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Accurate prediction of silicon content in blast furnace ironmaking is essential for optimizing furnace 
temperature control and production efficiency. However, large-scale industrial datasets exhibit 
complexity, dynamism, and nonlinear relationships, posing challenges for feature selection. Traditional 
methods rely heavily on static statistical techniques and expert knowledge, limiting their adaptability 
to dynamic operating conditions. This study proposes a Bayesian online sequential update and support 
vector regression recursive feature elimination (BOSVRRFE) algorithm for dynamic feature selection. 
By integrating Bayesian dynamic updating and recursive optimization, BOSVRRFE adjusts feature 
importance in real-time, efficiently optimizing input variables. Experiments with data from a large 
steel enterprise validate BOSVRRFE’s performance in silicon content prediction. Results show that 
BOSVRRFE outperforms traditional static methods in prediction accuracy, real-time adaptability, 
and model stability. Additionally, it rapidly responds to operational changes, supporting real-time 
industrial prediction and optimization. This study provides theoretical and practical guidance for silicon 
content prediction and introduces an innovative approach to feature selection in complex dynamic 
industrial data.

Keywords  Blast furnace ironmaking, Silicon content prediction, Dynamic feature selection, Bayesian online 
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Blast furnace smelting is a core process in steel production, aiming to reduce iron ore and coke into molten iron 
while producing slag as a byproduct. This process involves complex interactions among multiphase materials and 
concurrent physical and chemical phenomena, making it one of the most challenging nonlinear dynamic systems 
in metallurgy1. Furnace temperature control is critical in blast furnace smelting; it directly affects production 
efficiency and molten iron quality, and it determines the stability of iron composition and the safety of equipment 
operation2. As an important component of molten iron, the silicon content’s concentration variation serves as a 
key reference for furnace temperature regulation. Accurately predicting the silicon content is therefore essential 
for optimizing furnace temperature control and enhancing blast furnace operational efficiency3.

The core challenge in predicting silicon content lies in the complexity of the data. Blast furnace data 
encompass real-time sensor readings and historical process records, characterized by multi-source origins, 
varying frequencies, inconsistent data quality, and noise issues, These factors significantly increase the difficulty 
of extracting key features from massive datasets, Efficiently identifying critical variables essential for silicon 
content prediction is central to building an accurate prediction model4.

Traditional feature selection methods often combine domain expert experience with static statistical 
techniques. While intuitive and straightforward, these methods are highly subjective and struggle to cope with 
dynamic changes and nonlinear relationships in blast furnace operating conditions. Additionally, when faced 
with complex industrial data and real-time demands, traditional methods often lack efficiency, failing to meet 
practical production needs.

To address these issues, this study proposes a novel dynamic feature selection algorithm termed BOSVRRFE, 
which integrates Bayesian online sequential updating with support vector regression-based recursive feature 
elimination (SVR-RFE). BOSVRRFE is designed to dynamically optimize feature subsets in response to 
evolving industrial conditions, thereby maintaining model robustness and adaptability over time. Furthermore, 
a lightweight real-time adaptation mechanism is developed, enabling continuous adjustment of feature 
importance without requiring full model retraining. This significantly enhances system responsiveness and 
computational efficiency. By leveraging Bayesian updating to dynamically track changes in feature relevance 
and employing recursive feature elimination to refine the feature set, BOSVRRFE achieves efficient screening 
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and automatic optimization of input variables, ultimately improving the predictive performance of the silicon 
content prediction model.

Extensive experiments conducted on large-scale real blast furnace datasets validate the superior performance 
of the proposed method. Compared to traditional static feature selection approaches, BOSVRRFE exhibits 
higher prediction accuracy, greater stability, and improved real-time adaptability. The experimental results 
demonstrate that the method can predict molten iron silicon content in real time and quickly respond to changes 
in furnace conditions, providing scientific guidance for operators in the production environment. Furthermore, 
the algorithm has important application value in enhancing blast furnace production efficiency and product 
quality. The research findings provide theoretical basis and practical guidance for constructing blast furnace 
silicon content prediction models based on machine learning.

Related work
Process-oriented feature categorization
The blast furnace ironmaking process is a complex, nonlinear, and time-delayed system. Multiple physical and 
chemical reactions occur simultaneously across different zones of the furnace. Among the key indicators, the 
silicon content Si in hot metal reflects the furnace’s thermal state and is influenced by a wide range of operational 
parameters.

In this study, a large number of features were extracted from the blast furnace data system, covering raw 
materials, burden structure, gas flow, temperatures, pressures, and slag composition. Instead of listing all 
variables, we group them according to their relevance to different furnace zones:

•	 Charging zone: burden composition, coke and sinter ratios;
•	 Gas reaction zone: top gas temperature, gas composition;
•	 Combustion zone: hot blast temperature, oxygen enrichment, blast volume;
•	 Hearth zone: hearth temperature, slag ratios (e.g., CaO/SiO₂, MgO/Al₂O₃);
•	 Process feedback: pressure differentials, tuyere gas properties.

To support this grouping, Fig. 1 shows a schematic of the blast furnace, with major temperature zones, flow 
directions, and chemical reactions. The selected features correspond to physical phenomena occurring in these 
zones, providing a meaningful basis for model development.

This process-based organization improves the interpretability of feature selection and aligns data-driven 
modeling with industrial knowledge.However, selecting relevant features from such high-dimensional, process-
driven data presents its own set of challenges, which are discussed in the next section.

Challenges of feature selection in blast furnace silicon content prediction
Feature selection plays a key role in constructing reliable silicon content prediction models under complex blast 
furnace conditions. However, it faces the following main challenges:

Redundancy and diversity in complex industrial data
Blast furnace production involves multi-source heterogeneous data, including burden composition (e.g., silicon, 
carbon, iron content), reaction conditions (e.g., temperature and pressure), and gas distribution (e.g., CO, CO₂ 

Fig. 1.  Schematic of the blast furnace.

 

Scientific Reports |        (2025) 15:20555 2| https://doi.org/10.1038/s41598-025-04542-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


concentrations). These data exhibit significant complexity and diversity, with some variables potentially being 
redundant or weakly correlated. This increases the complexity of feature selection and can negatively impact 
model performance. Therefore, efficiently identifying key variables crucial for silicon content prediction from 
complex industrial data is the primary challenge for feature selection5,6.

Adaptability to dynamic operating conditions
Dynamic operating conditions in the blast furnace ironmaking process—such as burden fluctuations, blast 
volume adjustments, and environmental condition changes—cause significant variations in data distribution over 
time, altering feature importance. Traditional static feature selection methods cannot dynamically adjust feature 
subsets to accommodate these changes, potentially compromising model robustness in complex environments. 
Consequently, feature selection methods must possess dynamic adjustment capabilities to evaluate and update 
feature importance in real time, ensuring models respond quickly to changing conditions and maintain real-
time predictive performance7.

Complex nonlinear and interaction relationships among features
Changes in furnace temperature and silicon content are influenced by the synergistic effects of multiple variables. 
For example, significant nonlinear relationships or interaction effects may exist between burden composition and 
gas utilization rates. Traditional feature selection methods based on linear correlation struggle to capture these 
complex interaction patterns, potentially leading to the omission of key features. Feature selection methods need 
to uncover nonlinear relationships and variable interaction patterns to enhance model prediction performance 
under complex operating conditions8,9.

