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OPEN A deep ensemble learning

framework for brain tumor
classification using data balancing
and fine-tuning
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Brain tumors are a critical medical challenge, requiring accurate and timely diagnosis to improve
patient outcomes. Misclassification can significantly reduce life expectancy, emphasizing the need for
precise diagnostic methods. Manual analysis of extensive magnetic resonance imaging (MRI) datasets
is both labor-intensive and time-consuming, underscoring the importance of an efficient deep learning
(DL) model to enhance diagnostic accuracy. This study presents an innovative deep ensemble approach
based on transfer learning (TL) for effective brain tumor classification. The proposed methodology
incorporates comprehensive preprocessing, data balancing through synthetic data generation (SDG),
reconstruction and fine-tuning of TL architectures, and ensemble modeling using Genetic Algorithm-
based Weight Optimization (GAWO) and Grid Search-based Weight Optimization (GSWO) used to
optimize model weights for enhanced performance. Experiments were performed on the Figshare
Contrast-Enhanced MRI (CE-MRI) brain tumor dataset, consisting of 3064 images. The proposed
approach demonstrated exceptional performance, achieving classification accuracies of 99.57% with
Xception, 99.48% with ResNet50V2, 99.33% with ResNet152V2, 99.39% with InceptionResNetV2,
99.78% with GAWO, and 99.84% with GSWO. The GSWO achieved the highest average accuracy of
99.84% across five-fold cross-validation among other DL models. The comparative analysis highlights
the superiority of the proposed model over State of Arts (SOA) works, showcasing its potential to assist
neurologists and clinicians in making precise and timely diagnostic decisions. The study concludes that
the optimized deep ensemble model is a robust and reliable tool for brain tumor classification.
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The brain, a vital organ responsible for all voluntary and involuntary bodily functions, is exceptionally intricate
and fragile. Brain tumors, among the most lethal brain disorders, arise from abnormal tissue growth within
the skulll. They are classified into primary and secondary tumors, with primary tumors accounting for 70% of
cases and remaining confined to the brain®. Gliomas, meningiomas, and pituitary tumors are common types,
each posing distinct health risks. Pituitary tumors, though typically benign, can cause hormonal imbalances and
vision impairment®. Detecting and treating brain tumors presents significant challenges due to their complexity
and diagnostic intricacies. The World Health Organization forecasts a 5% annual increase in global brain tumor
cases®. Magnetic resonance imaging (MRI) and computed tomography (CT) scans are preferred clinical tools
for identifying brain abnormalities, with MRI being widely utilized across various neurological conditions’. The
specific background in Machine Learning (ML) and Deep Learning (DL) techniques highlights their significant
potential in neuroscience, particularly for the early detection of brain tumors®. Despite advancements, current
diagnostic methods for brain MRI scans need improvements in accuracy and speed, especially as the volume
of medical data grows. DL has become a crucial tool, offering the ability to autonomously identify complex
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patterns in large biomedical datasets, thus enhancing disease diagnosis and classification, including brain
tumors’. DL surpasses traditional methods in classification, detection, and other predictive tasks by efficiently
extracting and optimizing features directly from raw data. This capability is particularly valuable for biomedical
applications and image-based tasks®. Transfer learning (TL) further enhances DL by utilizing pre-trained
models to reduce computational demands and speed up model training’. TL adapts pre-trained model weights,
especially in convolutional layers, to new tasks, making it efficient for developing specialized models across
various applications!?.

In the extensive body of related works, each effort stands as a unique approach to the category of brainiac
tumors, contributing valuable insights to the field. Moreover, DL techniques have found notable applications in
representing and interpreting various medical images'!. These methods have empowered machines to effectively
assess a wide array of medical data, ranging from multidisciplinary pathology scans to elevated-dimensional
image datasets and video recordings, as exemplified in the work of'2. Furthermore, the versatility of DL
extends its impact beyond medical imaging to encompass disease prediction. Researchers have demonstrated
the adaptability of DL techniques in healthcare, offering fresh insights into the intersection of DL and disease
prediction. These collective contributions underscore the wide-ranging applications of DL in medical research,
providing a strong foundation for our innovative approach to categorizing brain tumors!>!,

The manual assessment and analysis of an extensive collection of brain MRI data is resource-intensive, time-
consuming, and prone to errors, given the expertise required for processing and classifying MRI images. The
precise diagnosis and categorization of brain tumors are crucial as they inform prognostic predictions and guide
medical experts in selecting suitable treatment options. However, the manual evaluation of diverse brain MRI
data is prone to inaccuracies and demands considerable expertise. This precision in diagnosis and categorization
is imperative, as it underpins predictive insights and empowers medical specialists to make well-informed
decisions regarding patient care.

Our research focuses on developing a robust DL model for efficient brain tumor prediction using MRI
data. We have established a systematic framework that involves preprocessing, data balancing, fine-tuning and
creating ensemble DL models where they are optimized using Genetic Algorithm-based Weight Optimization
(GAWO) and Grid Search-based Weight Optimization (GSWO). We have selected pivotal TL architectures such
as ResNet50V2, ResNet152V2, Xception, and InceptionResNetV2 for their computational efficiency and proven
efficacy in handling the complexities of MRI data, which is essential for processing large brain tumor datasets.

The main contributions of this research are as follows:

1. Optimized deep learning model: This study proposes an advanced DL model tailored for brain tumor classi-
fication. The model integrates comprehensive preprocessing, data balancing, TL architecture modifications,
fine-tuning techniques, and two optimization-based ensemble methods, significantly enhancing classifica-
tion accuracy and efficiency.

2. Synthetic data generation for balancing: To address class imbalance, synthetic data generation (SDG) is uti-
lized, ensuring balanced representation across the dataset and improving the robustness of the model.

3. Enhanced transfer learning architectures with fine-tuning: To mitigate overfitting and streamline the classifica-
tion process, the TL architectures are enhanced with advanced image augmentation technique and perform-
ing fine-tuning procedures, ensuring reliable and efficient workflow.

4. Optimization-based ensemble techniques: This study introduces two optimization-based ensemble techniques
such as: GSWO and GAWO. GSWO stands out for its rigorous, exhaustive search process, systematically
identifying the most effective weight combinations for the ensemble model, which improves accuracy and
robustness compared to traditional methods. Our results demonstrate that GSWO significantly outperforms
GAWO, setting a new standard for weight optimization in DL applications.

The following sections of the paper are organized as follows: “Literature review” section provides an overview
of previous studies on the prediction of brain tumors using deep learning. Section “Methodology” explains
our research methodology and dataset in detail. In “Results analysis” section, we present the experimental
information and performance evaluation. Section “Discussion” presents the discussion of our proposed model
with existing works. Finally, the paper concludes with Section 6 in “Conclusion”.

Literature review

Recent advancements in DL for medical imaging have led to the development of various models that show
significant potential in applications in brain tumor classification tasks. The following studies have included brain
tumor classification works.

Transfer learning (TL) approaches

Nassar et al.'® presented an automated approach to efficiently classify brain tumors, aiming to assist radiologists
by reducing the manual effort required to analyze large volumes of images for accurate diagnoses. The study
utilized a dataset comprising 3064 T1-weighted contrast-enhanced brain MR images (TIW-CE MRI) from 233
patients. The proposed system combined the outputs of five distinct models to leverage their collective strengths,
resulting in enhanced classification performance. This ensemble-based approach achieved an impressive overall
accuracy of 99.31%. Agarwal et al.!® developed an Auto Contrast Enhancer, Tumor Detector, and Classifier
for improving the contrast of low-quality MRI images, aiding in the early diagnosis and classification of brain
tumors. The system employed a two-phase approach: first, ODTWCHE enhanced the image contrast, and then
a deep transfer learning model, Inception V3, further refined the diagnosis. The proposed system outperformed
models like AlexNet, VGG-16, and ResNet-50, achieving 98.89% accuracy on a public dataset with varying
contrast and brightness levels, demonstrating its robustness in tumor detection and classification. Talukder et
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al.'” introduced a novel DL approach for categorizing brain tumors. The method involved various steps such as
data preprocessing, TL architecture creation, and fine-tuning. They tested different TL models like Xception,
ResNet50V2, InceptionResNetV2, and DenseNet201 on the Figshare dataset with 3064 MRI brain tumor
images. The results demonstrated high accuracy, with ResNet50V2 achieving the best performance at 99.68%.
This outperformed other models and could help doctors diagnose brain tumor patients quickly and accurately.
Dahan et al.!® proposed a model with three steps: feature extraction, fusion, and classification. It uses ResNet50
CNN architecture to extract robust features from color-transformed MRI images, focusing on features from
the first convolutional layer. A novel feature fusion technique based on the Marine Predator Algorithm (MPA)
was introduced to enhance robustness. The model achieved 98.72% accuracy on a complex dataset, surpassing
existing methods and effectively detecting brain tumors in camouflage images. Islam et al.'” presented a novel DL
approach using the EfficientNet family for enhanced brain tumor classification and detection. Utilizing a dataset
of 3064 T1-weighted CE MRI images, the methodology incorporates advanced preprocessing and augmentation
techniques to optimize performance. Experiments showed that EfficientNetB0 achieved accuracies ranging
from 98.76 to 99.14%. The EfficientNetB3 model, achieving 99.69% accuracy, outperformed many existing state-
of-the-art techniques, demonstrating the effectiveness of the approach. Tummala et al.?° employed ImageNet-
based Vision Transformer (ViT) models, pre-trained and fine-tuned for brain tumor classification. The ensemble
ViT model’s interpretation was assessed using the Figshare brain tumor dataset, specifically for a three-class
classification task through cross-validation (CV) and testing. The amalgamation of all ViT variants, such as
L/16, B/16, L/32, and B/32, achieved an impressive total testing accuracy of 98.7%. This suggests that a group of
ViT models holds the potential to aid in the marker of brain cancers based on MRI images, offering support to
radiologists. Abd-Ellah et al.*! developed BTC-fCNN, a DL-based system for efficiently classifying three types
of brain tumors-meningioma, glioma, and pituitary tumors-using MRI images from the Figshare dataset. The
model, with 13 layers incorporating convolution and 1x1 convolution layers, average pooling, fully connected
layers, and a softmax layer, underwent five iterations, incorporating TL and five-fold cross-validation. The
presented model attained remarkable results, boasting an average accuracy of 98.63% with five iterations and TL,
and 98.86% with retrained five-fold cross-validation. BTC-fCNN outperformed existing strategies and other well-
known CNNs, significantly advancing the categorization of brain tumors. Maruf et al.?? conducted a thorough
assessment of 26 previously developed CNN models designed for general image classification in the context of
brain tumors. The evaluation involved retraining these models using 3064 T1-weighted contrast-enhanced MR
images. Pre-trained weights from the ImageNet dataset were employed, and the classification accuracies of the
CNN models were compared. This comprehensive study examines various state-of-the-art CNN models using a
multiclass brain MRI dataset. EfficientNetB3 emerged as the top performer, achieving a categorization accuracy
of 98.98% among the 26 models tested. Other models, including DenseNet121, EfficientNetB2, EfficientNetB5,
and EfficientNetB4, also demonstrated strong accuracy, with all models surpassing 97% accuracy in identifying
the tumor type. This research delivers helpful insight into the efficacy of diverse CNN models for categorizing
brain tumors.

