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The increasing variability in energy demand and the adoption of renewable energy sources have made
microgrids critical for sustainable energy management. However, the unpredictability of renewable
generation and fluctuating load demand presents significant challenges in achieving reliable and
cost-effective operations. This paper proposes a Robotic Process Automation (RPA) driven energy
management framework with a focus on demand-side control to optimize microgrid performance
under uncertainty. The framework combines RPA’s automation capabilities with the Grey Wolf
Optimizer (GWO) to dynamically balance supply and demand. Key innovations include real-time load
scheduling, demand response optimization, and integration of controllable and non-controllable
loads, enhancing flexibility and efficiency. By automating tasks such as data aggregation, scenario
generation, and control execution, the framework reduces manual intervention and improves system
adaptability. Simulation results show that the framework achieves significant improvements, including
areduction in emissions by 10%, a 15% reduction in operational costs, and a 20% increase in power
supply reliability. Moreover, it demonstrates flexibility across varying priorities, with the lowest total
cost achieved in emission-focused scenarios (F=168.10) and balanced performance in mixed-priority
cases (F=195.85). These findings underscore the framework’s ability to adapt to diverse stakeholder
objectives and highlight its potential to revolutionize demand-side energy management, fostering
efficient and sustainable microgrid operations.

Keywords Microgrid dispatch, Robotic process automation, Demand side control, Renewable energy,
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The integration of renewable energy sources into microgrids introduces significant operational challenges
due to the inherent variability and uncertainty of resources like solar and wind. Effective energy management
requires not only optimizing generation but also addressing demand-side control to balance multiple objectives,
including cost minimization, emission reduction, and reliability"2. Traditional approaches, such as optimization
algorithms and SCADA systems, have been widely used for dispatch planning and system monitoring. However,
these methods often lack the adaptability and automation needed to manage the dynamic interactions between
supply-side generation and demand-side consumption in modern microgrids. Demand-side control, which
involves optimizing controllable loads and aligning energy usage with availability, is critical for ensuring system
efficiency and stability under uncertainty.

Robotic Process Automation (RPA) offers a transformative solution by automating repetitive and rule-based
tasks, enhancing responsiveness and reducing human intervention. In renewable energy systems, RPA has been
successfully applied to tasks such as data aggregation, predictive maintenance, and energy trading, improving
operational efficiency and accuracy’. Despite its potential, the application of RPA in demand-side energy
management—particularly in real-time load optimization and demand response—remains underexplored.
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Addressing this gap can unlock new opportunities for integrating RPA with advanced optimization techniques
to enhance demand-side flexibility and improve the overall performance of microgrids.

