the multi-objective optimization of the FJSP, considering transportation constraints,
with the objective of maximum completion time and total workshop energy consumption. In reinforcement
learning algorithms, agents typically learn by optimizing a single objective to achieve the best possible outcome.
Therefore, a Multi-Objective Collaborative Agent Deep Reinforcement Learning (MOCARL) algorithm is
designed to solve this problem. The proposed algorithm employs two distinct agents to handle job and machine
selection, respectively. Specifically, the job agent and machine agent are trained using the PPO algorithm and the
D3QN algorithm to enable simultaneous decision-making for jobs and machines in FJSP. In the FJSP framework,
The PPO algorithm restricts policy update magnitudes via its clip mechanism, ensuring training stability. The
D3QN algorithm addresses Q-value overestimation through Double DQN and Dueling architecture, enhancing
precision in machine tool selection. Compared to other algorithms—such as: Asynchronous Advantage Actor-
Critic (A3C), Soft Actor-Critic (SAC), Twin Delayed Deep Deterministic Policy Gradient (TD3), the PPO-
D3QN hybrid demonstrates complementary advantages in mixed action space handling, policy stability, and
multi-objective coordination.

Fig. 3.  FJSP disjunctive graph: (a) Case static graph; (b) Dispatching scheme diagram.

Fig. 2.  Gantt chart for scheduling constraints on processing energy consumption.

Scientific Reports | (2025) 15:22838 5| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Neighborhood policy parameter transfer method
The paper adopts a neighborhood policy parameter transfer method30 to decompose the multi-objective problem
into i uniformly distributed subproblems defined by weight vectors ω = [ω1, ω2, · · · , ωi]. As shown in Fig. 4a,
due to the similar weight values between them, two adjacent subproblems tend to have very similar optimal
solutions. As shown in Fig. 4b, neighborhood policy parameter transfer method optimizes these i subproblems
using a weighted-sum approach, solving for the corresponding optimal solution for each subproblem. The
process begins with ω1 = 0.1, generating an optimal policy parameter θ∗ω1 . Subsequently, the subproblem
for ω1 = 0.2is optimized by initializing the agent’s policy parameters with θ∗ω1 , thereby accelerating training
through knowledge transfer. After solving all i subproblems, a Pareto frontier is constructed to derive the
relatively optimal weight allocation. The detailed algorithmic workflow is summarized in Table 1.

The notable advantage of this neighborhood policy parameter transfer method lies in its modularity and ease
of use. This approach allows for more efficient training of the agent’s parameters in a short period. When solving
the FJSP with different weights using this method, it is only necessary to replace the subproblem parameters,
making it adaptable to different solving requirements. Once trained, the optimal policy can be directly deployed
without retraining the entire model.

Multi-objective Markov decision process description
The FJSP can be summarized as a continuous decision-making process with a total horizon of O steps. At each
discrete time step t, two agents operate together. First, the job agent indexes the operations that meet the current
processing conditions and performs a greedy decision to schedule one job. Then, the machine agent calculates
the priority of machines based on the operation of the selected job and ultimately selects a machine through

1: Input: Subproblem N, weight vector ω = [ω1, ω2, · · · , ωN] = [0.1, 0.2, · · · , N]

2: Initialize policy parameters θω1 = random

3: for i = 1:N do

4: if i = = 1 then

5: θωi = θω1

6: θ∗ωi ← MOCARL(θωi)

7: else

8: θωi = θ∗ωi−1

9: θ∗ωi ← MOCARL(θωi)

10: end if

11: end for

12: Return optimal solution N*、optimal policy parameters θ∗ωN

13: Construct the Pareto optimal front using the optimal solution N*

Table 1.  Neighborhood strategy parameter transfer method.

Fig. 4.  Explanation of neighborhood policy parameter transfer method: (a) Decomposition strategy
specification; (b) Description of policy parameter passing.

Scientific Reports | (2025) 15:22838 6| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

either random sampling or a greedy decision-making approach. This MOCARL-based approach can be modeled
using an MDP tuple (S, A, P, R, γ). The specific method is described as follows:

State settings
According to the constraints of the FJSP, the state stat time t is composed of a global state so

t and a local state
sm

t . The global state so
t is represented by a disjunctive graph G(t) = (O, C ∪ Du(t), D(t)) and a weight ω. Each

operation node in the disjunctive graph is composed of three features [CLB(Oij , st), ELB(Oij , st), I(Oij , st)].
I(Oij , st) is a binary variable, equal to 1 if operation Oij has been scheduled, and 0 otherwise. CLB(Oij , st)
and ELB(Oij , st)represent the final completion time and the final processing energy consumption of operation
Oijat state st respectively. If operation Oij has not been scheduled, CLB(Oij , st)and ELB(Oij , st)represent
the estimated completion time and the estimated processing energy consumption, respectively.

	 CLB(Oij , st) = CLB(Oij−1, st) + min(Tijk, k ∈ Ωij)� (14)

	 ELB(Oij , st) = ELB(Oij−1, st) + min(Pijk, k ∈ Ωij) × min(Tijk, k ∈ Ωij)� (15)

The local state sm
t is configured according to the specific agent. For the job agent, its local state sm

t,J is composed
of four parts [Tt(Oij), Tijk, Et(Oij), Eijk]. Tt(Oij)represents the final completion time after operation
Oij is processed; Tijkrepresents the processing time of each operation Oijon machine Mk . If machine Mkis
not compatible with the set of machines Ωij that can process Oij , the compatible average processing time is
calculated according to formulas (16). Et(Oij)represents the processing energy consumption after operation
Oij is completed at time ; Eijkrepresents the processing energy consumption of each operation Oijon the
corresponding machine Mk . If machine Mk is not compatible with the set of machines Ωij that can process Oij ,
the average processing energy consumption is calculated according to formulas (17). For the machine agent, the
local state sm

t,M is determined by the job selected by the job agent and includes two features [Tt(Mk), Et(Mk)
]. Tt(Mk)represents the processing end time of each machine in the set of compatible machines Ωij for the
operation selected by the job agent at time t; Et(Mk)represents the energy consumption of each machine in
Ωijat time t.

