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Edge corrugated, notched graphene nanoribbons (GNRs) exhibit intriguing electronic properties 
distinct from their straight counterparts, thereby offering suitable candidates for the exploration of 
electron transport in future carbon-based nanoelectronic devices. Here, we utilize the tight binding 
(TB) method to investigate the electronic structure and quantum transport in gulf- and chevron-type 
notched GNRs. Consistent with earlier TB calculations, we reaffirm that the third-nearest neighbour 
hopping parameter is responsible for the electronic braiding effect and zero-energy conductance 
channels in straight zigzag GNRs (ZGNRs), here demonstrated for 2ZGNR and 5ZGNR. However, for 
notched gulf- or chevron-type GNRs, generated by selectively eliminating carbon atoms at either one 
or both ZGNR edges, the electronic band structures can be radically changed from semiconductor to 
metallic, with near-Fermi dispersive or flat bands. For the explored asymmetrically notched chevron-
type GNRs hosting a metallic flat band at the Fermi energy, unlike straight ZGNRs, the electronic 
transport was found to depend primarily on the second-nearest neighbour, exhibiting a sharp 
conductance peak (of 1 unit conductance) at the Fermi energy. This result is found to be generic for 
all asymmetric chevron-type GNRs, irrespective of the nanoribbon width, and also for edge-notched 
armchair GNRs hosting similarly metallic flat bands. For the metallic symmetrically notched chevron-
type GNR, however, the near-Fermi dispersive bands lead to multiple conductance channels around 
the Fermi energy, with fine structure dependence on the number of hopping parameters utilized. 
These results are analyzed with respect to the spatial distribution of the metallic states and how they 
transverse across the ZGNR leads. The present study should have large implications on the exploration 
of electronic transport in carbon-based nanoelectronic devices.

Since the pioneering work by Novoselov et al.1 on the exfoliation of a single graphite layer, namely graphene, research 
on two-dimensional (2D) materials has rapidly developed. Among currently existing potential 2D materials2–6, 
graphene - the atomically thick planar 2D sheet of carbon atoms arranged in a honeycomb lattice7—remains a 
promising frontier candidate for diverse applications including carbon-based nanoelectronics, given its unique 
π electronic structure8. For operational nanoelectronic devices based on graphene, a band gap engineering is 
essential, for which different approaches have been envisioned, including the symmetry breaking of carbon sub-
lattices9, but most efficiently through the fabrication of 1D and 0D graphene nanostructurues, such as graphene 
nanoribbons (GNRs), quantum dots, nanographene structures (e.g., triangulene), etc.10–15. GNRs, in particular, 
facilitate the generation of distinct electronic structures and confinement-induced energy gaps that are tunable 
through the width of the nanoribbon and the edge termination16–18. Likewise, edge-corrugated GNRs, in the form 
of chevrons or zigzags, for example19–25, were found to induce exotic electronic properties such as topological 
end states, thereby widening the range of applications of graphene-based topological materials26–28. While the 
edge-corrugated GNRs in the form of chevrons made out of pure carbon atoms (pristine (undoped) graphene 
nanoribbons (p-GNRs)) possess unique electronic and magnetic properties29, the fabrication of nitrogen-doped 
graphene nanoribbons (N-GNRs) led to promising heterostructures physically identical to the traditional p-n 
junctions and suitable for photovoltaics applications30. This breakthrough motivated further theoretical and 
experimental investigations31,32. Also, the fabrication of the nitrogen-rich graphene nano chevrons led to 
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promising structures with electronic properties which may be tuned both by choosing the precursor and the way 
of linking them to produce the periodic structure20. These nanoscale carbon structures are expected to exhibit 
appealing quantum transport effects and applications33, such as quantum blockade34, single electron transistor 
based on a width-modulated GNRs35, graphene-based charge detectors36, etc.