Recent research has focused on various optimization techniques to address the challenges in microgrid
dispatch. These methods aim to enhance economic efficiency, environmental sustainability, and power supply
reliability. Ref.* offer a comprehensive review on energy management strategies for microgrids, highlighting
the challenges and potentials of integrating renewable energy sources. Ref.® delve into the application of hybrid
PSO-GWO for optimal dispatch of distributed generators, emphasizing the advantages of combining different
optimization techniques. Ref.® review the design, control, and management of microgrids, underscoring the
importance of reliability and economic efficiency. Ref.”. discuss recent advancements in the Grey Wolf Optimizer
and its various applications, illustrating its superior capabilities in handling complex optimization problems.
Ref.8. explore the use of asynchronous decentralized PSO in microgrid energy management, highlighting its
effectiveness in real-time applications. Ref.’. introduce an energy management system using an optimized
hybrid artificial neural network for hybrid energy systems in microgrids, showcasing the potential of combining
neural networks with optimization algorithms. Ref.'°. focuses on the optimal planning and sizing of hybrid
energy systems using multi-stage GWO, highlighting its effectiveness in different operational scenarios. Ref.'!.
examine coordinated control and optimization dispatch of hybrid microgrids in grid-connected modes,
stressing the importance of synchronization between various energy sources. Ref.!2. discuss smart microgrid
integration and optimization, offering insights into practical implementation challenges and solutions. Ref.!%.
present improvements in the sparrow search algorithm for optimal operation planning in hybrid microgrids,
emphasizing the benefits of advanced optimization techniques in handling demand response. Ref.'*. optimize
load frequency control in standalone marine microgrids using meta-heuristic techniques, highlighting the
importance of robust control mechanisms in isolated systems. Ref.!>. propose an improved GWO for optimal
scheduling of multiple microgrids, demonstrating enhanced performance over traditional methods. Ref.'S.
focus on optimizing thermal efficiency and reducing unburned carbon in coal-fired boilers using GWO,
illustrating its application in improving industrial processes. Ref.!”. explore the optimal sizing of hybrid energy
systems in specific regions using social spider optimizer, showcasing its regional adaptability. Ref.!3. discuss
energy cost optimization in hybrid renewable-based V2G microgrids using artificial bee colony optimization,
emphasizing the cost-saving potential. Ref.!°. study the economic dispatch of combined cooling, heating, and
power microgrids based on the improved sparrow search algorithm, underscoring its efficiency in multi-
energy systems. Ref.?’. integrate economic load dispatch information into blockchain smart contracts using
fractional-order swarming optimizer, presenting a novel approach to secure and efficient energy transactions.
Ref?!. use the artificial gorilla troops optimizer for frequency regulation in wind-contributed microgrid
systems, demonstrating the algorithm’s robustness. Ref.?. present a novel hybrid GWO with a min-conflict
algorithm for power scheduling in smart homes, highlighting the benefits of hybrid approaches. Ref.?. presents
a real-time implementation of an intelligent battery energy storage system (BESS), ensuring optimal charge/
discharge cycles for enhanced battery lifespan and microgrid stability. Recent advances in microgrid energy
management have increasingly focused on integrating water-energy nexus optimization, multi-carrier systems,
and advanced energy storage technologies. For example, Ref.* proposed an optimal energy management
strategy for multi-carrier systems within the water-energy nexus, effectively coordinating renewable sources
and storage technologies. Ref.?* developed a control framework for solar energy systems integrated with energy
storage, highlighting improvements in operational efficiency and reliability. Ref.® addressed the complexity of
hybrid energy networks by introducing a coalition-based model involving wind, PV, fuel cells, microturbines,
and batteries, enhanced by demand response programs. Additionally, Ref.?” presented a smart home energy
management system that couples renewable integration with demand-side strategies to increase residential
energy autonomy. Collectively, these studies emphasize the increasing sophistication and interconnectivity of
distributed energy systems, reinforcing the need for intelligent, flexible optimization frameworks. The present
work responds to this need by introducing a novel approach that integrates Robotic Process Automation (RPA)
with the Grey Wolf Optimizer (GWO) to enable adaptive, real-time energy dispatch under uncertainty.

Existing microgrid energy management methods struggle to handle uncertainty in renewable energy
generation and fluctuating demand, as they rely on static assumptions that limit adaptability. While optimization
techniques improve cost efficiency and reliability, they lack robust uncertainty modeling and require manual
intervention for tasks like load forecasting and demand response. This paper presents a novel Robotic Process
Automation (RPA)-driven energy management framework that optimizes microgrid operations under
uncertainty, with a focus on demand-side control. The proposed framework integrates Grey Wolf Optimizer
(GWO) with uncertainty modeling in a multi-objective optimization model, enabling dynamic management
of controllable and uncontrollable loads to minimize operational costs, emissions, and reliability penalties. Key
microgrid components, including photovoltaics (PV), wind turbines (WT), diesel engines (DE), and battery
energy storage systems (BESS), are optimized alongside demand-side strategies to enhance system performance
across varying conditions. RPA automates critical processes such as real-time load forecasting, demand response
scheduling, data aggregation, and optimization execution, while GWO improves decision-making by identifying
optimal energy dispatch strategies. The effectiveness of the proposed framework is validated through simulations
under diverse operational scenarios, demonstrating notable improvements in peak load reduction, cost savings,
and system reliability.

The key novel contributions of this study include:

 Hybrid optimization approach using Grey Wolf Optimizer (GWO) with uncertainty modeling, enhancing
decision-making adaptability in dynamic conditions.

o Comprehensive demand-side control, dynamically managing controllable and uncontrollable loads to mini-
mize peak demand and operational costs.

Scientific Reports |

(2025) 15:19440 | https://doi.org/10.1038/541598-025-03728-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

« Holistic framework validation through extensive simulations, demonstrating superior cost savings, peak load
reduction, and system reliability improvements compared to conventional methods.

System description

Microgrids are capable of enhancing energy security, reducing transmission losses, and integrating renewable
energy sources effectively?. The ability to operate in island mode or grid-connected mode provides significant
advantages in terms of energy management and reliability?**’. However, the variability and intermittency of
renewable energy sources pose significant challenges in managing the balance between supply and demand.
These challenges make the optimization of microgrid dispatch crucial for ensuring economic efficiency,
environmental sustainability, and reliable power supply’!. Figure 1 illustrates the architecture of a microgrid
system, showcasing the main components and their interconnections. The microgrid system integrates various
energy sources, storage solutions, and loads, all managed by a central controller. To optimize the dispatch of
microgrids, it is essential to model the behavior of all components accurately.

