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The increasing variability in energy demand and the adoption of renewable energy sources have made 
microgrids critical for sustainable energy management. However, the unpredictability of renewable 
generation and fluctuating load demand presents significant challenges in achieving reliable and 
cost-effective operations. This paper proposes a Robotic Process Automation (RPA) driven energy 
management framework with a focus on demand-side control to optimize microgrid performance 
under uncertainty. The framework combines RPA’s automation capabilities with the Grey Wolf 
Optimizer (GWO) to dynamically balance supply and demand. Key innovations include real-time load 
scheduling, demand response optimization, and integration of controllable and non-controllable 
loads, enhancing flexibility and efficiency. By automating tasks such as data aggregation, scenario 
generation, and control execution, the framework reduces manual intervention and improves system 
adaptability. Simulation results show that the framework achieves significant improvements, including 
a reduction in emissions by 10%, a 15% reduction in operational costs, and a 20% increase in power 
supply reliability. Moreover, it demonstrates flexibility across varying priorities, with the lowest total 
cost achieved in emission-focused scenarios (F = 168.10) and balanced performance in mixed-priority 
cases (F = 195.85). These findings underscore the framework’s ability to adapt to diverse stakeholder 
objectives and highlight its potential to revolutionize demand-side energy management, fostering 
efficient and sustainable microgrid operations.
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The integration of renewable energy sources into microgrids introduces significant operational challenges 
due to the inherent variability and uncertainty of resources like solar and wind. Effective energy management 
requires not only optimizing generation but also addressing demand-side control to balance multiple objectives, 
including cost minimization, emission reduction, and reliability1,2. Traditional approaches, such as optimization 
algorithms and SCADA systems, have been widely used for dispatch planning and system monitoring. However, 
these methods often lack the adaptability and automation needed to manage the dynamic interactions between 
supply-side generation and demand-side consumption in modern microgrids. Demand-side control, which 
involves optimizing controllable loads and aligning energy usage with availability, is critical for ensuring system 
efficiency and stability under uncertainty.

Robotic Process Automation (RPA) offers a transformative solution by automating repetitive and rule-based 
tasks, enhancing responsiveness and reducing human intervention. In renewable energy systems, RPA has been 
successfully applied to tasks such as data aggregation, predictive maintenance, and energy trading, improving 
operational efficiency and accuracy3. Despite its potential, the application of RPA in demand-side energy 
management—particularly in real-time load optimization and demand response—remains underexplored. 
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Addressing this gap can unlock new opportunities for integrating RPA with advanced optimization techniques 
to enhance demand-side flexibility and improve the overall performance of microgrids.

Recent research has focused on various optimization techniques to address the challenges in microgrid 
dispatch. These methods aim to enhance economic efficiency, environmental sustainability, and power supply 
reliability. Ref.4 offer a comprehensive review on energy management strategies for microgrids, highlighting 
the challenges and potentials of integrating renewable energy sources. Ref.5 delve into the application of hybrid 
PSO-GWO for optimal dispatch of distributed generators, emphasizing the advantages of combining different 
optimization techniques. Ref.6 review the design, control, and management of microgrids, underscoring the 
importance of reliability and economic efficiency. Ref.7. discuss recent advancements in the Grey Wolf Optimizer 
and its various applications, illustrating its superior capabilities in handling complex optimization problems. 
Ref.8. explore the use of asynchronous decentralized PSO in microgrid energy management, highlighting its 
effectiveness in real-time applications. Ref.9. introduce an energy management system using an optimized 
hybrid artificial neural network for hybrid energy systems in microgrids, showcasing the potential of combining 
neural networks with optimization algorithms. Ref.10. focuses on the optimal planning and sizing of hybrid 
energy systems using multi-stage GWO, highlighting its effectiveness in different operational scenarios. Ref.11. 
examine coordinated control and optimization dispatch of hybrid microgrids in grid-connected modes, 
stressing the importance of synchronization between various energy sources. Ref.12. discuss smart microgrid 
integration and optimization, offering insights into practical implementation challenges and solutions. Ref.13. 
present improvements in the sparrow search algorithm for optimal operation planning in hybrid microgrids, 
emphasizing the benefits of advanced optimization techniques in handling demand response. Ref.14. optimize 
load frequency control in standalone marine microgrids using meta-heuristic techniques, highlighting the 
importance of robust control mechanisms in isolated systems. Ref.15. propose an improved GWO for optimal 
scheduling of multiple microgrids, demonstrating enhanced performance over traditional methods. Ref.16. 
focus on optimizing thermal efficiency and reducing unburned carbon in coal-fired boilers using GWO, 
illustrating its application in improving industrial processes. Ref.17. explore the optimal sizing of hybrid energy 
systems in specific regions using social spider optimizer, showcasing its regional adaptability. Ref.18. discuss 
energy cost optimization in hybrid renewable-based V2G microgrids using artificial bee colony optimization, 
emphasizing the cost-saving potential. Ref.19. study the economic dispatch of combined cooling, heating, and 
power microgrids based on the improved sparrow search algorithm, underscoring its efficiency in multi-
energy systems. Ref.20. integrate economic load dispatch information into blockchain smart contracts using 
fractional-order swarming optimizer, presenting a novel approach to secure and efficient energy transactions. 
Ref.21. use the artificial gorilla troops optimizer for frequency regulation in wind-contributed microgrid 
systems, demonstrating the algorithm’s robustness. Ref.22. present a novel hybrid GWO with a min-conflict 
algorithm for power scheduling in smart homes, highlighting the benefits of hybrid approaches. Ref.23. presents 
a real-time implementation of an intelligent battery energy storage system (BESS), ensuring optimal charge/
discharge cycles for enhanced battery lifespan and microgrid stability. Recent advances in microgrid energy 
management have increasingly focused on integrating water-energy nexus optimization, multi-carrier systems, 
and advanced energy storage technologies. For example, Ref.24 proposed an optimal energy management 
strategy for multi-carrier systems within the water-energy nexus, effectively coordinating renewable sources 
and storage technologies. Ref.25 developed a control framework for solar energy systems integrated with energy 
storage, highlighting improvements in operational efficiency and reliability. Ref.26 addressed the complexity of 
hybrid energy networks by introducing a coalition-based model involving wind, PV, fuel cells, microturbines, 
and batteries, enhanced by demand response programs. Additionally, Ref.27 presented a smart home energy 
management system that couples renewable integration with demand-side strategies to increase residential 
energy autonomy. Collectively, these studies emphasize the increasing sophistication and interconnectivity of 
distributed energy systems, reinforcing the need for intelligent, flexible optimization frameworks. The present 
work responds to this need by introducing a novel approach that integrates Robotic Process Automation (RPA) 
with the Grey Wolf Optimizer (GWO) to enable adaptive, real-time energy dispatch under uncertainty.

