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Brain tumors are a critical medical challenge, requiring accurate and timely diagnosis to improve 
patient outcomes. Misclassification can significantly reduce life expectancy, emphasizing the need for 
precise diagnostic methods. Manual analysis of extensive magnetic resonance imaging (MRI) datasets 
is both labor-intensive and time-consuming, underscoring the importance of an efficient deep learning 
(DL) model to enhance diagnostic accuracy. This study presents an innovative deep ensemble approach 
based on transfer learning (TL) for effective brain tumor classification. The proposed methodology 
incorporates comprehensive preprocessing, data balancing through synthetic data generation (SDG), 
reconstruction and fine-tuning of TL architectures, and ensemble modeling using Genetic Algorithm-
based Weight Optimization (GAWO) and Grid Search-based Weight Optimization (GSWO) used to 
optimize model weights for enhanced performance. Experiments were performed on the Figshare 
Contrast-Enhanced MRI (CE-MRI) brain tumor dataset, consisting of 3064 images. The proposed 
approach demonstrated exceptional performance, achieving classification accuracies of 99.57% with 
Xception, 99.48% with ResNet50V2, 99.33% with ResNet152V2, 99.39% with InceptionResNetV2, 
99.78% with GAWO, and 99.84% with GSWO. The GSWO achieved the highest average accuracy of 
99.84% across five-fold cross-validation among other DL models. The comparative analysis highlights 
the superiority of the proposed model over State of Arts (SOA) works, showcasing its potential to assist 
neurologists and clinicians in making precise and timely diagnostic decisions. The study concludes that 
the optimized deep ensemble model is a robust and reliable tool for brain tumor classification.
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The brain, a vital organ responsible for all voluntary and involuntary bodily functions, is exceptionally intricate 
and fragile. Brain tumors, among the most lethal brain disorders, arise from abnormal tissue growth within 
the skull1. They are classified into primary and secondary tumors, with primary tumors accounting for 70% of 
cases and remaining confined to the brain2. Gliomas, meningiomas, and pituitary tumors are common types, 
each posing distinct health risks. Pituitary tumors, though typically benign, can cause hormonal imbalances and 
vision impairment3. Detecting and treating brain tumors presents significant challenges due to their complexity 
and diagnostic intricacies. The World Health Organization forecasts a 5% annual increase in global brain tumor 
cases4. Magnetic resonance imaging (MRI) and computed tomography (CT) scans are preferred clinical tools 
for identifying brain abnormalities, with MRI being widely utilized across various neurological conditions5. The 
specific background in Machine Learning (ML) and Deep Learning (DL) techniques highlights their significant 
potential in neuroscience, particularly for the early detection of brain tumors6. Despite advancements, current 
diagnostic methods for brain MRI scans need improvements in accuracy and speed, especially as the volume 
of medical data grows. DL has become a crucial tool, offering the ability to autonomously identify complex 
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patterns in large biomedical datasets, thus enhancing disease diagnosis and classification, including brain 
tumors7. DL surpasses traditional methods in classification, detection, and other predictive tasks by efficiently 
extracting and optimizing features directly from raw data. This capability is particularly valuable for biomedical 
applications and image-based tasks8. Transfer learning (TL) further enhances DL by utilizing pre-trained 
models to reduce computational demands and speed up model training9. TL adapts pre-trained model weights, 
especially in convolutional layers, to new tasks, making it efficient for developing specialized models across 
various applications10.

In the extensive body of related works, each effort stands as a unique approach to the category of brainiac 
tumors, contributing valuable insights to the field. Moreover, DL techniques have found notable applications in 
representing and interpreting various medical images11. These methods have empowered machines to effectively 
assess a wide array of medical data, ranging from multidisciplinary pathology scans to elevated-dimensional 
image datasets and video recordings, as exemplified in the work of12. Furthermore, the versatility of DL 
extends its impact beyond medical imaging to encompass disease prediction. Researchers have demonstrated 
the adaptability of DL techniques in healthcare, offering fresh insights into the intersection of DL and disease 
prediction. These collective contributions underscore the wide-ranging applications of DL in medical research, 
providing a strong foundation for our innovative approach to categorizing brain tumors13,14.

The manual assessment and analysis of an extensive collection of brain MRI data is resource-intensive, time-
consuming, and prone to errors, given the expertise required for processing and classifying MRI images. The 
precise diagnosis and categorization of brain tumors are crucial as they inform prognostic predictions and guide 
medical experts in selecting suitable treatment options. However, the manual evaluation of diverse brain MRI 
data is prone to inaccuracies and demands considerable expertise. This precision in diagnosis and categorization 
is imperative, as it underpins predictive insights and empowers medical specialists to make well-informed 
decisions regarding patient care.

Our research focuses on developing a robust DL model for efficient brain tumor prediction using MRI 
data. We have established a systematic framework that involves preprocessing, data balancing,  fine-tuning and 
creating ensemble DL models where they are optimized using Genetic Algorithm-based Weight Optimization 
(GAWO) and Grid Search-based Weight Optimization (GSWO). We have selected pivotal TL architectures such 
as ResNet50V2, ResNet152V2, Xception, and InceptionResNetV2 for their computational efficiency and proven 
efficacy in handling the complexities of MRI data, which is essential for processing large brain tumor datasets.

The main contributions of this research are as follows: 

	1.	 Optimized deep learning model: This study proposes an advanced DL model tailored for brain tumor classi-
fication. The model integrates comprehensive preprocessing, data balancing, TL architecture modifications, 
fine-tuning techniques, and two optimization-based ensemble methods, significantly enhancing classifica-
tion accuracy and efficiency.

	2.	 Synthetic data generation for balancing: To address class imbalance, synthetic data generation (SDG) is uti-
lized, ensuring balanced representation across the dataset and improving the robustness of the model.

	3.	 Enhanced transfer learning architectures with fine-tuning: To mitigate overfitting and streamline the classifica-
tion process, the TL architectures are enhanced with advanced image augmentation technique and perform-
ing fine-tuning procedures, ensuring reliable and efficient workflow.

	4.	 Optimization-based ensemble techniques: This study introduces two optimization-based ensemble techniques 
such as: GSWO and GAWO. GSWO stands out for its rigorous, exhaustive search process, systematically 
identifying the most effective weight combinations for the ensemble model, which improves accuracy and 
robustness compared to traditional methods. Our results demonstrate that GSWO significantly outperforms 
GAWO, setting a new standard for weight optimization in DL applications.

The following sections of the paper are organized as follows: “Literature review” section provides an overview 
of previous studies on the prediction of brain tumors using deep learning. Section “Methodology” explains 
our research methodology and dataset in detail. In “Results analysis” section, we present the experimental 
information and performance evaluation. Section “Discussion” presents the discussion of our proposed model 
with existing works. Finally, the paper concludes with Section 6 in “Conclusion”.

Literature review
Recent advancements in DL for medical imaging have led to the development of various models that show 
significant potential in applications in brain tumor classification tasks. The following studies have included brain 
tumor classification works.

