www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Identification of exosome-related
genes in NSCLC via integrated
bioinformatics and machine
learning analysis

Zhenjie Sun, Tianyu Du, Guosheng Yang, Yinghuan Sun & Xuyang Xiao™

Exosomes are crucial in the development of non-small cell lung cancer (NSCLC), yet exosome-
associated genes in NSCLC remain insufficiently explored. The present study identified 59 exosome-
associated differentially expressed genes (EA-DEGs) from the Gene Expression Omnibus (GEO) and
GeneCards databases. Functional analysis indicated the involvement of the EA-DEGs in NSCLC-related
pathways, including the cell cycle, DNA replication, and the immune response. Logistic regression,
Least Absolute Shrinkage and Selection Operator (LASSO), support vector machine-recursive feature
elimination (SVM-RFE), and random forest (RF) models were used to identify four key biomarkers,
namely, PAICS, SLC2A1, A2M, and GPM6A, with diagnostic potential. Gene expression, pathological
staging, and prognosis were analyzed in the lung adenocarcinoma (LUAD) subtype. Potential drugs
targeting these biomarkers were identified, and an RNA-binding protein (RBP) and transcription factor
(TF) regulatory network was constructed. Single-sample Gene Set Enrichment Analysis (ssGSEA)
analysis highlighted the involvement of changes in the immune microenvironment. A diagnostic model
providing new insight into the molecular mechanisms underlying NSCLC is proposed. However, further
experimental verification is required to assess its practical value for NSCLC and other lung cancer
subtypes before clinical application.
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NSCLC Non-small cell lung cancer

EA-DEGs Exosome-associated differentially expressed genes
GEO Gene Expression Omnibus

LASSO Least absolute shrinkage and selection operator
SVM-RFE  Support vector machine recursive feature elimination
RF Random Forest

LUAD Lung adenocarcinoma

RBPs RNA-binding proteins

TFs Transcription factors

ssGSEA Single-sample gene set enrichment analysis

TME Tumor immune microenvironment

COPD Chronic obstructive pulmonary disease

PCA Principal Component Analysis

DEGs Differentially expressed genes

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
GSEA Gene Set Enrichment Analysis

AUC Area under the curve

DGIDB Drug-gene interaction database

PDB Protein Data Bank

qRT-PCR Quantitative real-time polymerase chain reaction
BP Biological process
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CcC Cellular component
MF Molecular function
PAH Polycyclic aromatic hydrocarbon
LD-CT Low-dose computed tomography

Lung cancer remains the most prevalent malignancy worldwide, including in China, and is the leading cause of
cancer-related mortality'. The annual death toll from lung cancer exceeds that of colorectal, breast, and prostate
cancers combined. Despite an overall decline in cancer incidence since 2006, lung cancer continues to account
for a substantial proportion of cancer-related deaths, largely due to late-stage diagnosis and limited treatment
options®. Non-small cell lung cancer (NSCLC) constitutes approximately 85% of all lung cancer cases, with
lung adenocarcinoma (LUAD) being the most common histological subtype. Evidence shows the presence of
significant transcriptomic alterations and disruptions in cellular regulatory networks in NSCLC compared with
normal lung tissues, underscoring the importance of identifying key genetic drivers and prognostic biomarkers
for improved clinical outcomes’.

The early detection of NSCLC remains a major clinical challenge. Conventional diagnostic methods,
such as X-rays, computed tomography (CT), positron emission tomography (PET), and tissue biopsies, often
fail to detect lung cancer at an early stage, primarily due to inadequacies of the screening programs and the
asymptomatic nature of early-stage disease?. As a result, many patients are diagnosed when the disease is already
advanced when treatment options are limited and prognosis is poor. This highlights the urgent need for the
discovery of novel biomarkers that could facilitate early detection, particularly in high-risk populations, such as
smokers and individuals exposed to occupational carcinogens®. The identification of reliable biomarkers would
not only improve early diagnosis but also aid personalized treatment approaches, thereby enhancing patient
survival and quality of life.

The potential of using exosomes in cancer diagnosis and therapy has been recognized in recent years.
Exosomes are small membrane-bound vesicles, typically between 30 and 150 nm in diameter, that are released
into the extracellular environment by various cell types, including stem cells, immune cells, and cancer cells®”.
These vesicles play a crucial role in intercellular communication through their transfer of biologically active
molecules, such as proteins, lipids, and nucleic acids, between cells. Notably, exosomes contribute to cancer
progression by promoting angiogenesis, immune evasion, and metastasis, indicating their relevance for both
tumor biology and potential clinical applications®. Their ability to shuttle molecular cargo between cells
enables their modulation of the tumor microenvironment, influencing key processes such as immune response
suppression and drug resistance.