Existing microgrid energy management methods struggle to handle uncertainty in renewable energy 
generation and fluctuating demand, as they rely on static assumptions that limit adaptability. While optimization 
techniques improve cost efficiency and reliability, they lack robust uncertainty modeling and require manual 
intervention for tasks like load forecasting and demand response. This paper presents a novel Robotic Process 
Automation (RPA)-driven energy management framework that optimizes microgrid operations under 
uncertainty, with a focus on demand-side control. The proposed framework integrates Grey Wolf Optimizer 
(GWO) with uncertainty modeling in a multi-objective optimization model, enabling dynamic management 
of controllable and uncontrollable loads to minimize operational costs, emissions, and reliability penalties. Key 
microgrid components, including photovoltaics (PV), wind turbines (WT), diesel engines (DE), and battery 
energy storage systems (BESS), are optimized alongside demand-side strategies to enhance system performance 
across varying conditions. RPA automates critical processes such as real-time load forecasting, demand response 
scheduling, data aggregation, and optimization execution, while GWO improves decision-making by identifying 
optimal energy dispatch strategies. The effectiveness of the proposed framework is validated through simulations 
under diverse operational scenarios, demonstrating notable improvements in peak load reduction, cost savings, 
and system reliability.

The key novel contributions of this study include:

•	 Hybrid optimization approach using Grey Wolf Optimizer (GWO) with uncertainty modeling, enhancing 
decision-making adaptability in dynamic conditions.

•	 Comprehensive demand-side control, dynamically managing controllable and uncontrollable loads to mini-
mize peak demand and operational costs.
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•	 Holistic framework validation through extensive simulations, demonstrating superior cost savings, peak load 
reduction, and system reliability improvements compared to conventional methods.

System description
Microgrids are capable of enhancing energy security, reducing transmission losses, and integrating renewable 
energy sources effectively28. The ability to operate in island mode or grid-connected mode provides significant 
advantages in terms of energy management and reliability29,30. However, the variability and intermittency of 
renewable energy sources pose significant challenges in managing the balance between supply and demand. 
These challenges make the optimization of microgrid dispatch crucial for ensuring economic efficiency, 
environmental sustainability, and reliable power supply31. Figure 1 illustrates the architecture of a microgrid 
system, showcasing the main components and their interconnections. The microgrid system integrates various 
energy sources, storage solutions, and loads, all managed by a central controller. To optimize the dispatch of 
microgrids, it is essential to model the behavior of all components accurately.

Power generation model
The output power of wind turbine has a certain relationship with wind speed. The relationship between its power 
generation and wind speed can be expressed as

	
PwT (t) =

{ 0, vt ⟨vciorvt⟩ vco
v(t)−vci
vco−vci

Pn vci ≤ vt < vn

Pn, vn ≤ vt ≤ vco

� (1)

where vt is the wind speed at time t, vci is the cut-in wind speed (minimum speed needed for power generation), 
vn is the rated wind speed (where maximum power Pn is achieved), vco is the cut-out wind speed (beyond which 
the turbine shuts down for safety), Pn is the rated power output.

The power generation of a photovoltaic power generation system is mainly related to the intensity of solar 
radiation and the temperature of the photovoltaic components. As the intensity of solar radiation increases, the 
energy value of the PV increases, and the temperature of the photovoltaic panel also increases.

The increase in the temperature of a photovoltaic module affects its output voltage performance, which in 
turn causes the maximum output power of the module to decrease. The PV power generation power can be 
expressed as

	
PPV (t) = ξPSTC

qpv (t)
qSTC

[1 + δ (TPV (t) − TSTC)]� (2)

where: PPV, PSTC represent the output power of PV at time t and under standard test conditions respectively; 
qpv, qSTC represent the light radiation intensity of PV at time t and under standard test conditions respectively; 
ξ is the derating factor of PV, usually 0.8; TPV, TSTC respectively represent the photovoltaic panel temperature 
at time t and under standard test conditions; δ is the temperature coefficient of PV.

The output power of a diesel generator is related to many factors, such as the calorific value of the fuel, 
operating efficiency, current atmospheric pressure, and operating temperature. Its output power characteristics 
can be expressed as

Fig. 1.  Architecture of microgrid system (Microsoft paint).
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PDE = 0.000293QfFHVSηDE

ps

ps0

Ts

Ts0
� (3)

where: PDE, ηDE represent the output power and operating efficiency of the diesel generator respectively; 
FHVS represents the calorific value of the fuel; ps, ps0 represent the atmospheric pressure value and standard 
atmospheric pressure during actual operation respectively; Ts, Ts0 respectively represent the operating 
temperature and standard operating temperature of the diesel engine.

However, diesel generators are fuel generators, which will generate fuel costs, operation and maintenance 
costs, environmental costs and other costs during operation. The power generation cost can be expressed as

	




CDE,0 = λDE,0PDE
CDE, F = aP 2

DE + bPDE + c

CDE,E =
n∑

k=1
(CDE,kγDE,k) PDE

� (4)

where CDE,0, CDE, F, CDE,E represent the fuel cost, maintenance cost and environmental cost generated by 
the diesel generator set during operation respectively; λDE,0 represent the operation and maintenance cost 
coefficient of the diesel generator respectively; a, b, c represent the fuel cost coefficient of DE respectively, and in 
this paper, a = 8.5 × 10–4, b = 0.12, c = 6; k is the number of pollutant emission types such as CO2, SO2, and NOX; 
γDE,k  CDE,k  represent the emission coefficient of the kth type of pollutant emitted by the diesel generator and 
the cost coefficient of treating the kth type of pollutant respectively.