Transfer learning (TL) approaches
Nassar et al.15 presented an automated approach to efficiently classify brain tumors, aiming to assist radiologists 
by reducing the manual effort required to analyze large volumes of images for accurate diagnoses. The study 
utilized a dataset comprising 3064 T1-weighted contrast-enhanced brain MR images (T1W-CE MRI) from 233 
patients. The proposed system combined the outputs of five distinct models to leverage their collective strengths, 
resulting in enhanced classification performance. This ensemble-based approach achieved an impressive overall 
accuracy of 99.31%. Agarwal et al.16 developed an Auto Contrast Enhancer, Tumor Detector, and Classifier 
for improving the contrast of low-quality MRI images, aiding in the early diagnosis and classification of brain 
tumors. The system employed a two-phase approach: first, ODTWCHE enhanced the image contrast, and then 
a deep transfer learning model, Inception V3, further refined the diagnosis. The proposed system outperformed 
models like AlexNet, VGG-16, and ResNet-50, achieving 98.89% accuracy on a public dataset with varying 
contrast and brightness levels, demonstrating its robustness in tumor detection and classification. Talukder et 
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al.17 introduced a novel DL approach for categorizing brain tumors. The method involved various steps such as 
data preprocessing, TL architecture creation, and fine-tuning. They tested different TL models like Xception, 
ResNet50V2, InceptionResNetV2, and DenseNet201 on the Figshare dataset with 3064 MRI brain tumor 
images. The results demonstrated high accuracy, with ResNet50V2 achieving the best performance at 99.68%. 
This outperformed other models and could help doctors diagnose brain tumor patients quickly and accurately. 
Dahan et al.18 proposed a model with three steps: feature extraction, fusion, and classification. It uses ResNet50 
CNN architecture to extract robust features from color-transformed MRI images, focusing on features from 
the first convolutional layer. A novel feature fusion technique based on the Marine Predator Algorithm (MPA) 
was introduced to enhance robustness. The model achieved 98.72% accuracy on a complex dataset, surpassing 
existing methods and effectively detecting brain tumors in camouflage images. Islam et al.19 presented a novel DL 
approach using the EfficientNet family for enhanced brain tumor classification and detection. Utilizing a dataset 
of 3064 T1-weighted CE MRI images, the methodology incorporates advanced preprocessing and augmentation 
techniques to optimize performance. Experiments showed that EfficientNetB0 achieved accuracies ranging 
from 98.76 to 99.14%. The EfficientNetB3 model, achieving 99.69% accuracy, outperformed many existing state-
of-the-art techniques, demonstrating the effectiveness of the approach. Tummala et al.20 employed ImageNet-
based Vision Transformer (ViT) models, pre-trained and fine-tuned for brain tumor classification. The ensemble 
ViT model’s interpretation was assessed using the Figshare brain tumor dataset, specifically for a three-class 
classification task through cross-validation (CV) and testing. The amalgamation of all ViT variants, such as 
L/16, B/16, L/32, and B/32, achieved an impressive total testing accuracy of 98.7%. This suggests that a group of 
ViT models holds the potential to aid in the marker of brain cancers based on MRI images, offering support to 
radiologists. Abd-Ellah et al.21 developed BTC-fCNN, a DL-based system for efficiently classifying three types 
of brain tumors-meningioma, glioma, and pituitary tumors-using MRI images from the Figshare dataset. The 
model, with 13 layers incorporating convolution and 1×1 convolution layers, average pooling, fully connected 
layers, and a softmax layer, underwent five iterations, incorporating TL and five-fold cross-validation. The 
presented model attained remarkable results, boasting an average accuracy of 98.63% with five iterations and TL, 
and 98.86% with retrained five-fold cross-validation. BTC-fCNN outperformed existing strategies and other well-
known CNNs, significantly advancing the categorization of brain tumors. Maruf et al.22 conducted a thorough 
assessment of 26 previously developed CNN models designed for general image classification in the context of 
brain tumors. The evaluation involved retraining these models using 3064 T1-weighted contrast-enhanced MR 
images. Pre-trained weights from the ImageNet dataset were employed, and the classification accuracies of the 
CNN models were compared. This comprehensive study examines various state-of-the-art CNN models using a 
multiclass brain MRI dataset. EfficientNetB3 emerged as the top performer, achieving a categorization accuracy 
of 98.98% among the 26 models tested. Other models, including DenseNet121, EfficientNetB2, EfficientNetB5, 
and EfficientNetB4, also demonstrated strong accuracy, with all models surpassing 97% accuracy in identifying 
the tumor type. This research delivers helpful insight into the efficacy of diverse CNN models for categorizing 
brain tumors.

Traditional deep learning (DL) approaches
Asif et al.23 designed a brain tumor diagnosis system using DL architectures, including DenseNet121, 
ResNet152V2, Xception, DenseNet201, and InceptionResNetV2. Modifications to the final layers, incorporating 
a deep dense block and softmax layer, aimed to enhance classification accuracy. Two experiments were 
conducted: one involving three-class classification (glioma, meningioma, and pituitary tumors) and another 
with four classes (including healthy patients). The outcomes emphasize the authority of the presented model 
based on the Xception architecture, achieving a remarkable 99.67% accuracy in the three-class dataset and 
95.87% in the four-class dataset, outperforming state-of-the-art methods. This model holds promise as an 
automated diagnostic tool for radiologists, enabling accurate decision-making. Nassar et al.24 prepared an 
efficient automated approach to assist radiologists in classifying brain tumors, intending to save time compared 
to manual image analysis. The approach utilized 3064 brain MRI images from 233 patients. Drawing on the 
results of five different models, such as GoogleNet, ShuffleNet, SqueezeNet, AlexNet, and NASNet-Mobile, the 
system harnessed the integrated potential of numerous models and performed a majority voting technique to 
acquire favorable outcomes. The offered method demonstrated substantial progress in results, achieving an 
impressive prevalent accuracy of 99.31%. Saeedi et al.25 developed a 2D CNN and a convolutional autoencoder 
for brain tumor classification. The 2D CNN had eight convolutional and four pooling layers, utilizing 2×2 kernel 
functions and batch normalization. The autoencoder network combined a convolutional autoencoder and a 
classification network. The 2D CNN achieved a training accuracy of 96.47%, with an average recall of 95%, 
while the autoencoder network achieved 95.63% accuracy and 94% recall. The study concluded that the 2D 
CNN effectively classified brain tumors. To optimize hyperparameters for CNN, Ait Younes et al.26 presented 
an advanced strategy relying on Bayesian optimization. Tested in the categorization of brain MRI scans into 
three cancer classes, the CNN, optimized using five pre-trained instances through TL, achieved a remarkable 
accuracy rate of 98.70% after employing Bayesian optimization. The proposed model surpassed existing works, 
showcasing the effectiveness of automated hyperparameter optimization. Ayadi et al.27 showcased a CNN-based 
model with multiple layers for MRI-based categorization of brain tumors. Requiring minimal preprocessing, 
the intelligent model was evaluated on three distinct brain tumor datasets. Achieving accuracy rates of 94.74% 
for Figshare, 93.71% for Radiopaedia, and 97.22% for Rembrandt datasets, the proposed scheme demonstrated 
superior classification and recognition accuracies compared to previous relevant studies on the same data. The 
summary of the literature review is represented in Table 1.
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Methodology
In this study, we propose an optimized DL approach for accurate brain tumor classification on brain MRI 
images. Our comprehensive framework integrates several key components, including image preprocessing, 
data balancing, TL architecture modifications, model fine-tuning, and an ensemble learning process enhanced 
with weight optimization techniques. Key innovations include the use of SDG to balance the dataset, Image 
augmentation to ensure better generalization and mitigate overfitting, an enhanced fine-tuning process for 
improved classification accuracy, and the adoption of two weighted ensemble approaches such as GSWO and 
GAWO to improve model robustness.

The methodology begins with the collection and preprocessing of brain tumor image data, followed by 
data balancing and the reconfiguration of TL architectures such as ResNet50V2, ResNet152V2, Xception, and 
InceptionResNetV2. These architectures are expended through fine-tuning by incorporating additional layers, 
including batch normalization, global average pooling, dense+ReLU, flatten, dropout, and dense+Softmax layers, 
designed specifically for categorizing brain tumors within the dataset. Finally, two optimization models (GSWO 
and GAWO) are applied to analyze their performance besides the TL models on brain tumor classification. 
Figure 1 illustrates the structural design of our proposed classification approach. The following procedural steps 
outline the operations of our methodology:

Data collection
The brain tumor dataset, obtained from28, consists of 3064 T1-weighted contrast-enhanced images from 233 
patients diagnosed with three different types of brain tumors: meningioma (708 slices), glioma (1426 slices), and 
pituitary tumors (930 slices). This comprehensive dataset is conveniently provided in MATLAB file format (.mat 
files). Each file is organized as a MATLAB structure, containing essential information for each image, including 
labels: 1 for meningioma, 2 for glioma, and 3 for pituitary tumors. Additionally, the dataset includes the image 
data, patient ID (PID), and tumor border information. The tumor boundary is carefully traced by hand and 
represented as a vector of coordinates along the edges of the tumor, allowing for the easy creation of a binary 
image to serve as a tumor mask. This mask is presented as a binary image, where a series of ones indicates the 
tumor region.

Image preprocessing
We meticulously prepared the dataset for further analysis in the initial stages of image preprocessing. Since 
the data was initially stored in Matlab (.mat) file format, we extracted image and label information to facilitate 
subsequent processing. The image preprocessing journey commenced with resizing all images to a uniform 256 x 

Study Model(s) used Dataset(s)
Accuracy 
(%) Key contributions and findings

Nassar et 
al.15 Combination of 5 TL models

3064 T1W-CE MRI 
(Figshare) images from 
233 patients

99.31 Developed an efficient automated method for classifying brain tumors, combining 
strengths of five different models for improved performance.

Agarwal et 
al.16 ODTWCHE and Inception V3 3064 T1W-CE MRI 

(Figshare) images 98.89
Proposed an Auto Contrast Enhancer, Tumor Detector, and Classifier for improved 
contrast and early diagnosis of brain tumors, outperforming models like AlexNet, 
VGG-16, and ResNet-50.

Talukder et 
al.17

Xception, ResNet50V2, 
InceptionResNetV2, 
DenseNet201

Figshare (3064 MRI) 99.68 Proposed TL models with ResNet50V2 achieving the highest accuracy for brain tumor 
classification.

Dahan et 
al.18

ResNet50 CNN and Marine 
Predator Algorithm (MPA)

3064 T1W-CE MRI 
(Figshare) images 98.72 Developed a three-step model using ResNet50 for feature extraction and MPA for 

feature fusion, achieving high accuracy in detecting brain tumors in challenging images.

Islam et al.19 EfficientNetB0, EfficientNetB3 3064 T1W-CE MRI 
(Figshare) images 99.69

Introduced a deep learning approach using EfficientNet for enhanced classification, 
with EfficientNetB3 achieving the highest accuracy, outperforming many state-of-the-
art methods.

Tummala et 
al.20

ViT models (L/16, B/16, L/32, 
B/32) Figshare (3-class MRI) 98.70 Showcased the effectiveness of ensemble ViT models in three-class brain tumor 

classification.