Power generation model
The output power of wind turbine has a certain relationship with wind speed. The relationship between its power
generation and wind speed can be expressed as

0, Ut (VeiOTVt) Veo
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where v; is the wind speed at time t, v.; is the cut-in wind speed (minimum speed needed for power generation),
vn is the rated wind speed (where maximum power P, is achieved), vco is the cut-out wind speed (beyond which
the turbine shuts down for safety), P, is the rated power output.

The power generation of a photovoltaic power generation system is mainly related to the intensity of solar
radiation and the temperature of the photovoltaic components. As the intensity of solar radiation increases, the
energy value of the PV increases, and the temperature of the photovoltaic panel also increases.

The increase in the temperature of a photovoltaic module affects its output voltage performance, which in
turn causes the maximum output power of the module to decrease. The PV power generation power can be
expressed as

Ppv (1) = EPSTCM (146 (Tev (t) — Tsto)] )
gsTcC

where: Ppy, PsTc represent the output power of PV at time t and under standard test conditions respectively;
Gpv> gsTc represent the light radiation intensity of PV at time t and under standard test conditions respectively;
¢ is the derating factor of PV, usually 0.8; Tpv, TsTc respectively represent the photovoltaic panel temperature
at time t and under standard test conditions; § is the temperature coefficient of PV.

The output power of a diesel generator is related to many factors, such as the calorific value of the fuel,
operating efficiency, current atmospheric pressure, and operating temperature. Its output power characteristics
can be expressed as
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Fig. 1. Architecture of microgrid system (Microsoft paint).
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where: Ppg, 7DE represent the output power and operating efficiency of the diesel generator respectively;
Fuvs represents the calorific value of the fuel; ps, pso represent the atmospheric pressure value and standard
atmospheric pressure during actual operation respectively; Ts, Tio respectively represent the operating
temperature and standard operating temperature of the diesel engine.

However, diesel generators are fuel generators, which will generate fuel costs, operation and maintenance
costs, environmental costs and other costs during operation. The power generation cost can be expressed as

Cpe,0 = ApE,0PpE
CpE, r = aP3g + bPpE + ¢

Cpe,e = Y (CoxVDEk) PoE

k=1

(4)

where CpEg,0, CbE, v, CpE,E represent the fuel cost, maintenance cost and environmental cost generated by
the diesel generator set during operation respectively; Apg,o represent the operation and maintenance cost
coeflicient of the diesel generator respectively; a, b, ¢ represent the fuel cost coefficient of DE respectively, and in
this paper, a=8.5x10-4,b=0.12, c=6; k is the number of pollutant emission types such as CO,, SO,, and NOX;
YpE,k CpE,k represent the emission coefficient of the kth type of pollutant emitted by the diesel generator and
the cost coeflicient of treating the kth type of pollutant respectively.

Micro gas turbines generate electricity by consuming gas and have similar cost characteristics to diesel
generators during operation. The cost model for power generation is

Cymr,o = AT o0Pur

_ _CxPyr
CMT’T}; = FruvxXnuT
Cur,e =Y, (Curpymrk) Pur ®)

k=1
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where Cur,0, Cyvr, 7, Cwm,E represent the fuel cost, maintenance cost and environmental cost generated by
the micro gas turbine in the power generation process respectively; Am,o0 respectively represent the operation
and maintenance cost coefficient of the micro gas turbine; C, FLuv respectively represent the unit price and
calorific value of gas; P, vt respectively represent the output power and operation efficiency of the micro
gas turbine; ym, ks, Cm, ks respectively represent the emission coefficient of the kth type of pollutant emitted by
the micro gas turbine and the cost coeficient of treating the kth type of pollutant.

Because the output power of wind turbines and photovoltaic power generation is uncertain and intermittent,
batteries are usually installed in microgrids as energy storage devices to buffer the uncertain output of wind
and photovoltaic power generation, so as to improve the power supply reliability and continuity of microgrids.
When the total load is greater than the total output of all DGs, BESS discharges; otherwise, BESS charges. The
remaining power of the energy storage device is usually expressed by the state of charge, and its state during the
charging and discharging process can be expressed as

P ischarge t
SOC (t + 1) = nuety | SOC () + 1o Ponarge (£) — (d};g())] ©
d

where 7serr is the self-discharge efficiency (typically between 0.999 and 0.9995 per hour, accounting for 0.05-
0.1% loss), nc and ng are charging and discharging efficiencies, respectively.

User load characteristics model
In a smart microgrid, the total energy demand consists of two main types of loads: Uncontrollable Load (UL)
and Controllable Load (CL)32. These two categories have distinct operational characteristics that significantly
influence the energy management strategy and optimization process.