Traditional deep learning (DL) approaches

Asif et al.?®* designed a brain tumor diagnosis system using DL architectures, including DenseNet121,
ResNet152V2, Xception, DenseNet201, and InceptionResNetV2. Modifications to the final layers, incorporating
a deep dense block and softmax layer, aimed to enhance classification accuracy. Two experiments were
conducted: one involving three-class classification (glioma, meningioma, and pituitary tumors) and another
with four classes (including healthy patients). The outcomes emphasize the authority of the presented model
based on the Xception architecture, achieving a remarkable 99.67% accuracy in the three-class dataset and
95.87% in the four-class dataset, outperforming state-of-the-art methods. This model holds promise as an
automated diagnostic tool for radiologists, enabling accurate decision-making. Nassar et al.>* prepared an
efficient automated approach to assist radiologists in classifying brain tumors, intending to save time compared
to manual image analysis. The approach utilized 3064 brain MRI images from 233 patients. Drawing on the
results of five different models, such as GoogleNet, ShuffleNet, SqueezeNet, AlexNet, and NASNet-Mobile, the
system harnessed the integrated potential of numerous models and performed a majority voting technique to
acquire favorable outcomes. The offered method demonstrated substantial progress in results, achieving an
impressive prevalent accuracy of 99.31%. Saeedi et al.>* developed a 2D CNN and a convolutional autoencoder
for brain tumor classification. The 2D CNN had eight convolutional and four pooling layers, utilizing 2 x 2 kernel
functions and batch normalization. The autoencoder network combined a convolutional autoencoder and a
classification network. The 2D CNN achieved a training accuracy of 96.47%, with an average recall of 95%,
while the autoencoder network achieved 95.63% accuracy and 94% recall. The study concluded that the 2D
CNN effectively classified brain tumors. To optimize hyperparameters for CNN, Ait Younes et al.?® presented
an advanced strategy relying on Bayesian optimization. Tested in the categorization of brain MRI scans into
three cancer classes, the CNN, optimized using five pre-trained instances through TL, achieved a remarkable
accuracy rate of 98.70% after employing Bayesian optimization. The proposed model surpassed existing works,
showcasing the effectiveness of automated hyperparameter optimization. Ayadi et al.?” showcased a CNN-based
model with multiple layers for MRI-based categorization of brain tumors. Requiring minimal preprocessing,
the intelligent model was evaluated on three distinct brain tumor datasets. Achieving accuracy rates of 94.74%
for Figshare, 93.71% for Radiopaedia, and 97.22% for Rembrandt datasets, the proposed scheme demonstrated
superior classification and recognition accuracies compared to previous relevant studies on the same data. The
summary of the literature review is represented in Table 1.
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Accuracy
Study Model(s) used Dataset(s) (%) Key contributions and findings
3064 TIW-CE MRI . e . -
Naésar et Combination of 5 TL models (Figshare) images from | 99.31 Peveloped an eﬂiglent automated method for classifying brain tumors, combining
al. 233 pati strengths of five different models for improved performance.
patients

Proposed an Auto Contrast Enhancer, Tumor Detector, and Classifier for improved

;\lgl:rwal et ODTWCHE and Inception V3 (31916;}}; ll,g;?nligl\ffl 98.89 contrast and early diagnosis of brain tumors, outperforming models like AlexNet,

VGG-16, and ResNet-50.

Talukder et

Xception, ResNet50V2,

Proposed TL models with ResNet50V2 achieving the highest accuracy for brain tumor

InceptionResNetV2, Figshare (3064 MRI) 99.68 . .

17

al. DenseNet201 classification.

Dahan et ResNet50 CNN and Marine 3064 TIW-CE MRI 98.72 Developed a three-step model using ResNet50 for feature extraction and MPA for

al!® Predator Algorithm (MPA) (Figshare) images . feature fusion, achieving high accuracy in detecting brain tumors in challenging images.

Islam et al.’® | EfficientNetBO0, EfficientNetB3

Introduced a deep learning approach using EfficientNet for enhanced classification,
99.69 with EfficientNetB3 achieving the highest accuracy, outperforming many state-of-the-
art methods.

3064 TIW-CE MRI
(Figshare) images

Tummala et | ViT models (L/16, B/16, L/32,

Figshare (3-class MRI) | 98.70 Showcased the effectiveness of ensemble ViT models in three-class brain tumor

al.?0 B/32) classification.
Abd-Ellah et | BTC-fCNN (custom CNN . Developed a custom 13-layer CNN architecture, BTC-fCNN, outperforming existing
al?! architecture) Figshare (3064 MRI) 98.86 CNN strategies for brain tumor detection.

Maruf et al.”

EfficientNetB3, DenseNet121,
EfficientNetB2/B4/B5

EfficientNetB3 outperformed 26 other CNN models, showing excellent performance in

Figshare (3064 MRI) 98.98 brain tumor classification.

DenseNet121, ResNet152V2,
Asifetal?® | Xception, DenseNet201,
InceptionResNetV2

Designed a DL architecture for both three-class and four-class classification,

Figshare MRI Dataset | 99.67 outperforming state-of-the-art methods.

GoogleNet, ShuffleNet,

Nassar et . Introduced a majority voting technique with multiple models, achieving favorable
al % SN?SES?NH’ AlexNet, NASNet- Figshare (3064 MRI) 9931 results in brain tumor classification.
. 25 | 2D CNN, Convolutional . Proposed 2D CNN and autoencoder networks with multiple convolution and pooling
Sacedi et al. Autoencoder Figshare MRI Dataset | 96.47 layers for brain tumor classification.
Ait Younes CNN with Bayesian Optimization | Figshare MRI Datasct | 98.70 Applied Bayesian optimization for hyperparameter tuning, achieving superior
etal?® . performance in brain tumor classification.

Ayadi etal.?” | CNN (custom architecture)

Figshare, Radiopaedia,
Rembrandt

Evaluated on multiple datasets, the CNN model achieved strong classification accuracy

97.22 . L .
with minimal preprocessing.

Table 1. Summary of reviewed studies on brain tumor classification.

Methodology

In this study, we propose an optimized DL approach for accurate brain tumor classification on brain MRI
images. Our comprehensive framework integrates several key components, including image preprocessing,
data balancing, TL architecture modifications, model fine-tuning, and an ensemble learning process enhanced
with weight optimization techniques. Key innovations include the use of SDG to balance the dataset, Image
augmentation to ensure better generalization and mitigate overfitting, an enhanced fine-tuning process for
improved classification accuracy, and the adoption of two weighted ensemble approaches such as GSWO and
GAWO to improve model robustness.