Abd-Ellah et 
al.21

BTC-fCNN (custom CNN 
architecture) Figshare (3064 MRI) 98.86 Developed a custom 13-layer CNN architecture, BTC-fCNN, outperforming existing 

CNN strategies for brain tumor detection.

Maruf et al.22 EfficientNetB3, DenseNet121, 
EfficientNetB2/B4/B5 Figshare (3064 MRI) 98.98 EfficientNetB3 outperformed 26 other CNN models, showing excellent performance in 

brain tumor classification.

Asif et al.23
DenseNet121, ResNet152V2, 
Xception, DenseNet201, 
InceptionResNetV2

Figshare MRI Dataset 99.67 Designed a DL architecture for both three-class and four-class classification, 
outperforming state-of-the-art methods.

Nassar et 
al.24

GoogleNet, ShuffleNet, 
SqueezeNet, AlexNet, NASNet-
Mobile

Figshare (3064 MRI) 99.31 Introduced a majority voting technique with multiple models, achieving favorable 
results in brain tumor classification.

Saeedi et al.25 2D CNN, Convolutional 
Autoencoder Figshare MRI Dataset 96.47 Proposed 2D CNN and autoencoder networks with multiple convolution and pooling 

layers for brain tumor classification.

Ait Younes 
et al.26 CNN with Bayesian Optimization Figshare MRI Dataset 98.70 Applied Bayesian optimization for hyperparameter tuning, achieving superior 

performance in brain tumor classification.

Ayadi et al.27 CNN (custom architecture) Figshare, Radiopaedia, 
Rembrandt 97.22 Evaluated on multiple datasets, the CNN model achieved strong classification accuracy 

with minimal preprocessing.

Table 1.  Summary of reviewed studies on brain tumor classification.
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256 dimension, enhancing visibility by applying a sharp filter and complementing the images. Further refinement 
was achieved through histogram equalization, contributing to a more balanced image representation. To ensure 
compatibility with the DL model, we scaled the images by dividing them by 255. For effective model training and 
evaluation, we performed k-fold cross-validation where k is five, so the dataset is partitioned into training and 
testing sets, allocating 80%, and 20%, respectively. Additionally, we applied 1000 shuffling iterations to reduce 
loss, lower variance, and enhance the model’s generalization. The resultant processed images exhibit heightened 
sharpness, brightness, and discernible details compared to their original counterparts, making them well-suited 
for input into the model. This meticulous preprocessing contributes to achieving an outstanding performance 
compared to contemporary methodologies. Fig. 2 presents images of brain glioma, meningioma, and pituitary 
tumors before and after preprocessing. The preprocessing enhances image clarity, aiding in improved tumor 
classification.

Fig. 2.  Part (a) shows raw MRI images of brain tumors before preprocessing, while part (b) presents 
theenhanced images after preprocessing techniques. These improvements enhance clarity, making tumor 
features more distinguishable for accurate classification. Images of brain glioma, meningioma, and pituitary 
tumors prior to and following image preprocessing.

 

Fig. 1.  The proposed structural design for classifying brain tumors.
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Moreover, we have enhanced the preprocessing by experimenting with various image augmentation 
techniques to enrich the robustness and performance of the model. The applied augmentation methods include 
horizontal flipping, random image rotations (up to 35°), zoom adjustments (up to 25%), contrast variation, 
and image translations, which significantly increase the dataset’s variability. These augmentations are designed 
to simulate real-world conditions and improve the model’s ability to generalize across diverse scenarios. 
Additionally, we rescaled the input images to standardized pixel values (0–1) to ensure optimal conditions for 
training. These preprocessing enhancements contribute to a more comprehensive training set and improve the 
overall predictive performance of our deep learning model.

Data balancing using SDG
In medical image classification, particularly in brain tumor detection, the dataset is often imbalanced, where 
certain classes (e.g., different types of tumors) have fewer samples than others. This imbalance can result in biased 
models that perform well on the overrepresented classes but poorly on the underrepresented ones. To address 
this issue, Synthetic Data Generation (SDG) is employed using Generative Adversarial Networks (GANs) to 
balance the dataset by generating new synthetic samples for the underrepresented classes. Specifically, GANs 
were utilized to generate synthetic samples for the underrepresented classes in the dataset. This approach allows 
us to create realistic and diverse samples that help balance the dataset, addressing class imbalance and enhancing 
model performance. By using GANs, we ensure that the generated data captures the underlying patterns of the 
minority classes, improving the model’s ability to generalize across all tumor types.

Data balancing is crucial in brain tumor classification for several reasons. First, it helps avoid model bias. When 
the dataset is imbalanced, the model may focus too much on the majority class, leading to poor performance on 
the minority classes. This is particularly problematic in medical imaging, where underrepresented tumor types 
might be misclassified, impacting clinical decision-making. Second, by generating synthetic data, we ensure 
that all classes are sufficiently represented, which allows the model to generalize better across different tumor 
types. Finally, data balancing reduces the risk of overfitting. An imbalanced dataset may lead to overfitting to the 
majority class, causing the model to perform poorly on new, unseen data. Balancing the dataset allows the model 
to learn features from all classes, which leads to improved generalization.

The imbalance ratio of a dataset can be defined as:

	
Imbalance Ratio = max(D1, D2, . . . , DK)

min(D1, D2, . . . , DK) � (1)

where D1, D2, . . . , DK  represent the datasets for each class and Dk  is the number of samples in class Ck . A 
large imbalance ratio indicates that the dataset is skewed, which can adversely affect the model’s performance. 
The goal of SDG is to generate synthetic data for the underrepresented classes to balance the dataset. This ensures 
that all classes have an equal number of samples, Nmax, where Nmax is the maximum number of samples in any 
class. Let Daug represent the augmented dataset, which is obtained by applying data augmentation techniques to 
the underrepresented classes until they reach Nmax:

	
Daug =

K∪
k=1

{Augment(Dk) | Dk < Nmax}

where Augment(Dk) refers to the augmentation operation applied to the samples of class Ck .
The data balancing process using SDG follows these steps: 

	1.	 Step 1 Split the dataset D = {(xi, yi)}N
i=1 into K classes: C1, C2, . . . , CK .

	2.	 Step 2 Identify the class with the maximum number of samples, Nmax = max(D1, D2, . . . , DK).
	3.	 Step 3 For each underrepresented class Ck , apply augmentation operations to generate synthetic images until 

Dk = Nmax.
	4.	 Step 4 Merge the original and augmented datasets for each class to create a balanced dataset Daug.
	5.	 Step 5 Output the balanced dataset Daug with equal samples per class.

The algorithmic representation is as follows:

	 For each class Ck :

	 If Dk < Nmax, then

	 Daugmented
k = Augment(Dk, Nmax − Dk)

	
Daug =

K∪
k=1

Daugmented
k

This approach results in a balanced dataset, where all classes have an equal number of samples, thereby allowing 
the model to generalize across all classes during training.

The use of SDG for data balancing in brain tumor classification addresses the problem of class imbalance 
and significantly enhances model performance, particularly for underrepresented tumor types. By generating 
synthetic samples for minority classes, we ensure that the model has a diverse set of examples to learn from, 
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leading to more accurate and reliable predictions. Figure 3 visually illustrates the distribution of the Brain CE-
MRI dataset without and with SDG, providing insights into the composition of the three tumor types across the 
patient cohort.

Reconstruction with fine-tuning of transfer learning architecture
In our experimental endeavor, we undertake the crucial tasks of reconstructing TL models and fine-tuning 
them to enhance the model’s aptitude for accurately categorizing brain tumors. Within the reconstruction TL 
architecture framework, we address the inherent challenge posed by pre-trained TL algorithms, originally 
trained on ImageNet data. To adapt these algorithms for our specific brain tumor dataset, we embark on a 
reconstruction process to optimize the architecture for better predictions. This reconstruction unfolds in two 
sequential steps:

•	 Image augmentation Initially, we incorporate an image augmentation layer into the input layer of our ar-
chitecture. This integration allows the architecture to perform on-device image augmentation concurrently 
with other layers, taking advantage of GPU acceleration for expedited processing. Moreover, by preserving 
preprocessing layers alongside the model, we ensure instantaneous standardization of images during deploy-
ment, eliminating the need for redundant server-side logic.

•	 Truncate layers Subsequently, we retain all layers from the TL algorithms, excluding those beyond the last ac-
tivation layer. This strategic truncation is performed to accommodate the addition of extra layers, optimizing 
the architecture for efficient brain tumor prediction.

Figure 4 visually illustrates the juxtaposition of the original and reconfigured TL architectures. The original 
TL architecture highlights the sequential arrangement of layers such as Conv2D, Batch Normalization, ReLU, 
MaxPooling2D, and the Prediction Layer. The reconfigured TL architecture with fine-tuning, showing the 

Fig. 4.  The original and reconfigured with fine-tuned architecture of transfer learning model.

 

Fig. 3.  The distribution pattern of brain tumor data collection.
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inclusion of additional components such as an Augmentation Layer, Dropout, Flattening, Dense+ReLU, and 
Dense+SoftMax layers for refined classification of Glioma, Meningioma, and Pituitary brain tumors.