Beyond oncology, exosomes have been implicated in various physiological and pathological conditions,
including chronic obstructive pulmonary disease (COPD), neurodegenerative disorders, and regenerative
medicine. Studies have demonstrated a variety of potential therapeutic applications, such as delivering bioactive
molecules to damaged tissues, promoting wound healing, and even supporting hair regeneration in alopecia
treatment®!!. Given their normal presence in body fluids, exosomes offer a minimally invasive approach to
disease monitoring and biomarker discovery. In the context of cancer, tumor-derived exosomes carry molecular
signatures reflective of the parental tumor, making them valuable candidates for liquid biopsy-based diagnostics'2.

Recent research on the tumor microenvironment and immune modulation has further underscored the
significance of exosomes in cancer research. Tumor-derived exosomes have been shown to alter the immune
landscape by their transportation of immunosuppressive molecules, facilitating tumor progression and
metastasis'>. Consequently, exosome-based immunotherapies are being explored as potential strategies to
counteract these tumor-supportive mechanisms. Moreover, as exosomes can carry tumor-specific biomarkers
that can be detected in liquid biopsies, they hold great promise for early cancer detection and real-time
monitoring of disease progression!*.

Despite the recognized involvement of exosomes in lung cancer progression, research on their specific
molecular contributions remains limited. The present study aimed to identify key genes associated with both
exosomes and NSCLC, to elucidate the molecular mechanisms through which exosomes influence lung cancer
development. It is hoped that the clarification of these interactions will provide novel insights that may aid in the
development of targeted therapeutic interventions and improve prognosis prediction in NSCLC.

Materials and methods

Data sources

Gene expression profiles of NSCLC and normal tissues were retrieved from the Gene Expression Omnibus
(GEO) database® (https://www.ncbi.nlm.nih.gov/geo/). The datasetutilized were generated using different
microarray platforms, ensuring a comprehensive analysis of gene expression profiles obtained via various
analytical procedures. Specifically, the GSE116959 dataset was based on the Agilent-039494 SurePrint G3
Human GE v2 8x60 K Microarray 039381 (GPL17077) and included 68 samples, comprising 57 NSCLC
samples and 11 peritumoral samples of normal tissue (Table S1). The GSE136043 dataset, generated using the
Agilent-026652 Whole Human Genome Microarray 4 x44 K v2 (GPL13497), consisted of five paired samples
of fresh lung cancer and adjacent normal tissues (Table S2). GSE18842, processed on the Affymetrix Human
Genome U133 Plus 2.0 Array (GPL570), contained 91 samples, including 46 tumor samples and 45 normal
controls, the majority of which were paired except for three unpaired samples (Table S3). Meanwhile, GSE7670,
based on the Affymetrix Human Genome U133A Array (GPL96), comprised 33 matched pairs of NSCLC and
normal tissue samples (Table S4), along with corresponding clinical data, including age, sex, disease stage,
subtype, and survival outcomes. Additional data on clinical factors and gene expression from patients with lung
adenocarcinoma were obtained from The Cancer Genome Atlas database'® (Table S5), which included a total of
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557 patients. Genes related to exosomes were sourced from the GeneCards database!” (https://www.genecards.o
rg/) and literature searches; specific details are provided in Table S6.

Identification of EA-DEGs

Initially, the raw GEO microarray data (not log2-transformed) were normalized using the limma package
(version 3.62.1) in R (version 4.4.2)!3%. The four GEO datasets were then merged, averaging the values of
genes with multiple entries and retaining only a single representative row, and removing data with missing
values. Batch effects were then eliminated using the empirical Bayesian method, which adjusts gene expression
data by computing the batch-specific mean and variance for each gene, ensuring a similar distribution across
different batches. This adjustment was performed using the Combat function from the R sva package (version
3.54.0)%. Visualization of the processed data was performed with the ggplot2 package (version 3.5.1)%!. Principal
component analysis (PCA) was conducted to verify the integrity of the resulting expression matrix; detailed
information is provided in Table S7. Following this, differential expression was examined in the consolidated
gene set, using the threshold criteria of logFC=1 (equivalent to a 2-fold change) and adj.P.Val =0.05 to identify
differentially expressed genes (DEGs) between NSCLC and normal tissues. The results were displayed using a
volcano plot, and a heatmap of the top 50 DEGs was created using the pheatmap package (version 1.0.12) in R%2.
Finally, the DEGs were cross-referenced with exosome-associated genes previously compiled, using the ggvenn
package (version 0.1.10) to identify exosome-associated differentially expressed genes (EA-DEGs).

Functional enrichment analyses

The functions of the EA-DEGs were investigated using Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). These analyses were performed using
the clusterProfiler package (version 4.14.3) in R%, with a significance threshold set at p<0.05. The enriched
pathways and biological processes were visualized using the ggplot2 package in R.