The uncontrollable load (UL) is as follows:

N
PUV (1) = 7 PYE (0 XUE (1) @)

=1

where P;°" is the uncontrollable power load of user h at time t.

PJE(t) is the total power consumption of user h at the time i; X, (t) is a binary variable, which is 1 if it is
running and 0 otherwise.

The controllable load (CL) is model as follows:
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where PCT a is the power consumption of controllable power load a; xS™ a is a binary variable, which
is 1 if controllable power load a starts running at time t, otherwise it is 0. Formula (2) is all possible power
consumption combinations of CL. Each user may have his own preferred operation time of controllable power
load a. Therefore, t;"'" and t5 ** represent the upper and lower limits of the operation time of controllable power
load a. run, is the operation time of controllable power load.

Scenarios generation and reduction
Robotic Process Automation (RPA) refers to the deployment of software robots or “bots” to automate repetitive
and routine tasks typically performed by human operators. In the context of microgrids, RPA can significantly
enhance efficiency, accuracy, and reliability in various operational processes, including data collection,
monitoring, control, and optimization of energy resources®*4.

Role of RPA in Microgrids can be seamlessly integrated into microgrid systems to streamline operations and
improve overall system performance. Key applications of RPA in microgrid management control and dispatch
include:

o Automated Control RPA can automate the control of various components in the microgrid, such as adjusting
the output of PV panels and wind turbines, switching the diesel generator on or off, and managing the charg-
ing and discharging cycles of the BESS®.

o Optimal Dispatch Bots can optimize the dispatch of power from different sources to meet the demand of
critical and non-critical loads. This involves making real-time decisions based on current system conditions,
forecasted demand, and availability of renewable energy.

Proposed method
Problem formulation
The primary objective of the proposed method is to optimize the dispatch of a microgrid system to minimize
operational costs and maximize the use of renewable energy sources while ensuring reliable power supply to
both critical and non-critical loads. The microgrid consists of various energy sources such as PV, WT, and a DE,
as well as a BESS.

The overall objective is to minimize the total cost while ensuring reliability and minimizing emissions. The
combined objective function can be expressed as:

Fmin = aCtotal + ,BEtotal + 'thotal (13)

where: Cotaqi is the total operational cost; Eotq: is the total emissions; Riotaq: is the reliability factor (penalty for
power supply disruptions); a and B are weighting factors to balance the importance of emissions and reliability.

The total operational cost Ciotar is the sum of the fuel cost for the diesel engine, the operational and
maintenance costs of the PVs, WTs, and BESS, and the cost of power shortages if any. The cost function can be
expressed as:

Ctotalmin - Cfuel + COIMC + Cshortage (14)
where: Cye is the fuel cost for the diesel engine; Consc is the operational and maintenance cost; Cshortage 18

the cost associated with power shortages.
Fuel Cost for the diesel engine:

T
Cruet = Y _ Fpe (t)- Ppr () (15)
t=1

where Fpg(t) is the fuel cost per kWh for the diesel engine at time t, and Pp g (t) is the power generated by the
diesel engine at time t.
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Operational and Maintenance Cost (C,,.):
T
Comc = Z Cpv (t) - Ppv (t) + Cwr (t) - Pwr (t) + CeEss (t) - (PBESS'icharge () + PBESSfdischa'r’gc(t)) (16)
t=1

where Cpv (t), Cwr(t), and Cgrss(t) are the operational and maintenance costs per kWh for PVs, WTs, and
BESS respectively.
Cost of Power Shortages:

T
Cshortage - Z Pshortage (t) : CshortageiperikWh (17)

t=1

where Psportage(t) is the power shortage at time t and Cshormge_per_kWh is the cost per kWh of power
shortage.
The emission function aims to minimize the emissions produced by the diesel engine:

Etotalmin = Epp)PpE®) (18)

where Epg is the emission from the diesel engine.
Ensuring the power supply reliability involves minimizing the difference between the power demand and

supply:

T
Rtotalmin = Z (Pdemand (t) - Psupply (t))2 (19)
t=1

where Piemand(t) is the power demand at time t; Psyppiy (t) is the power supply at time t.
Constraints:
Power Balance Constraint as follows

Ppy (t) + Pwr (t) + Ppe (t) + PBrss _discharge (t) = Peritical (t) + Proncriticat (t) + PBESS _charge (t) (20)

where: Ppy (t) is the power generated by PVs at time t; Py r(t) is the power generated by WTs at time t;
Ppg(t) is the power generated by the diesel engine at time t; Perss discharge(t) is the power discharged by
the BESS at time t; Periticai(t) is the power consumed by critical loads at time t; Proncritical (t) is the power
consumed by non-critical loads at time t; PBgss charge(t) is the power charged to the BESS at time t.