In summary, feature selection methods for predicting silicon content in blast furnace ironmaking must 
effectively address redundancy in complex industrial data, ensure real-time adaptability under dynamic 
operating conditions, and uncover nonlinear relationships to guarantee prediction accuracy and stability in 
practical industrial scenarios.

Literature review
Accurate prediction of silicon content in blast furnace ironmaking is critical for furnace temperature control 
and production efficiency. Traditional feature selection strategies mainly rely on domain expertise and process 
mechanism analysis, focusing on selecting physical and chemical attributes directly related to silicon content 
variation (e.g., burden composition, reaction temperature, and pressure).While intuitive and straightforward, 
these methods exhibit several limitations: they are subjective, difficult to scale to high-dimensional data, and 
lack adaptability to changing operational conditions. Given the complex, nonlinear, and time-varying nature of 
industrial processes, more systematic, data-driven feature selection strategies are needed.

Machine learning-driven feature selection methods in industrial prediction
Machine learning methods have demonstrated significant advantages in feature selection, especially in industrial 
prediction tasks. For instance, Stein et al.10 developed the iGATE tool, which combines domain expert knowledge 
with statistical analysis to identify key process parameters affecting top gas efficiency in steel manufacturing. 
Wang et al.11 applied kernel principal component analysis (KPCA) for feature selection, effectively extracting 
key features for silicon content prediction and improving model accuracy and stability. Xianpeng Wang et 
al.12 proposed the MOENE-EFS model, which uses multi-objective evolutionary algorithms and nonlinear 
integration methods to optimize silicon content prediction, albeit with high computational complexity. Jiang 
et al.13 introduced a multi-level feature fusion and dynamic data-driven model that captures trends in silicon 
content variation, providing theoretical support for monitoring and optimizing blast furnace processes. These 
studies highlight the excellent performance of machine learning-based feature selection methods in handling 
high-dimensional and nonlinear industrial data.

At a theoretical level Bolón-Canedo et al.14 provided a comprehensive review of feature selection for high-
dimensional data, offering a theoretical framework for feature selection in big data environments. Guyon and 
Elisseeff15 ocused on objective functions and efficient search strategies for feature selection, providing technical 
guidance for applications in complex data scenarios. Venkatesh and Anuradha16 emphasized the challenges of 
feature selection in dynamic data scenarios, such as IoT and web applications, and proposed future research 
directions. Li et al.17 further extended these ideas to heterogeneous and streaming data contexts. However, most 
existing methods remain static and are not designed to accommodate feature importance changes over time—a 
major limitation in industrial settings where data distributions evolve continuously.

SVR-RFE and its limitations
Among embedded methods, support vector regression combined with recursive feature elimination (SVR-RFE) 
has gained popularity due to its ability to model nonlinear relationships and rank features through model-
internal weights. It has been successfully. For example, Hu et al.18 integrated bootstrap SVR with improved 
RFE for aircraft engine maintenance cost prediction, significantly enhancing model performance. Goli et al.19 
applied SVR-RFE in breast cancer survival prediction, improving model accuracy. Fang and Tai20 optimized 
the combination of mutual information, genetic algorithms, and SVR to enhance QSAR regression model 
predictions. Despite its success in various domains, the application of SVR-RFE in industrial dynamic data 
scenarios, such as silicon content prediction in blast furnace ironmaking, remains limited. Traditional SVR-RFE 
methods face challenges in dynamically adjusting feature importance and addressing computational complexity 
under the dynamic and real-time demands of industrial data.
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Recent progress in dynamic and streaming feature selection
To address the challenge of evolving data, recent studies have explored online and dynamic feature selection 
frameworks. Wang et al.21 proposed a fast streaming feature screening algorithm under concept drift. Haug et 
al.22 introduced FIRES, a stable online selection method using model-inherent importance measures. Sun et 
al.23 incorporated causal inference into dynamic feature selection for soft sensors in industrial processes. Wang 
et al.24 designed a hybrid framework combining ensemble learning and evolutionary selection for blast furnace 
silicon content modeling. While these methods move toward adaptability, many lack physical interpretability or 
integration with embedded learning models such as SVR.

Deep learning models for silicon prediction
In parallel, deep learning has become increasingly prominent in silicon content prediction. Zhang et al.25 used 
LSTM networks to capture temporal dependencies in sequential furnace data. Yang et al.26 applied CNNs to 
learn local correlations from spatially distributed sensor inputs. Zhao et al.27 developed a CNN-LSTM hybrid 
model for robust soft sensing. More recently, Wang et al.28 used attention-based temporal convolutional networks 
(TCN-Attn), and Liu et al.29 applied transformers for end-to-end sequence modeling of silicon fluctuations.

While these models show impressive accuracy, they often suffer from drawbacks including high data 
requirements, limited transparency, and weak real-time adaptability. Their black-box nature also hinders 
industrial deployment where interpretability and control feedback are crucial.

Research gaps and motivation
Despite recent progress, key challenges remain unsolved in silicon content prediction for blast furnace 
operations. Specifically, few methods offer real-time adaptability to dynamic feature importance, integrated 
uncertainty modeling, and lightweight deployment for industrial applications. Moreover, many deep learning 
approaches lack domain interpretability and require large-scale labeled data, which may not be feasible in 
production environments.

To bridge this gap, we propose BOSVRRFE, a novel feature selection framework that integrates nonlinear 
modeling (via SVR), Bayesian online importance updating, and dynamic redundancy-aware pruning. 
Unlike traditional methods, BOSVRRFE is explicitly designed for streaming industrial data and offers both 
interpretability and adaptability. It provides a unified, physically informed, and computationally efficient 
approach for online feature selection in high-dimensional, non-stationary prediction tasks such as blast furnace 
silicon content modeling.

Methodology
This section introduces the proposed dynamic feature selection framework BOSVRRFE, which is designed to 
address the challenges of high-dimensionality, nonlinear relationships, and real-time adaptability in blast furnace 
silicon content prediction. The methodology is presented in three parts: the problem formulation, theoretical 
foundations, and algorithm design.

Problem definition
Let Xt ∈ Rd denote the observed feature vector at time step t1, and yt ∈ R the corresponding target 
variable (e.g., silicon content). The goal of dynamic feature selection is to select a subset of relevant features  
St ⊆ 1,2, . . . , d and construct a prediction model, such that the expected prediction loss is minimized, while 
maintaining sparsity and computational efficiency.

We formulate the objective as Eq. (1).:

	
min
St,ft

E [L (ft (Xt,St ) , yt)] + λ · |St| � (1)

where:

•	 L (·) is a loss function (e.g., MSE),
•	 |St| is the number of selected features at time t,
•	 λ > 0 is a regularization coefficient controlling sparsity.

The model ft is updated online to reflect the evolving data distribution P (Xt, yt), making the selection and 
prediction process adaptive to changing industrial conditions.

Theoretical foundations
The proposed algorithm is grounded in three core theoretical foundations: Support Vector Regression (SVR), 
Recursive Feature Elimination (RFE), and Bayesian Optimization. This section provides an overview of these 
theoretical methods to establish the basis for the proposed approach.