For the exploration of the distinct electronic properties of these graphene-based nanostructured materials, 
the first and higher nearest neighbour tight binding (TB) method has played a central role, given its efficient 
computational time and transparency to graphene physics as offered by the control over the hopping 
parameters37,38. For instance, TB band structure calculations performed for narrow - a couple of phenyl ring 
wide - zigzag GNRs (ZGNRs) revealed the presence of valence and conduction band braiding for the edge state39, 
leading to a number of incommensurate Dirac points, in agreement with density functional theory (DFT) and 
electron plane wave expansion (EPWE) calculations39,40. Following TB analysis, it was revealed that the reported 
braiding effect is only relevant for narrow ZGNRs and is solely induced by the third-nearest neighbour hopping 
(t′′). Interestingly, this peculiar braiding phenomenon was also shown to open new conductance channels at/
near the Fermi energy in TB transport calculations, where the conductance magnitude and the spanned energy 
range are tunable with the ZGNR’s width39. We note that these zero-energy conductance channels, which assume 
integer multiples of the quantum conductance (2e2/h unit) for these narrow and straight ZGNRs are not present 
for first nearest neighbour (t) or second-nearest neighbour (t′) TB calculations39.

Edge-corrugated ZGNRs, notched in the form of gulf, chevron, or zigzag, for example, have shown to exhibit 
electronic properties distinct from their straight ZGNR counterparts, revealing semiconducting or metallic band 
structures according to EPWE calculations40. In this work we offer alternative ways to corrugate ZGNRs either 
to open a band gap or to induce a near-Fermi dispersive or flat bands. These induced bands should have large 
implications on quantum transport and thus, these notched ZGNRs could be used in nanoelectronic devices. 
In addition, we explore the effect of nearest neighbor hopping parameters, in TB calculations, on the electronic 
properties and electron transport in ZGNRs notched in the form of a gulf or chevron. Specifically, we do not 
observe hopping-dependent braiding effects in the explored structures, irrespective of the number of nearest 
neighbour hopping parameters utilized. Importantly, unlike the conductance of straight ZGNRs, we find that 
the second-nearest neighbour (t′) is solely responsible for the conductance in these notched nanoribbons leading 
to electron transport, of one unit quantum conductance, in asymmetrically notched chevron-type ZGNRs 
featuring flat band at the Fermi energy. This sharp zero-energy conductance goes to zero for t′ = 0, even when 
t′′ is turned on. We attribute this distinction between straight and notched ZGNRs to the spatial distribution of 
the edge metallic states at the GNR-lead interface, which imposes some constraints on the hopping parameters 
required to allow for electron transmission. These findings can be generalized to include all chevron-type 
ZGNRs, irrespective of their width, as well as armchair GNRs (AGNRs) hosting metallic flat bands induced by 
specific edge corrugation, as demonstrated here for the sawtooth AGNR41.

Results and discussion
Figure 1 depicts the TB atomistic models for selected straight and edge-notched ZGNRs attached, at both ends, 
to metallic ZGNR leads for conductance calculations. In Fig. 1A,B the atomic structures of typical straight 
2ZGNR (A) and 5ZGNR (B) are given, each attached at their termini to ZGNR leads (lead 0 and lead 1) of 
the same type/width, thereby mimicking the case of infinite ZGNRs. By selectively removing carbon atoms at 
both edges of the 5ZGNR, we arrive at the notched nanoribbon structure, depicted in Fig. 1C, which we shall 
call hereafter gulf-type GNR (g-GNR). This gulf-type structure has been experimentally synthesized utilizing 
molecular deposition onto the catalytic Au(111) surface42,43. Despite the well-known metallic edge state of the 
parent 5ZGNR, this corrugated nanoribbon was found to exhibit a semiconducting electronic structure with 
a wide band gap experimentally measured by scanning tunneling spectroscopy (STS) and supported by DFT 
calculations42.

For the forthcoming conductance calculations, the g-GNR—and in fact all other edge corrugated structures 
discussed next—are attached to 5ZGNR leads given their same effective width. To further explore different 
viable edge termination scenarios and their impact on the electronic band structure and subsequent electron 
transport, we envisioned breaking the edge symmetry by removing additional carbon atoms at either side 
of the g-GNR structure to obtain the new asymmetric polymer depicted in Fig. 1D, which we call hereafter 
asymmetric chevron GNR (ch-GNR). Finally, symmetrizing the previous chevron nanoribbon, by eliminating 
an additional carbon atom at the other polymer side, we generate the symmetric chevron ch-GNR shown in Fig. 
1E, which has the same effective arm width as the 2ZGNR. This chevron-type polymer is expected to feature a 
dispersive metallic state near the Fermi energy following earlier EPWE calculations40. For reliable conductance 
simulations, sufficiently large GNRs, consisting of multiple unit cells, are used in order to capture the electronic 
characteristics of infinite polymers.