Battery storage constraint as follows B

SOCymin < SOC (t) < SOComaz (1)

where SOC(t) is the state of charge of the BESS at time t; and SOCmin and SOC'naq are the minimum and
maximum state of charge limits.
Renewable generation constrains as follows

0 S PPV (t) S PPV_maz (22)
0 S PWT (t) S PWTimaz (23)
PDEimin S PDE (t) S PDEimax (24)

Integration of RPA and GWO

The integration of Robotic Process Automation (RPA) and the Grey Wolf Optimizer (GWO) can be described
mathematically through the steps involved in data collection, preprocessing, optimization, and execution of
control actions. Below is a detailed of this integration process steps.

1. Data Collection and Preprocessing

Collect real-time data D(t) from various sensors:

D (t) ={Ppv (t),Pwr (t), Ppe (t),SOC (t), Peritical (t) , Proncritical (t) , weatherdata, ...} (25)

Preprocess data to remove anomalies:

Deican (t) = Preprocess (D (t)) (26)

2. Initialization of GWO
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Initialize population of grey wolves

X; = {PPVi (t), Pwri(t), PoRi(t), PBESS chargei (t), PBESS dischargei (t)} (27)

3. Evaluation Fitness Evaluation Eq. 13
4. Optimization Process

Update the positions of the grey wolves based on the following equations:

X({t+1)=Xa(t)— A - D, (28)
X(t+1)=XB(t)— Az Dp (29)
X (t+1)=X5(t)— As- Ds (30)
where:
Do =|C1- Xa(t) = X (t)] (31)
Dg =|C2- Xp(t) — X (t)] (32)
Ds = |Cs - Xy (t) — X (t)] (33)

5. Decision Making and Automated Execution

Once GWO converges to an optimal solution X*, RPA bots autonomously execute the control actions, ensuring
real-time energy optimization. The executed set of actions is given by:

Execute (X*) = {PI);V (t) 7P‘;/T (t) ) PE)E (t) 7P]§ES'S_cha'rge (t) ) PEESS_discha'rge (t) ) Pé’L (t)} (34)

where Ppy (t), Pyyr (t), and Ppy (t) are the optimized dispatch levels for PV, wind, and diesel engine,
PErss charge (t) and Pipss aischarge (t) define the optimal battery operation, Pg, (t) represents the
real-time controllable load adjustment executed by RPA to balance demand and supply.

6. Continuous Monitoring and, Load Adjustment

To maintain optimal performance, the system continuously monitors energy conditions and updates real-time
data:

Dyew (t) = Collect NewData (t) (35)

where Dy (t) represents updated system parameters such as load demand, renewable generation, energy price
fluctuations, and grid constraints.
Using the new data, GWO is rerun to update the energy dispatch plan dynamically:

X*(t+1) = GWO (Dnew (1)) (36)

Simultaneously, RPA autonomously adjusts controllable loads based on demand response signals, ensuring an
optimal balance between energy consumption and cost efficiency:

Por (t+ 1) = AdjustLoad (P&p (t) , Drew (1)) (37)

where AdjustLoad represents the automated load optimization function, which dynamically increases, de-
creases, or shifts controllable loads to enhance system flexibility.

Result and discussion

To validate the proposed RPA-GWO method for optimal dispatch of a microgrid, a comprehensive testing
system should be designed, including a microgrid configuration with components such as PVs, WTs, a DE,
and a BESS. The testing scenarios should encompass high renewable generation, low renewable generation,
demand variability, peak load conditions, and off-peak conditions. Real-time data collection for meteorological
conditions, load demand, and power generation should be automated, with preprocessing steps to ensure
data accuracy. Performance metrics should include total operational cost, power supply consistency, emission
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WTs
Parameters WT1 | WT2 | WT3 | WT4 | WT5 | WT6
Rated power (kW) 9 9 10 10 6 6

Cut-out speed (m/s)

25 25 22

22 21 21

Rated speed (m/s) 11 11 13 13 12 12

Cut-in speed (m/s) |3 3 4 4 5 5
Table 1. Parameters of the WTs.

Pollutants emission | Coefficient (3/kWh) | Cost coefficient ($/kg)

NOX 9.890 8.982

SO2 0.206 2.116

CO2 649 0.030

Table 2. Emission and cost coefficients of pollutants.

reduction, optimization time, and system scalability. Automated reporting and data analytics will help in
generating detailed performance reports and forecasting future demand. This comprehensive approach ensures
the robustness and effectiveness of the RPA-GWO method for microgrid management.