Micro gas turbines generate electricity by consuming gas and have similar cost characteristics to diesel 
generators during operation. The cost model for power generation is

	




CMT,0 = λMT,0PMT

CMT,F = C×PMT
FLHV ×ηMT

CMT,E =
n∑

k=1
(CMT,kγMT,k) PMT

ηMT = 0.0753
(

PMT
65

)3 − 0.3095
(

PMr
65

)2 + 0.417
(

PMT
65

)
+ 0.1068

� (5)

where CMT,0, CMT, F, CMT,E represent the fuel cost, maintenance cost and environmental cost generated by 
the micro gas turbine in the power generation process respectively; λMT,0 respectively represent the operation 
and maintenance cost coefficient of the micro gas turbine; C, FLHV respectively represent the unit price and 
calorific value of gas; PMT, ηMT respectively represent the output power and operation efficiency of the micro 
gas turbine; γMT,k , CMT,k  respectively represent the emission coefficient of the kth type of pollutant emitted by 
the micro gas turbine and the cost coefficient of treating the kth type of pollutant.

Because the output power of wind turbines and photovoltaic power generation is uncertain and intermittent, 
batteries are usually installed in microgrids as energy storage devices to buffer the uncertain output of wind 
and photovoltaic power generation, so as to improve the power supply reliability and continuity of microgrids. 
When the total load is greater than the total output of all DGs, BESS discharges; otherwise, BESS charges. The 
remaining power of the energy storage device is usually expressed by the state of charge, and its state during the 
charging and discharging process can be expressed as

	
SOC (t + 1) = ηself

[
SOC (t) + ηcPcharge (t) −

(
Pdischarge (t)

ηd

)]
� (6)

where ηself is the self-discharge efficiency (typically between 0.999 and 0.9995 per hour, accounting for 0.05–
0.1% loss), ηc​ and ηd​ are charging and discharging efficiencies, respectively.

User load characteristics model
In a smart microgrid, the total energy demand consists of two main types of loads: Uncontrollable Load (UL) 
and Controllable Load (CL)32. These two categories have distinct operational characteristics that significantly 
influence the energy management strategy and optimization process.

The uncontrollable load (UL) is as follows:

	
P UL

h (t) =
N∑

i=1

P UL
i,h (t) XUL

i,h (t)� (7)

where P BL
h  is the uncontrollable power load of user h at time t.

P UL
i,h (t) is the total power consumption of user h at the time i; XUL

i,h (t) is a binary variable, which is 1 if it is 
running and 0 otherwise.

The controllable load (CL) is model as follows:
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P CL
a =




P CL
a,1 P CL

a,t · · · P CL
a,3 P CL

a,2
P CL

a,2 P CL
a,l · · · P CL

a,4 P CL
a,3

...
...

. . .
...

...
P CL

a,t P CL
a,t−1 · · · P CL

a,2 P CL
a,1


 , ∀t ∈

[
tmin
a , tmax

a

]
� (8)

	 XCL
a =

[
xCL

a,1, xCL
a,2, · · · , xCL

a,t

]
, ∀tε

[
tmin
a , tmax

a

]
� (9)

	
XCL

a =
T∑

t=1

xCL
a,t = 1, XCLε {0, 1} , ∀tε

[
tmin
a , tmax

a

]
� (10)

	 runa ≤
∣∣tmax

a , tmin
a

∣∣� (11)

	
P CL =

A∑
a=1

P CL
a XCL

a � (12)

where P CL
a,1  a is the power consumption of controllable power load a; xCL

a  a is a binary variable, which 
is 1 if controllable power load a starts running at time t, otherwise it is 0. Formula (2) is all possible power 
consumption combinations of CL. Each user may have his own preferred operation time of controllable power 
load a. Therefore, tmin

a  and tmax
a  represent the upper and lower limits of the operation time of controllable power 

load a. runa is the operation time of controllable power load.

Scenarios generation and reduction
Robotic Process Automation (RPA) refers to the deployment of software robots or “bots” to automate repetitive 
and routine tasks typically performed by human operators. In the context of microgrids, RPA can significantly 
enhance efficiency, accuracy, and reliability in various operational processes, including data collection, 
monitoring, control, and optimization of energy resources33,34.

Role of RPA in Microgrids can be seamlessly integrated into microgrid systems to streamline operations and 
improve overall system performance. Key applications of RPA in microgrid management control and dispatch 
include:

•	 Automated Control RPA can automate the control of various components in the microgrid, such as adjusting 
the output of PV panels and wind turbines, switching the diesel generator on or off, and managing the charg-
ing and discharging cycles of the BESS35.

•	 Optimal Dispatch Bots can optimize the dispatch of power from different sources to meet the demand of 
critical and non-critical loads. This involves making real-time decisions based on current system conditions, 
forecasted demand, and availability of renewable energy.

Proposed method
Problem formulation
The primary objective of the proposed method is to optimize the dispatch of a microgrid system to minimize 
operational costs and maximize the use of renewable energy sources while ensuring reliable power supply to 
both critical and non-critical loads. The microgrid consists of various energy sources such as PV, WT, and a DE, 
as well as a BESS.

The overall objective is to minimize the total cost while ensuring reliability and minimizing emissions. The 
combined objective function can be expressed as:

	 Fmin = αCtotal + βEtotal + γRtotal� (13)

where: Ctotal is the total operational cost; Etotal is the total emissions; Rtotal is the reliability factor (penalty for 
power supply disruptions); α and β are weighting factors to balance the importance of emissions and reliability.

The total operational cost Ctotal is the sum of the fuel cost for the diesel engine, the operational and 
maintenance costs of the PVs, WTs, and BESS, and the cost of power shortages if any. The cost function can be 
expressed as:

	 Ctotalmin = Cfuel + COMC + Cshortage� (14)

where: Cfuel is the fuel cost for the diesel engine; COMC  is the operational and maintenance cost; Cshortage is 
the cost associated with power shortages.

Fuel Cost for the diesel engine:

	
Cfuel =

T∑
t=1

FDE (t) · PDE (t)� (15)

where FDE(t) is the fuel cost per kWh for the diesel engine at time t, and PDE(t) is the power generated by the 
diesel engine at time t.
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Operational and Maintenance Cost (COMC):

	
COMC =

T∑
t=1

CP V (t) · PP V (t) + CW T (t) · PW T (t) + CBESS (t) ·
(
PBESS_charge (t) + PBESS_discharge(t)

)
� (16)

where CP V (t), CW T (t), and CBESS(t) are the operational and maintenance costs per kWh for PVs, WTs, and 
BESS respectively.

Cost of Power Shortages:

	
Cshortage =

T∑
t=1

Pshortage (t) · Cshortage_per_kW h� (17)

where Pshortage(t) is the power shortage at time t and Cshortage_per_kW h​ is the cost per kWh of power 
shortage.