In Fig. 2A,B we present the TB electronic band structures and density of states (DOS) for the straight and 
infinite 2ZGNR and 5ZGNR, utilizing three hopping parameters (t, t′, and t′′) into the TB Hamiltonian given 
in Eq. (1) (see Theoretical Methods section). The values of the hopping parameters are taken from Ref.39 and 
are listed in Table 1. The band structure of 2ZGNR (Fig. 2A, left) exhibits a near-Fermi metallic edge state with 
strong valence-conduction band braiding (∼ 0.8 eV band width at zone boundary) and a single incommensurate 
Dirac point, in agreement with earlier TB calculations39. The band braiding effect is also evident in the calculated 
DOS (Fig. 2A, right) showing up as a broad DOS feature around the Fermi energy. Likewise, the TB band 
structure and the corresponding DOS for 5ZGNR are given in Fig. 2B, where the edge state revealed weaker 
braiding, in addition to a single commensurate and double incommensurate Dirac points, respectively, leading 
to stronger and sharper DOS feature at the Fermi, consistent with Ref.39. We stress that this edge state braiding 
effect, and the subsequent formation of incommensurate Dirac points, are only present when the third hopping 
parameter (t′′) is turned on in the TB model Hamiltonian, otherwise the upper and lower edge state bands 
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are only touching at the Brillouin zone boundary (see Fig. S1). The near-Fermi modulation of the edge states 
through the hopping parameters should have strong effects on the electron transport, here demonstrated for the 
devices depicted in Fig. 1A,B. The TB simulated conductance for these nanoelectronic carbon-based devices are 
depicted in Fig. 2C–F for 2ZGNR (red) and 5ZGNR (blue) using different combinations of hopping parameters 
in the TB Hamiltonian. When activating the first hopping parameter (t) alone, the conductance spectra exhibit 
the well-known Landauer quantized step structure, shown in Fig. 2C for 2ZGNR (red) and 5ZGNR (blue). 
Clearly, around the Fermi energy, the spectra exhibit featureless plateaus of one unit conductance (2e2/h), 
while higher conductance is achieved at higher energies scaling with the number of momentum-integrated 
bands. Specifically, the observed conductance features can easily be inferred from band structure calculations by 
counting the number of bands sampled at each fixed energy, as schematically explained in Fig. S2. Practically, 
similar conductance behaviour is obtained when both t and t′ are turned on, as depicted in Fig. 2D. We note 
that the band structures of 2ZGNR and 5ZGNRs, for single hopping t and for both t and t′ turned on, do not 
exhibit the braiding effect (see Fig. S1), and thereby, one branch of the edge states contributes to the calculated 
conductance. When activating all hopping parameters (t, t′, and t′′) new conductance channels open up near 
the Fermi energy, reaching 2 and 5 units conductance for the 2ZGNR and 5ZGNR, respectively, as shown in 
Fig. 2E. The width of these conductance features is much narrower for the wider 5ZGNR, and is induced by 
the braiding effect solely triggered by the third hopping parameter (t′′), where the number of momentum-
integrated bands at these energies increases with the ribbon width (see Fig. S2). Even when t′ is turned off, the 
near-Fermi conductance channels are still present, as shown in Fig. 2F, in complete agreement with the detailed 
TB study performed in Ref.39 for a wider range of ZGNRs of even and odd width. The present analysis reaffirms 
the findings in Ref.39 highlighting the importance of the third nearest neighbour hopping parameter when 
computing the electrical conductance for the straight and narrow ZGNRs. In the following we address whether 
the third-nearest neighbour hopping is always responsible for a zero-energy conductance in narrow but notched 
GNRs and if the one-to-one correspondence between band structure and conductance simulations is generally 
valid. We shall show that the hopping parameters relevant for opening conductance channels at the Fermi do not 
necessarily require turning on t′′ and are dependent on the edge structure and, additionally, enumerating the 
number of bands in band structure calculations need to be complemented with local density of states (LDOS) 
calculations to monitor the wave function transport at the nanoribbon-lead interfaces.