Identification of potential diagnostic biomarkers for NSCLC

To develop the most effective diagnostic model, logistic regression was used to assess the EA-DEGs using the R
glmnet package (version 4.1.8)** to identify NSCLC-associated gene sets. Candidate genes were then identified
using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Subsequently, the e1071 package
(version 1.7.16)% was utilized to build a Support Vector Machine Recursive Feature Elimination (SVM-RFE)
model. Additionally, the randomForest package (version 4.7.1.2) in R*® was employed to produce random forest
(RF) curves and identify NSCLC-specific diagnostic genes. Genes that were identified consistently using all three
methods were selected as the most promising candidate biomarkers.

To verify the performance of the candidate biomarkers, receiver operating characteristic (ROC) curves were
plotted using the pROC package (version 1.18.5) in R?, and the diagnostic accuracy of the genes was assessed
quantitatively by measuring the areas under the curves (AUCs). The rms package (version 6.8.2)?® was then
used to develop nomograms providing a risk score assessment for predicting disease based on the identified
diagnostic biomarkers.

Biological functions of model genes in NSCLC

Firstly, differences in the expression of four model genes were visualized between NSCLC and adjacent normal
tissues using the ggplot2 package, offering a clear depiction of which genes were upregulated and which were
downregulated. Variations in the expression levels of these genes were further analyzed in 483 LUAD and 347
normal tissue samples utilizing the GEPIA2 database® (http://gepia2.cancer-pku.cn), applying a significance
threshold of log2FC>1 and a p-value<0.01 to establish statistical significance. Subsequently, the expression
patterns of these model genes in relation to the four principal pathological stages of the tumor were examined.
Next, using the median expression levels as a cutoff, patients were categorized into groups with high and low
expression as follows: PAICS high expression (239 patients), low expression (238 patients); GPM6A high
expression (239 patients), low expression (237 patients); SLC2A1 and A2M each had 239 patients in both high-
and low-expression groups. Kaplan-Meier curves were used to assess the associations of the genes with survival
in LUAD patients, shedding light on their potential prognostic value.

Analysis of differential expression and survival in the TCGA database

Transcriptomic and clinical data from TCGA were used to investigate the differential expression and prognostic
significance of the four candidate genes. Differential expression was analyzed using the “limma” package in R
to compare expression levels in tumor tissues with those in neighboring normal tissues. The significance of
differences was determined using the Wilcoxon rank sum test, and error discovery rate (FDR) adjustments were
made for multiple comparisons. After the adjustment, genes fulfilling the criteria of p <0.05, | log 2x change | >
1 were considered differentially expressed. For survival analysis, Kaplan-Meier curves and log-rank tests were
used to assess the relationship between gene expression levels and overall survival (OS). The optimal cut-off
value was determined using the survminer (version 0.5.0) and survival packages (version 3.7.0) in R based on
the expression of each gene, and the patients were divided into high-expression and low-expression groups.

Analysis of immune infiltration

Single-sample Gene Set Enrichment Analysis (ssGSEA) was conducted using the GSEAbase package (version
1.68.0) to assess the associations of the EA-DEGs with immune function and to determine the infiltration scores
of various immune cell types®’, with detailed information provided in Table S8. The scores were visualized using
the ggplot2 package. Lastly, to explore the correlations among immune checkpoint-related genes, the reshape2
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(version 1.4.4), ggpubr (version 0.6.0), corrplot (version 0.95), and tidyverse packages (version 2.0.0) in R were
employed for data manipulation and visualization®"*2.

Prediction of targeted drugs

The Drug-Gene Interaction Database (DGIdb)*? (https://dsigdb.tanlab.org/DSigDBv1.0/) was utilized to identify
potential drug targets related to the candidate biomarkers. Target drug enrichment analysis was conducted
using the colorspace (version 2.1.1) and stringi packages (version 1.8.4)*, and the findings were visualized using
Cytoscape® (version 3.10.0). Additionally, the 3D structures of the target drugs and proteins encoded by the
candidate biomarker genes were retrieved from the PubChem database®® (https://pubchem.ncbi.nlm.nih.gov/)
and the Protein Data Bank (PDB)*” (https://www.rcsb.org/), respectively. Molecular docking simulations were
undertaken to evaluate the interactions between drugs and their target proteins using the online platform CB-
Dock23® (https://cadd.labshare.cn/cb-dock2/index.php).