The emission function aims to minimize the emissions produced by the diesel engine:

	 Etotalmin = EDE(t)PDE(t)� (18)

where EDE  is the emission from the diesel engine.
Ensuring the power supply reliability involves minimizing the difference between the power demand and 

supply:

	
Rtotalmin =

T∑
t=1

(Pdemand (t) − Psupply (t))2� (19)

where Pdemand(t) is the power demand at time t; Psupply(t) is the power supply at time t.
Constraints:
Power Balance Constraint as follows

	 PP V (t) + PW T (t) + PDE (t) + PBESS_discharge (t) = Pcritical (t) + Pnoncritical (t) + PBESS_charge (t)� (20)

where: PP V (t) is the power generated by PVs at time t; PW T (t) is the power generated by WTs at time t; 
PDE(t) is the power generated by the diesel engine at time t; PBESS_discharge(t) is the power discharged by 
the BESS at time t; Pcritical(t) is the power consumed by critical loads at time t; Pnoncritical(t)  is the power 
consumed by non-critical loads at time t; PBESS_charge(t) is the power charged to the BESS at time t.

Battery storage constraint as follows

	 SOCmin ≤ SOC (t) ≤ SOCmax� (21)

where SOC(t) is the state of charge of the BESS at time t; and SOCmin and SOCmax​ are the minimum and 
maximum state of charge limits.

Renewable generation constrains as follows

	 0 ≤ PP V (t) ≤ PP V _max� (22)

	 0 ≤ PW T (t) ≤ PW T_max� (23)

	 PDE_min ≤ PDE (t) ≤ PDE_max� (24)

Integration of RPA and GWO
The integration of Robotic Process Automation (RPA) and the Grey Wolf Optimizer (GWO) can be described 
mathematically through the steps involved in data collection, preprocessing, optimization, and execution of 
control actions. Below is a detailed of this integration process steps.

	1.	 Data Collection and Preprocessing

	Collect real-time data D(t) from various sensors:

	 D (t) = {PP V (t) , PW T (t) , PDE (t) , SOC (t) , Pcritical (t) , Pnoncritical (t) , weatherdata, . . .}� (25)

	Preprocess data to remove anomalies:

	 Dclean (t) = P reprocess (D (t))� (26)

	2.	 Initialization of GWO
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	Initialize population of grey wolves

	 Xi =
{

PP V i (t) , PW T i (t) , PDEi (t) , PBESS_chargei (t) , PBESS_dischargei (t)
}

� (27)

	3.	 Evaluation Fitness Evaluation Eq. 13
	4.	 Optimization Process

	Update the positions of the grey wolves based on the following equations:

	 X (t + 1) = Xα (t) − A1 · Dα� (28)

	 X (t + 1) = Xβ (t) − A2 · Dβ � (29)

	 X (t + 1) = Xδ (t) − A3 · Dδ � (30)

	where:

	 Dα = |C1 · Xα (t) − X (t)|� (31)

	 Dβ = |C2 · Xβ (t) − X (t)|� (32)

	 Dδ = |C3 · Xγ (t) − X (t)|� (33)

	5.	 Decision Making and Automated Execution

	Once GWO converges to an optimal solution X*, RPA bots autonomously execute the control actions, ensuring 
real-time energy optimization. The executed set of actions is given by:

	 Execute (X∗) =
{

P ∗
P V (t) , P ∗

W T (t) , P ∗
DE (t) , P ∗

BESS_charge (t) , P ∗
BESS_discharge (t) , P ∗

CL (t)
}

� (34)

	where P ∗
P V (t), P ∗

W T (t), and P ∗
DE (t) are the optimized dispatch levels for PV, wind, and diesel engine, 

P ∗
BESS_charge (t) and P ∗

BESS_discharge (t) define the optimal battery operation, P ∗
CL (t) represents the 

real-time controllable load adjustment executed by RPA to balance demand and supply.

	6.	 Continuous Monitoring and, Load Adjustment

	To maintain optimal performance, the system continuously monitors energy conditions and updates real-time 
data:

	 Dnew (t) = CollectNewData (t)� (35)

	where Dnew (t) represents updated system parameters such as load demand, renewable generation, energy price 
fluctuations, and grid constraints.

	Using the new data, GWO is rerun to update the energy dispatch plan dynamically:

	 X∗ (t + 1) = GW O (Dnew (t))� (36)

	Simultaneously, RPA autonomously adjusts controllable loads based on demand response signals, ensuring an 
optimal balance between energy consumption and cost efficiency:

	 PCL (t + 1) = AdjustLoad (P ∗
CL (t) , Dnew (t))� (37)

	where AdjustLoad represents the automated load optimization function, which dynamically increases, de-
creases, or shifts controllable loads to enhance system flexibility.

Result and discussion
To validate the proposed RPA-GWO method for optimal dispatch of a microgrid, a comprehensive testing 
system should be designed, including a microgrid configuration with components such as PVs, WTs, a DE, 
and a BESS. The testing scenarios should encompass high renewable generation, low renewable generation, 
demand variability, peak load conditions, and off-peak conditions. Real-time data collection for meteorological 
conditions, load demand, and power generation should be automated, with preprocessing steps to ensure 
data accuracy. Performance metrics should include total operational cost, power supply consistency, emission 
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reduction, optimization time, and system scalability. Automated reporting and data analytics will help in 
generating detailed performance reports and forecasting future demand. This comprehensive approach ensures 
the robustness and effectiveness of the RPA-GWO method for microgrid management.

Testing system
A test microgrid (MG) system, as illustrated in Fig. 1, has been implemented in this study to conduct the case 
analysis. This test system encompasses various energy sources and storage units, including PVs, a DE, WTs, and 
a BESS. Microgrids, which can operate independently or in conjunction with the main power grid, are essential 
for integrating renewable energy sources and improving energy security and reliability36,37. The inclusion of 
diverse energy sources like PVs and WTs allows the microgrid to harness renewable energy, reducing reliance on 
fossil fuels and minimizing environmental impact31. Additionally, the BESS plays a critical role in storing excess 
energy generated during periods of high renewable output and discharging it during low generation periods, 
thus maintaining a stable power supply38. The DE provides a reliable backup power source, ensuring continuous 
operation during periods of low renewable generation or high demand35. Table 1, the PV array consists of four 
units with capacities of 12 kW, 10 kW, 8 kW, and 10 kW respectively, providing a substantial contribution to 
the overall power generation. The DE is capable of delivering a rated power output of 30 kW, with a permissible 
minimum output threshold of 9 kW to ensure efficient operation.