	
Tijk′ = 1

K

∑
k

Tijk, k ∈ K, K ∈ mij , Mk′ /∈ Ωij , Tijk ∈ Ωij � (16)

	
Eijk′ = 1

K

∑
k

Tijk× 1
k

∑
k

P k
c , k ∈ K, K ∈ mij , Mk′ /∈ Ωij , Tijk ∈ Ωij � (17)

Action selection
At time t, the action at consists of two parts, ao

t ∈ Ao
t and am

t ∈ Am
t , corresponding to the job agent’s selection

of the job to be processed and the machine agent’s selection of the machine for processing, respectively. Ao
t

represents the set of jobs available for processing by the job agent at time t; Am
t represents the set of machines

available for processing the selected operation, as determined by the machine agent at time t.

State transfer
At time , the job agent and machine agent each execute their respective actions ao

t and am
t . Subsequently, the

disjunctive graph is updated based on the current action set at, and the updated disjunctive graph is used as the
global state for the next time step t + 1, as shown in Fig. 5. At the same time, the processing end time Tt+1(Oij)
and processing energy consumption Et+1(Oij)of the operation Oij in the local state sm

t,J of the job agent are
updated as the local state sm

t+1,J of the job agent at the next time step. Tt+1(Mk)and Et+1(Mk)in the local state
sm

t,M of the machine agent are updated as the local state sm
t,M of the machine agent at the next time step.

Reward parameters
The reward parameters for both the maximum completion time and processing energy consumption
are calculated based on the differences between these two objectives at different time steps. The
final reward is computed in the form of a weighted distribution of these parameters, and both
the job agent and machine agent share this final reward. For the maximum completion time
RT (st, at) = HT (st) − HT (st+1), HT (st) represents the estimated maximum completion time at time

Fig. 5.  Example diagram of FJSP state transition.

Scientific Reports | (2025) 15:22838 7| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

t, HT (st) = maxi,j{CLB(Oij , st)}; for the final state sO, the completion time is H(sO) = Cmax. For
processing energy consumption RE (st, at) = HE (st) − HE (st+1), HE(st)represents the estimated total
job processing energy consumption at time t; for the final state sO, the processing energy consumption is
H(sO) = Ec. Regarding the final reward parameter R (st, at) = RT (st, at) × ω + RE (st, at) × (1 − ω).

Policy decision
For the multi-objective problem, the decomposition strategy is implemented using ω as the weight parameter,
transforming the multi-objective problem into single-objective problems with different values of ω. For different
weight values ω, using πω

θ = (ao, am|s)and θω = [θω
o , θω

m]corresponds to the scheduling strategies and strategy
parameters for the agents, respectively. The job agent and machine agent adopt their respective strategies
πω

θo
(ao|s)and πω

θm
(am|s, ao), where θω

o and θω
mare the strategy parameters for job selection and machine

selection, respectively. During the entire scheduling process, the strategies of both agents select actions ao
t from

the set of job Ao
t and actions am

t from the set of machines Am
t in the form of a probability distribution.

Encoder-decoder building blocks
An encoder-decoder component is set up for the job agent and machine agent to facilitate the agents’ recognition
of states and the output of actions. The encoder identifies information from the environment and outputs the
global state and local state, while the decoder outputs the respective actions based on the input states.

Job node encoding
A GNN variant, the Graph Isomorphic Network (GIN)31, is used to capture the features of the global state so

t
of the disjunctive graph at each time step t. The job state information includes both the global and local states,
where the global state so

t is represented in the form of the nodes G(t) = (O, C ∪ Du(t), D(t))of the disjunctive
graph. To reduce computational complexity, an “Arc Addition Strategy"32 is introduced, which ignores undirected
arcs in the initial state, as illustrated in Fig. 5. This method prevents the GIN from being unable to effectively
extract features due to excessive graph density during the disjunctive graph feature extraction process. In this
approach, the neighborhood set N (v)of node ν is connected using directed arcs, with Gt = (O, C ∪ Du(t))
representing the entire disjunctive graph. The extracted features of the FJSP disjunctive graph and the weight ω

are encoded through a fully connected layer, with the final output being the node embedding h(K)
v,t and the entire

graph pooling vector ht
G = 1/O

∑
v∈O hK

v,t. The local state sm
t,J is represented as Tt(Oij), Tijk, Et(Oij), Eijk

and encoded via a fully connected layer, outputting the embedded state vector hk
J,tand the pooling vector uk

J,t

at each discrete time step t.

Machine node encoding
The machine state does not utilize the graph structure of the global state. Instead, at each time step, node
information is represented by local features, without directed or undirected arcs connecting the nodes. The
machine state is encoded solely based on the machine’s local state information at time t. At discrete time t,
the machine’s local statesm

t,M is represented as Tt(Mk), Et(Mk)and encoded through a fully connected layer,
ultimately outputting the embedding vector hk

M,tfor each machine node and the pooling vector ut
M .

Decoder
Long Short-Term Memory networks (LSTM), a type of recurrent neural network33, is an important tool for
handling sequential data due to their ability to manage long-term dependencies, prevent gradient vanishing,
and offer flexibility and wide applicability. By applying LSTM in the decoder, it enhances the recognition of
states so

t and sm
t , and the execution of actions ao

t and am
t . The decoders of the two agents share the same network

structure, but their network parameters are independent of each other. During the decoding process, each agent
decodes based on its own encoding, outputting the selectable job score co

t,vand and the selectable machine score
cm

t,k :

	 co
t,v = LST Mθπo

([h(K)
v,t , ht

G , hk
J,t, uk

J,t]), v ∈ {1, · · · , O}� (18)

	 cm
t,k = LST Mθπm

([hk
M,t, ut

M]), k ∈ {1, · · · , m}� (19)

where [,] denotes the concatenation operation.
To prevent the agents from making decisions on already scheduled jobs and machines that cannot be

processed, the corresponding co
t,vand cm

t,k are both set to −∞. The Softmax function is then applied to co
t,vand

cm
t,kto normalize them, outputting the actions ao

t and am
t along with the corresponding probability distributions

pi(ao
t)and pk(am

t). Finally, the job agent selects the action with the highest probability based on a greedy
decision, while the machine agent selects an action according to the probability distribution of ε.

Algorithm flow implementation
The solution process corresponding to a single weight ω is shown in Fig. 6. As seen in the figure, in the MOCARL
algorithm, the job agent and machine agent are trained using the PPO and D3QN algorithms, respectively, to
optimize their respective network parameters. Both agents operate within the same environment, dynamically
sharing reward parameters during learning. Through gradient descent, they iteratively update their network
parameters, thereby achieving the dual objectives of collaborative training and multi-objective optimization.