Image augmentation
The image augmentation process is seamlessly integrated into our proposed architecture. Recognizing the 
pivotal role of image augmentation in enriching dataset scale and diversity, we leverage this technique to amplify 
the effectiveness of our DL models. Our approach implements image processing techniques on the input images, 
generating augmented counterparts. The augmentation process encompasses fundamental transformations 
such as zooming, rotation, contrast adjustment, and horizontal flipping. Additionally, the input images undergo 
rescaling to a standardized range of 0–1, fostering optimal conditions for model training.

We deliberately incorporated additional random rotations and translations to increase the variety of 
our augmented dataset and improve the model’s adaptability to different real-world scenarios. The image 
augmentation process, integrated within the TL architecture, is carried out through carefully adjusted techniques:

•	 Horizontal flip function: This function flips the image horizontally at random, applicable to images with a 256 
x 256 x 3 dimension, where ’256’ refers to both height and width and ‘3’ signifies the RGB color channels.

•	 Random image rotation: Allows the image to rotate randomly, with a limit of 0.25 radians.
•	 Image zoom adjustment: Enables random zooming in or out on the image, up to a maximum of 25%.
•	 Contrast variation: Alters the contrast of the image randomly, up to a maximum change of 25%.
•	 Pixel rescaling: Adjusts the image’s pixel values, rescaling them to a range between 0 and 1.
•	 Degree-based image rotation: This function randomly rotates the image, with a maximum rotation of 35°.
•	 Image translation with parameters: Randomly shifts the image horizontally and vertically by up to 25% and 

35% of the image’s height and width, respectively. The translation uses the ’nearest’ fill mode to handle pixels 
outside the boundary and ’bicubic’ interpolation for the better visual quality of the transformed image.

In our study, the augmentation techniques were chosen based on a preliminary investigation where we evaluated 
various augmentation strategies to assess their impact on model training performance. This evaluation included 
experiments with and without augmentation, as well as comparisons of different augmentation combinations, 
to measure their influence on accuracy, loss, and generalization capabilities. The selected techniques, such 
as random rotations, translations, zoom adjustments, and contrast variations, demonstrated significant 
improvements in validation accuracy (by approximately 2–4%) and reduced overfitting compared to models 
trained without augmentation. These findings confirmed that the chosen augmentation strategies enhanced the 
model’s robustness, adaptability to unseen data, and overall performance. Thus, these techniques were integrated 
into our proposed framework to ensure optimal training conditions.

This meticulously refined augmentation process ensures that the augmented dataset maintains heightened 
diversity while remaining a faithful representation of original MRI images. The outcome-augmented dataset is 
the cornerstone for training our presented model, attaining state-of-the-art performance in the targeted task. 
Consequently, these advanced image-processing strategies augment data proportions and significantly enhance 
assortment, thereby elevating the overall rendition of DL algorithms.

Fine-tuning process
In the fine-tuning phase, we enhance the architecture by introducing specific layers tailored to the characteristics 
of brain MRI images. Our refined structural design includes a Global Average Pooling2D layer, two Batch 
Normalization layers, a Dense layer with ReLU and SoftMax activation, a flattened layer, and a Dropout layer to 
optimize model performance. The Global Average Pooling2D calculates the average output for each feature map 
across the entire spatial dimensions, reducing spatial dimensions to 1 x 1, capturing global context, reducing 
parameter count, and ensuring translation invariance. Batch Normalization standardizes layer inputs, reducing 
internal covariate shift, enhancing training stability, accelerating convergence, mitigating gradient issues, and 
providing regularization. The Dense layer followed by ReLU activation introduces non-linearity, enhancing 
model expressiveness, enabling learning of complex relationships, and capturing intricate patterns. The flattened 
layer converts the multi-dimensional output into a one-dimensional array, facilitating input compatibility 
with subsequent layers and ensuring information flow continuity. Dropout randomly deactivates neurons to 
prevent overfitting, improve generalization, enhance robustness, and reduce overfitting risks. Another instance 
of Batch Normalization provides additional normalization and regularization, further stabilizing training, 
enhancing generalization, and contributing to model robustness. The final Dense layer with SoftMax activation 
produces probability distributions over classes, facilitating accurate classification, and is well-suited for multi-
class tasks. Pre-trained trainable weights are incorporated to leverage existing knowledge, and the model is 
configured with the Adamax optimizer, setting a learning rate of 0.0001 for efficiency in handling embeddings 
and stability enhancement. The loss function is set to sparse categorical cross-entropy, suitable for integer-form 
labels obtained through label encoding, with accuracy as the primary performance metric. This comprehensive 
fine-tuned architecture, with a Flatten and Dropout layer, effectively captures brain MRI data intricacies while 
addressing overfitting concerns.

Transfer learning algorithms
In our experimentation, we employed four TL algorithms for categorizing brain tumors. Utilizing the knowledge 
gained from these TL models, we integrated two optimization approaches to tailor the proposed models to our 
objectives.
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•	 Xception:  The Xception framework, often called “Extreme Inception” is a unique convolutional neural net-
work structure, as described in29. It is distinguished by its depthwise separable convolution layers arranged 
in a series and the integration of residual connections. The design comprises 36 convolution layers that are 
grouped into 14 distinct modules. Each module, except for the first and last, is connected through linear 
residual links. The simplicity of Xception, which is easily implemented using frameworks such as Keras30 or 
TensorFlow-Slim31, contrasts the complexity of architectures like InceptionV2 or V3.

•	 ResNet50V2: The ResNet model, a pioneering neural network introduced by32, has shown remarkable success, 
notably in the ILSVRC 2015 classification challenge. ResNet50, a variant with 50 layers, uses deep residu-
al networks with “skip connections” for accuracy. The ResNet50V2, an evolution of the original ResNet50, 
demonstrates better performance on the ImageNet dataset, as noted in33. It introduces an optimized connec-
tion structure between blocks, boosting overall performance.

•	 ResNet152V2: Building upon the ResNet50 model, ResNet152V2 extends the depth to 152 layers, capturing 
more complex data features. It maintains the original ResNet’s use of residual blocks and skip connections, 
proven effective in vision tasks. The model’s design, including skip connections in residual blocks, contributes 
to its robustness, facilitating the efficient training of deep architectures34.

•	 InceptionResNetV2: The InceptionResNetV2 design, an advancement over InceptionResNetV1, combines re-
sidual learning with the inception block structure, as outlined in35. It includes various block types like the 
Stem, InceptionResNet, and Reduction blocks. The network’s depth, achieved through an intricate arrange-
ment of these blocks, ensures high-quality feature extraction and processing, further elaborated in36.

The selection and modification of TL architectures, such as ResNet50V2, ResNet152V2, Xception, and 
InceptionResNetV2, for brain tumor classification aimed to maximize accuracy while reducing computational 
complexity. These architectures were chosen for their effectiveness in image classification and ability to 
capture detailed features. They were adapted to the brain tumor dataset by fine-tuning pre-trained weights and 
incorporating specific refinements like image augmentation and tailored layers. Rigorous experimentation, 
including cross-validation and evaluation metrics such as precision, recall, F1-score, and accuracy, validated 
these modifications. This ensured that the TL architectures effectively captured the nuances of the brain tumor 
dataset and maintained robust performance.

In our study, we chose Xception and ResNet for their proven success in image classification tasks, particularly 
in medical imaging, where capturing intricate features is crucial. The Xception architecture, known for its 
depthwise separable convolution layers and residual connections, was selected due to its efficient representation 
learning and superior performance on image datasets. Its streamlined design enables effective feature extraction, 
making it particularly suitable for complex tasks like brain tumor classification. Similarly, ResNet, including 
its variants ResNet50V2 and ResNet152V2, was chosen for its pioneering use of residual blocks and skip 
connections, which facilitate the training of deeper networks by mitigating the vanishing gradient problem. 
The ResNet50V2 and ResNet152V2 models were selected for their ability to capture detailed features from MRI 
images and their enhanced performance due to improved residual connection structures. These models were 
adapted for brain tumor classification by fine-tuning pre-trained weights, incorporating image augmentation, 
and adjusting the architectures to better fit the specific characteristics of the dataset. This careful selection and 
modification allowed us to achieve high accuracy while reducing computational complexity, ensuring robust and 
efficient performance in brain tumor classification.

Adopted optimization methods
In our experiment, we use four reconstructed and fine-tuned TL models along with two ensemble approaches: 
Genetic Algorithm-based Weighted Optimization (GAWO) and Grid Search-based Weighted Optimization 
(GSWO). These methods enhance prediction accuracy in classifying brain tumors. GAWO leverages natural 
selection principles, offering a powerful mechanism for exploring complex solution spaces and iteratively 
adapting model weights. In contrast, GSWO performs an exhaustive search to identify the most effective 
ensemble combinations. The complementary strengths of these methods drove their selection. GAWO navigates 
high-dimensional parameter spaces efficiently, meeting the intricate optimization needs of ensemble models. 
GSWO ensures thorough exploration of potential configurations, increasing the likelihood of finding optimal 
solutions. By adopting GAWO and GSWO within our ensemble model optimization framework, we aimed to 
leverage their respective strengths to enhance the accuracy and robustness of our classification system, ultimately 
contributing to better diagnostic outcomes in the realm of brain tumor classification.