The methodology begins with the collection and preprocessing of brain tumor image data, followed by
data balancing and the reconfiguration of TL architectures such as ResNet50V2, ResNet152V2, Xception, and
InceptionResNetV2. These architectures are expended through fine-tuning by incorporating additional layers,
including batch normalization, global average pooling, dense+ReLU, flatten, dropout, and dense+Softmax layers,
designed specifically for categorizing brain tumors within the dataset. Finally, two optimization models (GSWO
and GAWO) are applied to analyze their performance besides the TL models on brain tumor classification.
Figure 1 illustrates the structural design of our proposed classification approach. The following procedural steps
outline the operations of our methodology:

Data collection

The brain tumor dataset, obtained from?®, consists of 3064 T1-weighted contrast-enhanced images from 233
patients diagnosed with three different types of brain tumors: meningioma (708 slices), glioma (1426 slices), and
pituitary tumors (930 slices). This comprehensive dataset is conveniently provided in MATLAB file format (.mat
files). Each file is organized as a MATLAB structure, containing essential information for each image, including
labels: 1 for meningioma, 2 for glioma, and 3 for pituitary tumors. Additionally, the dataset includes the image
data, patient ID (PID), and tumor border information. The tumor boundary is carefully traced by hand and
represented as a vector of coordinates along the edges of the tumor, allowing for the easy creation of a binary
image to serve as a tumor mask. This mask is presented as a binary image, where a series of ones indicates the
tumor region.

Image preprocessing

We meticulously prepared the dataset for further analysis in the initial stages of image preprocessing. Since
the data was initially stored in Matlab (.mat) file format, we extracted image and label information to facilitate
subsequent processing. The image preprocessing journey commenced with resizing all images to a uniform 256 x
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Fig. 1. The proposed structural design for classifying brain tumors.
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(a) Before Image Preprocessing
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(b) After Image Preprocessing

Fig. 2. Part (a) shows raw MRI images of brain tumors before preprocessing, while part (b) presents
theenhanced images after preprocessing techniques. These improvements enhance clarity, making tumor
features more distinguishable for accurate classification. Images of brain glioma, meningioma, and pituitary
tumors prior to and following image preprocessing.

256 dimension, enhancing visibility by applying a sharp filter and complementing the images. Further refinement
was achieved through histogram equalization, contributing to a more balanced image representation. To ensure
compatibility with the DL model, we scaled the images by dividing them by 255. For effective model training and
evaluation, we performed k-fold cross-validation where k is five, so the dataset is partitioned into training and
testing sets, allocating 80%, and 20%, respectively. Additionally, we applied 1000 shuffling iterations to reduce
loss, lower variance, and enhance the model’s generalization. The resultant processed images exhibit heightened
sharpness, brightness, and discernible details compared to their original counterparts, making them well-suited
for input into the model. This meticulous preprocessing contributes to achieving an outstanding performance
compared to contemporary methodologies. Fig. 2 presents images of brain glioma, meningioma, and pituitary
tumors before and after preprocessing. The preprocessing enhances image clarity, aiding in improved tumor
classification.
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Moreover, we have enhanced the preprocessing by experimenting with various image augmentation
techniques to enrich the robustness and performance of the model. The applied augmentation methods include
horizontal flipping, random image rotations (up to 35°), zoom adjustments (up to 25%), contrast variation,
and image translations, which significantly increase the dataset’s variability. These augmentations are designed
to simulate real-world conditions and improve the model’s ability to generalize across diverse scenarios.
Additionally, we rescaled the input images to standardized pixel values (0-1) to ensure optimal conditions for
training. These preprocessing enhancements contribute to a more comprehensive training set and improve the
overall predictive performance of our deep learning model.

Data balancing using SDG

In medical image classification, particularly in brain tumor detection, the dataset is often imbalanced, where
certain classes (e.g., different types of tumors) have fewer samples than others. This imbalance can result in biased
models that perform well on the overrepresented classes but poorly on the underrepresented ones. To address
this issue, Synthetic Data Generation (SDG) is employed using Generative Adversarial Networks (GANs) to
balance the dataset by generating new synthetic samples for the underrepresented classes. Specifically, GANs
were utilized to generate synthetic samples for the underrepresented classes in the dataset. This approach allows
us to create realistic and diverse samples that help balance the dataset, addressing class imbalance and enhancing
model performance. By using GANs, we ensure that the generated data captures the underlying patterns of the
minority classes, improving the model’s ability to generalize across all tumor types.

Data balancing is crucial in brain tumor classification for several reasons. First, it helps avoid model bias. When
the dataset is imbalanced, the model may focus too much on the majority class, leading to poor performance on
the minority classes. This is particularly problematic in medical imaging, where underrepresented tumor types
might be misclassified, impacting clinical decision-making. Second, by generating synthetic data, we ensure
that all classes are sufficiently represented, which allows the model to generalize better across different tumor
types. Finally, data balancing reduces the risk of overfitting. An imbalanced dataset may lead to overfitting to the
majority class, causing the model to perform poorly on new, unseen data. Balancing the dataset allows the model
to learn features from all classes, which leads to improved generalization.

The imbalance ratio of a dataset can be defined as:

max(Dl,Dg, .. .,DK)

Tmbalance Ratio =
Hbatanee Bate = in(Dy, D, ..., Dx)

(1)

where D1, D3, ..., Dk represent the datasets for each class and Dy, is the number of samples in class Cy. A
large imbalance ratio indicates that the dataset is skewed, which can adversely affect the model’s performance.
The goal of SDG is to generate synthetic data for the underrepresented classes to balance the dataset. This ensures
that all classes have an equal number of samples, Nmax, where Nmax is the maximum number of samples in any
class. Let Dayg represent the augmented dataset, which is obtained by applying data augmentation techniques to
the underrepresented classes until they reach Nmax:

K
Daug = U {Augment(Dk) ‘ Dk < Nmax}

k=1

where Augment(D),) refers to the augmentation operation applied to the samples of class Cl.
The data balancing process using SDG follows these steps:

1. Step 1 Split the dataset D = {(x;, y;)}i—, into K classes: C1,C, . .., Ck.
Step 2 Identify the class with the maximum number of samples, Nyyax = max(D1, D2, ..., Dk).

3. Step 3 For each underrepresented class C}, apply augmentation operations to generate synthetic images until
D k= N, max-

4. Step 4 Merge the original and augmented datasets for each class to create a balanced dataset Dayg.

5. Step 5 Output the balanced dataset Dayg with equal samples per class.

The algorithmic representation is as follows:
For each class Ck :

If Dx < Nmax, then

paremerted — Augment(Dy,, Nmax — D)

K
augmented
Dag = | J D

k=1

This approach results in a balanced dataset, where all classes have an equal number of samples, thereby allowing
the model to generalize across all classes during training.

The use of SDG for data balancing in brain tumor classification addresses the problem of class imbalance
and significantly enhances model performance, particularly for underrepresented tumor types. By generating
synthetic samples for minority classes, we ensure that the model has a diverse set of examples to learn from,
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Fig. 3. The distribution pattern of brain tumor data collection.
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Fig. 4. The original and reconfigured with fine-tuned architecture of transfer learning model.

leading to more accurate and reliable predictions. Figure 3 visually illustrates the distribution of the Brain CE-
MRI dataset without and with SDG, providing insights into the composition of the three tumor types across the
patient cohort.

Reconstruction with fine-tuning of transfer learning architecture

In our experimental endeavor, we undertake the crucial tasks of reconstructing TL models and fine-tuning
them to enhance the model’s aptitude for accurately categorizing brain tumors. Within the reconstruction TL
architecture framework, we address the inherent challenge posed by pre-trained TL algorithms, originally
trained on ImageNet data. To adapt these algorithms for our specific brain tumor dataset, we embark on a
reconstruction process to optimize the architecture for better predictions. This reconstruction unfolds in two
sequential steps:

o Image augmentation Initially, we incorporate an image augmentation layer into the input layer of our ar-
chitecture. This integration allows the architecture to perform on-device image augmentation concurrently
with other layers, taking advantage of GPU acceleration for expedited processing. Moreover, by preserving
preprocessing layers alongside the model, we ensure instantaneous standardization of images during deploy-
ment, eliminating the need for redundant server-side logic.

o Truncate layers Subsequently, we retain all layers from the TL algorithms, excluding those beyond the last ac-
tivation layer. This strategic truncation is performed to accommodate the addition of extra layers, optimizing
the architecture for efficient brain tumor prediction.

Figure 4 visually illustrates the juxtaposition of the original and reconfigured TL architectures. The original
TL architecture highlights the sequential arrangement of layers such as Conv2D, Batch Normalization, ReLU,
MaxPooling2D, and the Prediction Layer. The reconfigured TL architecture with fine-tuning, showing the
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inclusion of additional components such as an Augmentation Layer, Dropout, Flattening, Dense+ReLU, and
Dense+SoftMax layers for refined classification of Glioma, Meningioma, and Pituitary brain tumors.

Image augmentation
The image augmentation process is seamlessly integrated into our proposed architecture. Recognizing the
pivotal role of image augmentation in enriching dataset scale and diversity, we leverage this technique to amplify
the effectiveness of our DL models. Our approach implements image processing techniques on the input images,
generating augmented counterparts. The augmentation process encompasses fundamental transformations
such as zooming, rotation, contrast adjustment, and horizontal flipping. Additionally, the input images undergo
rescaling to a standardized range of 0-1, fostering optimal conditions for model training.

We deliberately incorporated additional random rotations and translations to increase the variety of
our augmented dataset and improve the model’s adaptability to different real-world scenarios. The image
augmentation process, integrated within the TL architecture, is carried out through carefully adjusted techniques:

« Horizontal flip function: This function flips the image horizontally at random, applicable to images with a 256
X 256 x 3 dimension, where ’256’ refers to both height and width and ‘3’ signifies the RGB color channels.

o Random image rotation: Allows the image to rotate randomly, with a limit of 0.25 radians.

o Image zoom adjustment: Enables random zooming in or out on the image, up to a maximum of 25%.

o Contrast variation: Alters the contrast of the image randomly, up to a maximum change of 25%.

o Pixel rescaling: Adjusts the image’s pixel values, rescaling them to a range between 0 and 1.