Support vector regression (SVR)
SVR is an extension of Support Vector Machine (SVM) tailored for regression tasks. Unlike SVM, which is 
primarily employed for classification, SVR focuses on fitting continuous numerical data by identifying an 
optimal hyperplane. SVR maps data into high-dimensional spaces using kernel functions, effectively handling 
complex nonlinear relationships. Commonly used kernels include linear, polynomial, and radial basis function 
(RBF) kernels. SVR allows fine-tuning of generalization error by adjusting the regularization parameter C and 
error tolerance ϵ, balancing model complexity and sensitivity to outliers30,31.
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Let the feature set F be defined as {(xi, yi)}, where i = 1, 2, . . . , n. Here, xi denotes the input features of 
each sample, and yi denotes the corresponding output values. By employing a kernel function and a nonlinear 
mapping function ϕ(x), the low-dimensional feature space is mapped to a high-dimensional space. The regression 
function f (x) is defined to output y given x, as articulated in Eq. (2).

	 f (x) = wTϕ (x) + b � (2)

where, w is the vector of weight coefficients. b is the bias term. ϕ (x) denotes the high-dimensional feature vector 
obtained after mapping wT represents the transpose of the weight vector w.

SVR incorporates an epsilon-insensitive loss function to measure the discrepancy between the predicted 
values and the actual values. This loss function is defined by Eq. (3)

	 L (y, f (x)) = max (0, |y − f (x)| − ϵ) � (3)

where, L (y, f (x)) denotes the epsilon-insensitive loss. y represents the actual output value.f (x) signifies the 
predicted output. ε is the epsilon parameter, which determines the width of the insensitive zone around the 
actual value within which the prediction is deemed acceptable without penalty.

The training process of SVR involves solving a convex optimization problem to determine the weight vector 
w and the bias term b. The optimization problem can be formulated as shown in Eq. (4)

	
min
w,b

{
1
2 wT w + C

n∑
i=1

max
(
0,

∣∣yi −
(
wT ϕ (xi) + b

)∣∣ − ϵ
)}

� (4)

where, C > 0 is the regularization parameter that controls the trade-off between achieving a low training error 
and maintaining a margin that is as large as possible.

The optimization problem in SVR can be transformed into a dual problem by introducing Lagrange 
multipliers, which allows us to find the optimal Lagrange multipliers αi and α∗

i . The weight vector w can then 
be computed using Eq.  (5), For the computation of the bias term b, one can select any support vector i and 
calculate it using Eq. (6):

	
w =

l∑
i=1

(α∗
i − αi) ϕ (xi) � (5)

	 b = yi − wT ϕ (xi) � (6)

where, only the Lagrange multipliers corresponding to the support vectors αi and α∗
i  are non-zero. Support 

vectors are those sample points that violate the epsilon-insensitive tube constraints or lie on the boundary of the 
tube. These support vectors are crucial in defining the final regression function.

SVR fits data by finding a linear hyperplane in a high-dimensional space. It employs an epsilon-insensitive 
loss function to reduce the sensitivity to outliers and uses a regularization parameter to control the model’s 
complexity, thereby enhancing the model’s generalization capability. By transforming the optimization problem 
into its dual form and solving it using optimization algorithms, SVR demonstrates robustness against outliers, in 
this study, SVR plays two primary roles:

•	 Feature Importance Evaluation: A linear kernel is employed in SVR to ensure interpretability in feature im-
portance estimation. Under this configuration, the absolute values of the model weights |wi| directly reflect 
the contribution of each feature to the regression outcome. This enables explicit and stable feature ranking 
without the need for additional transformations or approximations.

•	 Balancing Complexity and Interpretability: Although the underlying system exhibits nonlinear behavior, us-
ing nonlinear kernels such as RBF would obscure the direct relationship between input features and model 
output, making feature scoring less interpretable. Moreover, nonlinear kernels typically entail higher com-
putational overhead, which may be unsuitable for time-sensitive industrial applications such as blast furnace 
control. Therefore, we deliberately adopt a linear kernel in SVR to maintain computational efficiency and 
support real-time decision-making.

While linear kernels may not capture all nonlinear dependencies, this choice reflects a trade-off between 
model complexity and practical interpretability, aligning with the objectives of dynamic feature selection in an 
industrial setting.

Recursive feature elimination (RFE)
In the prediction of silicon content in molten iron, the primary objectives of feature selection are to enhance the 
predictive accuracy of the regression model and to improve its interpretability. RFE is an efficient method for 
feature selection that optimizes model performance by incrementally reducing the number of features, thereby 
achieving dimensionality reduction and enhancing model efficiency. RFE is predicated on a greedy search 
algorithm32. The principal steps of the algorithm are as follows:

Setp 1 Initialization: A regression model is trained using all available features. For instance, in the ordinary 
least squares linear regression model, the parameters w can be estimated using Eq. (7):
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	 w =
(
XT X

){−1}XT y � (7)

where X is the feature matrix, and y is the target variable. For Support Vector Regression (SVR) or other 
regression models, the corresponding algorithms are employed for training.

Setp 2 Feature Importance Assessment: The importance of features is evaluated based on the model’s internal 
feature importance metrics. In linear regression, the importance of a feature is typically calculated using the 
absolute value of the model coefficients as shown in Eq. (8). For nonlinear regression models, such as Random 
Forest Regression, the built-in feature importance metrics of the model are used to compute the importance 
of each feature

	 Ii = |wi| � (8)

where Ii denotes the importance of the feature and wi represents the model coefficient.

Setp 3 Recursive Feature Elimination: Features are sequentially removed based on their importance, starting 
with the least important. This process is articulated in Eq. (9):

	 S
′

= S \ {f} � (9)

where, S′ is the new set of features after the removal of feature f. This process is repeated until S′ contains the 
desired number of features.

Setp 4 Performance Evaluation: After each iteration, the model’s performance is assessed to ensure that the 
reduction in features does not compromise the model’s effectiveness.
Setp 5 Final Model Selection: After multiple iterations, the model corresponding to the feature subset that 
yields the optimal performance is chosen as the final model.

As an extension of Recursive Feature Elimination (RFE), Recursive Feature Elimination with Cross-Validation 
(RFECV) re-evaluates the significance of features in each fold of the cross-validation process. This methodology 
involves the repeated assessment of feature importance across k-fold cross-validation and calculates the average 
cross-validation score for each subset of features. Consequently, this approach allows for the evaluation of 
performance variation across different models with varying feature subsets, ensuring that the selected feature set 
exhibits consistent performance across multiple folds. The calculation of the cross-validation score is detailed 
in Eq. (10).

	
C (S) = 1

F

F∑
i=1

Ci (S) � (10)

where, F denotes the number of folds in the cross-validation process, and Ci (S) represents the score of the 
regression model for the i-th fold.

RFE and RFECV offer effective solutions to feature selection problems in machine learning. RFE is adept at 
rapid feature screening, whereas RFECV enhances the robustness of feature selection through cross-validation, 
which can improve model performance, mitigate the risk of overfitting, and enhance the interpretability of the 
model.

In the proposed algorithm, RFE is not only utilized in the initialization phase to filter features but also 
integrated with the Bayesian updating mechanism to dynamically optimize feature subsets, adapting to the 
dynamic nature of blast furnace data.

Bayesian online updating (BO)
Bayesian optimization is an efficient method for black-box function optimization, primarily leveraging Gaussian 
processes to model the objective function. Its core idea is to combine prior distributions with an acquisition 
function to dynamically update and sample the objective function, minimizing evaluation iterations while 
locating the global optimum33. The process involves the following key steps:

Setp 1 Gaussian Process Modeling: A Gaussian process serves as a surrogate model for the objective function. 
T﻿he Gaussian process regression model can be represented by Eq. (11).

	
f (x) ∼ GP

(
m (x) , k

(
x, x

′
))

� (11)

where m(x) is the mean function, and k
(

x, x
′
)

  is the kernel function.
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Setp 2 Iterative optimization: The posterior distribution of the objective function is predicted using the Gauss-
ian process, and the next evaluation point is selected through an acquisition function (e.g., Expected Im-
provement, EI). The Expected Improvement is calculated by Eq. (12)

	 EI (x) = E
[
max

(
0, f* − f (x)

)]
� (12)

where f∗  is the best known objective function value.