Chromosomal localization and construction of RBP and TF networks

To further investigate the four genes, their chromosomal locations were evaluated using the circlize package
(version 0.4.16)*. Information on RNA-binding proteins (RBPs) influencing the expression of the genes was
sourced from the ENCORI database?” (https://rnasysu.com/encori/). Furthermore, transcription factors (TFs)
that regulate the expression of the candidate biomarker genes were identified using the TRRUST database®!
(https://www.grnpedia.org/trrust/). Relationship networks depicting the interactions between RBPs, TFs, and
the diagnostic genes were developed and visualized using Cytoscape. This provided a detailed perspective on the
regulatory mechanisms affecting these genes. Separate networks for RBPs and TFs were constructed to assess
their specific contributions to gene regulation.

Quantitative PCR analysis in BEAS-2B and A549 cell lines

To verify the expression levels of the four model genes in vitro, quantitative reverse-transcription polymerase
chain reaction (QRT-PCR) analysis was performed on BEAS-2B (normal bronchial epithelial) and A549 (lung
adenocarcinoma) cell lines. Total RNA was extracted from cultured cells using the Animal RNA Isolation Kit
with Spin Column (Beyotime, China) following the manufacturer’s protocol. The purity and concentration of
the RNA were assessed using a NanoDrop 2000 spectrophotometer (Thermo Fisher, USA). Reverse transcription
was carried out using the PrimeScript™ RT Master Mix (Takara, Japan), as directed. qRT-PCR was conducted
using the TB Green Premix Ex Taq 2 (Takara) on a real-time PCR system (Bio-Rad, USA). The thermal cycling
conditions were as follows: initial denaturation at 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s and 60 °C
for 30 s. Gene-specific primers were designed using Primer-BLAST (NCBI) and were synthesized by Wanze Bio
(Shenyang, China) (Table S9). GAPDH was used as the internal control, and relative gene expression levels were
calculated using the 2724t method. Each reaction was performed in triplicate to ensure reproducibility. Statistical
analysis was performed using GraphPad Prism*? (version 8.0.2). Expression differences between BEAS-2B and
A549 cells were compared using independent ¢-tests, and a p-value < 0.05 was considered statistically significant.

Results

The identification of exosome-associated differentially expressed genes (EA-DEGs)

The GSE116959, GSE136043, GSE18842, and GSE7670 datasets were obtained from the GEO database. After
normalization and correction for batch effects (illustrated in Fig. 1A and B), a consolidated gene expression
profile of 276 samples was established, including 133 from normal and 143 from NSCLC tissues. The presence
of batch effects was further confirmed by PCA analysis (Figure S1). Analysis of differentially expressed genes
in the amalgamated dataset identified 917 genes that differed significantly in expression between NSCLC and
normal tissues (Fig. 1C), as shown in Table S10. Figure 1D shows the top 50 most upregulated and 50 most
downregulated genes. Additionally, 878 exosome-related genes sourced from the GeneCards database and
related studies were included, resulting in the identification of 59 EA-DEGs (Fig. 1E).

Identification of molecular pathways and biological functions

GO, KEGG, and GSEA analyses were undertaken to. The results of the GO analysis are shown in Fig. 2A. In
terms of the GO biological process (BP) category, EA-DEGs were found to be involved in the negative regulation
of catalytic activity, cell adhesion, and the humoral immune response. In the cellular component (CC) category,
associations with apical and basolateral plasma membranes, collagen-containing extracellular matrix, and
tertiary granules were found, while in the molecular function (MF) category, the genes were enriched in enzyme
activity inhibition, calcium-dependent protein binding, and molecular sequestration (Fig. 2B). KEGG pathway
analysis indicated associations between EA-DEGs and various biological themes, including malaria, Salmonella
infection, and processes in the hematopoietic system. Notably, EA-DEGs were also significantly enriched in
resistance to antifolate drugs, pointing to their potential role in enhancing pathogen or cancer cell resistance
to treatments such as methotrexate and sulfonamides (Fig. 2C). The GSEA results revealed the top five most
significantly enriched signaling pathways (Fig. 2D), showing that EA-DEGs were associated with the cell cycle,
DNA replication, amino acid biosynthesis, and base excision repair processes in NSCLC. Moreover, these genes
were involved in interactions involving cytokines and their receptors, the p53 signaling pathway, JAK-STAT
signaling, and chemokine signaling transduction pathways (Figure S2). These results underscore the potentially
pivotal role of the EA-DEGs in NSCLC, particularly in nucleic acid metabolism, immune regulation, and the
modulation of enzyme activity.
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Fig. 1. Acquisition of EAD-EGs. (A,B) Comparison of the merged dataset before (A) and after (B) batch effect
correction. (C) Differential expression analysis performed on the newly constructed dataset (logFC=0.585,
adj.P.Val=0.05). (D) Identification of the top 100 differentially expressed genes(upregulates and downregulated
genes). (E) Intersection of the identified genes with exosome-related genes.