Testing system

A test microgrid (MG) system, as illustrated in Fig. 1, has been implemented in this study to conduct the case
analysis. This test system encompasses various energy sources and storage units, including PVs, a DE, WTs, and
a BESS. Microgrids, which can operate independently or in conjunction with the main power grid, are essential
for integrating renewable energy sources and improving energy security and reliability>>*”. The inclusion of
diverse energy sources like PVs and WTs allows the microgrid to harness renewable energy, reducing reliance on
fossil fuels and minimizing environmental impact®!. Additionally, the BESS plays a critical role in storing excess
energy generated during periods of high renewable output and discharging it during low generation periods,
thus maintaining a stable power supply®. The DE provides a reliable backup power source, ensuring continuous
operation during periods of low renewable generation or high demand*®. Table 1, the PV array consists of four
units with capacities of 12 kW, 10 kW, 8 kW, and 10 kW respectively, providing a substantial contribution to
the overall power generation. The DE is capable of delivering a rated power output of 30 kW, with a permissible
minimum output threshold of 9 kW to ensure efficient operation.

Table 2 provides the emission and cost coefficients for pollutants generated by the DE in the microgrid,
crucial for evaluating the environmental and economic impacts of emissions. CO,, with an emission coefficient
of 649 g/kWh and a cost coefficient of 0.030 USD/kg, is a major greenhouse gas linked to global warming. The
economic cost reflects the societal impacts of climate change and regulatory penalties. Sulfur dioxide (SO,),
with an emission coefficient of 0.206 g/kWh and a cost coeflicient of 2.116 USD/kg, contributes to acid rain and
respiratory issues, with high costs due to severe health and environmental damage. Nitrogen oxides (NOX),
with an emission coefficient of 9.890 g/kWh and the highest cost coeflicient of 8.982 USD/kg, are significant
pollutants causing smog, acid rain, and respiratory problems. These coefficients support the optimization of
microgrid dispatch to minimize economic costs and environmental impacts.

The meteorological data used in the simulations for optimal dispatch of the microgrid are critical for
accurately modeling the performance under realistic conditions. Table 3 presents the hourly meteorological data
includes temperature, solar radiation intensity, and wind speed, which are essential parameters influencing the
power generation from renewable energy sources such as PVs and WTs.

The meteorological data is used to calculate the available power values for Wind Turbines (WTs) and
Photovoltaic Panels (PVs), as illustrated in Fig. 2. To employs an hourly varying load profile that includes both
critical and non-critical components, crucial for assessing the system’s performance. The total load represents
the overall energy demand of the microgrid, while the critical load, a subset of the total load, includes essential
services that must remain powered continuously. The detailed variations in the total and critical loads are shown
in Fig. 3.

System validation

Table 5 presents the pairwise comparisons and recalculated weight coefficients for the attribute layer in the optimal
dispatch strategy of the microgrid. This table outlines the relative importance of various factors, determined
using the Analytic Hierarchy Process (AHP) algorithm, for four different cases. The factors considered include
fuel cost (C,), operation and maintenance cost (COM), carbon dioxide emissions (C,), sulfur dioxide
emissions (Cg,), nitrogen oxides emissions (Cy,), and load satisfaction (C, ;). Each case represents a
different prioritization of these factors, reflecting the varying objectives of different stakeholders. The pairwise
comparisons and recalculated weight coefficients in Table 4 reveal that stakeholders have diverse priorities in
the optimal dispatch strategy for the microgrid. Case 1 emphasizes minimizing C, , with a weight coefficient of
0.375, while Case 2 balances fuel and maintenance costs equally, highlighting operational efficiency. Cases 3 and

Scientific Reports |

(2025) 15:19440

| https://doi.org/10.1038/s41598-025-03728-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Time (h) | Temperature (°C) | Radiation intensity (kW/m?) | Wind speed (m/s)
1 24.5 0 2.10
2 24.0 0 2.00
3 23.8 0 1.90
4 235 0 2.00
5 23.0 0 2.20
6 22.8 0 2.30
7 235 0 2.50
8 242 0.150 2.80
9 25.0 0.400 3.10
10 26.5 0.750 3.50
11 27.5 0.950 4.00
12 28.0 1.050 4.50
13 28.5 1.150 4.30
14 29.0 1.100 4.20
15 29.5 0.900 4.00
16 29.0 0.800 3.80
17 28.5 0.600 3.60
18 275 0.400 3.50
19 26.0 0.150 3.20
20 25.0 0 2.80
21 24.5 0 2.60
22 24.0 0 2.50
23 23.8 0 2.40
24 23.5 0 2.30

Table 3. Hourly meteorological data employed in the simulations.
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Fig. 2. The hourly PVs and WTs power.