Scientific Reports | (2025) 15:22838 8| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The algorithm flow for solving the Multi-Objective Flexible Job Shop Scheduling Problem (MOFJSP) using the
Multi-Objective Collaborative Agent Deep Reinforcement Learning (MOCARL) algorithm is shown in Table 2.

Experimental verification
Algorithm design
Before solving the MOFJSP, the MOCARL algorithm requires a systematic analysis of its hyperparameters to
enhance training quality. The algorithm primarily optimizes three critical hyperparameters: learning rate(lr),
number of Graph Isomorphism Network (GIN) layers, and number of hidden units per layer in the neural
network, to ensure faster convergence and improved stability. Following reference 30, Using the MK09 benchmark
as a reference dataset, we randomly generated FJSP instances of the same scale to form the training set. An
orthogonal experimental design34 was employed to train the model across all permutations and combinations
of the three hyperparameters. By comparing experimental results, the optimal hyperparameter configuration—
with learning rate set to 10− 4, GIN layers to 2, and hidden units per layer to 128—was ultimately selected.

To achieve high-quality results under the same conditions for the number of jobs, operations, and machines,
the algorithm is trained using randomly generated instances with fixed job, operation, and machine counts.
Publicly available FJSP benchmark datasets are used for testing. Based on the test results for different weights, the
algorithm retains strategies following a survival-of-the-fittest principle, calculated through weight percentage
evaluations:

	
f = T − T ∗

T ∗ × ω + E − E∗

E∗ × (1 − ω)� (20)

where f is the objective function; T is the current maximum completion time; E is the current total workshop
energy consumption. T ∗and E∗ represent the optimal maximum completion time and total energy consumption
retained from the previous iteration for the corresponding weight.

To validate the performance of the algorithm, the same dataset from reference35 is used for computation. This
dataset is based on the standard data from Brandimart’s MK01-MK07 instances, with further extensions to the
machine operating power, as shown in Table 3. The power in the table is measured in units corresponding to the
unit power per unit time in the MK01-MK07 data.

Table 4 from reference31 provides the data for the job transportation time between machines, indicating
the unit time required to transport a job from one machine to another. The unit power corresponding to the
transportation equipment per unit time is a constant value Ptrance = 1.89.

Comparison of example results
The Pareto solution set obtained after optimization is shown in Table 5. The table compares the Pareto
solution sets of MOCARL, MOWPA, and NSGA-II under the extended forms of the MK01-MK07 cases from
Brandimart. From the MK01 to MK07 benchmark instances, the problem scale progressively increases, with the
number of jobs and machines incrementally rising, thereby gradually escalating scheduling complexity. This
design transitions from idealized laboratory conditions to near-industrial-level complexity, aiming to evaluate
the effectiveness of innovative scheduling algorithms under scenarios that approximate real-world production
challenges. The two objectives in the Pareto solution set are represented as (x; y), where x denotes the maximum
completion time, and y represents the total workshop processing energy consumption.

Fig. 6.  MOCARL solving MOFJSP.

Scientific Reports | (2025) 15:22838 9| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Machine
Power M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Processing power 2 1.8 1.6 2.4 2.4 4.1 3.5 4.1 2.8 2.7

Standby power 0.5 0.6 0.3 0.4 0.4 0.6 0.8 0.9 0.3 0.4

Table 3.  Machine operating power meter.

1: Input: Weight vectorω = [ω1, ω2, · · · , ωi]、Training epochEt、Network update epochEs、Number of samples B, Memory D;
PPO algorithm: Train the actor network πω

θo
(parameterθω

o)、Execute the actor network πω

θold
o

(parameterθω,old
o)、critic networkvω

ϕ (parameterϕω)、Clip target parameters cp

、Entropy target parameters ce、Clip coefficient ∈、GAE parameterλ;

D3QN algorithm: Train the main network Qω
θm

(parameter θω
m)、target network Qω−

θ
−
m

(parameter θω−
m = θω

m)、Execution network πω

θold
m

、Select action probability parameters

ε、Network update interval C;

2: Initialize parameters: θω
m、θω

o 、ϕω ;θω,old
o , θω,old

m = θω
o , θω

m ;

3: For ω = ω1, · · · , ωi :

4: if i = = 1:

5: θωi
m = θω

m、θ
ωi
o = θω

o 、ϕωi = ϕω ;θωi,old
o = θω,old

o 、θ
ωi,old
m = θω,old

m ;

6: else:

7: θωi
m = θ

∗ωi−1
m 、θ

ωi
o = θ

∗ωi−1
o 、ϕωi = ϕ∗ωi−1 ;θωi,old

o = θ
∗ωi−1,old
o 、θ

ωi,old
m = θ

∗ωi−1,old
m ;

8: For e = 1,· · · ,Et :

9: Uniformly sample B samples from the FJSP samples;

10: For b = 1,· · · , B:

11: For t = 0,1,2,· · · ,O:

12: so
b,tadopts a greedy decision based onπ

ωi

θold
o

to execute ao
b,t ;

13: sm
b,t executes am

b,t with probability ε based on πωi

θold
m

;

14: Obtain rewardrb,t and next statesb,t+1 ;

15: ÂGAE
b,t = δb,t + (γλ)δb,t+1 + · · · + (γλ)T −t+1δb,T −1 ;

16: δb,t = rb,t + γV (sb,t+1) − V (sb,t);

17:
ζb,t(θo) =

πθo
(ao

b,t
|so

b,t
)

π
ωi

θold
o

(ao
b,t

|so
b,t

)

;

18:
yb,t =




rb,t + γQ
ωi

θ
−
m

(
sb,t+1, arg max

a′m
b,t

Q
ωi

θold
m

(
sb,t+1, a′m

b,t; θ
ωi,old
m

)
; θ

ωi
m

)

rb,t

;

19: End

20: Lb
CLIP (θo) = Êt[min{ζb,t(θo)ÂGAE

b,t , clip(ζb,t(θo), 1 − ϵ, 1 + ϵ)ÂGAE
b,t }];

21: Lb
E(θo) = Êt[Entropy(πθo (ao

b,t|s
o
b,t))];

22: Calculate actor-loss:L(θo) = cpLb
CLIP (θo) + ceLb

E(θo);

23: Calculate critic-loss:LMSE(ϕ) = Êt[MSE(rt, v̂ϕ(st))];

24: Calculate D3QN-loss: LossD3QN = (yb − Q
ωi
θm

(sm
b,t, am

b,t|θωi
m));

25: C-step update Qωi−

θ
−
m

=Q
ωi

θold
m

;

26: For step = 1,· · · ,Es :

27: Gradient descent L(θo)、LMSE(ϕ)、LossD3QN , update parameters θωi
o 、ϕωi、θ

ωi
m ;

28: End

29: End

30: πωi

θold
o

← π
ωi
θo

;πωi

θold
m

← Q
ωi
θm

;

31: End

32: return actor network π∗ωi
θo

in the PPO algorithm、network Q∗ωi
θm

 in D3QN;

33: End

34: Output: Corresponding actor networks πω
θo

in the PPO algorithm and main networks Qω
θm

in D3QN for different weights w.