Table 2 provides the emission and cost coefficients for pollutants generated by the DE in the microgrid, 
crucial for evaluating the environmental and economic impacts of emissions. CO2, with an emission coefficient 
of 649 g/kWh and a cost coefficient of 0.030 USD/kg, is a major greenhouse gas linked to global warming. The 
economic cost reflects the societal impacts of climate change and regulatory penalties. Sulfur dioxide (SO2), 
with an emission coefficient of 0.206 g/kWh and a cost coefficient of 2.116 USD/kg, contributes to acid rain and 
respiratory issues, with high costs due to severe health and environmental damage. Nitrogen oxides (NOX), 
with an emission coefficient of 9.890 g/kWh and the highest cost coefficient of 8.982 USD/kg, are significant 
pollutants causing smog, acid rain, and respiratory problems. These coefficients support the optimization of 
microgrid dispatch to minimize economic costs and environmental impacts.

The meteorological data used in the simulations for optimal dispatch of the microgrid are critical for 
accurately modeling the performance under realistic conditions. Table 3 presents the hourly meteorological data 
includes temperature, solar radiation intensity, and wind speed, which are essential parameters influencing the 
power generation from renewable energy sources such as PVs and WTs.

The meteorological data is used to calculate the available power values for Wind Turbines (WTs) and 
Photovoltaic Panels (PVs), as illustrated in Fig. 2. To employs an hourly varying load profile that includes both 
critical and non-critical components, crucial for assessing the system’s performance. The total load represents 
the overall energy demand of the microgrid, while the critical load, a subset of the total load, includes essential 
services that must remain powered continuously. The detailed variations in the total and critical loads are shown 
in Fig. 3.

System validation
Table 5 presents the pairwise comparisons and recalculated weight coefficients for the attribute layer in the optimal 
dispatch strategy of the microgrid. This table outlines the relative importance of various factors, determined 
using the Analytic Hierarchy Process (AHP) algorithm, for four different cases. The factors considered include 
fuel cost (Cfuel), operation and maintenance cost (COM), carbon dioxide emissions (CCO2), sulfur dioxide 
emissions (CSO2), nitrogen oxides emissions (CNOX), and load satisfaction (Cload). Each case represents a 
different prioritization of these factors, reflecting the varying objectives of different stakeholders. The pairwise 
comparisons and recalculated weight coefficients in Table 4 reveal that stakeholders have diverse priorities in 
the optimal dispatch strategy for the microgrid. Case 1 emphasizes minimizing Cfuel with a weight coefficient of 
0.375, while Case 2 balances fuel and maintenance costs equally, highlighting operational efficiency. Cases 3 and 

Pollutants emission Coefficient (g/kWh) Cost coefficient ($/kg)

NOX 9.890 8.982

SO2 0.206 2.116

CO2 649 0.030

Table 2.  Emission and cost coefficients of pollutants.

 

Parameters

WTs

WT1 WT2 WT3 WT4 WT5 WT6

Rated power (kW) 9 9 10 10 6 6

Cut-out speed (m/s) 25 25 22 22 21 21

Rated speed (m/s) 11 11 13 13 12 12

Cut-in speed (m/s) 3 3 4 4 5 5

Table 1.  Parameters of the WTs.
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4 prioritize environmental sustainability, with Case 3 focusing heavily on reducing carbon CCO2 with a weight 
of 0.423, and Case 4 adopting a more balanced approach among CCO2, CSO2, and CNOX. These varying weight 
coefficients underscore the need for a flexible and adaptive dispatch strategy that can meet specific economic 
and environmental objectives.

Table 5 presents the comparisons and calculated weight coefficients for the criteria in the optimal dispatch 
strategy of the microgrid: Cfuel, COMC, and Cshortage. The observations from this table indicate that minimizing 
fuel cost is the highest priority, with a weight coefficient of 0.6236, reflecting stakeholders’ significant emphasis 

Fig. 2.  The hourly PVs and WTs power.

 

Time (h) Temperature (°C) Radiation intensity (kW/m2) Wind speed (m/s)

1 24.5 0 2.10

2 24.0 0 2.00

3 23.8 0 1.90

4 23.5 0 2.00

5 23.0 0 2.20

6 22.8 0 2.30

7 23.5 0 2.50

8 24.2 0.150 2.80

9 25.0 0.400 3.10

10 26.5 0.750 3.50

11 27.5 0.950 4.00

12 28.0 1.050 4.50

13 28.5 1.150 4.30

14 29.0 1.100 4.20

15 29.5 0.900 4.00

16 29.0 0.800 3.80

17 28.5 0.600 3.60

18 27.5 0.400 3.50

19 26.0 0.150 3.20

20 25.0 0 2.80

21 24.5 0 2.60

22 24.0 0 2.50

23 23.8 0 2.40

24 23.5 0 2.30

Table 3.  Hourly meteorological data employed in the simulations.

 

Scientific Reports |        (2025) 15:19440 9| https://doi.org/10.1038/s41598-025-03728-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


on reducing fuel expenses for economic efficiency. Operation and maintenance cost, with a weight of 0.239, 
is also important but less critical than fuel cost, highlighting the need to balance fuel savings with sustainable 
operational practices. Power shortage cost has the lowest priority, with a weight of 0.137, suggesting stakeholders 
are relatively more willing to tolerate occasional power shortages to achieve greater cost savings in other areas. 
The pairwise comparisons reveal that Cfuel is considered five times more important than COMC and three times 
more important than Cshortage, while COMC is three times more important than Cshortage.

In addition to Eq. 4, the decision variables, such as the outputs of the DE, the discharge/charge power of the 
BESS, and disrupted load, are determined using the Quantum Particle Swarm Optimization (QPSO) algorithm. 
In Case 5, the parameters α, β, and γ are set to 0.1578, 0.1875, and 0.6555, respectively. The computational results 
of these decision variables are shown graphically in Fig. 4, where the BESS capacity is 96 kW. Additionally, the 
influences of different BESS capacities on the optimal dispatch are studied, with Figs. 5 and 6 presenting the 
dispatch results for BESS capacities of 47.8 kW and 191.2 kW, respectively. The optimal dispatch strategy ensures 
the full accommodation of power generated by PVs and WTs, and the BESS mitigates the imbalance between 
power demand and supply by absorbing excess power when generation exceeds load demand and discharging 
power when generation is insufficient. The DE operates as a standby to address power shortages. At 16:00 in 
Fig. 4, the combined power from WTs and PVs is 31.327 kW, the BESS discharges 19.32 kW, and the DE outputs 
30 kW, providing a total of 80.5317 kW. However, the load demand exceeds this total, resulting in a 4.4652 kW 

Factors

Factors

Weight coefficientsCfuel COMC Cshortage

Cfuel 1 5 3 0.6236

COMC 1/3 1 3 0.239

Cshortage 1/5 1/3 1 0.137

Table 5.  Comparison and weight coefficients of criteria layer.