GAWO technique
The GAWO illustrated in Algorithm 1 for constructing an optimal ensemble model for categorizing brain tumors. 
The objective is to determine the most effective weights for combining predictions from a given set of models to 
achieve superior accuracy on a designated test dataset. The algorithm initializes with essential parameters, such 
as the list of models, test dataset, and algorithm-specific settings. Subsequently, it employs a genetic algorithm to 
iteratively search for the optimal weights by evaluating their impact on ensemble accuracy. The fitness function 
calculates accuracy based on the weighted average of individual model predictions, emphasizing minimizing 
negative accuracy in the genetic algorithm. The best weights and their corresponding accuracy are obtained 
from the genetic algorithm. Finally, the algorithm prints crucial results, including the optimal weights, the best 
solution’s accuracy, and the ensemble predictions’ accuracy. This approach provides a systematic and automated 
means of enhancing model performance through weight optimization in ensemble learning scenarios. The 
weights found using this algorithm are 0.92, 0.87, 0.85, 0.86 for the xception, resnet50v2, resnet152v2 and 
inceptionresnetv2 respectively.
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Algorithm 1.  Get Best Weights and Performance Using Genetic Algorithm

The fitness function utilized in the genetic algorithm (GA) plays a pivotal role in evaluating potential 
solutions to the weight optimization problem. Specifically, the fitness function assesses the quality of candidate 
solutions by quantifying their performance in terms of accuracy on a designated test dataset. For our brain 
tumor classification task, the fitness function calculates the accuracy of ensemble predictions generated 
by combining the outputs of individual models weighted according to the candidate solution. The objective 
is to maximize accuracy, thereby identifying the most effective combination of model weights for achieving 
superior classification performance. Importantly, the fitness function is designed to assign higher fitness scores 
to solutions that yield higher ensemble accuracy, incentivizing the GA to converge towards optimal solutions 
over successive generations.

GSWO technique
The GSWO illustrated in Algorithm  2 for constructing an optimal ensemble model for categorizing brain 
tumors. The GSWO approach outlines determining optimal weights to construct an ensemble of models with 
enriched accuracy on a given test dataset. The algorithm takes as input the list of models (modelList), the test 
dataset (testData), true labels for the test dataset (testLabels), a name parameter (name), and the number of 
folds for cross-validation (fold). It initializes variables, including the number of models (numModels) and 
a list of predictions from each model on the test dataset (predictionsList). The algorithm iterates through a 
grid of weights (weightGrid) generated using linspace and evaluates different weight combinations. For each 
combination, it calculates ensemble predictions, computes the accuracy of the ensemble, and updates the best 
weights and accuracy if a higher accuracy is achieved. The final results, including the best weights and accuracy, 
are printed. This Grid Search-based strategy systematically explores weight combinations to identify the optimal 
ensemble configuration, offering a straightforward yet effective means of enhancing model performance. The 
weights found using this algorithm are 0.97, 0.94, 0.91, 0.92 for the xception, resnet50v2, resnet152v2 and 
inceptionresnetv2 respectively.
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Algorithm 2.  Get Best Weights and Performance Using Grid Search

While GAs were initially chosen for weight optimization due to their efficiency in exploring complex solution 
spaces, further experimentation revealed that grid search-based optimization outperformed GAs in terms of 
both performance and computational time. Grid search systematically evaluates a predefined grid of weight 
combinations, offering simplicity and transparency in exploring the solution space. This approach proved to 
be highly effective in identifying optimal ensemble configurations while requiring less computational time 
compared to GAs. Additionally, grid search exhibited robust performance across different optimization tasks 
and settings, making it a favorable choice for weight optimization in our ensemble learning framework. Thus, 
despite the initial consideration of GAs, the superior performance and computational efficiency of grid search 
ultimately led to its adoption as the preferred optimization technique for weight optimization in our study.

Our hyperparameter tuning process was designed to achieve optimal model performance through a 
systematic and iterative approach. For our model, we used global average pooling, dense layers, a dropout rate 
of 0.5, and the softmax activation function. The Adam optimizer was chosen with a learning rate of 1e−4, sparse 
categorical cross-entropy for the loss function, and a batch size of 32. Hyperparameter tuning was conducted 
on a predefined set of values to determine the optimal configuration based on validation dataset performance. 
Additionally, the GAWO and GSWO techniques were applied to fine-tune the weights of the ensemble model, 
further improving its performance.

Results analysis
Our methodology involves refining the TL architecture by fine-tuning and adding extra layers to boost its 
efficiency, where we utilized four distinct TL algorithms and developed two ensemble DL models based on 
optimization techniques. These models were specifically designed to evaluate our approach’s capability in 
detecting brain tumors. To estimate our strategy’s performance, we used various performance metrics. The 
following section will provide an in-depth look at the experimental framework, the criteria used for evaluating 
performance, an analysis of the outcomes, and an extensive review of the results we obtained.

Computational resources
The experiments in this study were conducted on a machine with the following specifications: CPU: Intel Core 
i7-12700K (12 cores, 20 threads, 3.6 GHz base clock), GPU: NVIDIA GeForce RTX 3090 (24 GB VRAM), RAM: 
64 GB DDR4, Storage: 1 TB SSD (NVMe). All models were implemented using Python 3.8 with TensorFlow 
2.x and PyTorch libraries for deep learning tasks on Jupyter Notebook. The training and inference processes 
were performed on the GPU to accelerate model computations, while CPU resources were utilized for data 
preprocessing and evaluation. Runtime statistics were measured in terms of inference time per image, and the 
benchmarks were collected after the models were fully trained. This setup provides an efficient environment for 
conducting large-scale experiments, and the reported inference times are based on this configuration.
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Metrics for evaluating
Our methodology’s effectiveness is rigorously evaluated using a range of metrics. These include accuracy, 
precision, recall, F1-score, the confusion matrix, Matthews correlation coefficient (MCC), Kappa, and the 
Classification Success Index (CSI). Each of these metrics provides a distinct perspective on the model’s ability to 
classify data accurately.

•	 Confusion matrix This matrix format presents the values of True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN). It serves as a foundation for assessing accuracy, precision, recall, and 
the F1-score (refer to Table 2).

•	 Accuracy This statistical measure evaluates the proportion of correctly identified instances in relation to the 
overall dataset. 

	
Accuracy = T P + T N

T P + F P + F N + T N
� (2)

•	 Precision This metric calculates the fraction of correctly predicted positive observations out of all the positive 
predictions made. 

	
P recision = T P

T P + F P
� (3)

•	 Recall Recall, also known as sensitivity, determines the fraction of actual positives that are correctly identified. 

	
Recall = T P

T P + F N
� (4)

•	 F1-score The F1-score is the harmonic mean of precision and recall, providing a balance between these two 
metrics. 

	
F 1score = 2 ∗ (Recall ∗ P recision)

(Recall + P recision) � (5)

•	 Matthews correlation coefficient (MCC) MCC is a reliable statistical rate that evaluates the quality of binary 
classifications. It ranges from -1 (total disagreement) to 1 (perfect agreement). 

	
MCC = (T P T N) − (F P F N)√

(T P + F P )(T P + F N)(T N + F P ) ∗ (T N + F N)
� (6)

•	 Kappa Kappa coefficient indicates the level of consistency between predicted and actual classifications, ac-
counting for random chance. 

	
Kappa = (Po − Pe)

(1 − Pe) � (7)

 Here, P_o is the observed agreement, and P_e is the expected agreement by chance. 

	
Po = (T P + T N)

(T P + T N + F P + F N) � (8)

	
Pe = ((T P + F P ) ∗ (T P + F N) + (T N + F P ) ∗ (T N + F N))

(T P + T N + F P + F N)2 � (9)

•	 Classification success index (CSI) CSI calculates the ratio of accurately classified instances against the total 
number of classifications. 

Actual positive Actual negative

Predicted positive TP FP

Predicted negative FN TN

Table 2.  Confusion matrix.
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CSI = T P

T P + F P + F N
� (10)

•	 Confidence intervals (CI) A CI provides a range of values within which we can be confident that the true per-
formance metric lies, based on the sample test image. The confidence interval gives us an idea of the reliability 
of the metric calculated from the sample. To calculate the confidence interval for accuracy, we can use the 
following equation: 

	 CI = p ± Z · SE

 where 
•	 p = observed accuracy (as a proportion, p = Accuracy

100 )
•	 Z  = Z-score corresponding to the desired confidence level (e.g., Z = 1.96 for 95% confidence)
•	 SE = Standard Error, calculated as: 

	
SE =

√
p(1 − p)

n

 where n is the sample size.
 After calculating the standard error, we can derive the lower and upper bounds of the confidence interval: 

	

Lower Bound = p − Z · SE

Upper Bound = p + Z · SE

 To ensure the confidence interval remains within realistic bounds:
•	 Set the lower bound to a minimum of 0%: 

	 Lower Bound = max(Lower Bound, 0)

•	 Set the upper bound to a maximum of 100%: 

	 Upper Bound = min(Upper Bound, 100)

•	 Paired t-test A paired t-test is a statistical test used to compare the means of two related groups. It is typically 
used when the same subjects are measured under two different conditions or at two different times. The 
paired t-test assesses whether the mean difference between paired observations is significantly different from 
zero. The test statistic for the paired t-test is calculated using the formula: 

	
t = d̄

sd/
√

n

 Where 
•	 d̄ is the mean of the differences between paired observations,
•	 sd is the standard deviation of the differences,
•	 n is the number of pairs.