Table 2.  MOCARL algorithm flow pseudocode.

Scientific Reports | (2025) 15:22838 10| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Based on the results in Table 5, the optimization metrics are evaluated using three indicators for multi-
objective optimization problems: Hypervolume(HV)36, Set Coverage (SC)37 and Inverted Generational Distance
(IGD)38.

Hypervolume
The Hypervolume metric is calculated as the volume of the region in the objective space bounded by the non-
dominated solution set obtained by the algorithm and a reference point.

	
HV = δ(

∪|S|

i=1
vi)� (21)

where δ denotes the Lebesgue measure, which quantifies the volume; |S| is the number of non-dominated
solutions in the Pareto set; vi represents the hypervolume dominated by the i-th solution and bounded by the
reference point. A higher HV value indicates better comprehensive performance of the algorithm, as it reflects
both convergence and diversity of the solution set.

Set coverage
The Set Coverage metric determines the dominance relationship between two solution sets by comparing their
mutual coverage.

	
C(F1, F2) = |{sol2 ∈ F2|∃sol1 ∈ F1 : sol1 ≻ sol2}|

|F2| � (22)

where F1and F2 represent the Pareto frontiers of two algorithms, and |F2|is the size of F2. The C(F1, F2)
denotes the percentage of solutions in F2 that are dominated by at least one solution in F1. A higher C(F1, F2)
value indicates that solution set F1 exhibits superior dominance over F2.

Algorithm NSGA-II MOWPA MOCARL

MK01 (49;546.97), (50;539.37), (51;532.77),
(52;524.79), (58;517.11)

(46;519.53), (52;516.62), (58;513.43), (47;522.11),
(51;524.00), (45;526.91), (44;541.58)

(45;521.53), (46;518.18), (48;514.71), (50;511.23),
(51;510.05), (52;508.67), (54;507.13)

MK02 (38;539.11), (39;526.44), (40;536.68),
(43;537.56), (44;532.98)

(37;526.91), (38;519.49), (39;514.91), (40;517.09),
(41;512.51), (42;512.11), (43;519.47), (44;514.89), (45;514.49)

(35;527.05), (36;526.37), (37;525.89), (38;518.39),
(39;513.18), (40;510.11), (41;508.65), (43;505.64),
(47;502.93)

MK03 (210;3462.53), (211;3439.23),
(217;3387.75), (218;3375.26),

(208;3452.10), (209;3446.66), (212;3418.42), (213;3393.43),
(215;3384.83)

(204;3448.98), (208;3441.01), (210;3440.78), (211;3398.08),
(213;3396.87), (214;3382.31), (217;3378.51), (219;3371.38)

MK04
(89;1357.97), (93;1337.47), (94;1313.83),
(100;1289.51), (102;1276.07),
(104;1259.23), (109;1251.44)

(87;1332.60), (89;1320.76), (90;1311.08), (91;1300.91)
(92;1270.43), (93;1267.99), (94;1259.91), (95;1242.32),
(100;1219.09), (101;1210.43), (110;1189.47)

(81;1362.48), (82;1354.08) (87;1330.14), (90;1307.89)
(96;1236.98), (99;1213.75) (100;1217.81), (104;1186.88),
(107;1164.71)

MK05 (182;1669.95), (183;1652.78),
(184;1644.08)

(180;1632.63), (183;1635.21), (185;1631.91), (186;1624.62),
(189;1627.40)

(178;1638.72), (180;1633.95), (183;1631.42), (185;1628.67),
(187;1623.52), (189;1619.41), (190;1617.89)

MK06 (133;1985.12), (134;1905.88),
(136;1911.03), (146;1915.67)

(108;1780.00), (109;1719.93), (110;1699.66), (111;1696.25),
(112;1689.56), (113;1688.45), (114;1695.01), (115;1693.90)

(96;1720.34), (98;1710.87), (99;1691.38), (100;1670.34),
(101;1660.31), (102;1658.02), (103;1654.81), (105;1640.17),
(108;1630.21)

MK07 (146;1766.53), (147;1754.86),
(149;1760.31), (150;1743.33)

(144;1745.22), (145;1730.03), (146;1729.03), (148;1722.65),
(152;1726.42), (160;1725.72), (162;1719.44)

(144;1741.51), (146;1740.71), (148;1738.24), (150;1733.21),
(153;1730.45), (154;1723.81), (157;1720.51), (159;1715.45)

Table 5.  MOCARL algorithm and other Pareto solution sets.

Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0 2 1 2 4 3 4 3 2 3

M2 2 0 2 2 3 2 3 4 4 2

M3 1 2 0 3 2 4 3 1 5 2

M4 2 2 3 0 4 4 3 4 3 2

M5 4 3 2 4 0 1 4 4 3 4

M6 3 2 4 4 1 0 4 3 2 2

M7 4 3 3 3 4 4 0 5 1 3

M8 3 4 1 4 4 3 5 0 4 1

M9 2 4 5 3 3 2 1 4 0 3

M10 3 2 2 2 4 2 3 1 3 0

Table 4.  Table of transport schedule.

Scientific Reports | (2025) 15:22838 11| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Inverted generational distance
The Inverted Generational Distance calculates the average distance between the solutions in the true optimal
Pareto set and the non-dominated solution set generated by the algorithm.