« Degree-based image rotation: This function randomly rotates the image, with a maximum rotation of 35°.

o Image translation with parameters: Randomly shifts the image horizontally and vertically by up to 25% and
35% of the image’s height and width, respectively. The translation uses the ‘nearest’ fill mode to handle pixels
outside the boundary and ’bicubic’ interpolation for the better visual quality of the transformed image.

In our study, the augmentation techniques were chosen based on a preliminary investigation where we evaluated
various augmentation strategies to assess their impact on model training performance. This evaluation included
experiments with and without augmentation, as well as comparisons of different augmentation combinations,
to measure their influence on accuracy, loss, and generalization capabilities. The selected techniques, such
as random rotations, translations, zoom adjustments, and contrast variations, demonstrated significant
improvements in validation accuracy (by approximately 2-4%) and reduced overfitting compared to models
trained without augmentation. These findings confirmed that the chosen augmentation strategies enhanced the
model’s robustness, adaptability to unseen data, and overall performance. Thus, these techniques were integrated
into our proposed framework to ensure optimal training conditions.

This meticulously refined augmentation process ensures that the augmented dataset maintains heightened
diversity while remaining a faithful representation of original MRI images. The outcome-augmented dataset is
the cornerstone for training our presented model, attaining state-of-the-art performance in the targeted task.
Consequently, these advanced image-processing strategies augment data proportions and significantly enhance
assortment, thereby elevating the overall rendition of DL algorithms.

Fine-tuning process

In the fine-tuning phase, we enhance the architecture by introducing specific layers tailored to the characteristics
of brain MRI images. Our refined structural design includes a Global Average Pooling2D layer, two Batch
Normalization layers, a Dense layer with ReLU and SoftMax activation, a flattened layer, and a Dropout layer to
optimize model performance. The Global Average Pooling2D calculates the average output for each feature map
across the entire spatial dimensions, reducing spatial dimensions to 1 x 1, capturing global context, reducing
parameter count, and ensuring translation invariance. Batch Normalization standardizes layer inputs, reducing
internal covariate shift, enhancing training stability, accelerating convergence, mitigating gradient issues, and
providing regularization. The Dense layer followed by ReLU activation introduces non-linearity, enhancing
model expressiveness, enabling learning of complex relationships, and capturing intricate patterns. The flattened
layer converts the multi-dimensional output into a one-dimensional array, facilitating input compatibility
with subsequent layers and ensuring information flow continuity. Dropout randomly deactivates neurons to
prevent overfitting, improve generalization, enhance robustness, and reduce overfitting risks. Another instance
of Batch Normalization provides additional normalization and regularization, further stabilizing training,
enhancing generalization, and contributing to model robustness. The final Dense layer with SoftMax activation
produces probability distributions over classes, facilitating accurate classification, and is well-suited for multi-
class tasks. Pre-trained trainable weights are incorporated to leverage existing knowledge, and the model is
configured with the Adamax optimizer, setting a learning rate of 0.0001 for efficiency in handling embeddings
and stability enhancement. The loss function is set to sparse categorical cross-entropy, suitable for integer-form
labels obtained through label encoding, with accuracy as the primary performance metric. This comprehensive
fine-tuned architecture, with a Flatten and Dropout layer, effectively captures brain MRI data intricacies while
addressing overfitting concerns.

Transfer learning algorithms

In our experimentation, we employed four TL algorithms for categorizing brain tumors. Utilizing the knowledge
gained from these TL models, we integrated two optimization approaches to tailor the proposed models to our
objectives.
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o Xception: The Xception framework, often called “Extreme Inception” is a unique convolutional neural net-
work structure, as described in%. It is distinguished by its depthwise separable convolution layers arranged
in a series and the integration of residual connections. The design comprises 36 convolution layers that are
grouped into 14 distinct modules. Each module, except for the first and last, is connected through linear
residual links. The simplicity of Xception, which is easily implemented using frameworks such as Keras*® or
TensorFlow-Slim®!, contrasts the complexity of architectures like InceptionV2 or V3.

o ResNet50V2: The ResNet model, a pioneering neural network introduced by32, has shown remarkable success,
notably in the ILSVRC 2015 classification challenge. ResNet50, a variant with 50 layers, uses deep residu-
al networks with “skip connections” for accuracy. The ResNet50V2, an evolution of the original ResNet50,
demonstrates better performance on the ImageNet dataset, as noted in*. It introduces an optimized connec-
tion structure between blocks, boosting overall performance.

o ResNet152V2: Building upon the ResNet50 model, ResNet152V2 extends the depth to 152 layers, capturing
more complex data features. It maintains the original ResNet’s use of residual blocks and skip connections,
proven effective in vision tasks. The model’s design, including skip connections in residual blocks, contributes
to its robustness, facilitating the efficient training of deep architectures®.

o InceptionResNetV2: The InceptionResNetV2 design, an advancement over InceptionResNetV1, combines re-
sidual learning with the inception block structure, as outlined in®. It includes various block types like the
Stem, InceptionResNet, and Reduction blocks. The network’s depth, achieved through an intricate arrange-
ment of these blocks, ensures high-quality feature extraction and processing, further elaborated in°.

The selection and modification of TL architectures, such as ResNet50V2, ResNet152V2, Xception, and
InceptionResNetV2, for brain tumor classification aimed to maximize accuracy while reducing computational
complexity. These architectures were chosen for their effectiveness in image classification and ability to
capture detailed features. They were adapted to the brain tumor dataset by fine-tuning pre-trained weights and
incorporating specific refinements like image augmentation and tailored layers. Rigorous experimentation,
including cross-validation and evaluation metrics such as precision, recall, F1-score, and accuracy, validated
these modifications. This ensured that the TL architectures effectively captured the nuances of the brain tumor
dataset and maintained robust performance.

In our study, we chose Xception and ResNet for their proven success in image classification tasks, particularly
in medical imaging, where capturing intricate features is crucial. The Xception architecture, known for its
depthwise separable convolution layers and residual connections, was selected due to its efficient representation
learning and superior performance on image datasets. Its streamlined design enables effective feature extraction,
making it particularly suitable for complex tasks like brain tumor classification. Similarly, ResNet, including
its variants ResNet50V2 and ResNet152V2, was chosen for its pioneering use of residual blocks and skip
connections, which facilitate the training of deeper networks by mitigating the vanishing gradient problem.
The ResNet50V2 and ResNet152V2 models were selected for their ability to capture detailed features from MRI
images and their enhanced performance due to improved residual connection structures. These models were
adapted for brain tumor classification by fine-tuning pre-trained weights, incorporating image augmentation,
and adjusting the architectures to better fit the specific characteristics of the dataset. This careful selection and
modification allowed us to achieve high accuracy while reducing computational complexity, ensuring robust and
efficient performance in brain tumor classification.

Adopted optimization methods

In our experiment, we use four reconstructed and fine-tuned TL models along with two ensemble approaches:
Genetic Algorithm-based Weighted Optimization (GAWO) and Grid Search-based Weighted Optimization
(GSWO). These methods enhance prediction accuracy in classifying brain tumors. GAWO leverages natural
selection principles, offering a powerful mechanism for exploring complex solution spaces and iteratively
adapting model weights. In contrast, GSWO performs an exhaustive search to identify the most effective
ensemble combinations. The complementary strengths of these methods drove their selection. GAWO navigates
high-dimensional parameter spaces efficiently, meeting the intricate optimization needs of ensemble models.
GSWO ensures thorough exploration of potential configurations, increasing the likelihood of finding optimal
solutions. By adopting GAWO and GSWO within our ensemble model optimization framework, we aimed to
leverage their respective strengths to enhance the accuracy and robustness of our classification system, ultimately
contributing to better diagnostic outcomes in the realm of brain tumor classification.