Setp 3 Model update: The results of the new evaluation point are used to update the Gaussian process model. 
The posterior distribution of the model is updated and can be represented by Eq. (13).

	 f (x) | X, yGP ∼ m (x) + K (x, X) K(X, X)−1 (y − m (X)) ,

	
k

(
x, x

′
)

− K (x, X) K(X, X)−1K (X, x) � (13)

where X is the set of known input points, y is the corresponding target function value, K (x, X) is the covariance 
between the new point and known points, and K (X, X) is the covariance matrix of the known points.
Bayesian optimization dynamically adjusts sampling points for efficient global search and optimization of 
complex objective functions.

In the proposed algorithm, the role of Bayesian methods is not limited to hyperparameter optimization. 
Instead, they dynamically adjust feature importance distributions to balance the influence of historical data and 
current observations. Through Bayesian optimization, the algorithm updates feature importance distributions 
in real-time, achieving a balance between global optimization and local dynamic adaptation, providing dynamic 
guidance for feature selection.

Our algorithm framework
Overview and design objectives
To address the challenges of complex industrial data, dynamic variability, and nonlinear complexity in blast 
furnace Silicon content prediction, this study proposes a dynamic feature selection algorithm based on Bayesian 
dynamic updating and Support Vector Regression Recursive Feature Elimination (SVR-RFE). The algorithm 
dynamically adjusts feature importance distributions and optimizes feature subsets in real time, significantly 
improving model performance to meet the demands for accuracy and real-time operation in industrial 
applications. The primary objectives of the proposed algorithm are as follows:

•	 Improve Prediction Accuracy: Dynamically evaluate feature importance and extract the most representative 
features in real time, reducing the interference of redundant features on the model and thereby enhancing the 
accuracy of blast furnace temperature prediction.

•	 Enhance Dynamic Adaptability: Utilize a Bayesian dynamic updating mechanism combined with batch data 
processing to adjust feature importance distributions in real time. This enables dynamic optimization of fea-
ture subsets, ensuring the model can respond swiftly to changes in operating conditions and adapt to complex 
environments.

•	 Optimize Computational Efficiency: Reduce the dimensionality of input features using Recursive Feature 
Elimination (RFE) while employing an online updating strategy to avoid retraining the full model. This sig-
nificantly improves the algorithm’s efficiency, meeting the real-time prediction requirements of industrial 
applications.

Beyond the methodological composition, BOSVRRFE introduces several innovations. While prior approaches 
have employed SVR, RFE, or Bayesian inference independently, our framework reformulates these components 
into a unified and modular architecture tailored for streaming data scenarios. In particular, BOSVRRFE leverages 
closed-form Bayesian inference applied to SVR-derived feature importance scores, enabling interpretable and 
dynamically adjustable feature subsets without full model retraining. Moreover, the framework avoids reliance 
on deep learning architectures, which often lack transparency, require extensive data and computational 
resources, and are less suitable for deployment in latency-sensitive industrial systems. BOSVRRFE addresses 
these limitations by offering a lightweight, scalable, and theoretically grounded solution that facilitates real-time 
feature selection and robust predictive performance in complex, non-stationary environments.

Framework architecture
The proposed BOSVRRFE algorithm integrates support vector regression (SVR), recursive feature elimination 
(RFE), and Bayesian online updating to support dynamic feature selection in industrial scenarios. It consists of 
three core modules: Feature Initialization, Feature Importance Updating, and Dynamic Feature Selection. The 
overall framework is illustrated in Fig. 2.

Framework of the proposed BOSVRRFE algorithm, including offline initialization and online dynamic 
adaptation stages. And comprises three main modules: Feature Initialization, Feature Importance Updating, and 
Dynamic Feature Selection.

•	 Feature Initialization Module
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The objective of the Feature Initialization Module is to construct a foundational framework for feature selection 
using initial data, selecting key features, and establishing a Bayesian prior distribution for feature importance 
to support subsequent dynamic adjustments. This module combines SVR and RFE. SVR maps feature to high-
dimensional space using kernel functions to capture nonlinear relationships, with the absolute values of weights 
reflecting feature importance. RFE employs a greedy strategy to recursively remove features contributing the 
least to the model, yielding the optimal feature subset.

For the initial dataset  Xtrain and target values ytrain, a linear kernel SVR model is first trained to obtain 
weights w  for each feature. RFE ranks the absolute values of w, recursively eliminating less important features, 
and selects the initial feature subset Finit. The mean of feature importance is defined as Eq. (14)

	 µprior = |wi| � (14)

where  wi  represents the absolute regression weight of feature  i.  Unselected features are assigned a mean of 
zero. The variance of feature importance is initialized to a large value to reflect uncertainty, as shown in Eq. (15):

	 σ2
prior = 106 � (15)

The prior mean µprior and variance σ2
prior constitute the Bayesian prior distribution for feature importance, 

providing a basis for subsequent updates.

•	 Feature Importance Updating Module

The Feature Importance Updating Module is responsible for dynamically adjusting the feature importance 
distribution over time. It plays a central role in enabling temporal adaptability by integrating historical 
importance estimates with new information derived from the most recent data batch. This is achieved through 
Bayesian updating, which produces a posterior distribution of feature importance that reflects both prior belief 
and current evidence.

At each time step t, a linear kernel SVR model is trained on the newly arrived batch data (Xbatch, Ybatch ), 
and the absolute regression weights are treated as the observed importance estimates µobs. The prior distribution 
for each feature is represented by a mean µprior and variance σ2

prior, carried over from the previous update. The 
posterior distribution is computed using the closed-form Bayesian update Eqs. (16):

	
µpost =

µprior/σ2
prior+µobs/σ2

obs
1/σ2

prior+1/σ2
obs

� (16)

Start

Feature initialization phase Online evaluation at time t Dynamic Feature Selection

Iterative Execution

End
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Fig. 2.  BOSVRRFE algorithm Framework.
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The posterior variance is updated using Eq. (17):

	
σ2

post = 1
1/σ2

prior+1/σ2
obs

� (17)

In this implementation, the observational variance is set as σ2
obs = 1, based on the following considerations: 

First, the input data have been standardized, ensuring that all features have zero mean and unit variance, which 
naturally aligns the observational noise scale with a unit variance assumption. Second, in industrial process 
applications, the importance of features typically exhibits relatively small and stable fluctuations over time, 
making the unit variance assumption both realistic and practically acceptable. Finally, fixing the observational 
variance simplifies the Bayesian updating process, reduces computational complexity, and avoids the need for 
additional hyperparameter estimation, thereby enhancing the real-time adaptability of the proposed method. 
This simplification is widely adopted in probabilistic modeling when features are standardized, as it ensures 
consistent importance scaling and improves computational stability in online inference settings34–36.