	
IGD(F1, F ∗) = 1

|F ∗|
∑

sol1∈F ∗

min
sol2∈F1

d(sol1, sol2)� (23)

where F ∗ represents the non-dominated solution set on the optimal Pareto front, and |F ∗|is the number of
|F ∗|. d(sol1, sol2) represents the Euclidean distance between solution sol1 from the optimal Pareto set and
solution sol2 from the solution set obtained by the algorithm. The smaller the IGD(F1, F ∗), the better the
convergence and distribution of the obtained solutions.

In the scheduling process described in this paper, since the values in the test cases are set according to actual
processing conditions, the true Pareto front is unknown. Therefore, the approximate optimal Pareto front is
constructed based on the results obtained from the three algorithms discussed in this paper.

The computational results of the three algorithms for HV, SC, and IGD metrics are presented in Tables 6, 7,
and 8, respectively. As shown in the tables, the results obtained by MOCARL dominate the MOWPA and NSGA-
II algorithms under the Brandimarte algorithm for most of the algorithms. In the comparative analysis with the
MOWPA, the MOCARL algorithm demonstrates robust performance across most benchmark instances. When
evaluated via the HV, MOCARL underperforms MOWPA only on the MK07 instance, while outperforming
it in all other cases. For SC, MOCARL achieves complete dominance over MOWPA on the MK02 and MK06
instances, though suboptimal dominance is observed on MK04 and MK07. In terms of the IGD, MOCARL
exhibits higher values than MOWPA on MK03 and MK04, reflecting poorer distribution quality of solutions in
these specific instances. In the comparative analysis with the NSGA-II, the MOCARL algorithm demonstrates
superior performance across all benchmark instances when evaluated via the HV metric. Furthermore, based
on SC results, MOCARL achieves dominance over NSGA-II in most instances, with only partial dominance

Algorithm IGD(MOCARL) IGD(MOWPA) IGD(NSGA-II)

MK01 0.4969 1.5272 1.4451

MK02 1.2784 1.4912 1.9911

MK03 5.3103 4.6614 5.7369

MK04 7.1667 3.9281 4.5960

MK05 0.9117 1.2720 1.3410

MK06 3.2157 3.8606 7.2534

MK07 1.7685 3.9155 1.9981

Table 8.  IGD of algorithm results under different examples.

Algorithm C(MOCARL, MOWPA) C(MOCARL, NSGA-II)

MK01 0.8571 1.0000

MK02 1.0000 1.0000

MK03 0.8000 0.7500

MK04 0.3636 1.0000

MK05 0.6000 1.0000

MK06 1.0000 1.0000

MK07 0.4286 1.0000

Table 7.  Set coverage algorithm results under different examples.

Algorithm HV(MOCARL) HV(MOWPA) HV(NSGA-II) Reference point

MK01 456.16 372.19 154.88 (58,546.97)

MK02 308.47 241.82 101.36 (47,539.11)

MK03 722.25 551.15 301.85 (219,3462.53)

MK04 2706.82 2616.2 1281 (110,1362.48)

MK05 473.48 405.96 172.39 (190,1669.95)

MK06 17246.29 11130.31 950.88 (146,1985.12)

MK07 667.74 747.13 313.41 (162,1766.53)

Table 6.  Hypervolume algorithm results under different examples.

Scientific Reports | (2025) 15:22838 12| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

observed in MK03, where a subset of solutions remains non-dominated. Regarding the IGD, MOCARL yields
higher values than NSGA-II solely in the MK04 instance, while outperforming NSGA-II in all other cases.

Both MOWPA and NSGA-II suffer from high per-iteration time complexity and require retraining for
different benchmark instances, resulting in limited adaptability. In contrast, MOCARL, leveraging its distributed
training architecture, exhibits superior computational efficiency, scalability, and robust adaptability to high-
dimensional objective spaces. Its collaborative multi-agent architecture makes it particularly well-suited for
complex scheduling tasks, enabling enhanced production efficiency and reduced operational costs. Comparative
analyses with MOWPA and NSGA-II thus confirm that MOCARL has good performance in solving multi-
objective problems.

Case study analysis
Taking the actual machining of a guide roller as an example, its structure includes three components: two
steel shafts, two aluminum plugs, and one roller. The steel shaft interacts with the bearing to achieve power
transmission, thereby driving the guide roller to rotate. The component shapes and manufacturing processes
of guide rollers of different models are generally the same. However, the differences lie in the shape of the shaft
head, the size of the roller, and the type of surface guide groove, as shown in Fig. 7. Thus, the corresponding
machining time and power consumption are not exactly the same for each model. There are 8 kinds of processing
steps of the guide roller, and these eight machining processes are subject to sequential processing constraints.
The process flow is shown in Fig. 8.

Taking a mechanical workshop of a printing enterprise in Shaanxi Province, China, as an example, the guide
rollers are processed on a production line where each workpiece is produced sequentially on the corresponding
machines according to the pre-determined process. Transitioning this to a flexible job shop production mode,
the workshop is equipped with 4 single-turret turning centers, 2 custom-made high-frequency induction
heating devices, 1 single-turret horizontal CNC lathe, 1 dual-turret horizontal CNC lathe, 2 custom micro-arc
oxidation production lines, and 1 dynamic balancing machine. Using the processing technology shown in Fig. 8,
the machining of five different types of guide rollers is taken as an example, with the process data shown in
Table 9. Each machine can only process one operation at a time.

Each machine is connected to a power meter for power recording, and power consumption is analyzed based
on the changes during different machine states such as startup, standby, and processing. Ultimately, the machine’s
power consumption is divided into two stages: standby power and processing power. The average power values
for each stage are calculated, resulting in the average processing power and standby power for each machine. The
values for the average standby power and average processing power of different machines are shown in Table 10.

AGV carts are used for transportation between machines in the workshop. The transportation times of the
AGV carts between different machines are recorded and shown in Table 11, representing the time required
to transport a workpiece from machine Mn to machine Mm. The transportation power of the AGV carts is
represented by a constant value, with Ptrans=0.15KW.

Fig. 8.  Process flow of guide roller processing.

Fig. 7.  Structural diagram of guide roller.