Identification of EA-DEGs associated with NSCLC diagnosis

To explore the differences between NSCLC patients and healthy individuals, univariate logistic regression
analysis was used to identify 59 EA-DEGs associated with NSCLC (Table S11). Three machine learning
techniques, namely, LASSO, SVM-REFE, and RE, were used to identify critical EA-DEGs that could differentiate
NSCLC from normal samples. Ten-fold cross-validation in LASSO regression resulted in the identification of 18
potential genes (Fig. 3A and B). The SVM-RFE algorithm identified 29 candidate genes (Fig. 3C and D), while
RF analysis revealed 11 candidate genes (Fig. 3E and F). Insection of the LASSO, SVM-RFE, and RF findings led
to the identification of four genes, namely, PAICS, SLC2A1, A2M, and GPM6A, as the most promising candidate
biomarkers (Fig. 3G). To evaluate the diagnostic capability of these EA-DEGs, a logistic regression model
using these four genes was developed in R to assess both the individual genes and the overall model. The ROC
curves showed high diagnostic accuracy for each gene: PAICS (AUC=0.944), SLC2A1 (AUC=0.938), A2M
(AUC=0.927), and GPM6A (AUC=0.992) (Fig. 4A). The constructed EAD-EG model exhibited an even higher
AUC of 0.996 (Fig. 4B), surpassing the performance of the individual genes in distinguishing between NSCLC
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Fig. 2. Exploration of the biological functions of EAD-EGs. (A) Results of GO enrichment analysis. (B)
Visualization of GO enrichment analysis categorized into BP (Biological Process), CC (Cellular Component),
and MF (Molecular Function). (C) Results of KEGG enrichment analysis, including pathways such as malaria,
Salmonella infection, and antifolate resistance. (D) Results of GSEA enrichment analysis, highlighting
pathways such as cell cycle and DNA replication.

and healthy samples. Additionally, a nomogram was constructed for risk assessment of NSCLC (Fig. 4C), and
the calibration curve exhibited high accuracy in predicting NSCLC risk based on the nomogram. Decision curve
analysis confirmed that the EA-DEG model was effective in differentiating between NSCLC patients and healthy
controls (Fig. 4D and E).

Four candidate diagnostic biomarker genes exhibit significant differences in expression in
NSCLC and influence patient prognosis

To further evaluate the biological attributes of the candidate biomarker EA-DEGs in NSCLC, the limma package
in R was used to analyze differences in the expression of the four genes between normal and tumor tissues
(Fig. 5A). The analysis revealed that PAICS (logFC=1, adj.P.Val <0.01) and SLC2A1 (logFC=1, adj.P.Val <0.01)
were significantly upregulated in tumors, whereas A2M (logFC=1, adj.P.Val<0.01) and GPM6A (logFC=1,
adj.P.Val <0.01) were significantly downregulated. Further validation using the GEPIA2 database demonstrated
that the expression patterns of these genes in the LUAD subtype were similar to those observed in the GEO
database (Fig. 5B). It was also found that the expression levels of PAICS (p<0.01) and SLC2A1 (p<0.01) were
increased at more advanced tumor stages, whereas A2M expression (p<0.05) decreased as tumor staging
progressed; however, GPM6A expression showed no significant correlation with cancer staging (Fig. 5C). A
correlation analysis of these genes indicated that PAICS was positively correlated with SLC2A1 but negatively
correlated with A2M and GPM6A, while A2M was positively correlated with GPM6A (Fig. 5D). In a further
assessment of the clinical significance of the genes, analysis using the GEPIA2 database indicated that PAICS
(p<0.01) and SLC2A1 (p<0.01) overexpression was associated with worse clinical prognosis (Fig. 5E and F),
whereas A2M and GPM6A did not significantly affect patient prognosis (Figure S3). In summary, PAICS,
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Fig. 3. Identification of diagnostic genes for NSCLC. (A,B): Selection of 18 candidate genes from EAD-EGs
using lasso logistic regression with 10-fold cross-validation. (C,D) Selection of 29 candidate genes using the
SVM-REFE algorithm. (E,F) Analysis of the RF model yielding 11 candidate genes. (G) Integration of the results
from the three machine learning models to identify the 4 most significant diagnostic genes.
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Fig. 5. This study primarily observes the clinical data of the four genes in NSCLC. (A) Differential expression
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(E,F) Survival curves for the feature genes PAICS (p <0.01) and SLC2A1 (p<0.01).
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SLC2A1, and A2M show promise as biomarkers for assessing clinical staging in NSCLC, with PAICS and
SLC2AL1 also potentially serving as prognostic markers for these patients.