The updated posterior mean µpost captures the temporally smoothed and uncertainty-weighted importance 
of each feature. To prevent excessive sensitivity to transient fluctuations, we apply smoothing by restricting the 
updated mean within a confidence interval (e.g., 95%). The resulting posterior distribution is then used in the 
next module to compute feature scores, serving as the input to dynamic feature subset optimization.

•	 Dynamic Feature Selection Module

The Dynamic Feature Selection Module optimizes the feature subset based on updated feature importance 
distributions. It introduces sparsity constraints and correlation analysis to adjust feature subset size and remove 
redundant features, ensuring sparsity and effectiveness. Feature importance scores are calculated using the 
posterior mean and variance, as shown in Eq. (18):

	
Si = µpost

σ2
post+ε � (18)

where  Si is the importance score for feature i,  and ε is a small constant to prevent division by zero.
This scoring mechanism is designed to prioritize features with higher estimated contributions and lower 

associated uncertainty. Specifically, by dividing the posterior mean by the posterior variance plus a small 
constant, the method effectively captures the signal-to-uncertainty ratio of each feature. Features with a large 
posterior mean and small variance are favored, ensuring that the selected features are not only strong in predictive 
power but also reliable. This design balances the strength of feature contributions against the confidence in their 
estimates, thereby improving the robustness of dynamic feature selection under changing industrial conditions.

The number of dynamically adjusted features  ndynamic  is determined using Eq. (19):

	 ndynamic = max (20, ⌊0.6 × total features⌋) � (19)

where, 20 ensures a minimum number of features for low-dimensional data, while 0.6 adjusts the feature 
subset size based on sparsity constraint. The choice of 20 as the minimum feature number is based on domain 
knowledge and empirical evaluation: in blast furnace operation datasets, retaining at least 20 features ensures 
that key variables governing the process are adequately represented, preventing critical information loss and 
maintaining predictive robustness even under reduced dimensionality conditions. Features with correlations 
above a threshold (e.g., 0.9) are removed, retaining those with higher importance scores. The correlation 
threshold of 0.9 is selected based on domain knowledge and statistical considerations, as feature pairs with 
correlation coefficients exceeding 0.9 are generally regarded as highly redundant in industrial process data. 
Setting this threshold helps eliminate redundant information while preserving the essential diversity among 
selected features, thereby enhancing model generalization and stability. The top  ndynamic  features are selected 
to update the feature subset Fselected.

The Feature Initialization Module uses SVR and RFE to establish an initial feature selection framework and 
constructs Bayesian prior distributions. The Feature Importance Updating Module dynamically adjusts feature 
importance using new data, adapting to variations in feature contributions. The Dynamic Feature Selection 
Module optimizes the feature subset using sparsity constraints and correlation analysis. Together, these modules 
provide a precise and efficient dynamic feature selection method for blast furnace temperature prediction.

Real-time execution and deployment considerations
To enable real-time and robust deployment of the proposed BOSVRRFE framework in industrial settings, the 
algorithm is designed to operate in a streaming environment where the feature subset is updated continuously 
with each new batch of data. This ensures that the prediction model consistently uses the most relevant features 
under evolving operational conditions. Feature importance is incrementally adjusted through Bayesian updating 
without requiring access to the full historical dataset, which greatly improves computational efficiency.

Regarding model execution, two feature integration strategies are considered. The first is an online retraining 
mode, in which the prediction model (e.g., SVR) is retrained for each batch using the newly selected feature 
subset. This allows the model to stay aligned with the updated features and maintain adaptability. The second 
is a dynamic feature switching mode, in which a pre-trained model dynamically changes its input layer to 
accommodate the current top-ranked features without full retraining. In our implementation, we adopt the 
online retraining approach as it strikes a practical balance between accuracy and computational cost. This entire 
process is fully automated and synchronized with the industrial control system’s data acquisition frequency, 
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ensuring that each update and prediction cycle is completed within the required time frame, without manual 
intervention.

To further enhance the algorithm’s robustness and deployment flexibility, several engineering mechanisms are 
incorporated. First, key hyperparameters—including the forgetting factors (α, β), SVR regularization coefficient 
(C), and kernel parameters—can be automatically optimized using Bayesian optimization techniques to balance 
prediction performance and computational efficiency. Second, in cases of abnormal furnace conditions or sensor 
failures, a rollback mechanism is implemented to restore the feature subset or prior distribution to a previously 
stable state. When excessive fluctuation in feature importance is detected, the system may trigger a full reset 
to maintain output stability. Finally, although the online phase operates with low computational complexity 
by processing only the current feature subset, parallel or distributed computing frameworks can be adopted to 
ensure real-time performance in extremely high-dimensional scenarios.

Summary and comparison
In summary, the proposed BOSVRRFE framework integrates nonlinear modeling via support vector regression, 
Bayesian sequential updating, and redundancy-aware feature selection into a unified, dynamic process. It 
effectively tracks feature importance with uncertainty quantification and adaptively refines the feature subset 
based on temporal relevance and correlation analysis. Compared with recent deep learning models for silicon 
content prediction—which often require large volumes of labeled data, incur high computational costs, and 
lack interpretability—BOSVRRFE offers a lightweight and transparent alternative suitable for industrial 
deployment. Furthermore, unlike most streaming or dynamic feature selection methods that rely on heuristic 
scoring or shallow classifiers, BOSVRRFE embeds learning directly into the selection process, enabling real-
time responsiveness and stable predictive performance under noisy, high-dimensional, and evolving operating 
conditions.

Industry experimental
This experiment aims to validate the effectiveness of the Dynamic Bayesian Fusion SVRRFE feature selection 
algorithm in predicting Silicon content in blast furnace. Through this experiment, we seek to evaluate the 
algorithm’s performance in dynamic operating conditions, including its real-time adaptability to changes in 
feature importance, the sparsity and stability of selected features, and improvements in prediction accuracy. 
Additionally, by comparing this algorithm with static feature selection methods and modeling without 
feature selection, we analyze its comprehensive performance in prediction accuracy, feature optimization, and 
computational efficiency, providing reliable technical support for real-time industrial blast furnace prediction.

Data description
Data source
The data were sourced from Blast Furnace No. 5 of a steel company in China, with a volume of 1,080 cubic 
meters. This furnace, with excellent equipment conditions and highly independent operational data, was chosen 
as the pilot for experimental analysis. This study is based on historical production data, filtering 300,000 records 
from three months of operation. The data are categorized as follows:

•	 Sensor Data: Collected by sensors at millisecond-level frequency, including dynamic parameters such as pul-
verized coal injection rates, air volumes, and pressure differences. These data are organized in time-series 
format.

•	 Manual and ERP System Data: Which includes manually recorded shift reports and laboratory assay data 
extracted from the ERP system (e.g., silicon content in molten iron), used to supplement and validate the 
sensor data.

These datasets provide a reliable foundation for experimenting with the dynamic feature selection model, 
particularly the high-frequency collection and time-series characteristics of sensor data, which support the 
model’s real-time processing and delayed feature analysis.

Data preprocessing
Blast furnace production data exhibit multi-source heterogeneity, including differences in frequency, format, 
and precision. To ensure data quality and consistency, the following preprocessing steps were applied:

•	 Sensor Data Standardization: Millisecond-level recorded data were averaged to one-minute intervals and 
stored as time series, resolving frequency inconsistencies.

•	 Interpolation and Alignment for Discrete Data: Time-series interpolation and padding were performed on 
discrete ERP system data to synchronize with sensor data.