Scientific Reports | (2025) 15:22838 13| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The optimal Pareto solution sets under different optimized weight values are shown in Table 12, and the
Pareto front curve is plotted as shown in Fig. 9. In the figure, the dots represent the Pareto optimal solution
set obtained by the MOCARL algorithm, and the solution corresponding to ω = 0.6 has the best effect, and
its scheduling Gantt chart is shown in Fig. 10. In the figure, the X-axis represents processing time, while the
Y-axis denotes different machines. Distinct colors are used to denote different workpieces. For tasks sharing

Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

M1 0 1 1.6 2.5 1.2 2.6 – – – – –

M2 1 0 0.6 1.5 1.5 1.4 – – – – –

M3 1.6 0.6 0 0.9 1.8 1 – – – – –

M4 2.5 1.5 0.9 0 2.2 0.6 – – – – –

M5 1.2 1.5 1.8 2.2 0 0.5 0.4 0.6 – – –

M6 2.6 1.4 1 1 0.5 0 2 2.5 – – –

M7 – – – – 0.4 2 0 0.5 1 1.5 –

M8 – – – – 0.6 2.5 0.5 0 1.3 1.8 –

M9 – – – – – – 1 1.3 0 0.5 1

M10 – – – – – – 1.5 1.8 0.5 0 1.5

M11 – – – – – – – – 1 1.5 0

Table 11.  AGV trolley transportation schedule.

Machine M1 M2 M3 M4 M5 M6

Average processing power (kW) 0.61 0.76 0.61 0.71 1.21 1.47

Average standby power (kW) 0.11 0.21 0.11 0.21 0.31 0.12

Machine M7 M8 M9 M10 M11

Average processing power (kW) 0.52 0.64 1.23 1.31 0.21

Average standby power (kW) 0.12 0.10 0.11 0.12 0.09

Table 10.  Equipment processing power parameters.

Process Machine

Processing times for different types of guide
roller products/min

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

1

M1 8 7 6 7 8 6 6 9 9 8

M2 9 8 8 9 7 9 9 8 7 8

M3 7 7 7 9 7 7 7 8 7 7

M4 9 9 7 7 9 9 8 7 8 9

2

M1 4 4 4 8 7 6 5 4 6 4

M2 6 5 5 6 5 4 5 6 4 7

M3 6 7 6 4 2 3 9 8 8 7

M4 5 9 2 3 8 8 4 7 6 7

3
M5 8 9 7 5 6 8 9 6 8 7

M6 6 8 7 6 8 7 7 8 6 6

M1 9 7 8 6 7 8 7 8 9 9

M2 9 8 9 8 8 7 8 9 7 7

M3 9 9 8 9 8 7 9 7 8 9

M4 8 9 8 7 9 8 9 8 7 9

5
M5 12 12 16 13 10 17 16 18 15 16

M6 13 10 15 12 10 16 15 19 14 17

6
M7 12 13 13 15 13 15 12 13 13 13

M8 13 14 12 14 14 12 11 14 14 12

7
M9 14 16 15 17 14 13 14 15 16 15

M10 13 15 14 16 16 15 13 15 15 14

8 M11 8 7 6 8 5 4 6 8 6 7

Table 9.  Workpiece processing technology data.

Scientific Reports | (2025) 15:22838 14| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

the same color, the length of the task block corresponds to the processing time of the current operation for the
corresponding workpiece, and its position on the X-axis indicates the start and end times of that operation.

Conclusion
This paper proposes a multi-objective collaborative agent reinforcement learning algorithm for the flexible job
shop scheduling problem, and optimizes the scheduling strategy by comprehensively considering the makespan
and total energy consumption. Two agents are designed for the selection of workpieces and machines in FJSP,
and the PPO algorithm and D3QN algorithm are used to train the agents respectively to solve the model. The
MK01-MK07 instances in Brandimarte are used for testing, and the training results are compared with those of
the MOWPA and NSGA-II algorithms. This algorithm has good performance in the process of solving multi-
objective problems. When this algorithm is applied to the machining example of guide rollers, compared with
the machining scheme of the traditional assembly line, the optimized scheduling scheme has reductions in both
the makespan and machining energy consumption. In dealing with FJSP, the advantages of this algorithm are
as follows:

	1.	 This algorithm model can be flexibly applied to the flexible shop scheduling problem in actual production. As
long as the corresponding production data is provided, the corresponding optimal scheduling strategy can
be obtained.

	2.	 After the training of this algorithm model is completed, the model can be stored, and the optimal result can
be solved in a short time when dealing with other instances.

	3.	 The proposed algorithm further exhibits strong scalability and is applicable to manufacturing systems char-
acterized by multi-device collaboration, frequent dynamic disturbances, and multi-objective conflicts, such
as those in the food, pharmaceutical, and automotive manufacturing industries.

The MOCARL algorithm proposed in this paper is mainly used for static scheduling. However, its current
framework requires enhancements to address dynamic disruptions such as machine failures, earlier delivery

Fig. 9.  The optimal pareto solution set under different weights.

ω Makespan (min) ETotal(kW) EProcessing(kW) EStandby(kW) ETransportation(kW)

0.1 156.4 12.69066 11.30466 1.14050 0.24550

0.2 159.0 12.56568 11.36233 0.96860 0.23475

0.3 160.9 12.51508 11.29633 0.99225 0.22650

0.4 161.5 12.45393 11.24650 0.97693 0.23050

0.5 161.9 12.40213 11.25866 0.89622 0.24725

0.6 162.9 12.27496 11.11183 0.91388 0.24925

0.7 167.6 12.26503 11.06832 0.94257 3.21414

0.8 170.6 12.26025 11.03050 0.97350 0.25625

0.9 174.5 12.16811 11.00966 0.92770 0.23075

Table 12.  Pareto optimal solution set under different weight assignments.

Scientific Reports | (2025) 15:22838 15| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

deadlines, and new order insertions. Future work will focus on integrating the algorithm with dynamic shop floor
environments by incorporating stochastic perturbations into adversarial training within simulated settings. For
instance, introducing probabilistic fluctuations in processing times (e.g., random upward/downward variations)
could refine the algorithm’s adaptability to real-world uncertainties, thereby improving its capability in dynamic
scheduling scenarios.

Data availability
Data will be provided by the corresponding author upon reasonable request by the reader.