Figure 3 presents the electronic band structure, DOS, and conductance spectra for the gulf-type g-GNR, with 
the atomistic TB model depicted in Fig. 1C. This g-GNR exhibits a clear semiconductor band structure (Fig. 3A, 
left) with a band gap of ∼ 1.44 eV separating the valence (blue) and conduction (red) bands, in agreement with 
earlier calculations and experimental data42,43. Likewise, the semiconducting behaviour is further confirmed 
from the calculated DOS (Fig. 3A, right) which revealed the absence of any spectral feature around Fermi 
energy. Although the TB calculations presented in Fig. 3A are performed with the three hopping parameters 
activated, nevertheless the semiconducting electronic structure is also obtained from first- and/or second-

Fig. 1.  TB models of selected straight and notched GNRs with leads attached. TB atomistic structural 
models for straight 2ZGNR (A) and 5ZGNR (B) as well as different edge-corrugated polymers, namely gulf-
type g-GNR (C), chevron-type asymmetricch-GNR (D), and symmetricch-GNR (E). Two ZGNR leads (lead 0 
and lead 1) are attached at the termini of each structure. The leads in (A) are 2ZGNR and in (B–E) are made of 
5ZGNR.
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nearest neighbour calculations. Obviously, the presence of such a semiconducting energy gap should lead to zero 
conductance at the Fermi energy, as shown in the calculated conductance spectra in Fig. 3B, for any combination 
of the TB hopping parameters, consistent with band structure and DOS calculations. While this pristine g-GNR 
exhibits semiconducting band structure, the presence of structural defects should appear as near-Fermi in-gap 
defect states typical for most semiconductor materials44. In Fig. S3 we show that a single structural defect created 
at the center of a g-GNR, by removing one carbon atom at the top gulf site, produces a Fermi defect state and 
zero-energy feature in the corresponding DOS. However, the localization of this state at the ribbon’s center does 

t (ev) t′(ev) t′′(ev)

2.8 0.07 0.42

Table 1.  First, second, and third hopping parameters values.

 

Fig. 2.  Electronic structure and transport in straight and narrow ZGNRs. (A, B) TB band structures for 
2ZGNR (A) and 5ZGNR (B) and the corresponding DOS shown on the right. The three hopping parameters 
are turned on in these calculations as evident from the observed band braiding effect. (C–F) Comparative 
conductance spectra between 2ZGNR (red) and 5ZGNR (blue). The conductance spectra were calculated 
at different situations for the hopping parameters as follows: (C) only the first-nearest neighbour is on; (D) 
the first- and second-nearest neighbour are on, (E) all hopping parameters are on up to the third-nearest 
neighbour, and (F) when the first- and third-nearest neighbour are on (the second hopping parameter is off in 
this case). New conductance channels open up when the third-nearest neighbour is activated.
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not allow sufficient coupling at the lead-ribbon interface and, thereby, the calculated conductance is practically 
zero at/near the Fermi energy, despite the presence of a well-defined electronic state with a sharp DOS feature 
(Fig. S3). In order to open conductance channels at the Fermi energy, coupled periodic array of such structural 
defects are envisioned, as presented for the asymmetric chevron-type ch-GNR depicted in Fig. 1D.

In Fig. 4 we depict the TB calculated electronic band structure, DOS, and the conductance spectra for the 
asymmetrically notched chevron-type ZGNR, namely asymmetric ch-GNR (Fig. 1D). The band structure in Fig. 
4A, left features a flat band at the Fermi energy (red) inside the 1D bulk valence (blue) and conduction (green) 
bands. This metallic flat band shows up in DOS calculations (Fig. 4A, right) as a well-defined spectral feature at 
the Fermi energy. As we shall show later, this band corresponds to an electronic state localized at the defective 
upper edge of the ch-GNR. The possible transmission of this Fermi electronic state at the GNR-lead interface 

Fig. 4.  Electronic structure and conductance in notched ZGNR: Asymmetric ch-GNR. (A) TB calculated 
band structure (left) and the corresponding DOS (right) for asymmetric chevron-type ch-GNR, revealing 
the formation of a metallic flat band and sharp DOS feature (red) at the Fermi energy, inside the energy 
gap separating the valence (blue) and conduction (green) bands. (B) Conductance spectra with different 
combinations of hopping parameters. A new conductance channel opens up precisely at the Fermi energy 
solely when the second-nearest neighbour is turned on. The gray backgrounds correspond to the calculated 
conductance for the straight 5ZGNR at the respective hopping parameters.