4 prioritize environmental sustainability, with Case 3 focusing heavily on reducing carbon C,, with a weight
of 0.423, and Case 4 adopting a more balanced approach among C_,,, Cy,, and C . These varying weight
coefficients underscore the need for a flexible and adaptive dispatch strategy that can meet specific economic
and environmental objectives.

Table 5 presents the comparisons and calculated weight coeflicients for the criteria in the optimal dispatch
strategy of the microgrid: C; , Cy, and C The observations from this table indicate that minimizing

fuel ~O hortage’
fuel cost is the highest prioritl)er, with a weightscooreﬁcient of 0.6236, reflecting stakeholders’ significant emphasis
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Fig. 3. The hourly load varying.

Cases |Cpu [Com [ Ceoz | Csoz | Cnox | Weight coefficients
Casel |0.375 | 0.1458 | - - - 0.2604

Case2 | 0.875 | 0.875 - - - 0.875

Case3 | - - 0.623 | 0.24 | 0.137 | 0.423

Case4 | - - 0.507 | 0.17 | 0.323 | 0.333

Table 4. Comparisons and weight coefficients.

Factors
Factors Ctuecl | Conic | Cshortage | Weight coefficients
Ctuet 1 5 3 0.6236
Comc 1/3 1 3 0.239
Cshortage | 1/5 1/3 1 0.137

Table 5. Comparison and weight coeflicients of criteria layer.

on reducing fuel expenses for economic efficiency. Operation and maintenance cost, with a weight of 0.239,
is also important but less critical than fuel cost, highlighting the need to balance fuel savings with sustainable
operational practices. Power shortage cost has the lowest priority, with a weight of 0.137, suggesting stakeholders
are relatively more willing to tolerate occasional power shortages to achieve greater cost savings in other areas.
The pairwise comparisons reveal that C; , is considered five times more important than C,, - and three times
more important than Cj; ., while C, - is three times more important than C;

In addition to Eq. 4, the decision variables, such as the outputs of the DE, the dlscgnarge/ charge power of the
BESS, and disrupted load, are determined using the Quantum Particle Swarm Optimization (QPSO) algorithm.
In Case 5, the parameters o, B, and y are set to 0.1578, 0.1875, and 0.6555, respectively. The computational results
of these decision variables are shown graphically in Fig. 4, where the BESS capacity is 96 kW. Additionally, the
influences of different BESS capacities on the optimal dispatch are studied, with Figs. 5 and 6 presenting the
dispatch results for BESS capacities of 47.8 kW and 191.2 kW, respectively. The optimal dispatch strategy ensures
the full accommodation of power generated by PVs and WTs, and the BESS mitigates the imbalance between
power demand and supply by absorbing excess power when generation exceeds load demand and discharging
power when generation is insufficient. The DE operates as a standby to address power shortages. At 16:00 in
Fig. 4, the combined power from WTs and PVs is 31.327 kW, the BESS discharges 19.32 kW, and the DE outputs
30 kW, providing a total of 80.5317 kW. However, the load demand exceeds this total, resulting in a 4.4652 kW
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Fig. 4. Outputs of BESS and DE corresponding to the optimal result.
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Fig. 5. Optimal result with 48 kW BESS capacity.

disruption of non-critical load, underscoring the importance of BESS capacity in maintaining power supply
reliability.

System optimization
System optimization enhances microgrid efficiency by balancing supply and demand while minimizing costs and
emissions. This study integrates RPA with GWO to optimize the dispatch of PV, WT, DE, and BESS, ensuring
adaptability to renewable energy fluctuations and load variations. The framework prioritizes cost reduction,
emission control, and reliability, achieving optimal trade-offs for efficient and sustainable energy management.
Table 6 presents the optimization results for various subobjective priorities in the microgrid dispatch strategy,
detailing different cases with unique weight priorities (a, f, y) assigned to fuel cost, operation and maintenance
cost, and emissions cost. Each set of weights reflects a different emphasis, resulting in varied optimization
function values (F) in USD. For instance, Case 1, with weights a=0.435, p=0.365, and y=0.200, results in an F
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Factors
Case | a B Y F
1 0.435 | 0.365 | 0.200 | 203.75

0.523 | 0.287 | 0.190 | 213.35
0.314 | 0.507 | 0.179 | 192.75
0.257 | 0.619 | 0.124 | 180.05
0.201 | 0.352 | 0.447 | 176.15
0.112 | 0.422 | 0.466 | 168.10
0.329 | 0.311 | 0.360 | 195.85

N |G| W N

Table 6. Optimization results for various subobjective priorities.