Differential expression and survival analysis of the four model genes in TCGA data

To further validate the findings derived from the GEO dataset, the expression patterns and prognostic significance
of the four model genes, namely, PAICS, SLC2A1, A2M, and GPM6A, were evaluated using transcriptomic and
clinical data from the TCGA LUAD cohort. Differential expression was analyzed using the limma package in R,
with statistical significance assessed via the Wilcoxon rank-sum test and FDR correction. Consistent with the
GEO results, PAICS and SLC2A1 were found to be significantly upregulated in LUAD tumor tissues compared
to adjacent normal tissues (adjusted p<0.001, [log,FC| > 1), while A2M and GPMG6A were significantly
downregulated (adjusted p<0.01, |logFC| > 1) (Fig. 6A-D). To assess the prognostic relevance of the genes,
Kaplan-Meier survival analysis was conducted to assess the OS of patients in the high- and low-expression
subgroups using optimal cut-off values calculated via the survminer and survival R packages. The results showed
that elevated expression of PAICS and SLC2A1 was significantly associated with worse OS (log-rank p <0.001),
while high expression of A2M and GPM6A was correlated with better OS (log-rank p <0.05) (Fig. 6E-H). These
TCGA-based results were highly consistent with those from the GEO database, providing robust validation of
the differential expression and prognostic significance of the four model genes in LUAD. Together, they highlight
the potential of these genes as clinically relevant biomarkers.

Immune infiltration scores

Exosomes play a significant role in the tumor immune microenvironment (TME), which is critical for the
initiation and progression of NSCLC. To explore this further, ssGSEA was used to examine differences in the
infiltration of immune cells between NSCLC and normal tissues (Fig. 7A). The analysis revealed that in tumor
tissues, the levels of memory B cells (p<0.05) and activated CD4+T cells (p<0.05) were elevated, whereas
those of mast cells (p<0.05) and eosinophils (p <0.05) were significantly reduced compared to normal tissues.
The correlations between immune cell infiltration and the four candidate NSCLC diagnostic genes were then
assessed. The findings indicated that PAICS and SLC2A1 showed significant positive correlations with memory
B cells (p<0.05) and activated CD4+T cells (p<0.05), and negative correlations with mast cells (p<0.05)
and eosinophils (p <0.05) in tumor tissues (Fig. 7B). These results suggest that the candidate diagnostic genes
are intricately linked with the tumor immune microenvironment and may influence tumor progression by
modulating the activity of immune cells.

Screening of drugs affecting the candidate diagnostic genes

The results above indicate that the maintenance of normal levels of the four EA-DEGs is crucial for patient
prognosis. As a further investigation, chemical compounds potentially influencing these genes were explored
using the DSigDB database*® (https://dsigdb.tanlab.org/) for retrieving data on interactions. A drug enrichment
analysis was then performed to identify chemical compounds significantly associated with the target genes
(p<0.05), with the findings presented using Cytoscape (Fig. 8A). The analysis showed that quinoline could
significantly influence PAICS, while 7-hydroxyflavone and 16 other compounds influenced SLC2A1.
Additionally, 6-aminohexanoic acid and 11 other compounds were significantly linked to A2M. A notable
finding was the impact of dibenz[a, h]anthracene, a polycyclic aromatic hydrocarbon (PAH) (Fig. 8B and C),
known for its potential carcinogenicity to humans, which is typically produced by the incomplete combustion of
organic materials**. The results indicated that dibenz[a, h]anthracene could directly alter the expression levels of
two target genes, SLC2A1 and A2M. Consistently, molecular docking analysis revealed strong binding affinities
between the compound and both targets, with binding energies of -11.0 kcal/mol for SLC2A1 (Fig. 8D) and
—8.7 kecal/mol for A2M (Fig. 8E), respectively, underscoring its potential role in regulating the levels of these
diagnostic genes.

Identification of the chromosomal localizations of the diagnostic genes and regulatory
networks of RNA-Binding proteins and transcription factors

To gain a deeper understanding of the four EA-DEGs, the chromosomal locations of genes were mapped
(Fig. 9A). The ENCORI database was used to identify RBP targets for the genes, which were then visualized
using Cytoscape. It was observed that each gene interacted with 20 RBPs, of which CSTF2T and CPSF1 could
interact with all four diagnostic genes (Fig. 9B). Additionally, the TRRUST database was used to identify to
identify TFs that regulate the diagnostic genes (Fig. 9C). Four TFs, namely, HDAC5, ATM, TP53, and HIF1A,
were identified that could effectively regulate SLC2A1 expression, whereas NFKB1, STAT3, and TFCP2 were
found to modulate the expression of A2M.