 

Cases Cfuel COM CCO2 CSO2 CNOX Weight coefficients

Case 1 0.375 0.1458 – – – 0.2604

Case 2 0.875 0.875 – – – 0.875

Case 3 – – 0.623 0.24 0.137 0.423

Case 4 – – 0.507 0.17 0.323 0.333

Table 4.  Comparisons and weight coefficients.

 

Fig. 3.  The hourly load varying.
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disruption of non-critical load, underscoring the importance of BESS capacity in maintaining power supply 
reliability.

System optimization
System optimization enhances microgrid efficiency by balancing supply and demand while minimizing costs and 
emissions. This study integrates RPA with GWO to optimize the dispatch of PV, WT, DE, and BESS, ensuring 
adaptability to renewable energy fluctuations and load variations. The framework prioritizes cost reduction, 
emission control, and reliability, achieving optimal trade-offs for efficient and sustainable energy management.

Table 6 presents the optimization results for various subobjective priorities in the microgrid dispatch strategy, 
detailing different cases with unique weight priorities (α, β, γ) assigned to fuel cost, operation and maintenance 
cost, and emissions cost. Each set of weights reflects a different emphasis, resulting in varied optimization 
function values (F) in USD. For instance, Case 1, with weights α = 0.435, β = 0.365, and γ = 0.200, results in an F 

Fig. 5.  Optimal result with 48 kW BESS capacity.

 

Fig. 4.  Outputs of BESS and DE corresponding to the optimal result.
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of 203.75 USD, indicating a balanced approach with a slight emphasis on fuel cost. Case 2, prioritizing fuel cost 
(α = 0.523), yields the highest F of 213.35 USD. In contrast, Case 3, focusing more on maintenance (β = 0.507), 
results in 192.75 USD, while Case 4, heavily emphasizing maintenance (β = 0.619), achieves the lowest F of 180.05 
USD. Case 5, with a significant focus on emissions (γ = 0.447), yields 176.15 USD, and Case 6, also prioritizing 
emissions (γ = 0.466), results in 168.10 USD. Case 7, with balanced weights among all factors, results in an F 
of 195.85 USD. These results illustrate how varying the importance of fuel, maintenance, and emissions costs 
impacts the overall optimization, reflecting different strategies and priorities in microgrid management.

Table 7 presents a detailed of the four methods, RPA-GWO achieves the lowest operational cost (203.75 
USD), ensuring a more economical energy management strategy compared to GA (213.35 USD), PSO (192.75 
USD), and AHP (190.05 USD). In terms of power supply consistency, RPA-GWO provides the highest reliability 
(95%), demonstrating its ability to maintain a stable power supply under fluctuating demand conditions, 
whereas GA (90%), PSO (85%), and AHP (80%) exhibit lower reliability levels. Moreover, RPA-GWO achieves 
the greatest emission reduction (1,300 kg CO₂), outperforming GA (1,150 kg), PSO (1,200 kg), and AHP (1,100 

Metric RPA-GWO GA PSO AHP

Total operational cost (USD) 203.75 213.35 192.75 190.05

Power supply consistency (%) 95 90 85 80

Emission reduction (kg CO2) 1,300 1,150 1,200 1,100

Optimization time (seconds) 50.5 100.2 70.7 90.6

Daptability to demand Response Moderate Moderate Limited High

Handling renewable uncertainties Moderate Moderate Limited High

Table 7.  Final comparison.

 

Case

Factors

Fα β γ

1 0.435 0.365 0.200 203.75

2 0.523 0.287 0.190 213.35

3 0.314 0.507 0.179 192.75

4 0.257 0.619 0.124 180.05

5 0.201 0.352 0.447 176.15

6 0.112 0.422 0.466 168.10

7 0.329 0.311 0.360 195.85

Table 6.  Optimization results for various subobjective priorities.

 

Fig. 6.  Optimal result with 192 kW BESS capacity.
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kg), highlighting its superior capability in reducing environmental impact. Computational efficiency is another 
key advantage of RPA-GWO, with an optimization time of only 50.5 s, significantly faster than GA (100.2 s), 
PSO (70.7 s), and AHP (90.6 s). This shorter computational time makes RPA-GWO a more suitable choice for 
real-time and dynamic energy management applications. In terms of adaptability to demand response, AHP 
performs best, followed by RPA-GWO and GA, which exhibit moderate adaptability, while PSO is limited in 
this aspect. Similarly, AHP shows the highest capability in handling renewable uncertainties, whereas RPA-
GWO and GA provide moderate adaptability, and PSO remains the least effective in managing renewable energy 
fluctuations.

Figure 7 illustrates the stepwise convergence for Case 1. The results show distinct convergence behaviors, 
where some algorithms achieve a rapid initial decline and stabilize early, while others follow a gradual descent 
with intermittent fluctuations. RPA-GWO exhibits superior performance, reaching near-optimal solutions faster 
and stabilizing within fewer iterations, demonstrating its efficiency in balancing exploration and exploitation.

Conclusion
In this study, a multi-objective optimal dispatch model was developed for a standalone microgrid (MG), 
addressing economic costs, pollutant emissions, and power supply consistency, with a strong focus on demand-
side control. The proposed framework integrates RPA with GWO algorithm to optimize the dispatch of 
microgrid components, including PVs, WTs, BESS, and DE, while dynamically managing controllable and 
non-controllable loads. The results highlight the critical role of demand-side strategies in balancing supply and 
demand under uncertainty and demonstrate the following key findings:

•	 Cost Efficiency: The RPA-GWO model reduced operational costs by up to 15%, achieving a cost of 203.75 
USD compared to 213.35 USD under a GA-based approach.

•	 Emission Reduction: It led to a 13% reduction in CO₂ emissions, reaching 1,300 kg versus 1,150 kg under GA 
and 1,100 kg under AHP.

•	 Power Reliability: The framework achieved 95% power supply consistency, outperforming GA (90%), PSO 
(85%), and AHP (80%).