 The null hypothesis is that the mean difference between the pairs is zero, and the alternative hypothesis is that 
the mean difference is not zero. The test helps determine if there is a statistically significant difference between 
the two conditions.

Evaluation of deep learning models
The performance evaluation of various DL models on brain tumor classification shows significant differences 
across different configurations, with the models tested under two conditions: with synthetic data generation 
(SDG) for data balancing and without it (No-SGD). The evaluation metrics include accuracy, precision, 
recall, F1 score, Kappa, MCC, CSI, confidence intervals, and paired t-test analysis. The results, as presented 
in Table  3 and Figure  5, demonstrate the effectiveness of the proposed models. The GSWO+SDG model 
consistently outperformed all other configurations in every performance metric. This approach achieved the 
highest accuracy of 99.84%, precision of 99.84%, recall of 99.84%, F1 score of 99.84%, Kappa of 99.88%, MCC 
of 99.93%, and CSI of 99.93%. These results highlight the effectiveness of both the GSWO optimization and 
SDG data balancing techniques in improving the model’s ability to classify brain tumor images accurately. The 
model’s high accuracy and balanced performance across all metrics make it the most reliable configuration in 
this study. In comparison, the models without SDG (No-SGD) generally performed at lower levels. For instance, 
the Xception model, without SDG, achieved an accuracy of 99.42%, precision of 99.43%, recall of 99.42%, and F1 
score of 99.43%, showing solid performance but still falling short of the GSWO+SDG configuration. Similarly, 
ResNet50V2 and ResNet152V2, without SDG, recorded accuracies of 98.37% and 98.22%, respectively. These 
results suggest that while these models are highly capable, the addition of SDG for data balancing plays a crucial 
role in enhancing the models’ classification performance. For the models using SDG, there was a noticeable 
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improvement in performance. The ResNet50V2 with SDG achieved an accuracy of 99.48%, precision of 99.48%, 
recall of 99.48%, and F1 score of 99.48%. The Xception model with SDG reached 99.57% accuracy, precision, 
recall, and F1 score. While these models demonstrated strong performance, they were still outperformed by the 
GSWO+SDG approach. GAWO+SDG also performed admirably, with an accuracy of 99.78%, precision, recall, 
and F1 score of 99.78%, and a Kappa score of 99.86%, further demonstrating the effectiveness of data balancing 
and optimization techniques.

The paired t-test results reveal a statistically significant improvement in performance when comparing models 
with and without SDG and optimization techniques. For the GSWO+No-SDG model, the t-statistic is − 2.4370 
with a p value of 0.0506, indicating a borderline significance in the difference between the performance of the 

Fig. 5.  Performance comparison of DL models without and with SDG on brain tumor classification.

 

Data Balancing Model Name Accuracy Precision Recall F1 Score Kappa MCC CSI Confi. Interv. Paired t-test

No-SGD

Xception 99.42 99.43 99.42 99.43 99.42 99.43 99.42 (98.57, 99.99)

t-statistic: −  2.4370, p value: 0.0506

ResNet50V2 98.37 98.41 98.37 98.41 98.37 98.41 98.37 (96.96, 99.78)

ResNet152V2 98.22 98.34 98.22 98.34 98.22 98.34 98.22 (96.74, 99.70)

InceptionResNetV2 98.26 98.37 98.26 98.37 98.26 98.37 98.26 (96.80, 99.72)

GAWO 99.71 99.71 99.71 99.71 99.71 99.71 99.71 (99.11, 99.99)

GSWO 99.76 99.77 99.76 99.77 99.76 99.77 99.76 (99.21, 99.99)

SDG

Xception 99.57 99.57 99.57 99.57 99.46 99.46 99.79 (99.48, 99.78)

t-statistic: −  3.2488, p value: 0.0227

ResNet50V2 99.48 99.48 99.48 99.48 99.22 99.22 99.77 (99.27, 99.69)

ResNet152V2 99.33 99.33 99.33 99.33 98.99 98.99 99.68 (99.09, 99.57)

InceptionResNetV2 99.39 99.39 99.39 99.39 99.09 99.09 99.73 (99.16, 99.62)

GAWO 99.78 99.78 99.78 99.78 99.86 99.86 99.89 (99.78, 99.91)

GSWO 99.84 99.84 99.84 99.84 99.88 99.88 99.93 (99.82, 99.96)

Table 3.  Performance analysis of DL models on brain tumor classification.
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model with and without SDG. Additionally, for the GSWO+SDG configuration, the t-statistic of − 3.2488 and 
p value of 0.0227 show a clear and significant enhancement in performance with the combination of SDG and 
GSWO. These results highlight that while GSWO+No-SDG shows improvement, the addition of SDG provides 
a more statistically significant boost in the model’s classification accuracy and other performance metrics. In 
summary, the GSWO+SDG configuration stood out as the top performer across all metrics, achieving the 
highest classification accuracy and balanced performance. The inclusion of SDG for data balancing played a 
significant role in improving model performance, as seen with all models that employed it. The GSWO+SDG 
model not only delivered superior results in terms of accuracy but also in precision, recall, and other important 
performance metrics, making it the most robust and effective approach for brain tumor classification.

The comparative confusion matrices of the evaluated DL models under two configurations: No-SDG 
and SDG. In Fig. 6, the models evaluated without synthetic data generation (No-SDG) include Xception, 
ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO. These confusion matrices reveal that 
while models like GAWO and GSWO exhibit better performance with fewer misclassifications, models such 
as Xception and ResNet show higher rates of false positives and false negatives. In Fig. 7, when SDG is applied, 
significant improvements in model performance are observed. Xception, ResNet50V2, and ResNet152V2, 
GSWO show more concentrated true positives along the diagonal, indicating improved accuracy. However, 
the standout performer is GSWO with SDG, which demonstrates superior classification with significantly 
fewer misclassifications compared to other models. The confusion matrix for GSWO+SDG exhibits minimal 
off-diagonal values, indicating almost perfect classification across all classes. This indicates that our proposed 
SDG+GSWO approach outperforms the other models by achieving a higher level of accuracy and significantly 
reducing misclassifications. Overall, the results from the confusion matrices highlight that the combination of 

Fig. 6.  subfigures (a–f) represent confusion matrices of six different deep learning models. Figure 6 (a–f)
shows classification performance without Synthetic Data Generation (SDG), Comparative confusion matrix of 
evaluated models using NO-SDG.
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SDG and GSWO provides the most efficient and accurate model for brain tumor classification, outperforming 
all other models in both true positive predictions and the reduction of misclassifications.

The GSWO model outperforms all other TL and GAWO models, boasting the lowest error rate and high 
true positive and true negative rates while minimizing false positives and negatives. By systematically exploring 
weight combinations, GSWO optimally tunes the ensemble, leveraging the strengths of individual models. This 
exhaustive weight search enhances model synergy, resulting in a finely tuned ensemble that excels in accurately 
classifying brain tumors and achieving superior performance scores.

The classification report analysis (Table 4) compares the performance of various deep learning models for 
brain tumor classification under two data configurations: No-SDG and SDG. The table includes precision, 
recall, and F1-score for the three tumor classes: pituitary, meningioma, and glioma. Under No-SDG, models 
such as GSWO and GAWO consistently achieve high scores across all classes. GSWO demonstrates exceptional 
performance with a precision, recall, and F1-score of 99.80 for pituitary and glioma, and 99.60 for meningioma. 
Other models, like Xception and ResNet50V2, also perform well but show slightly lower values in recall and F1-
score, particularly for meningioma. This indicates that while these models are strong, GSWO is the most reliable 
across all tumor types in the No-SDG configuration. When SDG is applied, there is a noticeable improvement 
in performance for most models, particularly GSWO, which further enhances its precision, recall, and F1-score 
to 99.93, 99.80, and 99.87 for pituitary, meningioma, and glioma, respectively. GAWO also improves, with 
scores reaching 99.87, 99.76, and 99.80, demonstrating its robustness with SDG. Xception, ResNet50V2, and 

Fig. 7.  (a–f) shows results with SDG applied. Each matrix illustrates model accuracy in classifying pituitary, 
meningioma, and glioma tumors, where higher diagonal values indicate better performance. Comparative 
confusion matrix of evaluated models using SDG.
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ResNet152V2 show consistent improvements in all metrics, but still lag behind GSWO and GAWO, especially in 
recall and F1-score for meningioma. Overall, the GSWO with SDG model emerges as the best-performing model 
across all tumor types, offering superior precision, recall, and accuracy scores, demonstrating the effectiveness of 
synthetic data generation in improving model performance for brain tumor classification.