•	 Anomaly Handling: Based on instrument ranges and expert knowledge, abnormal data were removed, such 
as negative pulverized coal injection rates, unusually high air volumes, and unreasonable readings caused by 
sensor calibration issues.

•	 Outlier Removal: The three-sigma rule was applied to remove extreme outliers, ensuring the rationality of 
analysis results. For example, as illustrated in 0, outlier analysis was conducted for molten iron assay data, 
including Si, P, S, and Mn content.

As depicted in Fig. 3 The green dashed lines represent the three-sigma range. Blue dots indicate normal data, 
while red dots indicate identified outliers. Outliers such as Si content exceeding 1.5, P content exceeding 0.15, S 
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content exceeding 0.14, and Mn content exceeding 0.5 were successfully removed. Normal data (blue dots) were 
concentrated within the green dashed line range.

Through these preprocessing steps, abnormal data were effectively cleaned, inconsistencies in multi-source 
heterogeneous data were resolved, and data quality and reliability were significantly improved. These preparations 
provide a solid foundation for training and analyzing the dynamic feature selection model.

Data exploring
To elucidate the relationships between various indicators and molten iron silicon (Si) content, we employed 
time-series analysis and scatter plot techniques to preliminarily investigate the potential correlations between 
key variables and Si content. As illustrated in Fig.  3, we focused on key variables such as wind volume, 
pressure differential, coal injection rate, and theoretical combustion temperature, and explored their dynamic 
relationships with Si content over time.

As depicted in Fig. 4, the relationships between the exemplary sample parameters and the silicon content in 
molten iron are illustrated.

•	 Wind Volume and Silicon Content: The trend lines exhibit a consistent pattern, albeit with a subtle correlation, 
suggesting a modest relationship between the two. This indicates that incorporating features related to wind 
volume in subsequent feature engineering may be beneficial.

•	 Pressure Differential and Silicon Content: The trend lines demonstrate a positive correlation, with fluctuations 
in the average pressure differential correlating with corresponding changes in silicon content. This suggests 
that features reflecting the average pressure differential could be instrumental in explaining variations in 
silicon content.

•	 Coal Injection and Silicon Content: The trend lines do not readily reveal a direct relationship. However, upon 
shifting the coal injection trend line by approximately two hours, a similar trend emerges, indicating a de-
layed effect of coal injection on furnace temperature. Thus, it is reasonable to include features related to coal 
injection in feature engineering.

•	 Theoretical Combustion Temperature and Silicon Content: Analysis of the trend lines reveals a certain lag in the 
response of silicon content to changes in theoretical combustion temperature, suggesting that the latter con-
tains information predictive of future silicon content variations. Therefore, including theoretical combustion 
temperature in feature engineering is valuable.

Fig. 3.  Outlier Detection for Molten Iron Assay Data (Si, P, S, and Mn).
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Through these exploratory analysis steps, we have concluded that the mean values, variations, and trend 
information of various parameters are significantly important for predicting changes in the silicon content 
of molten iron. We segmented the data into multiple phases and constructed distinct features for each phase, 
resulting in a comprehensive dataset with 184 feature variables. These feature variables encompass multiple 
dimensions, including raw material properties, process conditions, and production outcomes. Table 1 lists the 
details of the feature descriptions.

Data normalization
In this pater, to mitigate the impact of features with different scales on model performance and to ensure that 
data is processed on a unified scale, we employed Min–Max Normalization. This normalization technique 
linearly transforms the values of the original data into a specified range, typically [0, 1], facilitating subsequent 
data processing and analysis. The normalization process follows Eq. (20):

	
x∗

ij = xij −min(xij)
max(xij)−min(xij) � (20)

where ,  xij  represents the observed value of the i sample on the j-th feature in the original dataset, x∗
ij  denotes 

the normalized value, max (xij) and min (xij) are the maximum and minimum values of the j feature across 
the entire dataset, respectively.

Category Variable Names Quantity

Chemical Composition of Coal Powder and Coke Moisture Content, Carbon Content, Ash Content, Volatile Matter, Sulfur Content 5

Physical and Chemical Properties of Lump Ore Moisture Content, Total Iron Grade, Silicon Dioxide Content, Sulfur Content, Aluminum Oxide Content 5

Chemical Composition of Pellets Pellet Grade, Silicon Dioxide Content, Sulfur Content, Aluminum Oxide Content, Particle Size Distribution 5

Chemical Composition of Sinter Like pellets, but with specific differences in chemical composition and particle size distribution characteristics 11

Dynamic Process Parameters Key indicators such as Coal Injection Rate, Fuel Ratio, Wind Volume (from 15 min to 8 h) 150

Chemical Composition of Molten Iron Silicon, Phosphorus, Sulfur Content, Molten Iron Temperature, Output, Iron Content in Slag, Alkalinity 7

Silicon Content in Molten Iron from the Previous 
Furnace Single Variable Si 1

Table 1.  Feature descriptions.

 

Fig. 4.  dynamic relationships with Si content.
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Through this normalization, we ensure that the values of each feature fall within the [0, 1] range, which not 
only aids in accelerating the convergence rate of certain algorithms but also helps to prevent bias in weights due 
to differences in feature scales.

Experimental methodology and procedure
This experiment is designed to evaluate the proposed BOSVRRFE (Bayesian Online SVR-RFE) feature selection 
framework, focusing on its dynamic adaptability and feature optimization capabilities for blast furnace 
temperature prediction under streaming data conditions. The experiment is divided into two phases: the 
Initialization Phase and the Dynamic Adjustment Phase.

Initialization phase
The cumulative contribution rate method is applied with a 90% threshold to select important features from 184 
candidate features. Feature importance means are computed using a linear kernel SVR, and the initial variance 
is set to  106  to reflect high uncertainty. The selected feature subset is used to train a baseline model, and initial 
performance metrics (MSE, MAE, and R2) are recorded.

Dynamic adjustment phase
The remaining data are sequentially processed in batches according to their temporal order. For each batch, the 
importance distribution of all features is recalculated, and Bayesian updating is applied to dynamically adjust the 
mean and variance of feature importance. Based on the updated posterior scores, a new feature subset is selected, 
and highly correlated features are removed through threshold-based correlation analysis. The prediction model 
is then retrained using the refined subset, and key indicators such as feature count, performance metrics, and 
runtime are recorded. In addition, the frequency with which each feature is selected across all batches is analyzed 
to evaluate the temporal stability of important variables.

This experimental setup provides a robust foundation for assessing both the effectiveness of the feature 
selection mechanism and the overall predictive performance of BOSVRRFE in realistic industrial scenarios.

Baseline selection and justification
To ensure a fair and meaningful comparison, several widely used, interpretable, and computationally efficient 
baseline methods were selected. These baselines are representative of common approaches to feature selection 
or dimensionality reduction and are suitable for real-time industrial applications. The baseline methods include:

•	 No Feature Selection: A full feature model using all input variables.
•	 Recursive Feature Elimination (RFE): A static wrapper-based method applied once before model training.
•	 Lasso Regression: A sparsity enforcing linear model using L1 regularization.
•	 Principal Component Analysis (PCA): A dimensionality reduction method that projects feature into uncorre-

lated principal components.
•	 TreeBased Feature Importance: A selection based on feature importance scores from gradient boosted decision 

trees.