 

Fig. 3.  Electronic structure and conductance in symmetrically notched semiconducting ZGNR: g-GNR. 
(A) TB calculated band structure (left) and the corresponding density of states (DOS) (right) for the gulf-
type GNR, revealing the opening of energy gap between the valence (blue) and conduction (red) bands. (B) 
Conductance spectra with different combinations of hopping parameters. The magnitude of the electrical 
conductance inside the band gap energy range is zero for all cases.
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can be inferred from conductance calculations, as shown in Fig. 4B. Despite the presence of a metallic band, the 
conductance spectrum obtained from TB first-nearest neighbour calculations (Fig. 4B (top, left)) exhibits zero 
conductance at/near the Fermi energy. This behaviour is distinct from the one unit conductance plateau found 
from the edge state of the straight metallic 5ZGNR (gray) even for single (t) hopping parameter (see Fig. 2C). We 
note that the absence of conductance at Fermi energy is inconsistent with first-nearest neighbour band structure 
calculations, since the metallic band is still present in these calculations (see Fig. S4). When both t and t′ are 
turned on (Fig. 4B (top, right)), a sharp conductance (one 2e2/h unit) develops at the Fermi energy, assuring 
the transmission of the edge state through the GNR-lead interface. The same value of Fermi conductance is 
obtained when the third-nearest neighbour (t′′) is also turned on (Fig. 4B (bottom, left)). Importantly, when 
t′ is set to zero while t and t′′ are activated, the conductance channel is completely closed, as shown in Fig. 4B 
(bottom, right). These findings confirm that the emergence of near-Fermi new conductance channels in the 
asymmetric ch-GNR is solely determined by the second-nearest neighbour hopping, in contrast to the straight 
ZGNRs, where the third-nearest neighbour hopping is the key parameter39. Indeed, this finding turned out to be 
rather generic for all asymmetric chevron-type GNR structures, as we demonstrate for similar edge-corrugated 
nanostructures notched from narrower and wider ZGNRs, as presented in Figs. S5 and S6, respectively. It is 
evident from both Figs. S5 and S6, that the second-nearest neighbour parameter is always required for non-zero 
conductance at the Fermi energy.

By further eliminating carbon atoms at the lower edge of the metallic and asymmetric ch-GNR we arrive at 
the symmetrically notched chevron polymer (ch-GNR) sketched in Fig. 1E. This polymer phase exhibits a metallic 
character as evident from the TB calculated band structure depicted in Fig. 5A, left40. Unlike the asymmetric 
ch-GNR, the metallic state (red) is appreciably dispersing (∼ 1.44 eV band width) with a single commensurate 
Dirac point at the Fermi energy, which manifests as a relatively weak and broad spectral feature in TB calculated 
DOS presented in Fig. 5A, right. Figure 5B presents the conductance spectra of the symmetric ch-GNR structure 
calculated for different combinations of hopping parameters. The spectra are distinct from the conductance of 
2ZGNR (gray background) which has effectively the same arm width of the ch-GNR . For all these combinations, 
the conductance spectra near Fermi energy is characterized by a broad Gaussian conductance profile spanning 
the energy window of the metallic state band (red) with a maximum value of one unit conductance. The shape 
of such Gaussian conductance is symmetric when the second-nearest neighbour is turned off (Fig. 5B(top-
left and bottom-right)), and is otherwise asymmetric (Fig. 5B(top-right and bottom-left)). For a single-nearest 
neighbour hopping parameter (Fig. 5B(top-left)), the conductance is precisely zero at the Fermi energy and 
attains progressively higher values with increasing the number of hopping parameters.