GAWO technique

The GAWO illustrated in Algorithm 1 for constructing an optimal ensemble model for categorizing brain tumors.
The objective is to determine the most effective weights for combining predictions from a given set of models to
achieve superior accuracy on a designated test dataset. The algorithm initializes with essential parameters, such
as the list of models, test dataset, and algorithm-specific settings. Subsequently, it employs a genetic algorithm to
iteratively search for the optimal weights by evaluating their impact on ensemble accuracy. The fitness function
calculates accuracy based on the weighted average of individual model predictions, emphasizing minimizing
negative accuracy in the genetic algorithm. The best weights and their corresponding accuracy are obtained
from the genetic algorithm. Finally, the algorithm prints crucial results, including the optimal weights, the best
solution’s accuracy, and the ensemble predictions’ accuracy. This approach provides a systematic and automated
means of enhancing model performance through weight optimization in ensemble learning scenarios. The
weights found using this algorithm are 0.92, 0.87, 0.85, 0.86 for the xception, resnet50v2, resnet152v2 and
inceptionresnetv2 respectively.
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Require: modelList, testData, test Labels, name, fold

numModels < length of model List
predictionsList < predictions from each model on testData
trueLabels <— convert test Labels to class labels
varbound < [0, 1] bounds for each model
algorithmParam <— genetic algorithm parameters
function FITNESS(weights)

if sum of weights = 0 then

return 0.0

end if

ensemblePredictions < weighted average of predictionsList with
weights

ensemble Accuracy <+ accuracy of ensemblePredictions

return —ensemble Accuracy > Negative for minimization in GA
end function
geneticModel < initialize genetic algorithm with Fitness, varbound, and
algorithm Param
bestWeights < best solution from genetic algorithm
best Accuracy < accuracy of bestWeights
ensemblePredictions <+ weighted average of predictionsList with
bestWeights
best Ensemble Accuracy < accuracy of ensemblePredictions
Output: bestWeights, best Accuracy, best Ensemble Accuracy

Algorithm 1. Get Best Weights and Performance Using Genetic Algorithm

The fitness function utilized in the genetic algorithm (GA) plays a pivotal role in evaluating potential
solutions to the weight optimization problem. Specifically, the fitness function assesses the quality of candidate
solutions by quantifying their performance in terms of accuracy on a designated test dataset. For our brain
tumor classification task, the fitness function calculates the accuracy of ensemble predictions generated
by combining the outputs of individual models weighted according to the candidate solution. The objective
is to maximize accuracy, thereby identifying the most effective combination of model weights for achieving
superior classification performance. Importantly, the fitness function is designed to assign higher fitness scores
to solutions that yield higher ensemble accuracy, incentivizing the GA to converge towards optimal solutions
over successive generations.

GSWO technique

The GSWO illustrated in Algorithm 2 for constructing an optimal ensemble model for categorizing brain
tumors. The GSWO approach outlines determining optimal weights to construct an ensemble of models with
enriched accuracy on a given test dataset. The algorithm takes as input the list of models (modelList), the test
dataset (testData), true labels for the test dataset (testLabels), a name parameter (name), and the number of
folds for cross-validation (fold). It initializes variables, including the number of models (numModels) and
a list of predictions from each model on the test dataset (predictionsList). The algorithm iterates through a
grid of weights (weightGrid) generated using linspace and evaluates different weight combinations. For each
combination, it calculates ensemble predictions, computes the accuracy of the ensemble, and updates the best
weights and accuracy if a higher accuracy is achieved. The final results, including the best weights and accuracy,
are printed. This Grid Search-based strategy systematically explores weight combinations to identify the optimal
ensemble configuration, offering a straightforward yet effective means of enhancing model performance. The
weights found using this algorithm are 0.97, 0.94, 0.91, 0.92 for the xception, resnet50v2, resnet152v2 and
inceptionresnetv2 respectively.
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Require: modelList, testData, test Labels, name, fold
1: numModels < length of model List > Get the number of models
2: predictionsList < predictions from each model on testData > Predict
using each model
3: trueLabels <— convert testLabels to class labels > Convert labels from
one-hot to class labels

4: weightGrid < linspace(0, 1, num) > Create a grid of weights

5: bestAccuracy < 0

6: bestWeights < array of zeros of size numM odels 1> Initialize best weights

7: for all combination weights in weightGrid do

8: if sum of weights = 0 then

9: continue > Skip if the sum of weights is zero

10: end if

11: ensemblePredictions < weighted average of predictionsList with
weights > Calculate ensemble predictions

12: ensemble Accuracy <+ accuracy of ensemblePredictions > Compute
accuracy of ensemble

13: if ensemble Accuracy > best Accuracy then

14: best Accuracy < ensemble Accuracy > Update best accuracy

15: bestWeights < weights > Update best weights

16: end if

17: end for

18: Qutput: bestWeights, best Accuracy > Print the best weights and
accuracy

Algorithm 2. Get Best Weights and Performance Using Grid Search

While GAs were initially chosen for weight optimization due to their efficiency in exploring complex solution
spaces, further experimentation revealed that grid search-based optimization outperformed GAs in terms of
both performance and computational time. Grid search systematically evaluates a predefined grid of weight
combinations, offering simplicity and transparency in exploring the solution space. This approach proved to
be highly effective in identifying optimal ensemble configurations while requiring less computational time
compared to GAs. Additionally, grid search exhibited robust performance across different optimization tasks
and settings, making it a favorable choice for weight optimization in our ensemble learning framework. Thus,
despite the initial consideration of GAs, the superior performance and computational efficiency of grid search
ultimately led to its adoption as the preferred optimization technique for weight optimization in our study.

Our hyperparameter tuning process was designed to achieve optimal model performance through a
systematic and iterative approach. For our model, we used global average pooling, dense layers, a dropout rate
of 0.5, and the softmax activation function. The Adam optimizer was chosen with a learning rate of 1e—4, sparse
categorical cross-entropy for the loss function, and a batch size of 32. Hyperparameter tuning was conducted
on a predefined set of values to determine the optimal configuration based on validation dataset performance.
Additionally, the GAWO and GSWO techniques were applied to fine-tune the weights of the ensemble model,
further improving its performance.

Results analysis

Our methodology involves refining the TL architecture by fine-tuning and adding extra layers to boost its
efficiency, where we utilized four distinct TL algorithms and developed two ensemble DL models based on
optimization techniques. These models were specifically designed to evaluate our approach’s capability in
detecting brain tumors. To estimate our strategy’s performance, we used various performance metrics. The
following section will provide an in-depth look at the experimental framework, the criteria used for evaluating
performance, an analysis of the outcomes, and an extensive review of the results we obtained.

Computational resources

The experiments in this study were conducted on a machine with the following specifications: CPU: Intel Core
i7-12700K (12 cores, 20 threads, 3.6 GHz base clock), GPU: NVIDIA GeForce RTX 3090 (24 GB VRAM), RAM:
64 GB DDR4, Storage: 1 TB SSD (NVMe). All models were implemented using Python 3.8 with TensorFlow
2.x and PyTorch libraries for deep learning tasks on Jupyter Notebook. The training and inference processes
were performed on the GPU to accelerate model computations, while CPU resources were utilized for data
preprocessing and evaluation. Runtime statistics were measured in terms of inference time per image, and the
benchmarks were collected after the models were fully trained. This setup provides an efficient environment for
conducting large-scale experiments, and the reported inference times are based on this configuration.
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Metrics for evaluating

Our methodology’s effectiveness is rigorously evaluated using a range of metrics. These include accuracy,
precision, recall, F1-score, the confusion matrix, Matthews correlation coefficient (MCC), Kappa, and the
Classification Success Index (CSI). Each of these metrics provides a distinct perspective on the models ability to
classify data accurately.

Confusion matrix This matrix format presents the values of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). It serves as a foundation for assessing accuracy, precision, recall, and
the F1-score (refer to Table 2).

Accuracy This statistical measure evaluates the proportion of correctly identified instances in relation to the
overall dataset.

Accuracy = TP+ TN (2)
YT TPYFP+FN+TN

Precision This metric calculates the fraction of correctly predicted positive observations out of all the positive
predictions made.

. TP
Precision = TP+ FP (3)

Recall Recall, also known as sensitivity, determines the fraction of actual positives that are correctly identified.

TP
Recall = m (4)

FI-score The F1-score is the harmonic mean of precision and recall, providing a balance between these two
metrics.

(Recall x Precision)

score * (Recall + Precision)

(5)

Matthews correlation coefficient (MCC) MCC is a reliable statistical rate that evaluates the quality of binary
classifications. It ranges from -1 (total disagreement) to 1 (perfect agreement).

(TPTN) — (FPFN)

MCC =
\/(TP + FP)(TP + FN)(TN + FP) « (TN + FN)

(6)

Kappa Kappa coefficient indicates the level of consistency between predicted and actual classifications, ac-
counting for random chance.

(P, P.)
K =
wPPL= " H 7)
Here, P_o is the observed agreement, and P_e is the expected agreement by chance.
TP +TN

Py = TE+TH) ®)

(TP+TN +FP+FN)
P_((TP+FP)*(TP+FN)+(TN+FP)*(TN+FN)) )

(TP+TN + FP + FN)?

Classification success index (CSI) CSI calculates the ratio of accurately classified instances against the total
number of classifications.

Actual positive | Actual negative

Predicted positive | TP FP

Predicted negative | FN TN

Table 2. Confusion matrix.
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TP
CST = TP+ FP+ FN (10)

o Confidence intervals (CI) A CI provides a range of values within which we can be confident that the true per-
formance metric lies, based on the sample test image. The confidence interval gives us an idea of the reliability
of the metric calculated from the sample. To calculate the confidence interval for accuracy, we can use the
following equation:

Cl=p+Z-SE

where
« p=observed accuracy (as a proportion, p =
e Z = Z-score corresponding to the desired conﬁdence level (e.g., Z = 1.96 for 95% confidence)
o SFE = Standard Error, calculated as:

Accuracy

g — . /Pd=p)
n

where n is the sample size.
After calculating the standard error, we can derive the lower and upper bounds of the confidence interval:

Lower Bound =p— 7 -SFE
Upper Bound =p+ Z - SE

To ensure the confidence interval remains within realistic bounds:
« Set the lower bound to a minimum of 0%:

Lower Bound = max(Lower Bound, 0)

o Set the upper bound to a maximum of 100%:

Upper Bound = min(Upper Bound, 100)

o Paired t-test A paired t-test is a statistical test used to compare the means of two related groups. It is typically
used when the same subjects are measured under two different conditions or at two different times. The
paired t-test assesses whether the mean difference between paired observations is significantly different from
zero. The test statistic for the paired t-test is calculated using the formula:

o d
Sd / \/ﬁ
Where

o dis the mean of the differences between paired observations,

o 84 is the standard deviation of the differences,
o n is the number of pairs.