Although the BOSVRRFE framework is model-agnostic and can be integrated with any supervised learning 
algorithm that supports explicit feature subset input, XGBoost was selected as the predictive model in this study 
based on both methodological and practical considerations. XGBoost has demonstrated strong performance on 
structured industrial data, particularly in handling sparse and high-importance feature subsets. It also supports 
rapid retraining, which aligns well with the batch-wise update mechanism employed by BOSVRRFE.

Deep learning models such as LSTM and Transformer architectures were not included in the comparative 
analysis. While these models are highly effective for end-to-end prediction, they are not inherently designed for 
explicit, interpretable feature selection—the central focus of this work. Moreover, deep learning models often 
require large volumes of labeled data, introduce significant inference latency, and pose considerable deployment 
complexity, making them less suitable for real-time, high-frequency industrial systems such as blast furnace 
control.

Most selected baselines are static methods, reflecting the practicality and maturity of interpretable techniques 
commonly used in real-time applications. Existing dynamic feature selection approaches such as Online 
Streaming Feature Selection (OSFS) and Alpha-Investing37,38 are primarily designed for classification tasks 
and rely on heuristic updates. They lack explicit importance scoring and are generally unsuitable for regression 
scenarios requiring stable and transparent evaluation.

BOSVRRFE is tailored for regression tasks with interpretable, batch-wise updates. As such, classification-
oriented dynamic methods were excluded. Future work may consider comparisons with regression-compatible 
dynamic approaches as they become available and practically viable.

In summary, the use of XGBoost and the selected classical baselines ensures alignment with the problem 
setting of interpretable, efficient, and dynamically adaptable feature selection, providing a fair and practically 
relevant comparison for evaluating the performance of the proposed BOSVRRFE framework.

Evaluation and validation
To validate the effectiveness of the feature selection, we applied the trained XGBoost model to the test dataset 
and calculated key performance metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), 
and Coefficient of Determination (R2). Together, these metrics form a multidimensional evaluation system that 
reflects the model’s predictive power and accuracy from various perspectives.
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MSE
This metric measures the average of the squares of the differences between the predicted and actual values. It 
penalizes larger errors more heavily, thus providing a sensitive reflection of the model’s predictive performance 
on extreme values, MSE is defined as Eq. (21)

	
MSE = 1

n

n∑
i=1

(yi − ŷi)2 � (21)

where, n is the number of samples, yi is the actual value of the i-th observation, ŷi is the predicted value of the 
i-th observation.

MAE
This metric calculates the average of the absolute differences between the predicted and actual values, giving 
equal weight to errors of all magnitudes and providing an intuitive measure of the model’s predictive accuracy, 
MAE is defined as Eq. (22)

	
MAE = 1

n

n∑
i=1

|yi − ŷi| � (22)

where, n is the total number of predictions, yi is the actual value of the ii-th observation, ŷi is the predicted value 
of the i-th observation, |yi − ŷi| represents the absolute difference between the actual and predicted values.

R2

The R2 is an important metric for evaluating the goodness-of-fit of regression models, measuring the model’s 
ability to explain the variance of the target variable. Its value ranges from [0, 1], where an  R2  closer to 1 
indicates better fit to the target variable. R2 is specifically defined as Eq. (23):

	
R2 = 1 −

∑n

i=1

(
yi−ŷi

)2

∑n

i=1
(yi−y)2

� (23)

where,yi: Actual value of the target variable, ŷi:  Predicted value of the target variable, y:  Mean of the actual values. 
The numerator represents the squared error between the predicted and actual values, while the denominator 
represents the total variance of the actual values.

•	 R2 = 1:  The model perfectly fits the actual data, indicating the best performance.
•	 R2 = 0: The model’s performance is equivalent to using the mean of the target variable for prediction.
•	 R2 < 0:  The model performs worse than simply predicting with the mean of the target variable.

As a standardized metric, R2 facilitates performance comparison between different models and provides 
an intuitive measure of a model’s ability to explain the variance of the target variable. However, R2 has limited 
applicability for classification models or highly nonlinear models.

Through the steps, we have been able to not only validate the impact of feature selection on model performance 
but also to comprehensively assess the performance of the XGBoost model on a specific dataset. These evaluation 
results are significant for guiding future model optimizations and feature engineering endeavors.

Experimental results
Initialization phase analysis
During the initialization phase, feature subsets were selected using different cumulative contribution thresholds 
(0.80, 0.85, and 0.90), resulting in 78, 92, and 109 initial features, respectively. A 90% contribution threshold was 
ultimately adopted, yielding 109 initial features. The baseline model’s performance with this feature subset was 
as follows: MSE= 0.0031, MAE = 0.0439, and  R2 = 0.6820. These results demonstrate that the initial feature 
subset captures most of the important information for the target variable, providing a strong foundation for 
subsequent dynamic adjustments. The impact of the contribution threshold on the number of initial features is 
shown in Fig. 5.

Dynamic feature selection phase analysis
During the dynamic phase, the number of selected features was dynamically adjusted within a range of 10 to 
90. Performance analysis revealed that when the feature count was low (10–30 features), model performance 
deteriorated significantly, with  R2 falling below 0.65. However, as the feature count increased to 80–90, model 
performance improved steadily, with MSE and MAE reaching optimal levels. For example:

•	 In Batch 1, with 80 features, MSE = 0.0030,  R2  = 0.6922.
•	 In Batch 2, with 90 features, MAE= 0.0031,  R2 = 0.6809.

This trend indicates that dynamic feature selection effectively approaches the optimal feature subset while 
balancing sparsity control and performance optimization, which is shown in Fig. 6

Across batches, the dynamic method exhibited stable performance, with MSE and MAE fluctuating 
between 0.0030–0.0035 and 0.0416–0.0460, respectively, and R2 stabilizing in the range of 0.63–0.69. Optimal 
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performance was consistently achieved with 80–90 features, which is shown Fig.  7 This demonstrates the 
method’s ability to adapt to changes in feature importance under dynamic conditions.

Balancing sparsity and performance
The proposed dynamic feature selection method achieves a good balance between model sparsity and prediction 
performance. As shown in Fig.  8, using fewer features (e.g., 10–30) does not necessarily result in degraded 
accuracy. In fact, the model achieves its best performance in Batch 7 when using only 10 features (R2 = 0.6843, 
MSE = 0.0030), outperforming the configuration with 90 features (R2 = 0.6703, MSE = 0.0032).

This phenomenon may appear counterintuitive at first, but it is consistent with well-known principles 
in feature selection and generalization. Incorporating a large number of features can introduce redundancy, 
irrelevant variables, or noise—especially in real-world industrial datasets—leading to increased variance and 
reduced robustness. This effect is particularly pronounced in industrial systems such as blast furnace processes, 
where input features often suffer from sensor noise, delayed feedback, and strong correlations due to overlapping 
measurements. As the number of features increases, the risk of multicollinearity and model overfitting also rises.

By contrast, a compact set of highly informative features can help the model generalize better and avoid 
overfitting. The results confirm that BOSVRRFE effectively identifies such compact and relevant subsets, 
enabling high prediction accuracy even under strong sparsity constraints. This sparsity-aware behavior enhances 
the model’s suitability for real-time industrial applications, where low-latency and efficient computation are 
essential.

Fig. 6.  Performance of Batch1.

 

Fig. 5.  Contribution Threshold vs Feature count.
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In summary, the dynamic feature selection method dynamically adjusts feature subsets to balance sparsity 
control and performance optimization. Compared to the initialization phase, the dynamic method exhibited 
high adaptability and stability during multi-batch streaming data adjustments. The experimental results confirm 
that dynamic feature selection effectively responds to evolving feature importance, making it a robust and 
efficient solution for prediction tasks in dynamic environments.