In order to understand the distinct conductance behaviour observed here for the notched GNRs compared 
to the straight counterparts, particularly the importance of the second- or third-nearest neighbour hopping 
parameters in computing the electrical conductance, a detailed analysis of the energy-dependent local density of 
state (LDOS) for the entire device, consisting of the lead-GNR-lead, is essential as addressed in several previous 

Fig. 5.  Electronic structure and conductance in symmetrically notched metallic ZGNR: Symmetric 
ch-GNR. (A) Calculated band structure (left) and the corresponding DOS (right) for the symmetric chevron-
type ch-GNR, revealing the formation of a metallic dispersive band and broad DOS feature (red) at/around 
the Fermi energy. The 1D bulk DOS as well as valence and conduction bands are indicated by blue and green 
colors, respectively. (B) Conductance spectra with different combinations of hopping parameters. A new 
conductance channel opens up spanning the energy window of the metallic band and taking a Gaussian 
shape centered at the Fermi energy (red). The gray backgrounds correspond to the calculated conductance for 
2ZGNR at the respective hopping parameters.
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studies21,45–48. These LDOS calculations are presented in Fig. 6 for all corrugated GNRs explored here, taken 
when the three hopping parameters are turned on. Figure 6A depicts the LDOS calculated at the Fermi energy 
for the semiconducting g-GNR-based device. Although LDOS features corresponding to the edge state of the 
5ZGNR contacts are present, these are not transmitted across the interface, leading to practically zero spectral 
weight in the interior of g-GNR, consistent with the conductance calculation in Fig. 3. In contrast, the calculated 
LDOS at the Fermi for the device based on the metallic asymmetric ch-GNR (Fig. 6B) revealed the presence of 
finite LDOS features inside the ribbon, assuring possible transmission across the interface and thereby non-zero 
electrical conductance as depicted in Fig. 4. We also note that the edge state LDOS feature inside the asymmetric 
ch-GNR structure is clearly localized at the upper edge and, importantly, on one of the sub-lattice types. This 
explains the absence of conductance at Fermi for first- or both first- and third-nearest neighbour calculations 
presented in Fig. 4. Therefore, for such asymmetrically notched polymers, the important parameter is the 
second-nearest neighbour hopping as it allows the propagation of the metallic state within the same type of 
sub-lattice across the interface, as indicated with the red arrows. In Fig. 6C–E we plot the LDOS for a chevron-
GNR-based device taken at the top of the upper metallic band (Fig. 6C), at the Fermi energy (Fig. 6D), and at the 
bottom of the lower metallic band (Fig. 6E), see the red dispersing bands in Fig. 5A for symmetric ch-GNR. For 
the LDOS taken at both the upper and the lower bands, the intensity is strongly delocalized through the interior 
of the ribbon allowing finite transmission across the lead interface for any combinations of hopping parameters 
(see red and orange arrows), consistent with the conductance calculations in Fig. 5. At the Fermi energy (Fig. 
6D), however, the LDOS inside the chevron-type ch-GNR is much weaker, nonetheless the corresponding states, 
which are localized on one sub-lattice type, are allowed to couple with the metallic edge states of the 5ZGNR 
leads via the second-nearest neighbour hopping (red arrows).

Although the GNR structures explored here are all notched from metallic ZGNRs, similar conductance 
behaviour can be obtained from corrugated armchair GNRs (AGNRs) hosting metallic states inside their 
1D bulk band gap41. Figure 7A depicts the TB atomistic model for the sawtooth AGNR, namely the s-GNR 
experimentally synthesized on Au(111) surface and explored via DFT and STS in Ref.41. The TB-calculated band 
structure in Fig. 7B agrees well with DFT calculations, revealing two practically flat bands at the Fermi energy 
(red) inside the semiconducting bands (blue and green). LDOS calculation at Fermi energy in Fig. 7(A, bottom) 
shows that this metallic state corresponds to edge state coupled across the ribbon, being localized at one sub-
lattice type and takes the form of a serpentine pattern traversing through the s-GNR width, in agreement with 

Asymmetric ch-GNR (Fermi)

Symmetric ch-GNR (0.69 eV)

Symmetric ch-GNR (Fermi)

Symmetric ch-GNR (-0.75 eV)

g-GNR (Fermi)