The null hypothesis is that the mean difference between the pairs is zero, and the alternative hypothesis is that
the mean difference is not zero. The test helps determine if there is a statistically significant difference between
the two conditions.

Evaluation of deep learning models

The performance evaluation of various DL models on brain tumor classification shows significant differences
across different configurations, with the models tested under two conditions: with synthetic data generation
(SDG) for data balancing and without it (No-SGD). The evaluation metrics include accuracy, precision,
recall, F1 score, Kappa, MCC, CSI, confidence intervals, and paired t-test analysis. The results, as presented
in Table 3 and Figure 5, demonstrate the effectiveness of the proposed models. The GSWO+SDG model
consistently outperformed all other configurations in every performance metric. This approach achieved the
highest accuracy of 99.84%, precision of 99.84%, recall of 99.84%, F1 score of 99.84%, Kappa of 99.88%, MCC
of 99.93%, and CSI of 99.93%. These results highlight the effectiveness of both the GSWO optimization and
SDG data balancing techniques in improving the model’s ability to classify brain tumor images accurately. The
model’s high accuracy and balanced performance across all metrics make it the most reliable configuration in
this study. In comparison, the models without SDG (No-SGD) generally performed at lower levels. For instance,
the Xception model, without SDG, achieved an accuracy of 99.42%, precision of 99.43%, recall of 99.42%, and F1
score of 99.43%, showing solid performance but still falling short of the GSWO+SDG configuration. Similarly,
ResNet50V2 and ResNet152V2, without SDG, recorded accuracies of 98.37% and 98.22%, respectively. These
results suggest that while these models are highly capable, the addition of SDG for data balancing plays a crucial
role in enhancing the models’ classification performance. For the models using SDG, there was a noticeable

Scientific Reports |

(2025) 15:35251 | https://doi.org/10.1038/s41598-025-03752-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data Balancing | Model Name Accuracy | Precision | Recall | F1 Score | Kappa | MCC | CSI | Confi. Interv. | Paired t-test
Xception 99.42 99.43 99.42 | 99.43 99.42 | 99.43 | 99.42 | (98.57,99.99)
ResNet50V2 98.37 98.41 98.37 | 98.41 98.37 | 98.41 | 98.37 | (96.96,99.78)
ResNet152V2 98.22 98.34 98.22 | 98.34 98.22 | 98.34 | 98.22 | (96.74,99.70)
No-SGD t-statistic: — 2.4370, p value: 0.0506
InceptionResNetV2 | 98.26 98.37 98.26 | 98.37 98.26 | 98.37 | 98.26 | (96.80,99.72)
GAWO 99.71 99.71 99.71 | 99.71 99.71 1 99.71 | 99.71 | (99.11, 99.99)
GSWO 99.76 99.77 99.76 | 99.77 99.76 | 99.77 | 99.76 | (99.21, 99.99)
Xception 99.57 99.57 99.57 |99.57 99.46 | 99.46 | 99.79 | (99.48,99.78)
ResNet50V2 99.48 99.48 99.48 | 99.48 99.22 1 99.22 | 99.77 | (99.27,99.69)
ResNet152V2 99.33 99.33 99.33 | 99.33 98.99 | 98.99 |99.68 | (99.09,99.57)
SDG t-statistic: — 3.2488, p value: 0.0227
InceptionResNetV2 | 99.39 99.39 99.39 | 99.39 99.09 | 99.09 | 99.73 | (99.16, 99.62)
GAWO 99.78 99.78 99.78 | 99.78 99.86 | 99.86 | 99.89 | (99.78,99.91)
GSWO 99.84 99.84 99.84 | 99.84 99.88 1 99.88 | 99.93 | (99.82,99.96)

Table 3. Performance analysis of DL models on brain tumor classification.

Performance Comparison of DL Models with and without SDG

Accuracy Precision

No-SDG SDG No-SDG SDG

Percentage (%)
Percentage (%)
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Fig. 5. Performance comparison of DL models without and with SDG on brain tumor classification.

improvement in performance. The ResNet50V2 with SDG achieved an accuracy of 99.48%, precision of 99.48%,
recall of 99.48%, and F1 score of 99.48%. The Xception model with SDG reached 99.57% accuracy, precision,
recall, and F1 score. While these models demonstrated strong performance, they were still outperformed by the
GSWO+SDG approach. GAWO+SDG also performed admirably, with an accuracy of 99.78%, precision, recall,
and F1 score of 99.78%, and a Kappa score of 99.86%, further demonstrating the effectiveness of data balancing
and optimization techniques.

The paired t-test results reveal a statistically significant improvement in performance when comparing models
with and without SDG and optimization techniques. For the GSWO+No-SDG model, the t-statistic is —2.4370
with a p value of 0.0506, indicating a borderline significance in the difference between the performance of the
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model with and without SDG. Additionally, for the GSWO+SDG configuration, the t-statistic of —3.2488 and
p value of 0.0227 show a clear and significant enhancement in performance with the combination of SDG and
GSWO. These results highlight that while GSWO+No-SDG shows improvement, the addition of SDG provides
a more statistically significant boost in the model’s classification accuracy and other performance metrics. In
summary, the GSWO+SDG configuration stood out as the top performer across all metrics, achieving the
highest classification accuracy and balanced performance. The inclusion of SDG for data balancing played a
significant role in improving model performance, as seen with all models that employed it. The GSWO+SDG
model not only delivered superior results in terms of accuracy but also in precision, recall, and other important
performance metrics, making it the most robust and effective approach for brain tumor classification.

The comparative confusion matrices of the evaluated DL models under two configurations: No-SDG
and SDG. In Fig. 6, the models evaluated without synthetic data generation (No-SDG) include Xception,
ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO. These confusion matrices reveal that
while models like GAWO and GSWO exhibit better performance with fewer misclassifications, models such
as Xception and ResNet show higher rates of false positives and false negatives. In Fig. 7, when SDG is applied,
significant improvements in model performance are observed. Xception, ResNet50V2, and ResNet152V2,
GSWO show more concentrated true positives along the diagonal, indicating improved accuracy. However,
the standout performer is GSWO with SDG, which demonstrates superior classification with significantly
fewer misclassifications compared to other models. The confusion matrix for GSWO+SDG exhibits minimal
off-diagonal values, indicating almost perfect classification across all classes. This indicates that our proposed
SDG+GSWO approach outperforms the other models by achieving a higher level of accuracy and significantly
reducing misclassifications. Overall, the results from the confusion matrices highlight that the combination of
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Fig. 6. subfigures (a—f) represent confusion matrices of six different deep learning models. Figure 6 (a-f)
shows classification performance without Synthetic Data Generation (SDG), Comparative confusion matrix of
evaluated models using NO-SDG.
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Fig. 7. (a—f) shows results with SDG applied. Each matrix illustrates model accuracy in classifying pituitary,
meningioma, and glioma tumors, where higher diagonal values indicate better performance. Comparative
confusion matrix of evaluated models using SDG.

SDG and GSWO provides the most efficient and accurate model for brain tumor classification, outperforming
all other models in both true positive predictions and the reduction of misclassifications.

The GSWO model outperforms all other TL and GAWO models, boasting the lowest error rate and high
true positive and true negative rates while minimizing false positives and negatives. By systematically exploring
weight combinations, GSWO optimally tunes the ensemble, leveraging the strengths of individual models. This
exhaustive weight search enhances model synergy, resulting in a finely tuned ensemble that excels in accurately
classifying brain tumors and achieving superior performance scores.