Comparative experimental analysis
Performance validation
This study evaluates the Dynamic (BOSVRRFE) method against several static feature selection methods, 
including Lasso, PCA, Tree-Based, and Relief, to assess its performance in dynamic scenarios. The evaluation 
focuses on three aspects:

	(1)	 Prediction Performance measured using Mean Squared Error (MSE), Mean Absolute Error (MAE), and 
Coefficient of Determination (R2).

	(2)	 Inter-Batch Stability assessed using the standard deviation of R2.
	(3)	 Feature Sparsity and Selection Capability, examining the number of selected features to evaluate the balance 

between sparsity and information retention.

MSE, MAE, R2 comparison results
The Dynamic (BOSVRRFE) method consistently outperformed static feature selection methods across all 
evaluation criteria. The result listed in Table 2:

Fig. 8.  Prediction performance (R2 and MSE) versus number of features in Batch 7.

 

Fig. 7.  Performance Result of Crossing All Batches.
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As shown in Table 2 the proposed BOSVRRFE method demonstrates clear advantages over static feature 
selection approaches across multiple evaluation dimensions.

•	 Prediction Performance:

BOSVRRFE achieved the highest predictive accuracy, with an R2 of 0.6710, MSE of 0.003159, and MAE of 
0.04385. Its dynamic feature adjustment mechanism enables the model to effectively track evolving feature 
importance under varying industrial conditions. In contrast, static methods presented distinct trade-offs. The 
No Selection approach retained all 184 features and achieved a relatively high R2 (0.6661), but at the cost of 
increased redundancy and complexity. Lasso and Relief reduced feature count significantly (38 and 36 features, 
respectively), but their performance dropped accordingly (R2 = 0.6469 and 0.6437), indicating the exclusion of 
useful but less dominant features. PCA yielded the poorest performance (R2 = 0.0359), reflecting information 
loss due to aggressive dimensionality reduction. Tree-based selection, though moderately sparse (19 features), 
also underperformed (R2 = 0.6386), likely due to over-concentration on a narrow set of features.

•	 Stability and Sparsity:

BOSVRRFE maintained strong performance consistency across data batches, with a low R2 standard deviation 
of 0.0166, highlighting its robustness to temporal variation. Static methods, which relied on fixed feature sets, 
lacked such adaptability and exhibited greater performance variance. In terms of sparsity, BOSVRRFE selected 
an average of 98 features—significantly fewer than No Selection (184) yet more balanced than Lasso (38) and 
Relief (36). PCA and Tree-Based methods selected even fewer features (10 and 19), but their excessive sparsity 
led to significant performance degradation.

Overall, BOSVRRFE outperformed static baselines by achieving a superior trade-off between prediction 
accuracy, feature sparsity, and inter-batch stability. Its dynamic selection mechanism enables it to maintain high 
predictive performance under changing process conditions, whereas static methods either retained too many 
irrelevant features or were overly sparse, compromising model generalization.

R2 gain trend analysis
The Fig. 9 illustrates the R2  gain trends of the Dynamic method compared to static methods across batches.

•	 Significant Gains: Compared to PCA, the Dynamic method achieved the largest gains across all batches, with 
increases consistently exceeding 0.6, showcasing its ability to dynamically adjust feature subsets and improve 
PCA performance significantly.

Fig. 9.  Dynamic method  R2 vs static methods across batches.

 

Method MSE (avg) MAE (avg) R2 (avg) Features

Dynamic (BOSVRRFE) 0.003159 0.043850 0.671037 98

No Selection 0.003207 0.043900 0.666116 184

Lasso 0.003318 0.045326 0.646892 38

PCA 0.009258 0.075461 0.035948 10

Relief 0.003437 0.046079 0.643739 36

Tree-Based 0.003470 0.046809 0.638621 19

Table 2.  Comparison Results.
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•	 Balance of Sparsity and Performance: Compared to Lasso, the Dynamic method showed smaller but more 
stable gains (fluctuations of 0.03–0.05), highlighting its ability to balance sparsity control and performance 
improvement.

•	 Adaptability: Compared to Tree-Based and Relief methods, the Dynamic method exhibited consistent gains 
(approximately 0.02–0.07), reflecting its superior adaptability in dynamically adjusting feature subsets.

In summary, the Dynamic method consistently outperformed static methods in R2 gain trends, effectively 
balancing sparsity, performance, and adaptability to maintain robust predictions across dynamic scenarios.

Performance comparison summary
The Dynamic (BOSVRRFE) method demonstrated significant advantages in dynamic scenarios over static 
methods in three key areas:

	(1)	 Predictive Performance: Highest  R2  average and lowest MSE and MAE, confirming its effectiveness in 
dynamically adjusting feature subsets to improve prediction accuracy.

	(2)	 Inter-Batch Stability: Small  R2  standard deviation, indicating robust performance across batches and ad-
aptability to changes in the target variable.

	(3)	 Sparsity and Information Retention: Balanced feature count (80–90 features), achieving a compromise be-
tween sparsity control and retention of critical information. Static methods, limited by fixed feature subsets, 
lacked this dynamic adaptability, resulting in reduced performance in dynamic scenarios. PCA suffered 
severe performance degradation due to information loss.

In summary, The Dynamic (BOSVRRFE) method significantly outperformed static methods in dynamic 
scenarios by dynamically adjusting feature subsets to enhance model performance. It effectively extracts the 
most relevant features and leverages the efficient modeling capabilities of XGBoost, achieving optimal balance 
between prediction accuracy, sparsity, and interpretability. The results in Table 1 validate the method’s superiority 
in blast furnace silicon content prediction tasks.

Conclusion and future work
This study proposed a Dynamic BOSVRRFE feature selection method to address challenges in dynamic feature 
importance and complex industrial data for blast furnace silicon content prediction. By combining SVR, RFE, 
and BO updating, the method dynamically adjusts feature subsets, achieving superior predictive accuracy (R2 
= 0.671037, MSE = 0.003159, MAE = 0.043850), strong adaptability (R2  standard deviation = 0.016619), and an 
effective balance between sparsity and information retention (98 average features). Compared to static methods 
like PCA and Lasso, it demonstrated significant advantages in dynamic industrial environments.

In designing this method, we deliberately avoided using fully Bayesian SVR formulations, such as those based 
on evidence maximization, due to their computational complexity and lack of explicit feature control. Instead, 
BOSVRRFE maintains modularity by combining interpretable SVR-based weights with lightweight Bayesian 
updates, making it more suitable for real-time deployment in industrial systems.

Future research could focus on extending the method to other industrial scenarios characterized by complex 
and evolving data, integrating it with advanced models such as deep learning for further accuracy improvements, 
and developing real-time deployment capabilities for immediate decision-making in industrial systems. The 
proposed method provides a robust and efficient solution for dynamic feature selection, offering significant 
potential to enhance predictive modeling, operational efficiency, and decision-making in complex industrial 
environments.

Data availability
The raw data used in this study originate from real-world industrial production en-vironments and cannot be 
publicly disclosed due to commercial sensitivity and confi-dentiality agreements. However, intermediate data-
sets that were anonymized and pro-cessed during the research workflow may be made available from the corre-
sponding author upon reasonable request. Access to these data will be subject to prior review and compliance 
with applicable confidentiality and data protection obligations.
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