Fig. 6.  Local density of states and electron transmission in notched ZGNRs. LDOS calculations for 
prototype nanoelectronic devices based on g-GNR (A), asymmetric ch-GNR (B), and the symmetric ch-GNR 
(C–E). All LDOS calculations are performed when the three hopping parameters are turned on. The LDOS 
calculations in A, B, and D are taken at the Fermi energy. The LDOS in (C) is taken at the top of the upper 
band of the symmetric ch-GNR structure, i.e. at ∼ 0.69 eV, while the LDOS in (E) is at the bottom of the lower 
band, i.e., at ∼ −0.75 eV. The red and orange arrows denote the second- and third-nearest neighbour hopping, 
and the vertical dashed lines mark the GNR-lead interface.
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Ref.41. To explore the conductance of this metallic state, we simulate the s-GNR-lead device shown in Fig. 7C. 
The calculated LDOS for the entire device at the Fermi energy (Fig. 7D) indicates the possible transmission of 
the characteristic serpentine pattern through the leads, as indicated by the red arrows. In Fig. 7E,F we present 
the conductance spectra for the device for different combinations of hopping parameters. In perfect agreement 
with the asymmetric chevron-type ch-GNR in Fig. 4, the Fermi conductance is only possible when the second-
nearest neighbour is on (Fig. 7F).

Regarding the unique behaviour of the conductance channel at Fermi energy, particularly from the 
asymmetric ch-GNR and s-GNRs nanoarchitectures explored here, where the electrical conductance is dependent 
on the second hopping parameter, possible nanoelectronic applications may be envisioned such as quantum 
sensors49 and graphene charge detectors33, where the conductance peak at Fermi energy can change its energy 
or magnitude depending on the interaction with the target adsorbates at the conducting edge. These applications 
may also be integrated with fused asymmetric ch-GNRs and s-GNRs leading to nanoporous graphene structures, 
where the pores shall also play a central role in the sensing process, as the edges defining these nanopores 
are often chemically active. Furthermore, the electron transport here explored can be extended to include the 
spin degree of freedom in ferromagnetic GNRs. Indeed, GNRs in the form of Janus with distinct asymmetric 
edge configurations, similar to ch-GNR, have been recently fabricated, which creates new opportunities for the 
realization of quantum spin chains and the miniaturization of spintronic devices50. The conductance behaviour 
described above is also observed in such Janus GNRs (Fig. 8), further supporting the generality of our findings 
across experimentally realized GNR architectures.

Conclusion
We presented a detailed TB study and analysis addressing the correlation between electronic structure and 
electron transport in atomically narrow and notched ZGNRs as potential candidates for future carbon-based 
nanoelectronic devices. In contrast to straight ZGNRs in which the near-Fermi conductance is dominated by 
the third-nearest neighbour hopping, we found that the second-neareast neighbour hopping is more relevant 
for the conductance in the asymmetrically chevron-type notched metallic GNRs hosting flat bands at the 
Fermi energy. This finding extends even for wider notched ZGNRs provided they have the same chevron-type 
edge termination, and also for semiconducting AGNRs notched in the form of sawtooth edge structure. The 
present study complements earlier transport investigations on straight ZGNRs and opens the door toward the 
exploration of diverse carbon-based nanoarchitectures for nanoelectronic applications.

Theoretical methods
We model the extended graphene sheet by the tight binding (TB) model in second quantization formalism using 
three hopping parameters with using the following Hamiltonian51

Fig. 7.  Electronic properties and transport in sawtooth AGNRs: s-GNR. (A) TB structural model (top) 
and LDOS at the Fermi energy (bottom) for the s-GNR. (B) The corresponding electronic band structure 
showing the presence of weakly dispersing flat bands at the Fermi energy (red) inside the 1D bulk valence 
(blue) and conduction (green) bands. (C,D) TB model for s-GNR attached to 4ZGNR leads (C) and the 
corresponding LDOS (D) calculated at the Fermi energy. The red arrows indicate the possible electron pathway 
in conductance simulations. The band structure and LDOS calculations were obtained when the three hopping 
parameters were activated. (E,F) Conductance spectra with different combinations of hopping parameters. A 
new conductance channel opens up precisely at the Fermi energy solely when the second-nearest neighbour is 
turned on.
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H = − t
∑

i,j=NN

c†
iAcjB − t′

∑
i,j=N2

(
c†

iAcjA + c†
iBcjB

)

− t′′
∑

i,j=N3

c†
iAcjB + H.c.