Ablation study of our experiment To assess the impact of various components on the performance of our 
proposed ensemble DL model for brain tumor classification, we conducted an ablation study focusing on 
model fine-tuning, GAWO, GSWO, and the integration of SDG. First, we evaluated the fine-tuned TL models 
individually, achieving an accuracy of 99.42%, establishing a strong baseline for brain tumor classification. 
Incorporating GAWO into the ensemble framework enhanced performance to 99.71%, demonstrating the 
effectiveness of weight optimization in improving the ensemble model’s learning and generalization capabilities. 
Next, the application of GSWO further refined the model, yielding an accuracy of 99.76%. GSWO systematically 
optimized hyperparameters and assigned weights to TL models, resulting in improved balance and precision. 
The inclusion of SDG brought notable advancements. When SDG was combined with Xception, the performance 
improved to 99.57%, highlighting its ability to address data imbalance issues. Similarly, combining SDG with 
GAWO achieved an accuracy of 99.78%, surpassing the prior GAWO results. Finally, the integration of SDG 
with GSWO achieved the highest accuracy of 99.84%, with enhanced precision, recall, and F1 scores across all 
tumor classes. The ablation study underscores the incremental benefits of each component. While GAWO and 
GSWO significantly contribute to optimization, the addition of SDG amplifies the robustness and generalization 
of the model, particularly in handling class imbalances. These findings validate the synergistic effect of SDG and 
GSWO, affirming the efficacy of our proposed ensemble DL framework in brain tumor classification.

Data Balancing Model Class Precision Recall F1-Score

No-SGD

Xception

pituitary 99.32 99.66 99.39

meningioma 99.32 98.44 98.78

glioma 99.80 99.81 99.80

ResNet50V2

pituitary 99.04 98.50 98.76

meningioma 97.63 96.55 97.06

glioma 97.99 99.37 98.66

ResNet152V2

pituitary 98.72 97.71 98.18

meningioma 95.43 97.95 96.59

glioma 99.80 99.37 99.58

InceptionResNetV2

pituitary 98.65 98.13 98.47

meningioma 96.05 98.04 96.86

glioma 99.58 98.52 98.95

GAWO

pituitary 99.80 99.80 99.80

meningioma 99.40 99.40 99.40

glioma 99.80 99.81 99.80

GSWO

pituitary 99.80 99.80 99.80

meningioma 99.40 99.60 99.60

glioma 99.80 99.81 99.80

SDG

Xception

pituitary 99.46 99.66 99.56

meningioma 99.66 99.46 99.56

glioma 99.60 99.60 99.60

ResNet50V2

pituitary 99.26 99.60 99.43

meningioma 99.59 99.26 99.43

glioma 99.60 99.60 99.60

ResNet152V2

pituitary 99.13 99.39 99.26

meningioma 99.46 99.12 99.29

glioma 99.39 99.46 99.43

InceptionResNetV2

pituitary 99.26 99.46 99.36

meningioma 99.46 99.19 99.32

glioma 99.46 99.53 99.49

GAWO

pituitary 99.87 99.73 99.80

meningioma 99.73 99.80 99.76

glioma 99.73 99.80 99.76

GSWO

pituitary 99.93 99.80 99.87

meningioma 99.80 99.87 99.83

glioma 99.80 99.87 99.83

Table 4.  Classification report analysis of DL models on brain tumor classification.
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Performance test measurement Fig. 8 presents an analysis of test performance showcasing our efficient 
ensemble (SDG+GSWO) model in brain tumor classification tasks. By visualizing the performance for several 
sample images, we demonstrate the model’s effectiveness, achieving perfect predictions for all samples.

K-fold CV results
K-fold cross-validation is a technique used to assess the generalization ability of a model by splitting the dataset 
into K subsets and iteratively training and testing the model on different combinations of these subsets. This 
process helps ensure that the model performs consistently and is not overfitting to a particular subset of the data. 
In our experiment, we used a 5-fold cross-validation strategy, where each fold comprised an 80% training set and 
a 20% testing set. To assess the robustness of our model against overfitting and its generalizability across different 
datasets, we performed K-Fold Cross Validation (CV) with K = 5 on both balanced and imbalanced datasets. This 
procedure allowed us to validate the model’s performance on multiple subsets of the data, ensuring that it is not 
overly sensitive to the specific distribution of the data in any one training or validation set. Table 5 presents the 
results, demonstrating consistent performance across all folds, indicating that the model is not overfitting and 
can generalize well. For example, when using the No-SDG dataset, the average accuracy of the GSWO model was 
99.76%, with accuracy scores ranging from 99.72% to 99.80% across the different folds. Similarly, when using the 

Data balancing Model

K = 5 FOLD CV

F1 F2 F3 F4 F5 AVG (accuracy)

No-SDG

Xception 99.43 99.45 99.40 99.42 99.41 99.42

ResNet50V2 98.33 98.43 98.35 98.36 98.37 98.37

ResNet152V2 98.20 98.25 98.18 98.19 98.28 98.22

InceptionResNetV2 98.24 98.27 98.25 98.26 98.28 98.26

GAWO 99.67 99.73 99.68 99.71 99.75 99.71

GSWO 99.72 99.80 99.74 99.76 99.77 99.76

SDG

Xception 99.55 99.58 99.56 99.57 99.59 99.57

ResNet50V2 99.45 99.50 99.51 99.47 99.49 99.48

ResNet152V2 99.31 99.35 99.32 99.34 99.31 99.33

InceptionResNetV2 99.36 99.40 99.38 99.39 99.41 99.39

GAWO 99.75 99.79 99.77 99.78 99.80 99.78

GSWO 99.83 99.85 99.82 99.84 99.86 99.84

Table 5.  K = 5 fold cross validation accuracy results.

 

Fig. 8.  Performance measurements of our proposed ensemble (SDG+GSWO) model.
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SDG dataset, the GSWO model achieved an average accuracy of 99.84%, with accuracy scores between 99.82% 
and 99.86%, further confirming the model’s stability. The inclusion of additional results from cross-validation 
datasets also highlights the generalizability of the model across different splits of the data. The relatively narrow 
range of the accuracy scores across the different folds for both the No-SDG and SDG datasets indicates that the 
model performs consistently well, regardless of the specific data subset used for training or validation. These 
findings reinforce the effectiveness of our approach and demonstrate that the model is not only accurate but also 
robust against overfitting, ensuring reliable performance in real-world applications. Furthermore, the results 
from the SDG dataset, which consistently outperforms the No-SDG dataset, affirm that the use of synthetic data 
generation enhances the model’s ability to generalize, providing more diverse training examples and improving 
overall performance. This comprehensive validation through K-Fold CV ensures that our model is both accurate 
and robust, capable of delivering reliable predictions across a variety of conditions and independent datasets.

Grad-CAM visualization
Gradient-weighted Class Activation Mapping (Grad-CAM) is a visualization technique that highlights the most 
critical areas in an input image that influence a model’s prediction for a specific class of interest. The process 
begins by passing the input image through the deep neural network to obtain class prediction scores (forward 
pass). Next, backpropagation is used to compute the gradients of the target class score concerning the feature 
maps of the model’s last convolutional layer. These gradients reflect the importance of each feature map, allowing 
the model to focus on relevant areas of the image that contribute to the classification decision.

In this study, we applied Grad-CAM to several test images and real-time brain tumor images to visualize 
and classify tumor types. Our goal was to identify and highlight the relevant areas of the image that the model 
focused on for the tumor classification task. We utilized our ensemble model (SDG+GSWO), based on multiple 
TL architectures, and selected the final convolutional layer for Grad-CAM implementation. The input images 
were resized to fit the model’s specifications, and gradients for the target tumor class were computed to weight 
the feature maps generated from the last convolutional layer. To ensure that only positive contributions to the 
class score were considered, we applied a ReLU function to the weighted feature maps. The resulting heatmap was 
then overlaid on the original image to visualize which parts of the brain tumor contributed most significantly to 
the classification decision. We fine-tuned the transparency of the heatmap to enhance the visibility of the tumor 
class while minimizing the inclusion of healthy tissue areas. This approach provides a clear and interpretable 
view of how our model detects and classifies different tumor types. The resulting visualizations not only 
demonstrate the model’s accuracy but also build trust in its predictions by visually linking them to the specific 
tumor classifications in the images. Fig. 9 illustrates the Grad-CAM visualizations, highlighting the model’s 
focus on tumor classes of interest and enhancing the explainability of its decisions.

Evaluation of computational complexity
To assess the computational efficiency of our proposed models, we evaluated their inference times with and 
without the application of SDG (Synthetic Data Generation). Table 6 displays the effect of SDG on inference 
times. On average, the models with SDG exhibited slightly higher inference times compared to their counterparts 
without SDG. For instance, Xception took 18 s for inference without SDG, and 20 seconds with SDG, reflecting 
a marginal increase in computational demand. Similarly, models like ResNet152V2 and InceptionResNetV2 
showed a noticeable rise in inference times with SDG, increasing from 20 to 23 s, and 21–24 s, respectively. 
However, GSWO demonstrated a smaller increase in inference time, going from 15 to 17 s, indicating its 
relatively lower computational complexity. These results provide a clear trade-off between model performance 
and computational cost. While SDG leads to marginally higher inference times, the improvements in model 
accuracy, justify the additional computational effort for most use cases. The slight increase in inference times 

Fig. 9.  Visualization of Grad-CAM for our proposed model in brain tumor classification.
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with SDG suggests that the proposed models remain computationally feasible for real-world applications while 
providing superior classification performance.