The classification report analysis (Table 4) compares the performance of various deep learning models for
brain tumor classification under two data configurations: No-SDG and SDG. The table includes precision,
recall, and F1-score for the three tumor classes: pituitary, meningioma, and glioma. Under No-SDG, models
such as GSWO and GAWO consistently achieve high scores across all classes. GSWO demonstrates exceptional
performance with a precision, recall, and F1-score of 99.80 for pituitary and glioma, and 99.60 for meningioma.
Other models, like Xception and ResNet50V2, also perform well but show slightly lower values in recall and F1-
score, particularly for meningioma. This indicates that while these models are strong, GSWO is the most reliable
across all tumor types in the No-SDG configuration. When SDG is applied, there is a noticeable improvement
in performance for most models, particularly GSWO, which further enhances its precision, recall, and F1-score
to 99.93, 99.80, and 99.87 for pituitary, meningioma, and glioma, respectively. GAWO also improves, with
scores reaching 99.87, 99.76, and 99.80, demonstrating its robustness with SDG. Xception, ResNet50V2, and
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Data Balancing | Model Class Precision | Recall | F1-Score
pituitary 99.32 99.66 | 99.39
Xception meningioma | 99.32 98.44 |98.78
glioma 99.80 99.81 |99.80
pituitary 99.04 98.50 | 98.76
ResNet50V2 meningioma | 97.63 96.55 | 97.06
glioma 97.99 99.37 | 98.66
pituitary 98.72 97.71 |98.18
ResNet152V2 meningioma | 95.43 97.95 |96.59
No.SGD glioma 99.80 99.37 | 99.58
pituitary 98.65 98.13 | 98.47
InceptionResNetV2 | meningioma | 96.05 98.04 | 96.86
glioma 99.58 98.52 | 98.95
pituitary 99.80 99.80 | 99.80
GAWO meningioma | 99.40 99.40 | 99.40
glioma 99.80 99.81 | 99.80
pituitary 99.80 99.80 | 99.80
GSWO meningioma | 99.40 99.60 | 99.60
glioma 99.80 99.81 | 99.80
pituitary 99.46 99.66 | 99.56
Xception meningioma | 99.66 99.46 | 99.56
glioma 99.60 99.60 | 99.60
pituitary 99.26 99.60 | 99.43
ResNet50V2 meningioma | 99.59 99.26 |99.43
glioma 99.60 99.60 | 99.60
pituitary 99.13 99.39 | 99.26
ResNet152V2 meningioma | 99.46 99.12 | 99.29
SDG glioma 99.39 99.46 | 99.43
pituitary 99.26 99.46 | 99.36
InceptionResNetV2 | meningioma | 99.46 99.19 |99.32
glioma 99.46 99.53 | 99.49
pituitary 99.87 99.73 | 99.80
GAWO meningioma | 99.73 99.80 |99.76
glioma 99.73 99.80 | 99.76
pituitary 99.93 99.80 | 99.87
GSWO meningioma | 99.80 99.87 |99.83
glioma 99.80 99.87 |99.83

Table 4. Classification report analysis of DL models on brain tumor classification.

ResNet152V2 show consistent improvements in all metrics, but still lag behind GSWO and GAWO, especially in
recall and F1-score for meningioma. Overall, the GSWO with SDG model emerges as the best-performing model
across all tumor types, offering superior precision, recall, and accuracy scores, demonstrating the effectiveness of
synthetic data generation in improving model performance for brain tumor classification.

Ablation study of our experiment To assess the impact of various components on the performance of our
proposed ensemble DL model for brain tumor classification, we conducted an ablation study focusing on
model fine-tuning, GAWO, GSWO, and the integration of SDG. First, we evaluated the fine-tuned TL models
individually, achieving an accuracy of 99.42%, establishing a strong baseline for brain tumor classification.
Incorporating GAWO into the ensemble framework enhanced performance to 99.71%, demonstrating the
effectiveness of weight optimization in improving the ensemble model’s learning and generalization capabilities.
Next, the application of GSWO further refined the model, yielding an accuracy of 99.76%. GSWO systematically
optimized hyperparameters and assigned weights to TL models, resulting in improved balance and precision.
The inclusion of SDG brought notable advancements. When SDG was combined with Xception, the performance
improved to 99.57%, highlighting its ability to address data imbalance issues. Similarly, combining SDG with
GAWO achieved an accuracy of 99.78%, surpassing the prior GAWO results. Finally, the integration of SDG
with GSWO achieved the highest accuracy of 99.84%, with enhanced precision, recall, and F1 scores across all
tumor classes. The ablation study underscores the incremental benefits of each component. While GAWO and
GSWO significantly contribute to optimization, the addition of SDG amplifies the robustness and generalization
of the model, particularly in handling class imbalances. These findings validate the synergistic effect of SDG and
GSWO, affirming the efficacy of our proposed ensemble DL framework in brain tumor classification.
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Fig. 8. Performance measurements of our proposed ensemble (SDG+GSWO) model.

K=5FOLD CV

Data balancing | Model F1 F2 F3 F4 F5 AVG (accuracy)
Xception 99.43 | 99.45 | 99.40 | 99.42 | 99.41 | 99.42
ResNet50V2 98.33 | 98.43 | 98.35 | 98.36 | 98.37 | 98.37

No-SDG ResNet152V2 98.20 | 98.25 | 98.18 | 98.19 | 98.28 | 98.22
InceptionResNetV2 | 98.24 | 98.27 | 98.25 | 98.26 | 98.28 | 98.26
GAWO 99.67 | 99.73 1 99.68 | 99.71 | 99.75 | 99.71
GSWO 99.72 1 99.80 | 99.74 | 99.76 | 99.77 | 99.76
Xception 99.55 | 99.58 | 99.56 | 99.57 | 99.59 | 99.57
ResNet50V2 99.45 | 99.50 | 99.51 | 99.47 | 99.49 | 99.48
ResNet152V2 99.31 | 99.35 | 99.32 | 99.34 | 99.31 | 99.33

SDG InceptionResNetV2 | 99.36 | 99.40 | 99.38 | 99.39 | 99.41 | 99.39
GAWO 99.75 | 99.79 | 99.77 | 99.78 | 99.80 | 99.78
GSWO 99.83 | 99.85 | 99.82 | 99.84 | 99.86 | 99.84

Table 5. K =5 fold cross validation accuracy results.

Performance test measurement Fig. 8 presents an analysis of test performance showcasing our efficient
ensemble (SDG+GSWO) model in brain tumor classification tasks. By visualizing the performance for several
sample images, we demonstrate the model’s effectiveness, achieving perfect predictions for all samples.

K-fold CV results

K-fold cross-validation is a technique used to assess the generalization ability of a model by splitting the dataset
into K subsets and iteratively training and testing the model on different combinations of these subsets. This
process helps ensure that the model performs consistently and is not overfitting to a particular subset of the data.
In our experiment, we used a 5-fold cross-validation strategy, where each fold comprised an 80% training set and
a20% testing set. To assess the robustness of our model against overfitting and its generalizability across different
datasets, we performed K-Fold Cross Validation (CV) with K = 5 on both balanced and imbalanced datasets. This
procedure allowed us to validate the model’s performance on multiple subsets of the data, ensuring that it is not
overly sensitive to the specific distribution of the data in any one training or validation set. Table 5 presents the
results, demonstrating consistent performance across all folds, indicating that the model is not overfitting and
can generalize well. For example, when using the No-SDG dataset, the average accuracy of the GSWO model was
99.76%, with accuracy scores ranging from 99.72% to 99.80% across the different folds. Similarly, when using the
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SDG dataset, the GSWO model achieved an average accuracy of 99.84%, with accuracy scores between 99.82%
and 99.86%, further confirming the model’s stability. The inclusion of additional results from cross-validation
datasets also highlights the generalizability of the model across different splits of the data. The relatively narrow
range of the accuracy scores across the different folds for both the No-SDG and SDG datasets indicates that the
model performs consistently well, regardless of the specific data subset used for training or validation. These
findings reinforce the effectiveness of our approach and demonstrate that the model is not only accurate but also
robust against overfitting, ensuring reliable performance in real-world applications. Furthermore, the results
from the SDG dataset, which consistently outperforms the No-SDG dataset, affirm that the use of synthetic data
generation enhances the model’s ability to generalize, providing more diverse training examples and improving
overall performance. This comprehensive validation through K-Fold CV ensures that our model is both accurate
and robust, capable of delivering reliable predictions across a variety of conditions and independent datasets.

Grad-CAM visualization

Gradient-weighted Class Activation Mapping (Grad-CAM) is a visualization technique that highlights the most
critical areas in an input image that influence a model’s prediction for a specific class of interest. The process
begins by passing the input image through the deep neural network to obtain class prediction scores (forward
pass). Next, backpropagation is used to compute the gradients of the target class score concerning the feature
maps of the model’s last convolutional layer. These gradients reflect the importance of each feature map, allowing
the model to focus on relevant areas of the image that contribute to the classification decision.

In this study, we applied Grad-CAM to several test images and real-time brain tumor images to visualize
and classify tumor types. Our goal was to identify and highlight the relevant areas of the image that the model
focused on for the tumor classification task. We utilized our ensemble model (SDG+GSWO), based on multiple
TL architectures, and selected the final convolutional layer for Grad-CAM implementation. The input images
were resized to fit the model’s specifications, and gradients for the target tumor class were computed to weight
the feature maps generated from the last convolutional layer. To ensure that only positive contributions to the
class score were considered, we applied a ReLU function to the weighted feature maps. The resulting heatmap was
then overlaid on the original image to visualize which parts of the brain tumor contributed most significantly to
the classification decision. We fine-tuned the transparency of the heatmap to enhance the visibility of the tumor
class while minimizing the inclusion of healthy tissue areas. This approach provides a clear and interpretable
view of how our model detects and classifies different tumor types. The resulting visualizations not only
demonstrate the model’s accuracy but also build trust in its predictions by visually linking them to the specific
tumor classifications in the images. Fig. 9 illustrates the Grad-CAM visualizations, highlighting the model’s
focus on tumor classes of interest and enhancing the explainability of its decisions.