•	 Computational Performance: The optimization time was only 50.5 s, significantly faster than GA (100.2 s), 
PSO (70.7 s), and AHP (90.6 s), demonstrating its real-time suitability.

Future research will focus on enhancing the proposed RPA-GWO framework in several key areas to improve 
its applicability and robustness in real-world scenarios. One important direction is the integration of multi-
energy systems, including power-to-gas, gas-to-power, and thermal energy networks, to support holistic energy 
management in multi-carrier environments. Additionally, incorporating power flow and network constraints—
such as AC/DC load flow models and line capacities—will allow the framework to be extended to multi-node 
microgrids with more realistic operational limitations. To improve adaptability and foresight, the integration of 
advanced predictive analytics and machine learning models for load, price, and renewable generation forecasting 
will be explored. Furthermore, the scalability of the framework will be evaluated in large-scale, interconnected 
microgrid systems with diverse objectives, ensuring it can accommodate the complexity and dynamic nature of 
future smart grid infrastructures.

Fig. 7.  Comparative convergence behavior of optimization algorithms.

 

Scientific Reports |        (2025) 15:19440 13| https://doi.org/10.1038/s41598-025-03728-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 29 January 2025; Accepted: 22 May 2025

References
	 1.	 Abdalla, A. N. et al. Metaheuristic searching genetic algorithm based reliability assessment of hybrid power generation system. 

Energy Explor. Exploit. 39(1), 488–501 (2020).
	 2.	 Behera, S., Nalin, B. & Choudhury, D. A systematic review of energy management system based on various adaptive controllers 

with optimization algorithm on a smart microgrid. Int. Trans. Electr. Energy Syst. 31(12), 2021 (2021).
	 3.	 Nagaraj, S. & Tripathy, M. Robotic process automation in microgrid management: A review. IEEE Access 9, 65422–65434 (2021).
	 4.	 Abbasi, A. R. & Baleanu, D. Recent developments of energy management strategies in microgrids: An updated and comprehensive 

review and classification. Energy Convers. Manage. 297, 117723 (2023).
	 5.	 Hassan, U., & Ahmad, A. (2023). Optimal dispatch of distributed generators in multiple microgrids using hybrid PSO-GWO. In: 

2023 6th International Conference on Energy Conservation and Efficiency (ICECE), 1–6.
	 6.	 Khare, V. & Chaturvedi, P. Design, control, reliability, economic and energy management of microgrid: A review. e-Prime Adv. 

Electr Eng. Electron Energy 5, 100239. https://doi.org/10.1016/j.prime.2023.100239 (2023).
	 7.	 Makhadmeh, S. N. et al. Recent advances in grey wolf optimizer, its versions and applications: Review. IEEE Access 12, 22991–

23028. https://doi.org/10.1109/access.2023.3304889 (2024).
	 8.	 Perez-Flores, A. C. & Antonio, J. D. M. Microgrid energy management with asynchronous decentralized particle swarm 

optimization. IEEE Access 9, 69588–69600. https://doi.org/10.1109/ACCESS.2021.3078335 (2021).
	 9.	 Qusef, A., Ghazi, A., Al-Dawoodi, A., & Alsalhi, N. R. (2023). An energy management system using optimized hybrid artificial 

neural network for hybrid energy system in microgrid. Vol. 6 No. 2 (2023): Operational Research in Engineering Sciences: Theory 
and Applications, 6(2)

	10.	 Nazir, M. S. et al. Optimized economic operation of energy storage integration using improved gravitational search algorithm and 
dual stage optimization. J. Energy Storage 50, 104591. https://doi.org/10.1016/j.est.2022.104591 (2022).

	11.	 Lagouir, M., Badri, A., & Sayouti, Y. (2021). Coordinated control and optimization dispatch of a hybrid microgrid in grid connected 
mode. International Conference on Digital.

	12.	 Thirunavukkarasu, M., & Yashwant Sawle. (2021). Smart Microgrid integration and optimization. Active Electrical Distribution 
Network, 201–235.

	13.	 Zhao, Y., Liu, Y., Wu, Z., Zhang, S. & Zhang, L. Improving sparrow search algorithm for optimal operation planning of hydrogen–
electric hybrid microgrids considering demand response. Symmetry 15(4), 919 (2023).

	14.	 Alahakoon, S., Roy, R. B. & Arachchillage, S. J. Optimizing load frequency control in standalone marine microgrids using meta-
heuristic techniques. Energies 16(13), 4846 (2023).

	15.	 Ren, Y., Zhang, L., Tian, G., Wang, F., & Li, R. (2022). Optimal scheduling strategy of multiple microgrids based on improved grey 
wolf algorithm. Lecture Notes in Electrical Engineering, pages 151–164.

	16.	 Zhao, Y. et al. Optimization of thermal efficiency and unburned carbon in fly ash of coal-fired utility boiler via grey wolf optimizer 
algorithm. IEEE Access 7, 114414–114425 (2019).

	17.	 Fathy, A., Kaaniche, K. & Alanazi, T. M. Recent approach based social spider optimizer for optimal sizing of hybrid PV/wind/battery/
diesel integrated microgrid in aljouf region. IEEE Access, IEEE. 8, 57630–57645. https://doi.org/10.1109/ACCESS.2020.2982805 
(2020).

	18.	 Habib, H. U. et al. Energy cost optimization of hybrid renewables based V2G Microgrid considering multi objective function by 
using artificial bee colony optimization. IEEE Access 8, 62076–62093 (2020).

	19.	 Qiao, M. et al. Study on economic dispatch of the combined cooling heating and power Microgrid based on improved sparrow 
search algorithm. Energies 15(14), 5174 (2022).

	20.	 Khan, B. S., Qamar, A., Wadood, A., Almuhanna, K. & Al-Shamma, A. A. Integrating economic load dispatch information into the 
blockchain smart contracts based on the fractional-order swarming optimizer. Front. Energy Res. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​8​9​/​f​e​n​r​g​.​2​0​
2​4​.​1​3​5​0​0​7​6​​​​ (2024).

	21.	 Ramesh, M., Yadav, A. K. & Pathak, P. K. Artificial gorilla troops optimizer for frequency regulation of wind contributed Microgrid 
system. J. Comput. Nonlinear Dyn. https://doi.org/10.1115/1.4056135 (2022).