Received: 18 January 2025; Accepted: 21 May 2025

References
	 1.	 Tian, Y., Tian, Y. N. & Liu, X. Algorithms for solving flexible job shop scheduling problems overview of algorithms for solving

flexible job shop scheduling problems. J. Yan’an University(Natural Sci. Ed. 003, 040 (2021).
	 2.	 Singh, N. K., Rathore, R. K., Sinha, A. K. & Narayan, H. Multiobjective optimization of process parameter subjected to end milling

process of AA7075 alloy through TOPSIS method. AIP Conf. Proc. 3111, 060004. https://doi.org/10.1063/5.0221440 (2024).
	 3.	 Singh, N. K., Balaguru, S., Rathore, R. K., Namdeo, A. K. & Kaimkuriya, A. Multi-Criteria Decision-Making technique for optimal

material selection of AA7075/SiC composite foam using COPRAS technique. J. Mines Met. Fuels. 71 (10), 1374–1379. ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​1​8​3​1​1​/​j​m​m​f​/​2​0​2​3​/​3​4​0​0​5​​​​ (2023).

	 4.	 Krishna, R. & Gupta, P. K. Optimizing pressure drop in 90° bend horizontal pipelines for dense slurry flow: a response surface
methodology approach. Proc. Inst. Mech. Eng. Part E https://doi.org/10.1177/09544089241271765 (2024).

	 5.	 Gupta, P. K., Kumar, N. & Krishna, R. Near-wall flow characteristics in pipe Bend dense slurries: optimizing the maximum sliding
frictional power. Int. J. Sediment. Res. 39 (3), 435–463. https://doi.org/10.1016/j.ijsrc.2024.04.002 (2024).

	 6.	 OuYang, Z. The research and application on job shop scheduling problem based On GA. Zhejiang Umiv. (2004).
	 7.	 Serna, N. J. E. A global-local neighborhood search algorithm and Tabu search for flexible job shop scheduling problem. PeerJ Com.

Sci. 7, e574. https://doi.org/10.7717/peerj-cs.574 (2021).
	 8.	 Zhang, H. N., Tian, X. P., Shun, M. K. & Research on flexible job shop scheduling based on improved artificial bee colony algorithm.

M&E Eng. Technol. 53 (01), 106–109 + 129. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​3​9​6​9​/​​j​.​i​s​s​​n​.​1​0​0​9​​-​9​4​9​2​.​​2​0​2​4​.​0​​1​.​0​2​4 (2024).
	 9.	 Ning, T., Huang, M. & Liang, X. A novel dynamic scheduling strategy for solving flexible job shop problems. J. Amb Intel Hum.

Comp. 7 (5), 721–729. https://doi.org/10.1007/s12652-016-0370-7 (2016).
	10.	 Wu, J., Wu, G. D. & Wang, J. J. Flexible job shop scheduling problem based on hybrid ACO algorithm. Int. J. Simul. Model. 16 (3),

497–505. https://doi.org/10.2507/IJSIMM16(3)CO11 (2017).
	11.	 Riedmiller, S. & Riedmiller, M. A neural reinforcement learning approach to learn local dispatching policies in production

scheduling. IJCAI’99 2, 764–769 (1999).
	12.	 Gui, Y., Tang, D., Zhu, H., Zhang, Y. & Zhang, Z. Dynamic scheduling for flexible job shop using a deep reinforcement learning

approach. Comput. Ind. Eng. 180, 109255. https://doi.org/10.1016/j.cie.2023.109255 (2023).
	13.	 Du, Y., Li, J., Li, C. & Duan, P. A reinforcement learning approach for flexible job shop scheduling problem with crane transportation

and setup times. IEEE Trans. Neural Networks Learn. Syst. 35 (4), 5695–5709. https://doi.org/10.1109/TNNLS.2022.3208942
(2022).

	14.	 Liu, R., Piplani, R. & Toro, C. Deep reinforcement learning for dynamic scheduling of a flexible job shop. Int. J. Prod. Res. 60 (13),
4049–4069. https://doi.org/10.1080/00207543.2022.2058432 (2022).

Fig. 10.  Scheduling Gantt chart for w = 0.6.

Scientific Reports | (2025) 15:22838 16| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

https://doi.org/10.1063/5.0221440
https://doi.org/10.18311/jmmf/2023/34005
https://doi.org/10.18311/jmmf/2023/34005
https://doi.org/10.1177/09544089241271765
https://doi.org/10.1016/j.ijsrc.2024.04.002
https://doi.org/10.7717/peerj-cs.574
https://doi.org/10.3969/j.issn.1009-9492.2024.01.024
https://doi.org/10.1007/s12652-016-0370-7
https://doi.org/10.2507/IJSIMM16(3)CO11
https://doi.org/10.1016/j.cie.2023.109255
https://doi.org/10.1109/TNNLS.2022.3208942
https://doi.org/10.1080/00207543.2022.2058432
http://www.nature.com/scientificreports

	15.	 Song, W., Chen, X., Li, Q. & Cao, Z. Flexible job-shop scheduling via graph neural network and deep reinforcement learning. IEEE
Trans. Industr Inf. 19 (2), 1600–1610. https://doi.org/10.1109/TII.2022.3189725 (2022).

	16.	 Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 91
(21), 106208. https://doi.org/10.1016/j.asoc.2020.106208 (2020).

	17.	 Wu, H. Z., Li, Y. W. & Xie, H. Improved proximal policy optimization algorithm for solving flexible job shop scheduling problem.
CIMS 1 (2023).

	18.	 Jiang, Q. & Wei, J. X. Real-time scheduling method for dynamic flexible job shop scheduling. J. Syst. Simul. 36 (07), 1609–1620. ​h​t​
t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​6​1​8​2​​/​j​.​i​s​​s​n​1​0​0​4​​7​3​1​x​.​j​​o​s​s​.​2​3​​-​0​3​8​5 (2024).

	19.	 Li, X. Z., Li, Y. W. & Xie, H. Deep reinforcement learning algorithm based on CNN to solve flexible job-shop scheduling problem.
CEA 60 (17), 312–320. https://doi.org/10.3778/j.issn.1002-8331.2305-0518 (2024).

	20.	 Zhang, K., Bi, L. & Jiao, X. G. Research on flexible job-shop scheduling problem with integrated reinforcement learning Algoriyhm.
China Mech. Eng. 34 (02), 201–207. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​3​9​​6​​​9​/​j​.​i​​​s​s​n​.​​1​​0​0​4​-​​1​​3​2​X​​.​2​​0​​2​3​.​0​2​.​0​1​0 (2023).