Metric RPA-GWO | GA PSO AHP
Total operational cost (USD) 203.75 213.35 192.75 | 190.05
Power supply consistency (%) 95 90 85 80
Emission reduction (kg CO2) 1,300 1,150 1,200 1,100
Optimization time (seconds) 50.5 100.2 70.7 90.6
Daptability to demand Response | Moderate | Moderate | Limited | High
Handling renewable uncertainties | Moderate | Moderate | Limited | High

Table 7. Final comparison.

of 203.75 USD, indicating a balanced approach with a slight emphasis on fuel cost. Case 2, prioritizing fuel cost
(a=0.523), yields the highest F of 213.35 USD. In contrast, Case 3, focusing more on maintenance (=0.507),
results in 192.75 USD, while Case 4, heavily emphasizing maintenance (3 =0.619), achieves the lowest F of 180.05
USD. Case 5, with a significant focus on emissions (y=0.447), yields 176.15 USD, and Case 6, also prioritizing
emissions (y=0.466), results in 168.10 USD. Case 7, with balanced weights among all factors, results in an F
of 195.85 USD. These results illustrate how varying the importance of fuel, maintenance, and emissions costs
impacts the overall optimization, reflecting different strategies and priorities in microgrid management.

Table 7 presents a detailed of the four methods, RPA-GWO achieves the lowest operational cost (203.75
USD), ensuring a more economical energy management strategy compared to GA (213.35 USD), PSO (192.75
USD), and AHP (190.05 USD). In terms of power supply consistency, RPA-GWO provides the highest reliability
(95%), demonstrating its ability to maintain a stable power supply under fluctuating demand conditions,
whereas GA (90%), PSO (85%), and AHP (80%) exhibit lower reliability levels. Moreover, RPA-GWO achieves
the greatest emission reduction (1,300 kg CO,), outperforming GA (1,150 kg), PSO (1,200 kg), and AHP (1,100
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kg), highlighting its superior capability in reducing environmental impact. Computational efficiency is another
key advantage of RPA-GWO, with an optimization time of only 50.5 s, significantly faster than GA (100.2 s),
PSO (70.7 s), and AHP (90.6 s). This shorter computational time makes RPA-GWO a more suitable choice for
real-time and dynamic energy management applications. In terms of adaptability to demand response, AHP
performs best, followed by RPA-GWO and GA, which exhibit moderate adaptability, while PSO is limited in
this aspect. Similarly, AHP shows the highest capability in handling renewable uncertainties, whereas RPA-
GWO and GA provide moderate adaptability, and PSO remains the least effective in managing renewable energy
fluctuations.

Figure 7 illustrates the stepwise convergence for Case 1. The results show distinct convergence behaviors,
where some algorithms achieve a rapid initial decline and stabilize early, while others follow a gradual descent
with intermittent fluctuations. RPA-GWO exhibits superior performance, reaching near-optimal solutions faster
and stabilizing within fewer iterations, demonstrating its efficiency in balancing exploration and exploitation.

Conclusion

In this study, a multi-objective optimal dispatch model was developed for a standalone microgrid (MG),
addressing economic costs, pollutant emissions, and power supply consistency, with a strong focus on demand-
side control. The proposed framework integrates RPA with GWO algorithm to optimize the dispatch of
microgrid components, including PVs, WTs, BESS, and DE, while dynamically managing controllable and
non-controllable loads. The results highlight the critical role of demand-side strategies in balancing supply and
demand under uncertainty and demonstrate the following key findings:

« Cost Efficiency: The RPA-GWO model reduced operational costs by up to 15%, achieving a cost of 203.75
USD compared to 213.35 USD under a GA-based approach.

« Emission Reduction: It led to a 13% reduction in CO, emissions, reaching 1,300 kg versus 1,150 kg under GA
and 1,100 kg under AHP.

o Power Reliability: The framework achieved 95% power supply consistency, outperforming GA (90%), PSO
(85%), and AHP (80%).

« Computational Performance: The optimization time was only 50.5 s, significantly faster than GA (100.2 s),
PSO (70.7 s), and AHP (90.6 s), demonstrating its real-time suitability.

Future research will focus on enhancing the proposed RPA-GWO framework in several key areas to improve
its applicability and robustness in real-world scenarios. One important direction is the integration of multi-
energy systems, including power-to-gas, gas-to-power, and thermal energy networks, to support holistic energy
management in multi-carrier environments. Additionally, incorporating power flow and network constraints—
such as AC/DC load flow models and line capacities—will allow the framework to be extended to multi-node
microgrids with more realistic operational limitations. To improve adaptability and foresight, the integration of
advanced predictive analytics and machine learning models for load, price, and renewable generation forecasting
will be explored. Furthermore, the scalability of the framework will be evaluated in large-scale, interconnected
microgrid systems with diverse objectives, ensuring it can accommodate the complexity and dynamic nature of
future smart grid infrastructures.
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