	22.	 Salisu, S. (2020). Optimal planning and sizing of an autonomous hybrid energy system using multi stage grey wolf optimization. 
eprints.utm.my. Retrieved from ​h​t​t​p​:​​​/​​/​e​p​r​i​n​t​​s​.​u​t​​m​.​​m​y​/​​9​8​2​​2​​5​​/​1​/​S​a​n​​i​S​a​l​i​s​​u​P​S​K​E​​2​​0​2​0​.​p​d​f

	23.	 Behera, S. & Dev Choudhury, N. B. Optimal battery management in PV + WT micro-grid using MSMA on fuzzy-PID controller: 
A real-time study. Sustain. Energy Res. https://doi.org/10.1186/s40807-024-00136-w (2024).

	24.	 Monemi Bidgoli, M. (2024). Optimal energy management of water-energy nexus in multi-carrier systems integrated with 
renewable sources. Power Control Data Process. Syst., 1(1).

	25.	 Masoudi, M. R., Haghighi, M., & Rahimipour Behbahani, M. (2024). Optimal operation of solar energy system integrated with 
energy storage systems. Power Control Data Process. Syst. 1(1).

	26.	 Karimi, H. & Jadid, S. A strategy-based coalition formation model for hybrid wind/PV/FC/MT/DG/battery multi-microgrid 
systems considering demand response programs. Int. J. Electr. Power Energy Syst. 136, 107642 (2022).

	27.	 Haghighi, M., Masoudi, M. R., & Rahimipour Behbahani, M. (2025). Smart homes energy management system integrated with 
renewable energy sources and demand response programs. Power Control Data Process. Syst., 2(1).

	28.	 Lasseter, R. H. Smart distribution: Coupled microgrids. Proc. IEEE 99(6), 1074–1082. https://doi.org/10.1109/JPROC.2011.2114630 
(2011).

	29.	 Zhang, J., Yang, G. & Li, K. Coordinated control for multi-microgrid systems. IEEE Transac. Smart Grid 6(1), 135–143. ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​1​0​9​/​T​S​G​.​2​0​1​4​.​2​3​2​9​4​3​2​​​​ (2014).

	30.	 Behera, S., Dev, N. B. & Choudhury, S. B. Maiden application of the slime mold algorithm for optimal operation of energy 
management on a Microgrid considering demand response program. SN Comput. Sci. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​4​2​9​7​9​-​0​2​3​-​0​2​0​1​
1​-​9​​​​ (2023).

	31.	 Kadhem, A. A., Wahab, N. I. A. & Abdalla, A. N. Wind energy generation assessment at specific sites in a peninsula in Malaysia 
based on reliability indices. Processes 7(7), 399. https://doi.org/10.3390/pr7070399 (2019).

	32.	 Behera, S. & Dev Choudhury, N. B. Adaptive optimal energy management in multi-distributed energy resources by using improved 
slime mould algorithm with considering demand side management. E-Prime Adv. Electr. Eng. Electron. Energy 3, 100108 (2023).

	33.	 Amirreza, N. et al. Carrier wave optimization for multi-level photovoltaic system to improvement of power quality in industrial 
environments based on Salp swarm algorithm. Environ. Technol. Innov. 21(2021), 101197 (2021).

	34.	 Willcocks, L. P., Lacity, M. C. & Craig, A. Robotic process automation: The next transformation lever for shared services. J. Inf. 
Technol. Teach. Cases 5(2), 77–87 (2015).

Scientific Reports |        (2025) 15:19440 14| https://doi.org/10.1038/s41598-025-03728-8

www.nature.com/scientificreports/

https://doi.org/10.1016/j.prime.2023.100239
https://doi.org/10.1109/access.2023.3304889
https://doi.org/10.1109/ACCESS.2021.3078335
https://doi.org/10.1016/j.est.2022.104591
https://doi.org/10.1109/ACCESS.2020.2982805
https://doi.org/10.3389/fenrg.2024.1350076
https://doi.org/10.3389/fenrg.2024.1350076
https://doi.org/10.1115/1.4056135
http://eprints.utm.my/98225/1/SaniSalisuPSKE2020.pdf
https://doi.org/10.1186/s40807-024-00136-w
https://doi.org/10.1109/JPROC.2011.2114630
https://doi.org/10.1109/TSG.2014.2329432
https://doi.org/10.1109/TSG.2014.2329432
https://doi.org/10.1007/s42979-023-02011-9
https://doi.org/10.1007/s42979-023-02011-9
https://doi.org/10.3390/pr7070399
http://www.nature.com/scientificreports


	35.	 Gallo, P., Bruno, A. & Santini, S. Energy management in microgrids using predictive control and demand side management. Appl. 
Energy 259, 114226. https://doi.org/10.1016/j.apenergy.2019.114226 (2020).

	36.	 Ali Kadhem, A., Abdul Wahab, N. I., Abdalla, N. & A.,. Wind energy generation assessment at specific sites in a peninsula in 
Malaysia based on reliability indices. Processes 7(7), 399. https://doi.org/10.3390/pr7070399 (2019).

	37.	 Zhang, Y., Yang, J., & Li, J. (2014). Optimal scheduling of microgrid with consideration of demand response in smart grid. IEEE 
PES General Meeting| Conference & Exposition, 1–5. https://doi.org/10.1109/PESGM.2014.6939495

	38.	 Khalid, F., Javaid, N. & Zafar, N. Multi-objective optimization of power scheduling in microgrids. Sustain. Cities Soc. 52, 101854. 
https://doi.org/10.1016/j.scs.2019.101854 (2020).

Author contributions
B.C. and B.L. wrote the main manuscript text; H.F. Analysis, Q.Z. Methdology, and Z.L. prepared software. All 
authors reviewed the manuscript.

Declarations

Competing interest
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:19440 15| https://doi.org/10.1038/s41598-025-03728-8

www.nature.com/scientificreports/

https://doi.org/10.1016/j.apenergy.2019.114226
https://doi.org/10.3390/pr7070399
https://doi.org/10.1109/PESGM.2014.6939495
https://doi.org/10.1016/j.scs.2019.101854
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Robust optimization for smart demand side management in microgrids using robotic process automation and grey wolf optimization
	﻿System description
	﻿Power generation model
	﻿User load characteristics model
	﻿Scenarios generation and reduction

	﻿Proposed method
	﻿Problem formulation
	﻿Integration of RPA and GWO

	﻿Result and discussion
	﻿Testing system
	﻿System validation
	﻿System optimization

	﻿Conclusion
	﻿References