	21.	 Xu, X. et al. Collaborative optimization of multi-energy multi-microgrid system: A hierarchical trust-region multi-agent
reinforcement learning approach. Appl. Energy. 375, 123923. https://doi.org/10.1016/j.apenergy.2024.123923 (2024).

	22.	 Hu, K. et al. An overview: Attention mechanisms in multi-agent reinforcement learning. Neurocomputing 598, 128015. ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​n​e​u​c​o​m​.​2​0​2​4​.​1​2​8​0​1​5​​​​ (2024).

	23.	 Chang, X., Jia, X. & Ren, J. A reinforcement learning enhanced memetic algorithm for multi-objective flexible job shop scheduling
toward industry 5.0. Int. J. Prod. Res. 63 (1), 119–147. https://doi.org/10.1080/00207543.2024.2357740 (2025).

	24.	 Li, Y., Zhong, W. & Wu, Y. Multi-objective flexible job-shop scheduling via graph attention network and reinforcement learning. J.
SUPERCOMPUT. 81 (1), 1–25. https://doi.org/10.1007/s11227-024-06741-2 (2025).

	25.	 Shao, C. et al. A random flight–follow leader and reinforcement learning approach for flexible job shop scheduling problem. J.
SUPERCOMPUT. 81 (3), 478. https://doi.org/10.1007/s11227-025-06935-2 (2025).

	26.	 Chen, L. et al. Real-time stochastic flexible flow shop scheduling in a credit factory with model-based reinforcement learning. Int.
J. Prod. Res. 63 (3), 845–864. https://doi.org/10.1080/00207543.2024.2361441 (2025).

	27.	 Zhao, S. Bilevel neighborhood search hybrid algorithm for the flexible job shop scheduling problem. J. Mech. Eng. 51 (14), 175–
184. https://doi.org/10.3901/JME.2015.14.175 (2015).

	28.	 Liu, X. B. & Lv, Q. Flexible job shop scheduling based on immune clonal selection principle. Modular Mach. Tool. Automatic
Manuf. Technique. 01, 5–10 (2008).

	29.	 Shi, J. L., Liu, F., Xu, D. J. & Chen, G. R. Decision model and practical method of Energy—saving in NC machine tool. China Mech.
Eng. 20 (11), 1344–1346 (2009).

	30.	 Li, K., Zhang, T. & Wang, R. Deep reinforcement learning for Multi-objective optimization. IEEE T CYBERNETICS. 3, 1–12.
https://doi.org/10.1109/TCYB.2020.2977661 (2019).

	31.	 Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? ICLR https://doi.org/10.48550/arXiv.1810.00826
(2019).

	32.	 Zhang, C. Learning to dispatch for job shop scheduling via deep reinforcement learning. Adv. Neural Inf. Process. Syst. 33, 1621–
1632. https://doi.org/10.48550/arXiv.2010.12367 (2020).

	33.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9 (8), 1735–1780 (1997).
	34.	 Li, J. Research on flexible job shop scheduling method based on collaborative agent reinforcement learning algorithm. J. Syst.

Simul. 23 0978. https://doi.org/10.16182/j.issn1004731x.joss (2023).
	35.	 Zhang, C. Y. Research of flexible job shop scheduling problem based on energy consumption optimization. HAUST (2022).
	36.	 Zhang, K., Zhao, S., Zeng, H. & Chen, J. Two-Stage archive evolutionary algorithm for constrained Multi-Objective optimization.

Mathematics 13 (3), 470–470. https://doi.org/10.3390/math13030470 (2025).
	37.	 Zitzler, E. & Thiele, L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE T

EVOLUT COMPUT. 3 (4), 257–271. https://doi.org/10.1109/4235.797969 (1999).
	38.	 Czyzzak, P. & Jaszkiewicz, A. Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial

optimization. J. Multi-Criteria Dec. 7 (1), 34–47. (1998).

Acknowledgements
This research was Supported by the National Key R&D Program of China (No.2023YFB4605100); and the Sci-
ence and Technology Research Program of He’nan Province (No.212102210356).

Author contributions
Conceptualization, J.L.; methodology, S.L. and H.L.; software, S.L. and P.H.; validation, J.L. and H.L.; formal
analysis, J.L.; date curation, P.H.; resources, J.L.; visualization, S.L. All authors have reviewed and agreed to the
published version of the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports | (2025) 15:22838 17| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

https://doi.org/10.1109/TII.2022.3189725
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.16182/j.issn1004731x.joss.23-0385
https://doi.org/10.16182/j.issn1004731x.joss.23-0385
https://doi.org/10.3778/j.issn.1002-8331.2305-0518
https://doi.org/10.3969/j.issn.1004-132X.2023.02.010
https://doi.org/10.1016/j.apenergy.2024.123923
https://doi.org/10.1016/j.neucom.2024.128015
https://doi.org/10.1016/j.neucom.2024.128015
https://doi.org/10.1080/00207543.2024.2357740
https://doi.org/10.1007/s11227-024-06741-2
https://doi.org/10.1007/s11227-025-06935-2
https://doi.org/10.1080/00207543.2024.2361441
https://doi.org/10.3901/JME.2015.14.175
https://doi.org/10.1109/TCYB.2020.2977661
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.2010.12367
https://doi.org/10.16182/j.issn1004731x.joss
https://doi.org/10.3390/math13030470
https://doi.org/10.1109/4235.797969
http://www.nature.com/scientificreports

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:22838 18| https://doi.org/10.1038/s41598-025-03681-6

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A multi objective collaborative reinforcement learning algorithm for flexible job shop scheduling
	﻿Flexible job shop scheduling problem description
	﻿Mathematical model establishment
	﻿Maximum completion time mathematical model
	﻿Mathematical model of total energy consumption for shopfloor machining
	﻿The disjunctive graph model for flexible job shop scheduling problem

	﻿Model solution
	﻿Neighborhood policy parameter transfer method
	﻿Multi-objective Markov decision process description
	﻿State settings
	﻿Action selection
	﻿State transfer
	﻿Reward parameters
	﻿Policy decision

	﻿Encoder-decoder building blocks
	﻿Job node encoding
	﻿Machine node encoding
	﻿Decoder

	﻿Algorithm flow implementation
	﻿Experimental verification
	﻿Algorithm design
	﻿Comparison of example results
	﻿Hypervolume
	﻿Set coverage
	﻿Inverted generational distance

	﻿Case study analysis
	﻿Conclusion
	﻿References