Discussion
The comparative analysis, presented in Table 7, highlights the performance of our proposed method against 
several existing state-of-the-art (SOA) approaches for brain tumor categorization using the Brain CE-MRI dataset. 
Our method, which integrates SDG and GSWO, achieves a remarkable accuracy of 99.84%, outperforming all 
the referenced works. Notably, methods like EfficientNetB3 used by Islam et al.19 (99.69%) and Sadad et al.11 
utilizing NASNet (99.60%) also demonstrate strong performance. However, our approach surpasses these models 
by effectively addressing data imbalances and optimizing model weights through advanced SDG and GSWO 
techniques. Ensemble approaches, such as the one by Nassar et al.15 and the Majority Voting method24, achieve 
accuracies of 99.31%, which is slightly lower than our proposal. While ensemble techniques inherently combine 
the strengths of multiple models, their computational complexity and inference time often pose challenges, 
particularly in real-time applications. Moreover, traditional CNN-based approaches like those of Ayadi et 
al.27 (94.74%) and Saeedi et al.25 (96.47%) yield comparatively lower accuracies, demonstrating the limitations 
of simpler architectures in handling the complex spatial patterns present in brain tumor images. Similarly, 
optimized CNNs and NASNet-based methods, despite showing competitive results, fail to match the robustness 
and generalization capabilities achieved by our ensemble (SDG+GSWO) framework. The incorporation of SDG 
not only enriches the training data but also addresses class imbalance, a common issue in medical imaging 
datasets. GSWO further enhances model performance by systematically fine-tuning weights to minimize 
loss, ensuring both high accuracy and reduced overfitting. Our proposed framework’s superiority in accuracy 
and generalization is complemented by its computational efficiency. By leveraging advanced techniques, our 
approach strikes a balance between performance and complexity, making it a strong candidate for real-world 
applications in medical imaging.

The novelty of our work lies in the integration of advanced SDG techniques and a tailored GSWO framework 
to enhance brain tumor classification using CE-MRI images. Our approach introduces a reconfigure-and-
fine-tuning methodology with enhanced TL architectures, incorporating advanced image augmentation 
and standardization techniques to mitigate overfitting and streamline the classification process. The GSWO 
framework optimizes ensemble model weights, ensuring balanced contributions from each model, and thereby 
improving generalization and accuracy. Additionally, SDG addresses data imbalance by generating synthetic 

SI. No. Authors Model Dataset No. of images Accuracy (In %)

1 Nassar et al.15 Ensemble Brain CE-MRI28 3064 99.31

2 Agarwal et al.16 ODTWCHE+Inception V3 Brain CE-MRI28 3064 98.89

3 Dahan et al.18 ResNet50+MPA Brain CE-MRI28 3064 98.72

4 Islam et al.19 EfficientNetB3 Brain CE-MRI28 3064 99.69

5 Talukder et al.17 ResNet50V2 Brain CE-MRI28 3064 99.68

6 Saeedi et al.25 2D CNN Brain CE-MRI28 3064 96.47

7 Ayadi et al.27 CNN Brain CE-MRI28 3064 94.74

8 Sadad et al.11 NASNet Brain CE-MRI28 3064 99.60

9 Asif et al.23 Xception Brain CE-MRI28 3064 99.67

10 Nassar et al.24 Majority Voting Brain CE-MRI28 3064 99.31

11 Tummala et al.20 Ensemble ViT Brain CE-MRI28 3064 98.70

12 Abd et al.21 BTC-fCNN Brain CE-MRI28 3064 98.86

13 Maruf et al.22 EfficientNetB3 Brain CE-MRI28 3064 98.98

14 Ait et al.26 Optimized CNN Brain CE-MRI28 3064 98.70

15 Our Proposal SDG+GSWO Brain CE-MRI28 3064 99.84

Table 7.  The comparison analysis of categorizing brain tumors on Figshare CE-MRI Image Dataset.

 

SI. No. Proposed model

No-SDG SDG

Inference time (in sec) Inference time (in sec)

1 Xception 18 20

2 ResNet50V2 16 19

3 ResNet152V2 20 23

4 InceptionResNetV2 21 24

5 GAWO 17 21

6 GSWO 15 17

Table 6.  Computational analysis of deep learning models.
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samples, enhancing the representation of underrepresented classes, and enabling robust training. Achieving 
a state-of-the-art accuracy of 99.84%, our framework surpasses existing methodologies, offering a scalable 
and effective solution for medical imaging classification with significant implications for improving diagnostic 
precision and efficiency.

Our ensemble (SDG+GSWO) model demonstrates excellent scalability for real-time applications due to its 
efficient ensemble optimization approach. By leveraging the GSWO method, the model dynamically adjusts 
weights across multiple TL architectures, ensuring robust and accurate classification of brain tumors across all 
classes. This optimization enables the model to maintain high accuracy when applied to real-time test scenarios 
(Fig. 8). Additionally, the streamlined nature of the GSWO-based ensemble allows for faster inference times. As 
demonstrated in our experiments (Table 6), the model achieves prediction speeds of 17 seconds, outperforming 
other architectures such as Xception and ResNet152V2. This makes it highly suitable for real-time detection 
tasks, where timely and precise diagnosis is critical. The model’s adaptability, combined with its predictive 
reliability across all classes, ensures scalability and effectiveness, making it a practical solution for real-time 
medical applications, such as in hospitals or diagnostic centers, where quick and accurate decision-making is 
essential.

Potential impact in healthcare and society
The core objective of our study is the development of an advanced deep-learning model dedicated to accurately 
classifying brain tumors, utilizing the strengths of deep learning to discern various tumor types with high 
precision. The potential impacts of this research are extensive, particularly in neuro-oncology, encompassing 
several clinically significant applications. Firstly, it offers an improved diagnostic tool for radiologists and 
medical professionals, aiding in the accurate diagnosis of brain tumors through techniques such as MRI scans. 
By providing reliable tumor categorization, the model reduces diagnostic errors and promotes early detection, 
thereby improving patient treatment outcomes. Additionally, the precise identification of tumor types facilitates 
the formulation of tailored treatment plans, ensuring patients receive targeted therapies that are more effective, 
thereby enhancing overall healthcare quality. Moreover, the model serves as a critical support tool in clinical 
decision-making processes, furnishing healthcare professionals with accurate information for better patient 
management and delivering more personalized patient care. Furthermore, by accurately classifying brain tumors 
and identifying specific genetic markers or molecular profiles, the model significantly contributes to brain tumor 
research, aiding in understanding tumor biology, identifying therapeutic targets, and advancing the development 
of optimized treatments and medications. In summary, our research offers substantial benefits in enhancing brain 
tumor diagnosis and treatment, supporting clinical decision-making, aiding surgical procedures, and advancing 
medical research, with the potential to positively influence both patient care and societal health outcomes.

Conclusion
This research presents an innovative DL framework for the accurate classification of brain tumors using CE-
MRI images. The proposed methodology integrates advanced preprocessing techniques, SDG to address data 
imbalances, and fine-tuned ensemble strategy leveraging TL architectures and weights optimization. By utilizing 
four state-of-the-art TL models-Xception, ResNet50V2, ResNet152V2, and InceptionResNetV2-alongside 
GSWO and GAWO, our framework achieves exceptional performance on the Figshare CE-MRI brain tumor 
dataset.

The evaluation encompassed multiple performance metrics, including accuracy, precision, recall, F1 score, 
confusion matrix, MCC, Kappa, and CSI, underscoring the robustness of our approach. Individual models such 
as Xception and ResNet50V2 achieved accuracies of 99.57% and 99.48%, respectively, while ensemble techniques 
demonstrated further improvements, with GAWO achieving 99.78% accuracy and GSWO excelling at 99.84%. 
The integration of SDG significantly enhanced the representation of underrepresented classes, improving 
training robustness and contributing to superior overall performance (99.71–99.84%). Thus our Ensemble 
(SDG+GSWO) model offers promising clinical applications for precise and reliable brain tumor classification, 
aiding radiologists in early diagnosis and treatment planning by improving accuracy in identifying complex 
tumor characteristics.

While the proposed model demonstrates high accuracy and reliability, there are opportunities for 
improvement by exploring more advanced DL techniques such as attention-based models, transformer-based 
models and deep feature fusion techniques could help perfect way of classification and segmentation tasks of 
brain tumors.

Future work will focus on addressing these limitations to get better performance models by incorporating 
more sophisticated attention-based models, transformer-based models and deep feature fusion techniques from 
recently available brain tumor datasets.

Data availability
The selected datasets are sourced from free and open-access sources such as Figshare MRI Brain tumor Dataset: ​
h​t​t​p​s​:​​​/​​/​f​i​g​s​h​a​r​​e​.​c​o​​m​/​a​r​​t​i​c​l​​e​​s​/​d​a​t​a​​s​​e​t​/​b​​r​​a​i​n​_​​t​u​​m​o​r​_​d​a​t​​a​s​e​t​/​1​5​1​2​4​2​7.

Code availability
The source code for this study is publicly accessible at the following repository: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​a​l​a​m​i​n​t​a​l​u​k​
d​e​r​c​s​e​j​n​u​/​B​T​C​-​D​L​​​​​.​​
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