gRT-PCR analysis of the four model genes in BEAS-2B and A549 cells

The results of the qRT-PCR analysis revealed significant differential expression of the four model genes
between the BEAS-2B (normal bronchial epithelium) and A549 (lung adenocarcinoma) cell lines. The relative
expression levels of each gene were normalized to GAPDH and analyzed using the 2724¢* method. Compared
to BEAS-2B cells, PAICS (P=0.0061) and SLC2A1 (P=0.0001) were significantly upregulated in A549 cells,
suggesting a potential oncogenic role. Conversely, A2M (P=0.01) and GPM6A (P=0.0002) exhibited significant
downregulation in A549 cells, implying a possible tumor-suppressive function. The fold-change values for
each gene are presented in Fig. 10. Statistical analysis using independent t-tests confirmed that the expression
differences between BEAS-2B and A549 cells were statistically significant for all four genes (p<0.05). These
findings indicate that these model genes may play distinct roles in the progression of lung adenocarcinoma and
could serve as potential biomarkers for further investigation.
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Fig. 6. Differential expression and survival analysis of four genes. (A-D) Significant differences in the
expression levels of PAICS, SLC2A1, A2M, and GPM6A were observed between tumor tissues and adjacent
non-tumorous tissues (p <0.01 for all genes). (E-H) High expression of PAICS (p<0.001) and SLC2A1
(p<0.001) was associated with poorer survival, whereas low expression of A2M (p=0.0018) and GPM6A
(p=0.032) also correlated with reduced overall survival.
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Fig. 7. Aim to analyze the immune infiltration levels of the diagnostic genes. (A) ssGSEA enrichment analysis
to evaluate the expression differences of immune cells between NSCLC and normal tissues. (B) Correlation of
the four feature genes with immune cells in NSCLC.

Discussion

NSCLC is the most prevalent form of lung cancer, with distinct manifestations and outcomes compared to
other lung cancer subtypes. Despite advancements in diagnostic and therapeutic strategies, lung cancer remains
a leading cause of cancer-related deaths globally, primarily due to challenges in early detection, diminishing
returns from adjuvant and neoadjuvant treatments, and advanced stage at diagnosis. Lung cancer frequently
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Fig. 8. Prediction of targeted drugs for diagnostic genes. (A) Network of targeted drugs related to PAICS,
SLC2A1, and A2M. (B,C) Drug enrichment analysis of the intersected feature genes (p-value <0.05, adj.
p-value <0.05), where SLC2A1 and A2M are significantly enriched for Dibenz[a, h]anthracene (B) and its 3D
structure (C). (D) Visualization of molecular docking between SLC2A1 and targeted drugs and the binding
energy (-11.0) (D). (E) Molecular docking of A2M with targeted drugs and the minimum binding energy
(-8.7) (B).

lacks distinctive symptoms, complicating the identification of early-stage disease and delaying the onset of
intervention. Prior studies have shown that low-dose computed tomography (LDCT) screening can reduce lung
cancer mortality by up to 20%; however, its widespread implementation is restricted by costs, radiation risks,
and a high rate of false positives*. Although traditional diagnostic approaches such as LDCT and liquid biopsy
have improved clinical screening and monitoring, they are associated with notable limitations. LDCT, while
effective for imaging-based early detection, is associated with high false-positive rates and limited molecular
insight. Liquid biopsy methods, including analysis of circulating tumor DNA (ctDNA) and circulating tumor
cells (CTCs), offer minimally invasive alternatives but often lack sensitivity in early-stage disease and provide
insufficient information about the TME. In contrast, molecular biomarkers, particularly those derived from
exosomes, offer a promising combination of early detectability, biological specificity, and functional relevance.
These vesicles not only reflect the molecular status of early-stage tumors but also play active roles in cancer
progression and immune modulation. As such, the integration of exosome-based biomarkers into current
diagnostic workflows may improve the precision of early detection and support more individualized therapeutic
strategies.

Moreover, NSCLC cells have evolved mechanisms to escape immune detection, contributing to poor
responses to treatment. Specifically, patients exhibiting a clinical pattern of minimal acquired resistance Oligo
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Fig. 9. Regulatory network of feature genes. (A) Chromosomal localization of the feature genes. (B) RNA-
binding protein (RBP) regulatory network of the four genes. (C) Transcription factor network regulating
SLC2A1 and A2M.

(OligoAR <4) show a unique pattern of acquired resistance to PD-(L)1 therapy*. Although treatment with
PD-1/PD-L1 checkpoint inhibitors has marked a significant advance in lung cancer therapy, their efficacy is
limited to a subset of patients. Furthermore, resistance, both primary and acquired, ultimately leads to disease
progression in these patients. A deeper investigation into this resistance has highlighted issues such as T-cell
dysfunction, impaired antigen presentation, and alterations within the TMEY.