Evaluation of computational complexity

To assess the computational efficiency of our proposed models, we evaluated their inference times with and
without the application of SDG (Synthetic Data Generation). Table 6 displays the effect of SDG on inference
times. On average, the models with SDG exhibited slightly higher inference times compared to their counterparts
without SDG. For instance, Xception took 18 s for inference without SDG, and 20 seconds with SDG, reflecting
a marginal increase in computational demand. Similarly, models like ResNet152V2 and InceptionResNetV2
showed a noticeable rise in inference times with SDG, increasing from 20 to 23 s, and 21-24 s, respectively.
However, GSWO demonstrated a smaller increase in inference time, going from 15 to 17 s, indicating its
relatively lower computational complexity. These results provide a clear trade-off between model performance
and computational cost. While SDG leads to marginally higher inference times, the improvements in model
accuracy, justify the additional computational effort for most use cases. The slight increase in inference times

Class: pituitary - Original Image Class: glioma - Original Image Class: meningioma - Original Image

Class: glioma - Grad-CAM Class: meningioma - Grad-CAM

Fig. 9. Visualization of Grad-CAM for our proposed model in brain tumor classification.
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No-SDG SDG
SI. No. | Proposed model Inference time (in sec) | Inference time (in sec)
1 Xception 18 20
2 ResNet50V2 16 19
3 ResNet152V2 20 23
4 InceptionResNetV2 | 21 24
5 GAWO 17 21
6 GSWO 15 17

Table 6. Computational analysis of deep learning models.

SI No. | Authors Model Dataset No. of images | Accuracy (In %)
1 Nassar et al.!> Ensemble Brain CE-MRI*® | 3064 99.31
2 Agarwal etal.’® | ODTWCHE+Inception V3 | Brain CE-MRI*® | 3064 98.89
3 Dahan et al.'® ResNet50+MPA Brain CE-MRI*® | 3064 98.72
4 Islam et al.’? EfficientNetB3 Brain CE-MRI*® | 3064 99.69
5 Talukder etal.!” | ResNet50V2 Brain CE-MRI*® | 3064 99.68
6 Saeedi et al.>® 2D CNN Brain CE-MRI*® | 3064 96.47
7 Ayadi et al.” CNN Brain CE-MRI*® | 3064 94.74
8 Sadad et al.!! NASNet Brain CE-MRI*® | 3064 99.60
9 Asif et al.?? Xception Brain CE-MRI?® | 3064 99.67
10 Nassar et al.>* Majority Voting Brain CE-MRI*® | 3064 99.31
11 Tummala et al.? | Ensemble ViT Brain CE-MRI*® | 3064 98.70
12 Abd et al?! BTC-fCNN Brain CE-MRI* | 3064 98.86
13 Maruf et al.> EfficientNetB3 Brain CE-MRI*® | 3064 98.98
14 Ait et al.?® Optimized CNN Brain CE-MRI?® | 3064 98.70
15 Our Proposal SDG+GSWO Brain CE-MRI*® | 3064 99.84

Table 7. The comparison analysis of categorizing brain tumors on Figshare CE-MRI Image Dataset.

with SDG suggests that the proposed models remain computationally feasible for real-world applications while
providing superior classification performance.

Discussion

The comparative analysis, presented in Table 7, highlights the performance of our proposed method against
several existing state-of-the-art (SOA) approaches for brain tumor categorization using the Brain CE-MRI dataset.
Our method, which integrates SDG and GSWO, achieves a remarkable accuracy of 99.84%, outperforming all
the referenced works. Notably, methods like EfficientNetB3 used by Islam et al.'? (99.69%) and Sadad et al.!!
utilizing NASNet (99.60%) also demonstrate strong performance. However, our approach surpasses these models
by effectively addressing data imbalances and optimizing model weights through advanced SDG and GSWO
techniques. Ensemble approaches, such as the one by Nassar et al.!® and the Majority Voting method?*, achieve
accuracies of 99.31%, which is slightly lower than our proposal. While ensemble techniques inherently combine
the strengths of multiple models, their computational complexity and inference time often pose challenges,
particularly in real-time applications. Moreover, traditional CNN-based approaches like those of Ayadi et
al?7 (94.74%) and Saeedi et al.>* (96.47%) yield comparatively lower accuracies, demonstrating the limitations
of simpler architectures in handling the complex spatial patterns present in brain tumor images. Similarly,
optimized CNNs and NASNet-based methods, despite showing competitive results, fail to match the robustness
and generalization capabilities achieved by our ensemble (SDG+GSWO) framework. The incorporation of SDG
not only enriches the training data but also addresses class imbalance, a common issue in medical imaging
datasets. GSWO further enhances model performance by systematically fine-tuning weights to minimize
loss, ensuring both high accuracy and reduced overfitting. Our proposed framework’s superiority in accuracy
and generalization is complemented by its computational efficiency. By leveraging advanced techniques, our
approach strikes a balance between performance and complexity, making it a strong candidate for real-world
applications in medical imaging.

The novelty of our work lies in the integration of advanced SDG techniques and a tailored GSWO framework
to enhance brain tumor classification using CE-MRI images. Our approach introduces a reconfigure-and-
fine-tuning methodology with enhanced TL architectures, incorporating advanced image augmentation
and standardization techniques to mitigate overfitting and streamline the classification process. The GSWO
framework optimizes ensemble model weights, ensuring balanced contributions from each model, and thereby
improving generalization and accuracy. Additionally, SDG addresses data imbalance by generating synthetic
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samples, enhancing the representation of underrepresented classes, and enabling robust training. Achieving
a state-of-the-art accuracy of 99.84%, our framework surpasses existing methodologies, offering a scalable
and effective solution for medical imaging classification with significant implications for improving diagnostic
precision and efficiency.

Our ensemble (SDG+GSWO) model demonstrates excellent scalability for real-time applications due to its
efficient ensemble optimization approach. By leveraging the GSWO method, the model dynamically adjusts
weights across multiple TL architectures, ensuring robust and accurate classification of brain tumors across all
classes. This optimization enables the model to maintain high accuracy when applied to real-time test scenarios
(Fig. 8). Additionally, the streamlined nature of the GSWO-based ensemble allows for faster inference times. As
demonstrated in our experiments (Table 6), the model achieves prediction speeds of 17 seconds, outperforming
other architectures such as Xception and ResNet152V2. This makes it highly suitable for real-time detection
tasks, where timely and precise diagnosis is critical. The model’s adaptability, combined with its predictive
reliability across all classes, ensures scalability and effectiveness, making it a practical solution for real-time
medical applications, such as in hospitals or diagnostic centers, where quick and accurate decision-making is
essential.

Potential impact in healthcare and society

The core objective of our study is the development of an advanced deep-learning model dedicated to accurately
classifying brain tumors, utilizing the strengths of deep learning to discern various tumor types with high
precision. The potential impacts of this research are extensive, particularly in neuro-oncology, encompassing
several clinically significant applications. Firstly, it offers an improved diagnostic tool for radiologists and
medical professionals, aiding in the accurate diagnosis of brain tumors through techniques such as MRI scans.
By providing reliable tumor categorization, the model reduces diagnostic errors and promotes early detection,
thereby improving patient treatment outcomes. Additionally, the precise identification of tumor types facilitates
the formulation of tailored treatment plans, ensuring patients receive targeted therapies that are more effective,
thereby enhancing overall healthcare quality. Moreover, the model serves as a critical support tool in clinical
decision-making processes, furnishing healthcare professionals with accurate information for better patient
management and delivering more personalized patient care. Furthermore, by accurately classifying brain tumors
and identifying specific genetic markers or molecular profiles, the model significantly contributes to brain tumor
research, aiding in understanding tumor biology, identifying therapeutic targets, and advancing the development
of optimized treatments and medications. In summary, our research offers substantial benefits in enhancing brain
tumor diagnosis and treatment, supporting clinical decision-making, aiding surgical procedures, and advancing
medical research, with the potential to positively influence both patient care and societal health outcomes.

Conclusion

This research presents an innovative DL framework for the accurate classification of brain tumors using CE-
MRI images. The proposed methodology integrates advanced preprocessing techniques, SDG to address data
imbalances, and fine-tuned ensemble strategy leveraging TL architectures and weights optimization. By utilizing
four state-of-the-art TL models-Xception, ResNet50V2, ResNet152V2, and InceptionResNetV2-alongside
GSWO and GAWO, our framework achieves exceptional performance on the Figshare CE-MRI brain tumor
dataset.

The evaluation encompassed multiple performance metrics, including accuracy, precision, recall, F1 score,
confusion matrix, MCC, Kappa, and CSI, underscoring the robustness of our approach. Individual models such
as Xception and ResNet50V2 achieved accuracies of 99.57% and 99.48%, respectively, while ensemble techniques
demonstrated further improvements, with GAWO achieving 99.78% accuracy and GSWO excelling at 99.84%.
The integration of SDG significantly enhanced the representation of underrepresented classes, improving
training robustness and contributing to superior overall performance (99.71-99.84%). Thus our Ensemble
(SDG+GSWO) model offers promising clinical applications for precise and reliable brain tumor classification,
aiding radiologists in early diagnosis and treatment planning by improving accuracy in identifying complex
tumor characteristics.

While the proposed model demonstrates high accuracy and reliability, there are opportunities for
improvement by exploring more advanced DL techniques such as attention-based models, transformer-based
models and deep feature fusion techniques could help perfect way of classification and segmentation tasks of
brain tumors.

Future work will focus on addressing these limitations to get better performance models by incorporating
more sophisticated attention-based models, transformer-based models and deep feature fusion techniques from
recently available brain tumor datasets.

Data availability
The selected datasets are sourced from free and open-access sources such as Figshare MRI Brain tumor Dataset:
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427.

Code availability
The source code for this study is publicly accessible at the following repository: https://github.com/alamintaluk
dercsejnu/BTC-DL.
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