� (1)

where t, t′and t′′are the first-, second- and third-nearest neighbour hopping parameters, respectively. c†
iA and 

c†
iB  are the creation operators which creates an electron at site i in sublattice A and B respectively, cjA, cjB  are 

the annihilation operators which annihilate an electron from site j in sublattice A and B respectively. H.C refers 
to hermitian conjugate.

We use the open-source Pybinding package52 to control and solve Eq. (1) for any combination of hopping 
parameters and to build the tight-binding Hamiltonian matrix for any desired atomic structure, such as straight 
or notched ZGNRs and sawtooth AGNRs as explored in this work. For each defined nanoribbon, the band 
structure and density of states are calculated. The energy broadening used for DOS calculations is 0.2 eV.

By fitting the Hamiltonian in Eq. (1) with the experimental data (or DFT calculations) for the band structure 
of graphene nanoribbons one arrive to the best fitting parameters. Here we shall stick and follow the parameters 
taken from Ref.39 as given in Table 1.

For computing the electrical conductance we use the following Landauer–Buttiker formula53:

	 G(z) = GoT � (2)

here G(z) is the conductance, Go = 2e2/h is the quantum conductance unit, and T is the transmission function. 
The transmission function represents the probability of the electron to transmit from the left lead to the right 
lead, this transmission function can be represented mathematically using Green’s functions of the scattering 
region and its coupling to the leads as following

	 T = Tr
{

ΓL(z)Gr
c(z)ΓR(z)Ga

c (z)
}

� (3)

 where T r {..} is the trace of the product of the retarded Gr
c(z) and the advanced Ga

c (z) green’s functions of 
the scattering region and its couplings to the left ΓL(z) and right ΓR(z) leads, where z = E ± iη and E is the 
energy where η is an infinitesimal real quantity.

The local density of states can be expressed in terms of the retarded Green’s function as following

	 LDOS(E) = −(1/π) Im [Gr
c(z)ii] ,� (4)

while, the total density of states is given by

Fig. 8.  Electronic properties and transport in Janus ZGNRs: J-GNR. (A) TB structural model (top) and 
LDOS at the Fermi energy (bottom) for the J-GNR. (B) The corresponding electronic band structure shows the 
presence of a metallic state at the Fermi energy (red) inside the 1D bulk valence (blue) and conduction (green) 
bands. (C,D) TB model for J-GNR attached to 6ZGNR leads (C) and the corresponding LDOS (D) calculated 
at the Fermi energy. The red arrows indicate the possible electron pathway in conductance simulations. The 
band structure and LDOS calculations were obtained when the three hopping parameters were activated. (E,F) 
Conductance spectra with different combinations of hopping parameters. A new conductance channel opens 
up precisely at the Fermi energy solely when the second-nearest neighbour is turned on.
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ρ(E) = 1

L

L∑
i=1

LDOS(E),� (5)

where L is the number of the transverse direction sites.
The scattering problem can also be solved using the wave function formulation which is mathematically 

equivalent to the non-equilibrium Green’s function formalism due to the Fisher-Lee relation54.
The electrical conductance using the wave function formulation can be calculated as

	
Gab = e2

h

∑
n∈a,m∈b

|Snm|2 .� (6)

where Snm is the scattering matrix and a,b label two leads.
The numerical calculations of electrical conductance were performed using the Kwant code54, for the 

pre-defined atomistic models imported from Pybinding package52 and depicted in Fig. 1. The mathematical 
foundations of Kwant are detailed in Refs.54–56.

Figure 9 shows a schematic of the two-terminal device, comprising (i) left lead (source), (ii) scattering region 
(perfect crystal, no lattice vibrations), and (iii) right lead (drain). In our present study, we assume no electron-
phonon interactions. Including such interactions introduces inelastic transmission and reflection with phonon 
exchange, leading to sub-steps in the quantized conductance whose heights depend on the electron-phonon 
coupling strength57. These effects scale the conductance quantum unit 2e2/h but do not affect the principal role 
of hopping parameters in opening or closing conductance channels near the Fermi level.

Data availability
The data presented in this study are available on request from the corresponding authors.
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