Exosomes, as vesicles secreted by cells, play a pivotal role in tumor progression by their transport of bioactive
molecules. These exosomes contribute to the growth and spread of lung cancer, as well as influencing the
immune environment of the tumor. For instance, CircSATB2 is found in high levels within the serum exosomes
of lung cancer patients and is associated with promoting the growth, migration, and invasion of NSCLC
cells via exosomal transfer. This molecule also has the potential to trigger abnormal proliferation in normal
human lung epithelial cells*. Furthermore, exosomes carrying CircVMP1 promote NSCLC progression and
resistance to the chemotherapy drug cisplatin by affecting the miR-524-5p-METTL3/SOX2 signaling pathway*.
Additionally, cancer-derived CircUSP7 exosomes impact the miR-934/SHP2 axis in NSCLC, leading toCD8 + T
cell dysfunction, facilitating immune evasion through PD-1 resistance, and thus expediting the progression of
the disease®. The four candidate genes identified in this study may contribute to immune evasion in NSCLC
through distinct but complementary mechanisms. PAICS and SLC2A1 promote metabolic reprogramming and
a suppressive TME, limiting immune cell infiltration and enhancing PD-L1 expression®*2. A2M modulates
cytokine signaling and antigen presentation, potentially facilitating immune tolerance®. Although the
immunoregulatory role of GPM6A remains less defined, emerging evidence suggests its involvement in vesicle
trafficking and exosomal immune modulation®%. Together, these genes may act synergistically to facilitate tumor
immune escape and progression.

Exosomes can promote tumor progression in various cancers by influencing the TME. However, information
on the role of exosomes in NSCLC is limited. Therefore, the present research focused on identifying exosome-
associated genes to develop a diagnostic model based on multiple methodologies and analytical layers, to
improve the detection of early-stage NSCLC and suggest novel clinical treatment strategies. The enrichment
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Fig. 10. Expression levels of the four genes in BEAS-2B and A549 cells. (A,B) PAICS (p=0.0061) and SLC2A1
(p=0.0001) were significantly upregulated in A549 cells relative to BEAS-2B cells. (C,D) The expression levels
of A2M (p=0.01) and GPM6A (p=0.0002) were significantly lower in A549 cells compared to BEAS-2B cells.

analyses indicated significant associations between exosomal activity in the TME and critical cellular processes
such as cell cycle progression and DNA replication in tumor cells. The constructed diagnostic model included
four disease-specific genes, and their relevance and diagnostic accuracy were confirmed using comprehensive
correlation analysis. Further investigations demonstrated that the expression levels of these key genes in LUAD
were significantly associated with the pathological stage of the tumor, underscoring their potential utility
for diagnosing early-stage NSCLC in clinical settings. Moreover, it was also found that these disease-specific
genes could interact directly with polycyclic aromatic hydrocarbons (PAHs), compounds identified as Group
2 A carcinogens and produced predominantly by the incomplete combustion of organic materials. PAHs are
frequently encountered in daily life, emanating from sources such as cigarette smoke, barbecued foods, and
emissions from vehicles or industrial activities®>>°.

This study presents an exosome-based gene signature with potential application in NSCLC diagnosis,
prognosis, and mechanistic understanding. the findings provide a foundation for future translational research.
Targeting exosome release, uptake, or cargo content may open new avenues for early detection and therapeutic
intervention in lung cancer. However, this study is not without limitations. First, most of the findings were
based on bioinformatics analyses and in vitro experiments. Second, despite the identification of key exosomal
components and associated pathways, the precise molecular mechanisms linking these elements to immune
modulation and metastasis require further experimental elucidation. Third, the reliance on public datasets such
as TCGA and the GEO database could have introduced potential biases, and several of the external validation
cohorts had relatively small sample sizes, which may limit generalizability. Future studies incorporating large-
scale clinical samples, animal models, and functional assays will be essential to confirm and extend these findings
toward clinical translation.
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Conclusion

This study used the GeneCards database along with published literature to pinpoint genes associated with
exosomes, which were then integrated with an analysis of differentially expressed genes between NSCLC and
normal tissue samples to construct an EA-DEGs dataset. The findings indicated that these genes are biologically
active in tumors, notably in promoting tumor cell cycle progression and DNA replication. Three machine
learning approaches were applied, leading to the identification of four candidate diagnostic genes, namely,
PAICS, SLC2A1, A2M, and GPMG6A, for the construction of a disease diagnostic model. The performance of
the model was found to be excellent, as shown by the AUC values of ROC curves and nomograms. Extensive
analysis of clinical data for each of the genes revealed their specific roles in the development and progression of
NSCLC. Immune infiltration analysis was also conducted to assess the effectiveness of the model in terms of the
tumor immune microenvironment. Moreover, drugs that interacted with the proteins encoded by the genes were
identified, including a PAH compound targeting SLC2A1 and A2M directly. Additionally, the chromosomal
locations of the model genes were evaluated, as were regulatory networks involving RBPs and TFs that influence
the expression of the genes. Overall, the study offers novel approaches and insights for the early detection and
treatment of NSCLC, with profound clinical implications.
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